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Abstract

We study risk-sensitive reinforcement learning
(RL), a crucial field due to its ability to enhance
decision-making in scenarios where it is essential
to manage uncertainty and minimize potential ad-
verse outcomes. Particularly, our work focuses
on applying the entropic risk measure to RL prob-
lems. While existing literature primarily inves-
tigates the online setting, there remains a large
gap in understanding how to efficiently derive a
near-optimal policy based on this risk measure us-
ing only a pre-collected dataset. We center on the
linear Markov Decision Process (MDP) setting,
a well-regarded theoretical framework that has
yet to be examined from a risk-sensitive stand-
point. In response, we introduce two provably
sample-efficient algorithms. We begin by present-
ing a risk-sensitive pessimistic value iteration al-
gorithm, offering a tight analysis by leveraging the
structure of the risk-sensitive performance mea-
sure. To further improve the obtained bounds, we
propose another pessimistic algorithm that utilizes
variance information and reference-advantage de-
composition, effectively improving both the de-
pendence on the space dimension d and the risk-
sensitivity factor. To the best of our knowledge,
we obtain the first provably efficient risk-sensitive
offline RL algorithms.

1. Introduction
Reinforcement learning (RL) with risk-sensitivity is becom-
ing increasingly popular in a variety of real-world risk-
sensitive problems, such as finance (Föllmer & Schied,
2002; Hambly et al., 2021), optimal control (Nass et al.,
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2019), and neuroscience and psychology (Chateauneuf &
Cohen, 1994; Nagengast et al., 2010; Braun et al., 2011;
Niv et al., 2012). Whereas researchers have been focusing
on analyzing and understanding how a risk-sensitive near-
optimal policy can be learned in the online setting (Fei et al.,
2021a;b; 2020; Fei & Xu, 2022; Liang & Luo, 2022; Du
et al., 2023; Wang et al., 2023), i.e., when the learner is
allowed to interact with and thereby explore the environ-
ment, in theory, little is known about how such policy can be
learned with provable efficiency in the offline setting, where
the learner has a pre-collected dataset but cannot interact
with the environment (Urpı́ et al., 2021; Ma et al., 2021;
Rigter et al., 2024).

Learning from interactions with the environment can be
cost-prohibitive, thereby preventing us from actually learn-
ing and benefiting from these policies. Take the financial
applications of RL for instance. Supposing we are training
an RL agent to optimize the portfolio in the stock market
(see Yu et al. (2019); Huang et al. (2021); Chaouki et al.
(2020) for examples of such attempts), training an RL agent
from scratch via online interactions in this setting may lead
to significant financial losses, as these agents often require
long periods of interacting with the environment before re-
covering a satisfactory policy. As such, many existing works
focus on utilizing pre-collected datasets to learn an effec-
tive policy, falling into the offline RL setting. Moreover,
many practical problems, such as financial applications, are
highly risk-sensitive in nature. A rigorous theoretical anal-
ysis would help us better understand the possibilities and
impossibilities of offline RL methods in such applications.
Our work thus concentrates on answering the following
critical question:

Can we design a provably efficient risk-sensitive RL
algorithm with an offline dataset?

Our work takes an initial step toward answering this ques-
tion. Inspired by a long line of related works investigating
risk-sensitivity in sequential decision-making (Howard &
Matheson, 1972; Jaśkiewicz, 2007; Bäuerle & Rieder, 2014;
Osogami, 2012; Tamar et al., 2012; Patek, 2001; Shapiro
et al., 2021; Shen et al., 2014; Borkar, 2001; Mihatsch & Ne-
uneier, 2002; Borkar, 2002; Borkar & Meyn, 2002; Di Masi
& Stettner, 2007; Ma et al., 2020; Zhou et al., 2023; Mo-
harrami et al., 2024), we investigate optimizing the follow-
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ing entropic risk measure in Markov Decision Processes
(MDPs), defined as

Vβ := 1
β log

{
E
[
eβR

]}
, (1)

with β ∈ R being an adjustable parameter controlling the
risk-sensitivity. Consider the second-order Taylor expansion
of (1) for intuition, where Vβ = E[R] + β

2Var[R] +O(β2).
When β = 0, we recover the risk-neutral objective. When
β < 0, the objective is risk-averse, and for β’s further
away from 0, the objective further penalizes trajectories
with larger reward variances. On the other hand, setting
β > 0 leads to a risk-seeking objective, which can be used
to model risk-seeking human behavior in psychology appli-
cations (Braun et al., 2011; Chateauneuf & Cohen, 1994).
Moreover, to tackle the issue of large state space that can
result in increased sample complexity in the tabular setting,
our work considers the linear MDP, a popular theoretical
framework for function approximation.

To the best of our knowledge, no existing work studies
provably efficient offline RL with respect to the entropic
risk measure in the tabular MDP setting, let alone the more
general linear function approximation setting. Moreover,
while it is common practice to design a pessimistic algo-
rithm for risk-neutral offline RL, it remains elusive how
pessimism could be implemented for risk-sensitive RL with
the special entropic risk measure we focus on. Addition-
ally, we also aim to design a variance-aware algorithm to
sharpen our rates. However, we are unaware of any existing
works incorporating variance estimation in risk-sensitive
RL, even in those that focus on risk-sensitive online RL.
Thus, it is technically challenging to provide the theoreti-
cal guarantees incorporating the entropic measure in offline
RL for our proposed algorithms. In this work, by tackling
the above challenges, we successfully propose two pes-
simistic algorithms to learn the optimal policy for the offline
risk-sensitive RL with provable guarantees under the linear
function approximation setting. We summarize our main
contributions below.

Contributions. In this paper, we propose the first provably
efficient risk-sensitive RL algorithms with linear function
approximation for the offline setting. Specifically, our first
algorithm is a pessimistic value iteration algorithm with a
pessimistic bonus term devised using the structure of the
entropic measure for eliminating spurious correlation. In
addition, utilizing both variance information and reference-
advantage decomposition, we develop a variance-aware pes-
simistic value iteration algorithm by devising a variance
estimator for the entropic value function, aiming to improve
our theoretical guarantee further. In our theoretical results,
we show that the first algorithm is sufficiently efficient to
learn an optimal policy with a guarantee depending on a risk-
sensitivity factor and feature space dimension d, and then it
can achieve a tighter guarantee using reference-advantage

decomposition with an improved feature space dimension
dependence from d to

√
d with an additional coverage as-

sumption. Moreover, we prove that our variance-aware
algorithm can effectively sharpen both the dependence on
the feature space dimension d and the risk-sensitivity factor.
When we take β → 0+, we can recover the best-known rate
for risk-neutral offline RL. In our proofs, we provide a novel
analysis of the covering number for risk-sensitive value func-
tion estimates in linear MDPs, which has not been studied
in previous works, even under the online setting, making it
of independent interest.

1.1. Related Work

Our work is related to a long line of works using linear func-
tion approximation in single-agent RL with an unknown
transition and reward function. Particularly, whereas some
works focus on the linear mixture MDPs (Zhou et al., 2021a;
Hu et al., 2022; Chen et al., 2022; Zhou et al., 2021b; Cai
et al., 2020; Zhang et al., 2021; Yang & Wang, 2019), where
each state, action, next state tuple is mapped into a feature
space, we focus on the linear MDP case where features de-
pend on the state and action only (Jin et al., 2020; Zanette
et al., 2021a; Jin et al., 2021; Wang et al., 2020a; Wagen-
maker et al., 2022; Zhong & Zhang, 2024; Liu et al., 2024;
Agarwal et al., 2020a). As the lines of research closely rele-
vant to the linear MDP, the recent works further study low-
rank MDPs (Agarwal et al., 2020b; Zhou et al., 2020; He
et al., 2021; Uehara et al., 2021; Min et al., 2021; Qiu et al.,
2022; Zhang et al., 2022a; Zheng et al., 2022; Mhammedi
et al., 2024; Modi et al., 2024), where the state-action feature
is learned instead of known a prior, and the kernel function
approximation (Yang et al., 2020; Qiu et al., 2021), which
covers the linear MDP as a special case. We leave the study
of extending our method for linear MDPs to such settings
as our future work.

We also draw inspiration from a line of work on risk-neutral
offline RL (Levine et al., 2020) for the single-agent MDP,
where the agent aims to recover a near-optimal policy from
a pre-collected dataset under an unknown transition and
reward function (Rashidinejad et al., 2021; Jin et al., 2021;
Xie et al., 2021a; Cheng et al., 2022; Zanette et al., 2021b;
Uehara & Sun, 2021; Xiong et al., 2022; Yin et al., 2022;
Shi et al., 2022; Yin & Wang, 2021; Nguyen-Tang et al.,
2023; Di et al., 2023; Li et al., 2024). Of these works, Xiong
et al. (2022); Yin et al. (2022) achieve the tightest bounds
for linear MDPs that we are aware of, and our work is
able to recover their rates under similar assumptions when
β → 0 (i.e., risk-neutral). While the algorithm discussed
in Section 4.2 is partially inspired by these works, it is im-
portant to emphasize that using variance estimation and
reference-advantage decomposition in our risk-sensitive set-
ting requires careful analysis of the specific problem struc-
ture defined by the entropic risk measure, which thus is not
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straightforward given existing works.

Our work is closely related to a line of works studying the
entropic risk measure in RL (Jaśkiewicz, 2007; Shen et al.,
2013; Bäuerle & Rieder, 2014; Osogami, 2012; Patek, 2001;
Nass et al., 2019; Shapiro et al., 2021; Shen et al., 2014;
Borkar, 2001; Mihatsch & Neuneier, 2002; Borkar, 2002;
Borkar & Meyn, 2002; Zhang et al., 2023; Di Masi & Stet-
tner, 2007; Ma et al., 2020; Moharrami et al., 2024), dating
back to Howard & Matheson (1972), which is consistent
with the same risk measure’s usage in financial mathemat-
ics (Detlefsen & Scandolo, 2005; Rudloff et al., 2008). Par-
ticularly, among recent works, Fei et al. (2021a;b; 2020); Fei
& Xu (2022); Liang & Luo (2022) theoretically study online
reinforcement learning under the entropic risk measure with
theoretical guarantees, whereas we focus on the offline set-
ting. Moreover, only Fei et al. (2021b) incorporates linear
function approximation in the model, and the rest focuses
only on tabular MDPs. Even for Fei et al. (2021b), the work
only focuses on linear mixture MDPs, avoiding a challeng-
ing covering number analysis for the entropic risk value
function estimates under linear MDPs. Orthogonal to our
studies is another line of literature studying risk-sensitive
RL with the CVaR risk measure (Prashanth, 2014; Lim &
Malik, 2022; Bastani et al., 2022; Du et al., 2023; Wang
et al., 2023; Zhao et al., 2023; Chen et al., 2023) or general
risk measures (Wu & Xu, 2023) defined by different utility
functions (Föllmer & Schied, 2002; Ben-Tal & Teboulle,
2007; Lee et al., 2020). It is interesting to further extend our
analysis of the entropic risk measure to these various risk
measures.

2. Preliminaries
Markov Decision Process. We study an episodic MDP
characterized by a tuple (S,A,P, r,H), where S is a pos-
sibly infinite state space, A the agent’s action space, H the
episode length, P := {Ph}Hh=1 the transition kernel with
Ph(s

′|s, a) being the probability density of transitioning
from the current state s to the next state s′ upon taking ac-
tion a ∈ A at step h, and r = {rh}Hh=1 the reward function
where rh : S × A 7→ [0, 1]. We define π = {πh}Hh=1 with
πh(·|s) ∈ ∆A for all s ∈ S as the policy for the agent
where ∆A is the set of probability measures on A. For in-
teracting with the environment at step h, the agent at a state
sh takes an action ah ∼ πh(sh) and transitions to the next
state sh+1 ∼ Ph(· | sh, ah), receiving a reward rh(sh, ah)
in the process. Without loss of generality, we assume that
the interaction always starts from a fixed initial state s1. We
further assume that the transition kernel P and the reward
function r are unknown to better reflect the challenges in
real-world problems.

Linear MDP. When facing a large state space that may
result in increased sample complexity in a tabular MDP, a

common technique is making use of function approximation,
such as the linear function approximation. In this paper,
we consider the widely-studied linear MDP model, which
admits a linear structure in both the reward function and the
transition kernel, i.e.,

rh(s, a) = θ⊤h ϕ(s, a),

Ph(·|s, a) = µh(·)⊤ϕ(s, a),
(2)

where max{
∫
S ∥µh(s)∥ds, ∥θh∥} ≤

√
d, and ϕ : S×A 7→

Rd is a feature map with ∥ϕ(s, a)∥ ≤ 1. In particular, with
finite actions and states, by setting d = |S||A| and ϕ(s, a) =
e(s,a) as the canonical basis, it reduces to the tabular MDP
setting where the states and actions are discrete.

Value Function and Optimal Policy. Recall the entropic
risk measure in (1). For risk-sensitive RL, we define the
state-value function (Q-function) Qπ

h : S × A 7→ R as the
expected cumulative rewards, measured by the entropic risk
measure, under some policy π starting from a state-action
tuple (s, a). More concretely, we let

Qπ
h(s, a) =

1

β
log

{
Eπ

[
eβ

∑H
h′=h

rh′ (sh′ ,ah′ ) | sh = s, ah = a
]}

,

where the expectation is taken over the trajectories induced
by π. The value function V π

h : S 7→ R is defined as the
expected cumulative rewards under the policy π starting at
a state s, which is

V π
h (s) =

1

β
log

{
Eπ

[
eβ

∑H
h′=h

rh′ (sh′ ,ah′ )
∣∣ sh = s

]}
.

We introduce the following shorthand notations for the con-
ditional expectation and variance of any function f : S →
R, taken over the randomness in the next step transition

(Phf)(s, a) = Es′∼Ph(·|s,a)[f(s
′)|sh = s, ah = a],

(Varhf)(s, a) = (Phf
2)(s, a)− [(Phf)(s, a)]

2.

Letting V π
H+1(s) = Qπ

H+1(s, a) = 0 for any (s, a), we
have the following Bellman equation,

Qπ
h(s, a) = rh(s, a) +

1

β
log
(
(Phe

βV π
h+1)(s, a)

)
,

V π
h (s) =

1

β
log
(
⟨eβQ

π
h(s,·), π(·|s)⟩A

)
.

(3)

where ⟨·, ·⟩A is the inner product over A. The policy π
can be stochastic in our setting. Based on the definition
of the value function, we define the optimal policy π∗ as
π∗ := argmaxπ V

π
1 (s1). For brevity, we use Q∗

h and V ∗
h

to denote the optimal Q-function and optimal value func-
tion, respectively. Their relationship is characterized by the
exponential Bellman optimality equation

eβQ
∗
h(s,a) = eβrh(s,a) · (Phe

βV ∗
h+1)(s, a),

V ∗
h (s) = max

a∈A
Q∗

h(s, a).

3



Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning

Our goal is to learn a policy π that maximizes V π
1 (s1), and

we measure the policy’s performance by

SubOpt(π) := V ∗
1 (s1)− V π

1 (s1),

that is, the suboptimality of the policy π given that the initial
state is s1. In addition, we say a policy π is ε-approximate
optimal if SubOpt(π) ≤ ε.

Risk-Sensitive Offline RL. In offline RL, we assume that
there exists a behavior policy that generates an offline
dataset by interacting with the environment. With this
dataset, we then employ offline RL algorithms to recover
an estimate of π∗ without interacting with the environment.
Particularly, we make the following assumptions about the
behavior policy and the offline dataset:

Assumption 2.1 (Offline Dataset). Suppose that there ex-
ists a behavior policy µ. After interacting with the en-
vironment for K rounds, we sample a dataset D con-
sisting of K trajectories, which is defined as D :=
{(sτh, aτh, rh(sτh, aτh))}

H,K
h,τ=1.

Assumption 2.1 does not enforce any coverage conditions on
the dataset but precludes us from using techniques such as
variance estimation and reference-advantage decomposition.
As such, we make the following stronger but still common
assumption on data coverage (Xiong et al., 2022; Wang et al.,
2020b; Duan et al., 2020; Yin et al., 2022; Yin & Wang,
2021), with which we can obtain the improved dependence
on d and tighter suboptimality guarantees.

Assumption 2.2 (Data Coverage). We assume that the
smallest eigenvalue of the covariance matrix is bounded
away from zero, that is

κ = min
h∈[H]

λmin(Edµ
h
[ϕ(s, a)ϕ(s, a)⊤]) > 0,

where dµh denotes the joint distribution of (s, a) over S ×A
at step h induced by the behavioral policy µ.

We note that Assumption 2.2 is not essential, and our algo-
rithm can still efficiently learn a near-optimal policy without
it, albeit at a slower rate. In the section on main results, we
first prove a result for learning an ε-approximate optimal
policy without this assumption in Theorem 5.1. Then, we
target to obtain sharper guarantees based on Assumption 2.2.
These sharper results are further provided in Theorem 5.2
using the same algorithm for Theorem 5.1, and in Theorem
5.3 with designing a different variance-aware algorithm.

3. Suboptimality Analysis of Risk-Sensitive RL
To motivate the algorithm design, we provide a high-level
overview of the concentration terms we target during analy-
sis and formally introduce the “shifting and scaling” tech-
nique. We begin by introducing the model evaluation error

under our setting, then show how the error relates to the
suboptimality of a pessimistic value function estimate, and
finally introduce the “shifting and scaling” technique, which
ensures that the regression targets are on the same scale.

The suboptimality is closely related to the model evaluation
error in offline RL (Jin et al., 2021). However, the standard
analysis does not apply in our risk-sensitive setting because
the Bellman equation has a different structure, as shown
in (3), necessitating a new definition of model evaluation
error. For any estimated optimal Q-function Q̂h and value
function V̂h, it seems natural to measure the estimation error
of (3) by the difference between Q̂h(s, a) and rh(s, a) +
1
β log((Phe

βV̂h+1)(s, a)). However, the direct approach has

been shown to incur an extra factor e|β|H
2

in the resulting
upper bound, even in the tabular MDP setting considered
by Fei et al. (2021a). Inspired by the work, we instead
focus on the exponential Bellman equation, obtained by
exponentiating both sides of (3),

eβQ
π
h(s,a) = eβrh(s,a)(Phe

βV π
h+1)(s, a),

eβV
π
h (s) = ⟨eβQ

π
h(s,·), π(·|s)⟩A.

(4)

The model evaluation error is then defined as

ιexp,h(s, a) = eβrh(s,a)Phe
βV̂h+1(sh, ah)− eβQ̂h(s,a),

where the subscript exp denotes that the evaluation error is
defined with respect to the exponential Bellman equation.

Following the spirit of the exponential Bellman equation in
(4), we leverage model evaluation error and pessimism to
control eβV

∗
h (s)−eβV π̂

h (s) directly, as opposed to controlling
the term via bounding V ∗

h (s)− V π̂
h (s).

Lemma 3.1. Let Q̂ be a pessimistic estimate of Q, satisfying
sign(β)ιexp,h(s, a) ≥ 0 for any (s, a, h) ∈ S × A × [H].
V̂h(s) = maxa∈A Q̂h(s, a) denote the value function in-
duced by Q̂. Then, we have for all β > 0,

SubOpt(π̂) ≤ 1

β

(
eβV

∗
1 (s1) − eβV

π̂
1 (s1)

)
≤

H∑
h=1

eβ(h−1)

β
Eπ∗ [ιexp,h(sh, ah)|s1] ,

and for all β < 0,

SubOpt(π̂) ≤ e−βH

β

(
eβV

∗
1 (s1) − eβV

π̂
1 (s1)

)
≤ e−βH

β

H∑
h=1

Eπ∗ [ιexp,h(sh, ah)|s1] ,

where π̂ is the greedy policy taken with respect to Q̂, defined
by π̂h(s) = argmaxa∈A Q̂h(s, a).
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We can observe that the model evaluation errors propagate
backward differently. When β < 0 (risk-averse), the model
valuation errors at each step scale the same in the bound,
whereas errors at later steps are scaled upward when β > 0
(risk-seeking). The difference in scale, while inevitable,
can be better accounted for via the following “shifting and
scaling” technique.

Shifting and Scaling. We define the following shifting and
scaling transformation:

Shf(·) =

{
eβ(h−1)(eβf(·) − 1), β > 0

−e−βH(eβf(·) − 1), β < 0
(5)

for any function f satisfying f(s) ∈ [0, H + 1− h]. With
the operator defined, at each step, rather than regressing
directly on exp(Vh(s

′)), with s′ denoting the observed state
at the next step, we instead regress on ShVh(s

′) to rescale
the regression targets at each step.

For the case β > 0, there is a scaling factor of eβ(h−1) in (5),
ensuring that the regression targets at each step are scaled
according to the decomposition bounds in Lemma 3.1. For
β < 0, the scaling factor e−βH is similarly constructed to
ensure that the regression targets are on the same scale as the
suboptimality bounds. Together with the shifting term, the
range of the value function after the transformation satisfies
ShVh(·) ∈ [0, e|β|H − 1] for any β ̸= 0 and h. While
shifting does not affect the scale of the model evaluation
error, it ensures that the error’s range starts at zero. For
concentration analysis, we can then focus only on regression
targets in the range [0, e|β|H − 1], regardless of the sign
of β or the value of h. Our shifting and scaling operator
integrates principles from shifted exponential V-functions
in Fei et al. (2021b) and decaying bonus in Fei et al. (2021a)
from a unified perspective. Additionally, our operator can
rescale the target in advance and thus avoid adjusting the
uncertainty bonus at each step as in Fei et al. (2021a).

This method provides multiple benefits. To understand the
benefits of shifting, we examine our resulting upper bound
when β > 0, which depends on β through a risk-sensitivity
factor, eβH−1

β . If we overlook the property that eβVh ≥ 1

and merely treat eβVh as a function bounded by eβH with-
out shifting it, the term eβH − 1 in the upper bound will be
replaced with eβH . By shifting eβVh by 1, the upper bound
could be improved by a factor (eβH − 1)/eβH < 1, which
could be much smaller, particularly when β approaches
zero. Additionally, scaling is also beneficial. As shown in
3.1, the errors are scaled upward when β > 0. If errors
at different steps are treated uniformly without incorporat-
ing the fact that Vhs have different ranges, the additional
e|β|H

2

term in the resulting upper bound in Fei et al. (2021b)
cannot be entirely eliminated. Moreover, as the regression
targets are scaled and shifted correctly, we avoid the need
to derive suitable concentration bounds over the different

Algorithm 1 RSPVI Algorithm

1: Input: Dataset D := {(sτh, aτh, rh(sτh, aτh))}
H,K
h,τ=1.

2: Initialize: V̂H+1(·) = 0.
3: for h = H, . . . , 1 do
4: Λh ←

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λId
5: θ̂h ← Λ−1

h

∑K
τ=1 ϕ(s

τ
h, a

τ
h)rh(s

τ
h, a

τ
h)

6: ŵh ← Λ−1
h

∑K
τ=1 ϕ(s

τ
h, a

τ
h)Sh+1V̂h+1(s

τ
h+1)

7: r̂h(·, ·)←
{
ϕ(·, ·)⊤θ̂h

}
[0,1]

8: Γh(·, ·)← γ ∥ϕ(·, ·)∥Λ−1
h

9: Q̂h(·, ·)←
{

1
β log(qh(·, ·))

}
[0,H+1−h]

where qh is

• when β > 0,

eβ(1−h)
[
eβ(r̂h(·,·)−1)(ϕ(·, ·)⊤ŵh + eβh)− Γh(·, ·)

]
• when β < 0,

eβH
[
eβr̂h(·,·)(e−βH − ϕ(·, ·)⊤ŵh) + Γh(·, ·)

]
10: π̂h(·|·)← argmaxπh

⟨Q̂h(·, ·), πh(·|·)⟩A
11: V̂h(·)← 1

β log
(
⟨exp(βQ̂h(·, ·)), π̂h(·|·)⟩A

)
12: end for
13: Output: π̂ = {π̂h}Hh=1

ranges of regression targets caused by the choices of β and
h, streamlining the analysis.

4. Algorithm
In this section, we propose two offline algorithms for risk-
sensitive RL under the linear MDP setting.

4.1. Risk-Sensitive Pessimistic Value Iteration

We begin by introducing the algorithm Risk-Sensitive Pes-
simistic Value Iteration (RSPVI) as summarized in Algo-
rithm 1. The algorithm’s performance relies on the shifting
and scaling technique, and its construction draws inspiration
from Jin et al. (2021).

Specifically, Lines 4-6 in Algorithm 1 perform two ridge
regressions, and θ̂h and ŵh are the solutions of the following
minimization problems:

min
θ∈Rd

K∑
τ=1

[
rh(s

τ
h, a

τ
h)− ϕh(s

τ
h, a

τ
h)

⊤θ
]2

+ λ ∥θ∥22 ,

and

min
w∈Rd

K∑
τ=1

[
Sh+1V̂h+1(s

τ
h+1)− ϕh(s

τ
h, a

τ
h)

⊤w
]2

+ λ ∥w∥22 .

Combining such results, the estimated reward functions
are constructed by r̂h(·, ·) =

{
ϕ(·, ·)⊤θ̂h

}
[0,1]

, where
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Algorithm 2 VA-RSPVI Algorithm

1: Input: Dataset D := {(sτh, aτh, rh(sτh, aτh))}
H,K
h,τ=1 and

auxiliary dataset Daux := {(s̆τh, ăτh, rh(s̆τh, ăτh))}
H,K
h,τ=1

2: Initialize: Set V̂H+1(·) = 0

3: Construct variance estimator σ̂2
h(·, ·) with Daux via (6).

Let (σ̂τ
h)

2 := σ̂2
h(s

τ
h, a

τ
h).

4: for h = H, . . . , 1 do
5: Σh ←

∑K
τ=1 ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/(σ̂τ
h)

2 + λId
6: θ̂h ← Σ−1

h

∑K
τ=1 ϕ(s

τ
h, a

τ
h)rh(s

τ
h, a

τ
h)/(σ̂

τ
h)

2

7: ŵh ← Σ−1
h

∑K
τ=1 ϕ(s

τ
h, a

τ
h)Sh+1V̂h+1(s

τ
h+1)/(σ̂

τ
h)

2

8: r̂h(·, ·)←
{
ϕ(·, ·)⊤θ̂h

}
[0,1]

9: Γh(·, ·)← γ ∥ϕ(·, ·)∥Σ−1
h

10: Q̂h(·, ·)←
{

1
β log(qh(·, ·))

}
[0,H+1−h]

where qh is

• when β > 0,

eβ(1−h)
[
eβ(r̂h(·,·)−1)(ϕ(·, ·)⊤ŵh + eβh)− Γh(·, ·)

]
• when β < 0,

eβH
[
eβr̂h(·,·)(e−βH − ϕ(·, ·)⊤ŵh) + Γh(·, ·)

]
11: π̂h(·|·)← argmaxπh

⟨Q̂h(·, ·), πh(·|·)⟩A
12: V̂h(·)← 1

β log
(
⟨exp(βQ̂h(·, ·)), π̂h(·|·)⟩A

)
13: end for
14: Output: π̂ = {π̂h}Hh=1

{z}[x,y] clips z into the range [x, y], i.e., {z}[x,y] =
max{x,min{z, y}}. Our approach is justified in the lin-
ear MDP setting, as the transition operator Ph is linear in
features. Therefore ϕ(s, a)⊤ŵh can be viewed as the esti-
mate of Ph(Sh+1V̂h+1)(s, a).

In Line 9, we undo the affine transformation Sh and com-
bine the estimates of rh(s, a) and Ph(Sh+1V̂h+1)(s, a) into
the estimate of eβQh , or equivalently eβrhPh(e

βVh+1). An
uncertainty bonus of γ ∥ϕ(s, a)∥Λ−1

h
is subtracted for each

(s, a) to enforce pessimism. The pessimistic estimates for
Q, π, and V can then be obtained following Lines 9-11.

Algorithm 1 is attractive as it provably recovers a near-
optimal policy even under insufficient coverage, achieving
a performance guarantee in the absence of Assumption 2.2.
Moreover, as we show in the sequel, under such a slightly
stronger assumption on data coverage (Assumption 2.2),
the algorithm can achieve a tighter dependence on d with
changes to the theoretical analysis only.

4.2. Variance-Aware RSPVI

We further sharpen the suboptimality bound by incorpo-
rating variance information and propose Variance-Aware
Risk-Sensitive Pessimistic Value Iteration (VA-RSPVI) in
Algorithm 2. Particularly, by estimating the variances of the

value function estimates, we can reweigh the Bellman resid-
uals to achieve a tighter bound. At a high level, the algorithm
first uses Algorithm 1 as a subroutine to obtain variance es-
timates. A weighted ridge regression is then solved, and the
Q-function, policy, and V-function estimates are obtained
by solving the weighted regression problem rather than the
unweighted ones used by Lines 4-6 of Algorithm 1. While
the technique of utilizing the variance information has been
studied in the risk-neural setting (Zhou et al., 2021a; Xiong
et al., 2022; Yin et al., 2022), our work provides a non-trivial
generalization of this technique to the risk-sensitive setting
due to the exponential Bellman equation.

We first highlight a nuanced difference between VA-RSPVI
and RSPVI. Note that we must ensure that the variance esti-
mate is independent of the regression targets when estimat-
ing ShV̂h. Otherwise, the variance estimates used to weigh
the Bellman errors are correlated with the Bellman residual
errors, complicating later convergence analysis. We as-
sume the existence of auxiliary data as a “reference dataset”,
which is sampled from the same distribution as D yet inde-
pendent of the dataset itself (Xie et al., 2021b; Xiong et al.,
2022; Zhang et al., 2022b).
Assumption 4.1 (Auxiliary Offline Dataset). Suppose that
we have another offline dataset sampled independently fol-
lowing the behavior policy µ as in Assumption 2.1. This
auxiliary offline dataset Daux consisting of K trajectories is
defined as Daux := {(s̆τh, ăτh, rh(s̆τh, ăτh))}

H,K
h,τ=1.

We make the assumption only for ease of presentation. We
note that when no such Daux is available, the learner can
simply take the original dataset D and randomly split it by
half over the trajectories, similar to the procedures used
by Xie et al. (2021b); Zhang et al. (2022b). This will relax
our suboptimality bound by only a negligible numerical
constant factor and will not change the upper bound’s de-
pendence on dominating terms.

Variance Estimation. By the linear MDP assumption,
we know that [Ph(Sh+1V

∗
h+1)](s, a) = ϕ(s, a)⊤η

(1)
h and

[Ph(Sh+1V
∗
h+1)

2](s, a) = ϕ(s, a)⊤η
(2)
h for some η

(1)
h and

η
(2)
h . In other words, the second moment of the value

function of the next step, with the expectation taken
over the transition dynamics, remains linear in the fea-
ture vector ϕ(s, a). Using the auxiliary dataset Daux :=

{(s̆τh, ăτh, rh(s̆τh, ăτh))}
H,K
h,τ=1, we can then calculate the es-

timate of the weights corresponding to the first moment,
denoted as η̂(1)h , as the solution to the following minimiza-
tion problem

min
η

K∑
τ=1

[
ϕ(s̆τh, ă

τ
h)

⊤η − Sh+1V̂
aux
h+1(s̆

τ
h+1)

]2
+ λ ∥η∥22 ,

and calculate the estimate of the weights corresponding
to the second moment, denoted as η̂(2)h , as the solution to

6
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another minimization problem

min
η

K∑
τ=1

[
ϕ(s̆τh, ă

τ
h)

⊤η − (Sh+1V̂
aux
h+1(s̆

τ
h+1))

2
]2

+ λ ∥η∥22 ,

where V̂ aux
h+1 is an estimator of V ∗

h+1, obtained by calling Al-
gorithm 1 as a subroutine, with Dref as the input. Doing so
thus ensures that the weights η̂(1)h and η̂

(2)
h are independent

of the Bellman residual errors calculated using D, avoiding
the potential dependence that may be introduced by variance
estimation. Equipped with η̂

(1)
h and η̂

(2)
h , the conditional

variance of Sh+1V
∗
h+1 could then be estimated by

σ̂2
h(·, ·) := max

{
σ2, {ϕ(·, ·)⊤η̂(2)h }[0,(e|β|H−1)2]

−
(
{ϕ(·, ·)⊤η̂(1)h }[0,e|β|H−1]

)2}
.

(6)

We clip the estimator from below by σ2 to avoid variance
close to 0 and σ̂2

h is a consistent estimate of the clipped con-
ditional variance σ2

h := max{σ2,Varh(Sh+1V
∗
h+1)(s, a)}

under the conditions in Theorem 5.3.

With the variance estimators σ̂2
h(s, a) on hand, we develop

Algorithm 2, namely Variance-Aware Risk-Sensitive Pes-
simistic Value Iteration, where the coefficients are con-
structed by weighted ridge regressions. The use of Daux in
Line 3 of Algorithm 2 guarantees the independence between
the variance estimate and the regression targets. Weighted
by the variance estimators, ŵh and θ̂h are the solutions of

min
θ∈Rd

K∑
τ=1

(rh(s
τ
h, a

τ
h)− ϕh(s

τ
h, a

τ
h)

⊤θ)2

σ̂2
h(s

τ
h, a

τ
h)

+ λ ∥θ∥22 ,

and

min
w∈Rd

K∑
τ=1

(Sh+1V̂h+1(s
τ
h+1)− ϕh(s

τ
h, a

τ
h)

⊤w)2

σ̂2
h(s

τ
h, a

τ
h)

+ λ ∥w∥22 .

Their closed forms are given by Lines 5-7 of Algorithm 2.
The bonus function on Line 9 of Algorithm 2 changes corre-
spondingly, and the Q-function, policy, and value function
estimates are obtained accordingly on Lines 10-12.

Intuitively, by weighing each observation according to their
residuals’ variance, the procedure is now akin to generalized
least squares with l2 regularization (Amemiya, 1985). As
we prove in the sequel, as long as the sample size is suffi-
ciently large, the estimates’ quality in Algorithm 2 will never
be worse than that of Algorithm 1 under Assumption 2.2,
thereby further improving our suboptimality bounds.

5. Main Results
In this section, we present our main theoretical results for
both Algorithm 1 and Algorithm 2.

Suboptimality Bound for Algorithm 1. We begin with
our baseline result characterizing the suboptimality of Algo-
rithm 1. The result does not require any coverage assump-
tions and can be sharpened by the utilization of reference-
advantage decomposition, as we will discuss later.

Theorem 5.1. Under Assumption 2.1, if we set λ = 1/e2|β|

and γ = Õ(d(e|β|H − 1)) in Algorithm 1, with probability
at least 1− δ, the suboptimality SubOpt(π̂) := V ∗

1 (s1)−
V π̂
1 (s1) admits an upper bound of

Õ (d)
e|β|H − 1

|β|

H∑
h=1

Eπ∗

[
∥ϕ(sh, ah)∥Λ−1

h

∣∣∣s1] .
Here Õ(·) omits terms that are logarithmic in d, H , K,
and 1/δ, and the proof is deferred to the appendix. As
the setting of risk-sensitive tends to the risk-neutral set-
ting when β → 0+, one may achieve an upper bound
Õ(dH)

∑H
h=1[∥ϕ(s, a)∥Λ−1

h
|s1], which coincides with the

bound in Jin et al. (2021) up to logarithmic factors.

We stress that Theorem 5.1 does not require Assumption 2.2.
We only need to assume the existence of an offline dataset
and make no coverage assumption on the dataset. The
coverage assumption, Assumption 2.2, can further improve
our dependence on the feature dimension d by changing the
strength of the uncertainty bonus γ, without any changes to
the Algorithm 1. We present our result as follows:

Theorem 5.2. Under Assumptions 2.1-2.2, with K ≥
Ω̃
(
d2H2/κ+ 1/κ2

)
, if we set λ = 1/e2|β| and γ =

Õ(
√
d(e|β|H − 1)) in Algorithm 1, with probability at least

1 − δ,the suboptimality SubOpt(π̂) := V ∗
1 (s1) − V π̂

1 (s1)
admits an upper bound of

Õ
(√

d
)e|β|H − 1

|β|

H∑
h=1

Eπ∗

[
∥ϕ(sh, ah)∥Λ−1

h

∣∣∣s1] .
Leveraging Assumptions 2.2, we show in Theorem 5.2 that
we can improve the dependence on the feature dimension
from Õ(d) to Õ(

√
d) by only changing the hyperparameter

choice and the analysis of the algorithm. As we detail in Sec-
tion 6, this improvement is due to the reference-advantage
decomposition, which, to the best of our knowledge, has not
been applied in risk-sensitive RL by existing works.

Suboptimality Bound for Algorithm 2. Theorem 5.3
provides the performance bound for Algorithm 2. Our
theoretical analysis is associated with a term ξ(σ2) :=

suph,s,a,s′∼Ph(·|s,a)
(Sh+1V

∗
h+1(s

′)−Ph(Sh+1V
∗
h+1)(s,a))

2

max{σ2,Varh(Sh+1V ∗
h+1)(s,a)}

that
characterizes the degree of deviation from the mean of
Sh+1V

∗
h+1(s

′) standardized by the truncated variance. In
Theorem 5.3, we assume ξ(σ2) = O(d). We note that Yin
et al. (2022) imposed a similar condition with σ2 fixed at 1,
while we allow the flexibility of adjusting σ2.

7
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Theorem 5.3. Under Assumption 2.1-2.2, if we have K ≥
Ω̃(d2H2/κ+ 1/κ2) · ((e|β|H − 1)/σ)4 and ξ(σ2) = O(d),
setting λ = 1/(e|β|(H+1) − e|β|)2 and γ = Õ(

√
d) in Al-

gorithm 2, with probability at least 1 − δ, SubOpt(π̂) :=
V ∗
1 (s1)− V π̂

1 (s1) admits an upper bound of

Õ
(√

d
) 1

|β|

H∑
h=1

Eπ∗

[
∥ϕ(sh, ah)∥(Σ∗

h)
−1

∣∣∣s1] ,
where Σ∗

h =
∑K

τ=1 ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤/σ2
h(s

τ
h, a

τ
h) +

λId and σ2
h(sh, ah) is the clipped conditional variance

max{σ2,Varh(Sh+1V
∗
h+1)(s, a)}.

The condition ξ(σ2) = O(d) can be ensured by using a suffi-
ciently large σ2, which in turn guarantees that the magnitude
of Sh+1V

∗
h+1 on the model evaluation error is negligible. A

feasible choice is to set σ2 ≥ (e|β|H−1)2/d, which ensures
ξ(σ2) = O(d). One extreme case is σ2 = (e|β|H − 1)2.
In that case, ξ(σ2) = O(1) and σ̂2

h(s, a) = σ2 for any
h, s, a. In other words, in this extreme case, all targets in
the regression are given the same weights and Σ∗

h = Λh/σ
2.

Consequently, Algorithm 2 is equivalent to Algorithm 1,
and Theorem 5.3 provides the same upper bound as the one
in Theorem 5.2 with appropriate choices of γ and λ.

Our bound implicitly depends on e|β|H through the scaled
covariance matrix Σ∗

h and λ, as now λ−1 = e2|β|(e|β|H −
1)2 as opposed to e2|β|. Despite the implicit dependence on
e|β|H , as σ2

h(sh, ah) ≤ (e|β|H−1)2 and λ is adjusted corre-
spondingly, we have (Σ∗

h)
−1 ≼ (e|β|H − 1)2Λ−1

h , ensuring
that ∥ϕ(s, a)∥(Σ∗

h)
−1 ≤ (e|β|H − 1) ∥ϕ(s, a)∥Λ−1

h
. In other

words, Algorithm 2 is never worse than Algorithm 1 with
appropriate parameters under Assumption 2.2.

Comparison with Existing Results. Finally, we discuss our
results in the context of existing works on both risk-sensitive
RL and offline RL. We begin by discussing our dependence
on e|β|H−1

|β| , which we dub the risk-sensitive factor. All of

our bounds have a dependence on Õ( e
|β|H−1
|β| ). According

to Fei et al. (2021a;b); Liang & Luo (2022), in the online
setting, the lower bound also depends on such a factor. We
can only conjecture such a dependence might exist inspired
by the lower bound for the online setting. However, it
remains an open question how to derive a lower bound for
risk-sensitive offline RL under linear MDPs. Compared with
Fei et al. (2021b), the only paper studying linear function
approximation in risk-sensitive RL though for online setting,
our bound can remove a potential factor of e|β|H

2

by the
shifting and scaling technique. Moreover, under a mild
coverage assumption, our bound’s dependence on d can be
improved to Õ(

√
d), improving over the result in Fei et al.

(2021b) by a factor of
√
d. When compared to risk-neutral

offline RL in linear MDPs, our dependence on d matches the
performance guarantee in Xiong et al. (2022), the tightest

bounds for risk-neutral RL in linear MDPs that we are aware
of, while also matching the lower bound for risk-neutral RL
in the same paper.

6. Theoretical Analysis
In this section, we outline the analysis of our theorems.
Formal proofs are deferred to the appendix. Specifically,
Appendix B presents the proof of Theorem 5.1, Appendix C
provides the proof of Theorem 5.2, and Appendix D presents
the proof of Theorem 5.3.

6.1. Proof Sketch of Theorem 5.1

By Lemma 3.1, the bound of the suboptimality can be ob-
tained by bounding the model evaluation error, which is
controlled with the estimation error of Bellman operator as
shown in Lemma B.3. Taking into account the new structure
exponential Bellman equation in (4), in the risk-sensitive
setting, the Bellman operators Bh and its estimate B̂h are
defined as

Bhf =

{
eβ(rh−1)(Phf + eβh), β > 0

eβrh(e−βH − Phf), β < 0
, (7)

B̂hf =

{
eβ(r̂h−1)(P̂hf + eβh), β > 0

eβr̂h(e−βH − P̂hf), β < 0
, (8)

where P̂h is an estimate of the transition operator. With
the appropriate choice of λ, the dominating term in the esti-
mation error B̂h(Sh+1V̂h+1)(s, a) − Bh(Sh+1V̂h+1)(s, a)

is
∥∥∑

τ ϕ
τ
hϵ

τ
h(Sh+1V̂h+1)

∥∥
Λ−1

h

∥ϕ∥Λ−1
h

where the term

ϵτh(Sh+1V̂h+1) is the regression noise defined by
Sh+1V̂h+1(s

τ
h+1) − Ph(Sh+1V̂h+1)(s

τ
h, a

τ
h), which can in

turn be controlled by a uniform-concentration bound over
the possible values of Sh+1V̂h+1. We remark that obtaining
a uniform concentration of the term requires careful analysis
of the covering number of the function class Sh+1V̂h+1 for
risk-sensitive linear MDPs, which has not been examined
prior to our work. Fortunately, the “shifting and scaling” op-
erator S helps ensure that ShV̂h is scaled similarly at each h,
streamlining our analysis. By a combination of “shifting and
scaling” and uniform concentration analysis, we are able to
relate the model evaluation error in risk-sensitive MDPs to
the risk-neutral uncertainty quantifier γ ∥ϕ(·, ·)∥Λ−1

h
, which

completes our proof.

6.2. Proof Sketch of Theorem 5.2

We sharpen Algorithm 1’s dependence on d in Theorem 5.2
under Assumption 2.2 by better adjusting γ, yet without
changing the algorithm’s overall structure. An additional√
d amplification of the error upper bound is introduced

in the proof of Theorem 5.1 due to the uniform concen-
tration analysis. We further show that when the data has

8
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sufficient coverage, the performance of offline risk-sensitive
RL algorithms can benefit from reference-advantage de-
composition by avoiding this amplification. The main idea
is to set a fixed reference function V ref

h+1 and decompose
the error of the transition Ph(Sh+1V̂h+1)− P̂h(Sh+1V̂h+1)

as Ph(Sh+1V
ref
h+1) − P̂h(Sh+1V

ref
h+1) and Ph(Sh+1V̂h+1 −

Sh+1V
ref
h+1)− P̂h(Sh+1V̂h+1 − Sh+1V

ref
h+1).

As V ref
h+1 is fixed, we avoid the

√
d amplification in the first

term by eschewing uniform concentration. For the second
term, if

∥∥Sh+1V̂h+1 − Sh+1V
ref
h+1

∥∥
∞ ≤ Rh+1 for some

constant Rh+1, the uniform concentration as in Theorem
5.1 leads to an upper bound Õ(dRh+1) ∥ϕ∥Λ−1

h
which will

be non-dominating as long as Rh+1 is sufficiently small.
Equipped with data coverage assumption, Assumption 2.2,
the optimal value function V ∗

h may serve as the reference
function and

∥∥ShV ∗
h − ShV̂h

∥∥
∞ is small enough for suf-

ficiently large K, as the dataset now has sufficient cov-
erage of the optimal risk-sensitive policy. Then we ob-
tain a tighter bound on the error B̂h(Sh+1V̂h+1)(s, a) −
Bh(Sh+1V̂h+1)(s, a). Correspondingly, setting the parame-
ter γ in Algorithm 1 as γ = Õ(

√
d(e|β|H − 1)) provides a

tighter bound on the suboptimality.

6.3. Proof Sketch of Theorem 5.3

We can further sharpen the dependency on the risk-
sensitivity factor e|β|H−1

|β| via variance information. Recall
from the proof sketch of Theorem 5.1 that the key quantity
is
∥∥∥∑τ

ϕτ
h

σ̂h(sτh,a
τ
h)
ϵ̃τh(Sh+1V

∗
h+1)

∥∥∥
Σ−1

h

with the weighted

noise ϵ̃τh(Sh+1V
∗
h+1) = ϵτh(Sh+1V

∗
h+1)/σ̂h(s

τ
h, a

τ
h). Intu-

itively, since the variance of the noise term is not neces-
sarily the same for all (s, a), weighing each observation
accordingly improves the bound via the Gauss-Markov the-
orem (Amemiya, 1985). When data has sufficient coverage
and the number of samples is sufficiently large, the variance
can be accurately estimated, thereby improving the bounds.

We sketch our technique below. Let σ2 and R denote
the conditional variance and magnitude of ϵ̃τh. We use
a Bernstein-type concentration inequality and improve
the term’s bound to Õ(

√
dσ + R), whereas the standard

Hoeffding-type used to prove Theorem 5.1 yields Õ(
√
dR).

Thus, as long as the estimator σ̂2
h, defined in (6), is consis-

tent, with an appropriate choice of σ2, we have R = O(
√
d)

and σ = O(1) leading to the upper bound in Theorem 5.3.

To show the consistency of σ̂2
h, we first bound the estimation

error between σ̂2
h and max{σ2,Varh(Sh+1V̂h+1)(s, a)} by

similar technique as in Theorem 1. Then we can convert
Varh(Sh+1V̂h+1)(s, a) to Varh(Sh+1V

∗
h+1)(s, a) under the

coverage assumption, since Sh+1V̂h+1 and Sh+1V
∗
h+1 are

close enough for large K.

7. Conclusion
We study risk-sensitive offline reinforcement learning under
the entropic risk measure, with a focus on the linear MDP.
We begin by presenting a risk-sensitive pessimistic value
iteration algorithm, offering a tight analysis by leveraging
the structure of the risk-sensitive performance measure. To
further improve the obtained bounds, we propose another
pessimistic algorithm that utilizes variance information and
reference-advantage decomposition, improving both the de-
pendence on the space dimension d and the risk-sensitivity
factor. To the best of our knowledge, we obtain the first
provably efficient risk-sensitive offline RL algorithms.
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Appendix

A. Proof of Lemma 3.1
Proof. As π̂ is the greedy policy, we have V̂h(s) =

1
β log(⟨eβQ̂h(s,·), π̂h(·|s)⟩A). Then, for any policy π′, using eβV

π′
h (s) =

⟨eβQπ′
h (s,·), π′

h(·|s)⟩A = ⟨eβrh(s,·)Phe
βV π′

h+1(s, ·), π′
h(·|s)⟩A from (4), we have

eβV
π′
h (s) − eβV̂h(s) =⟨eβQ̂h(s,·), π′

h(·|s)− π̂h(·|s)⟩A + ⟨ιexp,h(s, ·), π′
h(·|s)⟩A

+ ⟨eβrh(s,·)(Phe
βV π′

h+1(s, ·)− Phe
βV̂h+1(s, ·)), π′

h(·|s)⟩A,
(9)

with ιexp,h(s, a) = eβrh(s,a)Phe
βV̂h+1(sh, ah)− eβQ̂h(s,a). Then, we consider the case β > 0 and β < 0 separately.

Case 1: β > 0. As π̂h(·|s) = argmaxπ⟨Q̂h(s, ·), π(·|s)⟩A, we have ⟨eβQ̂h(s,·), π′
h(·|s) − π̂h(·|s)⟩A ≤ 0. Given this

property, if we set π′ = π in (9), we have

eβV
∗
h (sh) − eβV̂h(sh)

≤ Eπ∗ [ιexp,h(sh, ah)|sh] + Eπ∗

[
eβrh(sh,ah)(Phe

βV ∗
h+1(sh, ah)− Phe

βV̂h+1(sh, ah))
∣∣∣sh] . (10)

If we set π′ = π̂ in (9), we have

eβV
π̂
h (sh) − eβV̂h(sh)

= Eπ̂ [ιexp,h(sh, ah)|sh] + Eπ̂

[
eβrh(sh,ah)(Phe

βV π̂
h+1(sh, ah)− Phe

βV̂h+1(sh, ah))
∣∣∣sh] . (11)

Equipped with (10) and (11), we can show the following (12) by induction from h = H to h = 1,

eβV
∗
h (sh) − eβV̂h(sh) ≤

H∑
h′=h

eβ(h
′−h)Eπ∗ [ιexp,h′(sh′ , ah′)|sh] ,

eβV
π̂
h (sh) − eβV̂h(sh) ≥ 0.

(12)

To see this, we start with the base case h = H . As V̂H+1 = V π̂
H+1 = V ∗

H+1 = 0, (12) is implied by (10) and (11) directly
with the assumption ιexp,H ≥ 0. Supposing that (10) holds for h′ ≥ h+ 1, we aim to show that it also holds for h. In fact,
by (11), ιexp,h ≥ 0 and the induction assumption, we have

eβV
π̂
h (sh) − eβV̂h(sh) ≥ Eπ̂ [ιexp,h(sh, ah)|sh] ≥ 0. (13)

In addition, as eβV
∗
h+1(sh+1) − eβV̂h+1(sh+1) ≥ 0, (10) leads to

eβV
∗
h (sh) − eβV̂h(sh)

≤Eπ∗ [ιexp,h(sh, ah)|sh] + eβEπ∗

[
Phe

βV ∗
h+1(sh, ah)− Phe

βV̂h+1(sh, ah)
∣∣∣sh]

≤Eπ∗ [ιexp,h(sh, ah)|sh] + eβEπ∗

[
H∑

h′=h+1

eβ(h
′−h−1)Eπ∗ [ιexp,h′(sh′ , ah′)|sh+1]

∣∣∣sh]

=

H∑
h′=h

eβ(h
′−h)Eπ∗ [ιexp,h′(sh′ , ah′)|sh] ,

(14)

where the first inequality follows from rh ∈ [0, 1] and the second inequality follows from the induction assumption that (12)
holds for h+1. By induction, (13) and (14) imply that (12) holds for any h ∈ [H]. Moreover, setting h = 1 in (12), we have

eβV
∗
1 (s1) − eβV

π̂
1 (s1) ≤ eβV

∗
1 (s1) − eβV̂1(s1) ≤

H∑
h=1

eβ(h−1)Eπ∗ [ιexp,h(sh, ah)|s1] .
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Together with Lemma B.1, we have

SubOpt(π̂) = V ∗
1 (s1)− V π̂

1 (s1) ≤
1

β

(
eβV

∗
1 (s1) − eβV

π̂
1 (s1)

)
≤

H∑
h=1

eβ(h−1)

β
Eπ∗ [ιexp,h(sh, ah)|s1] .

Therefore, we conclude the proof of the case β > 0.

Case 2: β < 0. Similar to the positive β case, by setting π′ = π and π′ = π̂ in (9) and the assumption ιexp,h ≤ 0, we have

eβV
∗
h (sh) − eβV̂h(sh)

≥ Eπ∗ [ιexp,h(sh, ah)|sh] + Eπ∗

[
eβrh(sh,ah)(Phe

βV ∗
h+1(sh, ah)− Phe

βV̂h+1(sh, ah))
∣∣∣sh]

and

eβV
π̂
h (sh) − eβV̂h(sh) ≤ Eπ̂

[
eβrh(sh,ah)(Phe

βV π̂
h+1(sh, ah)− Phe

βV̂h+1(sh, ah))
∣∣∣sh] .

Again, by induction from h = H to h = 1, we can obtain a result similar to (12),

eβV
∗
h (sh) − eβV̂h(sh) ≥

H∑
h′=h

Eπ∗ [ιexp,h′(sh′ , ah′)|sh] ,

eβV
π̂
h (sh) − eβV̂h(sh) ≤ 0,

(15)

and (15) leads to

eβV
∗
1 (s1) − eβV

π̂
1 (s1) ≥ eβV

∗
1 (s1) − eβV̂1(s1) ≥

H∑
h=1

Eπ∗ [ιexp,h(sh, ah)|s1] .

Together with Lemma B.1, as β < 0, we have

SubOpt(π̂) ≤ e−βH

β

(
eβV

∗
1 (s1) − eβV

π̂
1 (s1)

)
≤ e−βH

β

H∑
h=1

Eπ∗ [ιexp,h(sh, ah)|s1] .

The proof of the case β < 0 is concluded.

B. Proof of Theorem 5.1
In this section, we provide the detailed proofs for results attained by Algorithm 1 with γ = Õ(d(e|β|H − 1)). Furthermore,
this section will serve as a warm-up for the subsequent section in which we sharpen the upper bound.

Proof of Theorem 5.1. We begin with the following result, which relates suboptimality to the transformed space induced by
Sh, the shifting and scaling operator.

Lemma B.1. We have

V ∗
1 (s1)− V π̂

1 (s1) ≤
1

β
(eβV

∗
1 (s1) − eβV

π̂
1 (s1)) =

1

|β|
(S1V ∗

1 (s1)− S1V π̂
1 (s1))

for all β > 0 and

V ∗
1 (s1)− V π̂

1 (s1) ≤
e−βH

β
(eβV

∗
1 (s1) − eβV

π̂
1 (s1)) =

1

|β|
(S1V ∗

1 (s1)− S1V π̂
1 (s1))

for all β < 0.
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The lemma then permits us to work almost entirely in the space induced by Sh for the rest of the proof, which is equipped
with the property that ShVh is roughly of the same scale at all h ∈ [H], thereby avoiding the need to adjust uniform
concentration bounds at each step. We then define the model evaluation error after the transformation Sh as

ιh(sh, ah) =

{
eβ(h−1)ιexp,h(sh, ah), β > 0

−e−βHιexp,h(sh, ah), β < 0

The following lemma captures the relationship between suboptimality and the error. It can be viewed as a new version of
Lemma 3.1 after introducing ιh and Sh, in the space induced by Sh.

Lemma B.2. If ιh(sh, ah) ≥ 0 for all sh, ah, and h, then

ShV ∗
h (sh)− ShV̂h(sh)

≤ Eπ∗ [ιh(sh, ah)|sh] + Eπ∗ [Sh+1V
∗
h+1(sh+1)− Sh+1V̂h+1(sh+1)|sh], (16)

and

ShV π̂
h (sh)− ShV̂h(sh) ≥ 0 (17)

Consequently, it holds that

S1V ∗
1 (s1)− S1V π̂

h (s1) ≤
H∑

h=1

Eπ∗ [ιh(sh, ah)|s1].

The result then shows that if the estimate is pointwise pessimistic, in the sense that ιh(sh, ah) ≥ 0 for all sh, ah, h, then the
suboptimality upper bound defined in Lemma B.2 can be in turn translated to the expected model evaluation error, where
expectation is taken over the state action visitation measure induced by the optimal policy. Naturally, the next step is to
ensure that the condition ιh(sh, ah) ≥ 0 holds and controlling the term from above via Γh(s, a), the uncertainty bonus
defined in Algorithm 1.

We first provide a more formal definition of the operators defined in (7) in the proof sketch. Particularly, let

Bhf =

{
eβ(rh−1)(Phf + eβh), β > 0

eβrh(e−βH − Phf), β < 0
and B̂hf =

{
eβ(r̂h−1)(P̂hf + eβh), β > 0

eβr̂h(e−βH − P̂hf), β < 0
, (18)

where P̂hf(s, a) = ϕ(s, a)⊤ŵ(f) with

ŵ(f) = Σ−1
h

(∑
τ

ϕτ
h · f(sτh+1)

σ̂2
h(s

τ
h, a

τ
h)

)
and Σh =

∑
τ

ϕτ
h(ϕ

τ
h)

⊤

σ̂2
h(s

τ
h, a

τ
h)

+ λ · I. (19)

We use ϕτ
h to denote ϕ(sτh, a

τ
h) for notation simplicity. With the definition in mind, we then show that conditioned on a

so-called “good event”, the term ιh can be controlled simultaneously from above and below.

Lemma B.3. On the event

Eh =
{∣∣∣Bh(Sh+1V̂h+1)(s, a)− B̂h(Sh+1V̂h+1)(s, a)

∣∣∣ ≤ Γh(s, a)
}
,

we have 0 ≤ ιh(s, a) ≤ 2Γh(s, a).

Combining Lemma B.2 and B.3, we have

V ∗
1 (s1)− V̂1(s1) ≤

1

|β|
(ShV ∗

1 (s1)− ShV̂1(s1)) ≤
2

|β|

H∑
h=1

Eπ∗ [Γh(sh, ah)|s1] (20)
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for some bonus function Γh(s, a) if

Eh =
{∣∣∣Bh(Sh+1V̂h+1)(s, a)− B̂h(Sh+1V̂h+1)(s, a)

∣∣∣ ≤ Γh(s, a)
}

(21)

holds for any h. In Algorithm 1, the bonus function is set to be Γh(s, a) = γ ∥ϕ(s, a)∥Λ−1
h

. Then, to prove the theorem, it is

sufficient to show that P(∩Hh=1Eh) ≥ 1− δ with γ = Õ(dRβ) where we use Rβ to denote e|β|H − 1. (21) suggests us to
focus on the error between Bh(Sh+1V̂h+1) and B̂h(Sh+1V̂h+1). We first provide an upper bound on the error that is easier
to control

Lemma B.4. The following bound holds for all β, s, a, and h.∣∣∣Bh(Sh+1V̂h+1)(s, a)− B̂h(Sh+1V̂h+1)(s, a)
∣∣∣

≤ e|β|H |β| |rh(s, a)− r̂h(s, a)|︸ ︷︷ ︸
(i)

+
∣∣∣Ph(Sh+1V̂h+1)(s, a)− P̂h(Sh+1V̂h+1)(s, a)

∣∣∣︸ ︷︷ ︸
(ii)

. (22)

Here, (i) is the error we incur when estimating the reward function rh from data and (ii) from estimating the transition
operator, Ph, in the space induced by Sh+1. Both can be controlled simultaneously by the following lemma:

Lemma B.5. For a function ∥gh+1∥∞ ≤ R with Phgh+1(s, a) = ϕ(s, a)⊤wh, we have∣∣∣Phgh+1(s, a)− P̂hgh+1(s, a)
∣∣∣ ≤R√dλ ∥ϕ(s, a)∥Σ−1

h

+

∥∥∥∥∥∑
τ

ϕτ
h

σ̂h(sτh, a
τ
h)
· ϵ̃τh(gh+1)

∥∥∥∥∥
Σ−1

h

∥ϕ(s, a)∥Σ−1
h

,

where ϵ̃τh(g) =
g(sτh+1)−Phg(s

τ
h,a

τ
h)

σ̂h(sτh,a
τ
h)

and P̂h is defined in (19). In addition, we have

|rh(s, a)− r̂h(s, a)| ≤
√
dλ ∥ϕ(s, a)∥Σ−1

h

for r̂h(s, a) given in Algorithms 1 and 2.

We note that the lemma is stated (and proven) in a more general fashion such that it can be applied to both Algorithm 1 and
Algorithm 2. To specialize the result to Theorem 5.1, all we need is to set σ̂2

h(s, a) = 1 for all s, a, and h, thereby obtaining

(i) = |rh(s, a)− r̂h(s, a)| ≤
√
dλ ∥ϕ(s, a)∥Λ−1

h
. (23)

In addition, as
∥∥∥Sh+1V̂h+1

∥∥∥
∞
≤ Rβ := e|β|H − 1, Lemma B.5 also leads to

(ii) ≤ Rβ

√
dλ ∥ϕ(s, a)∥Λ−1

h
+

∥∥∥∥∥∑
τ

ϕτ
h · ϵτh(Sh+1V̂h+1)

∥∥∥∥∥
Λ−1

h

∥ϕ(s, a)∥Λ−1
h

, (24)

where the first term is caused by the bias of ridge regression and ϵτh(g) = g(sτh+1)− Phg(s
τ
h, a

τ
h). Plugging (23) and (24)

into (22), we have ∣∣∣Bh(Sh+1V̂h+1)− B̂h(Sh+1V̂h+1)
∣∣∣

≤ (Rβ + e|β|H |β|)
√
dλ ∥ϕ(s, a)∥Λ−1

h
+

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥∥∥
Λ−1

h

∥ϕ(s, a)∥Λ−1
h

≤ 2Rβ

√
d ∥ϕ(s, a)∥Λ−1

h
+

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥∥∥
Λ−1

h

∥ϕ(s, a)∥Λ−1
h

.

(25)
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The last step in (25) follows the fact
√
λ = e−|β| and the inequality

e|β|H |β| ≤ e|β|H(e|β| − 1) ≤ e|β|(H+1) − e|β| =
Rβ√
λ
. (26)

With (25), it is sufficient to bound
∥∥∥∑τ ϕ

τ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥
Λ−1

h

as the first term is already Õ(dRβ) ∥ϕ(s, a)∥Λ−1
h

. As we do

not have any coverage assumption on the offline dataset for Theorem 5.1, we do so via uniform concentration.

Uniform Concentration. In the backward iteration, V̂h+1 depends on the data (sτh+1, a
τ
h+1) and thus a uniform concentration

result for
∥∥∥∑τ ϕ

τ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥
Λ−1

h

is needed. For brevity, in this section, we focus on the case β > 0 first and consider

the following function class

Uh(Lθ, Lw, Lγ , λ)

= {Uh(s; θ, w, γ,Σ) : S → [0, Rβ ] s.t. ∥θ∥ ≤ Lθ, ∥w∥ ≤ Lw, γ ∈ [0, Lγ ],Σ ≳ λ · I} ,

where

Uh(s; θ, w, γ,Σ)

= max
a

{
eβ[{ϕ(s,a)

⊤θ}[0,1]−1](ϕ(s, a)⊤w + eβh)− γ
√
ϕ(s, a)⊤Σ−1ϕ(s, a)

}
[eβ(h−1),eβH ]

.

Given the construction of V̂h in Lines 6-9 of Algorithm 1, it is straightforward to see that eβ(V̂h+h−1) ∈ Uh(Lθ, Lw, Lγ , λ).
Controlling the size of Uh relies on controlling the norms of the estimates, which we provide in the following lemma.

Lemma B.6 (Upper bound of estimated coefficients). ŵh and θh from Algorithm 1 satisfy

∥ŵh∥ ≤ Rβ

√
Kd

λ
,
∥∥∥θ̂h∥∥∥ ≤√Kd

λ
,

where Rβ = e|β|H − 1. In addition, ŵh and θh from Algorithm 2 satisfy

∥ŵh∥ ≤ R2
β

√
Kd

λ
,
∥∥∥θ̂h∥∥∥ ≤ Rβ

√
Kd

λ
.

Using the upper bounds of ∥ŵh∥ and
∥∥∥θ̂h∥∥∥ in Lemma B.6 and the fact that γ is set to be γ = c · dRβ

√
ζ with ζ =

log (3dHKe|β|/δ) and some constant c, we have

Lθ =
√
Kd/λ, Lw = Rβ

√
Kd/λ, Lγ = c · dRβ

√
ζ, λ = e−2β . (27)

As ShV̂h = eβ(V̂h+h−1) − eβ(h−1), we have

ShV̂h ∈ Ũh :=
{
Uh − eβ(h−1) : Uh ∈ Uh(Lθ, Lw, Lγ , λ)

}
. (28)

Let Nh(ε) be the ε-cover of Ũh with respect to ∥·∥∞ and |Nh(ε)| is the ϵ-covering number. Thanks to the shifting and
scaling technique, the ϵ-covering number of Uh and Ũh should be the same, and we provide the result in the following
lemma.

Lemma B.7 (Upper bound of the covering number). For any ε > 0, let |Nh(ε)| and |N ′
h(ε)| be the ε-covering number of

the function space Uh(Lθ, Lw, Lγ , λ) and U ′
h(Lθ, Lw, Lγ , λ) respectively, we have

max{log(|Nh(ε)|), log(|N ′
h(ε)|)}

≤ d log(1 + 8Lw/ε) + d log(1 + 8 |β|Lθ(Lw + e|β|H)/ε) + d2 log(1 + 8d1/2L2
γ/(λε

2)).
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Here N ′
h(ε) refers to the covering number of the function class when β < 0. While we include its bound here for

completeness, the term is defined formally in the proof of Lemma B.7 in Appendix E.7.

Setting ε =
√
λdRβ/K, we have the following upper bound on the covering number.

log |Nh(ε)| ≤ d log(1 + 8Lw/ε) + d log(1 + 8βLθ(Lw + eβH)/ε) + d2 log(1 + 8d1/2L2
γ/(λε

2))

≤ d log(1 + 8eβRβ

√
Kd/ε)

+ d log(1 + 16e3βRβKd/ε) + d2 log(1 + 8c2e2βR2
βd

5/2ζ/ε2)

= d log(1 + 8e2βK3/2d−1/2) + d log(1 + 16e4βK2) + d2 log(1 + 8c2e4βd1/2K2ζ)

≤ 3d2 log(32c2e4βd1/2K2ζ). (29)

Here, the first step comes from Lemma B.7. The second uses the parameters in (27) and eβH−eβh ≤ Rβ and eβRβ ≥ eβHβ
from (26). The third step uses our choice of ε. The last step holds as long as c ≥ 1.

Equipped with the upper bound of the covering number, we can obtain an upper bound of
∥∥∥∑τ ϕ

τ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥
Λ−1

h

.

Specifically, by the definition of the ε-cover, we can find Uε ∈ Nh+1(ε) such that
∥∥∥Uε − Sh+1V̂h+1

∥∥∥
∞
≤ ε, then

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥∥∥
Λ−1

h

≤

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Uε)

∥∥∥∥∥
Λ−1

h

+

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1 − Uε)

∥∥∥∥∥
Λ−1

h

≤ sup
U ′

ε∈Nh+1(ε)

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(U

′
ε)

∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
(iii)

+

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1 − Uε)

∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
(iv)

,

(30)

where we use triangle inequality in the first step and Uε ∈ Nh+1(ε) in the second step. We can thus control (iii) via the
classic concentration bound on self-normalized processes in (Jin et al., 2021), which we write out in F.1 for completion, and
have

(iii) ≤ Rβ

√
2 log(|Nh+1|H/δ) + d log(1 +K/λ) (31)

with probability 1− δ/H . In addition, for (iv) we have

(iv) ≤
K∑

τ=1

∥∥∥Λ−1/2
h ϕτ

hε
∥∥∥ ≤ K

∥∥∥Λ−1/2
h

∥∥∥
2
∥ϕτ

h∥ · ε ≤
εK√
λ
, (32)

where ∥·∥2 is the spectral norm of the matrix and ∥ϕτ
h∥ comes from our assumption of linear MDP. Combing (29), (30),

(31), (32) and ε =
√
λdRβ/K, we have∥∥∥∥∥∑

τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥∥∥
Λ−1

h

≤ Rβ

√
2 log(|Nh+1|H/δ) + d log(1 +K/λ) +

εK√
λ

≤
√
6dRβ

√
log(32c2e4βd1/2K2ζ) + log(H/δ) + log(2e2βK) + dRβ

≤ 4dRβ

√
7ζ + 2 log(c) ≤ c

2
dRβ

√
ζ

(33)
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with probability 1− δ/H . The second step comes from (29). The third step uses log(ζ) ≤ ζ and the definition of ζ. The
last step holds as long as c ≥ 8

√
7 + 2 log(c)/ log(2). Consequently, plugging (33) into (25) shows that∣∣∣Bh(Sh+1V̂h+1)− B̂h(Sh+1V̂h+1)

∣∣∣ ≤ (2 +
c

2
)dRβ

√
ζ ∥ϕ(s, a)∥Λ−1

h

≤ cdRβ

√
ζ ∥ϕ(s, a)∥Λ−1

h
= Γh(s, a)

holds with probability 1− δ/H if c ≥ 4. Therefore, P(∩Hh=1Eh) ≥ 1− δ and (20) ensures that, on the event {∩Hh=1Eh}, we
have

V ∗
1 (s1)− V̂1(s1) ≤

2

|β|
Eπ∗ [Γh(sh, ah)|s1] =

e|β|H − 1

|β|
· 2cd

√
ζEπ∗ [∥ϕ(sh, ah)∥Λ−1

h
|s1].

Thus completing the proof for Theorem 5.1 for when β > 0.

When β < 0, the only difference in the proof is that the function class Uh will be replaced by a slightly different function
class U ′

h, whose definition we defer to (59). As shown in Lemma B.7, U ′
h and Uh share the same upper bound for the

covering number, and thus the above proof remains valid when β < 0 by replacing β with |β|. This completes the proof.

C. Proof of Theorem 5.2
Proof. Note that the requisite lemmas in Appendix B remain valid for Theorem 5.2. Thus, to avoid redundancy, we focus
on the reference-advantage technique under Assumption 2.2. In particular, here we show how the reference-advantage
decomposition guides us to a tighter upper bound.

Without Assumption 2.2, the “good event” in Lemma B.3 requires a larger uncertainty bonus, Γh. As such, we instead
consider the following two events, under which a factor of

√
d can be shaved off of Γh,

Eh =
{∣∣∣Bh(Sh+1V̂h+1)(s, a)− B̂h(Sh+1V̂h+1)(s, a)

∣∣∣ ≤ Γh(s, a)
}
,

Ẽh =
{∥∥∥ShV̂h − ShV̂h

∥∥∥
∞
≤ Rh

}
.

The bonus function now is now Γh(s, a) = γ ∥ϕ(s, a)∥Λ−1
h

with γ = 5
√
dζRβ and Rh =

20
√
dζRβ(H+1−h)√

Kκ
under

Assumption 2.2. As suggested by (20) and (21) in the proof of Theorem 5.1, it is sufficient to show that 1− P(∩Hh=1Eh) =
P(∪Hh=1Ech) ≤ δ with the new bonus function. In particular, we show a stronger result, proving that

P
(
(∪Hh′=hEch′) ∪ (∪Hh′=hẼch′)

)
≤ δ(H + 1− h)/H (34)

for any h ∈ [H] and the proof is established based on induction from h = H to h = 1.

Base Case h = H . Our induction starts with the base case h = H . Recall that we have shown the upper bounded of the
term

∣∣∣Bh(SH+1V̂H+1)(s, a)− B̂h(SH+1V̂H+1)(s, a)
∣∣∣ in (25), by V̂H+1 = V ∗

H+1 = 0 and λ = e−2|β|, (25) becomes∣∣∣BH(SH+1V̂H+1)(s, a)− B̂H(SH+1V̂H+1)(s, a)
∣∣∣ ≤ 2Rβ

√
d ∥ϕ(s, a)∥Λ−1

H
≤ ΓH(s, a).

Therefore, P(EH) = 1. To show that ẼH holds with high probability, we again use Lemma B.2, which gives

ShV ∗
H(sH)− SH V̂H(sH)

≤ Eπ∗ [ιH(sH , aH)|sH ] + Eπ∗ [SH+1V
∗
H+1(sH+1)− SH+1V̂H+1(sH+1)|sH ]

= Eπ∗ [ιH(sH , aH)|sH ].

Conditioned on the event EH , we have

SHV ∗
H(sH)− SH V̂H(sH) ≤ 2Eπ∗ [ΓH(sH , aH)|sH ] = 10

√
dζRβEπ∗ [∥ϕ(s, a)∥Λ−1

H
|sH ]

≤ 20
√
dζRβ√
Kκ

= RH .
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with probability 1− δ/H given that K ≥ max{512 log(2dH/δ)/κ2, 4λ/κ}. The first step comes from Lemma B.3, and
the third step uses Assumption 2.2 and Lemma H.5 of (Min et al., 2021), which we restate Lemma F.3. Consequently, we
have P(ẼcH ∪ EcH) = P(ẼcH) ≤ δ/H .

Induction from h + 1 to h. In this part, we assume that (34) holds for h + 1 and aim to show that it also holds for h.
We will first show that Eh happens with high probability on the event Ẽh+1. Inspired by (25), it suffices to consider only∥∥∥∑τ ϕ

τ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥
Λ−1

h

. We use the following reference-advantage decomposition to bound this term,

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1)

∥∥∥∥∥
Λ−1

h

≤

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V

∗
h+1)

∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
(v)

+

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(Sh+1V̂h+1 − Sh+1V

∗
h+1)

∥∥∥∥∥
Λ−1

h︸ ︷︷ ︸
(vi)

.

(35)

As V ∗
h is independent of the dataset D, the term (v) does not depend on the dataset and thus can be bounded Lemma F.1

directly. Specifically, we have, with probability 1− δ
3H ,

(v) ≤ Rβ

√
2 log(3H/δ) + d log(1 +K/λ) ≤ 2

√
dζRβ . (36)

For the term (vi), as Sh+1V̂h+1 − Sh+1V
∗
h+1 is correlated with D, we require uniform concentration analysis similar to that

in the proof of Theorem 5.1. We slightly abuse the notation and use fh+1 to denote Sh+1V̂h+1 − Sh+1V
∗
h+1. For β > 0 and

β < 0, we have different function classes for fh+1. Similar to Theorem 5.1, it is sufficient to consider the positive β as the
different function classes share the same upper bound of the covering number and will not affect the following proof. When
β > 0, we can see that fh+1 ∈ Ũ∗

h+1 := {Uh+1 − Sh+1V
∗
h+1 : Uh+1 ∈ Ũh+1} for Ũh+1 defined in (28).

As Sh+1V
∗
h+1 is a fixed function of s, the ε-covering number of Ũ∗

h+1 and Ũh+1 are the same, which is |Nh+1(ε)| in (29).
For notation simplicity, we thus still use Nh+1(ε) to denote the ε-cover of Ũ∗

h+1. By definition, we can find fε ∈ Nh+1(ε)

such that ∥fh+1 − fε∥∞ ≤ ε, which implies that ∥fε∥∞ ≤ Rh+1 + ε on the event Ẽh+1. Consequently, we have

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(fh+1)

∥∥∥∥∥
Λ−1

h

1{∥fh+1∥∞ ≤ Rh+1}

≤

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(fε)

∥∥∥∥∥
Λ−1

h

1{∥fε∥∞ ≤ Rh+1 + ε}+

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(fh+1 − fε)

∥∥∥∥∥
Λ−1

h

.

Similar to (31) and (32), with ε =
√
λdRh+1/K, we have

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(fh+1)

∥∥∥∥∥
Λ−1

h

1{∥fh+1∥∞ ≤ Rh+1}

≤ (Rh+1 + ε)
√

2 log(3H |Nh+1(ε)| /δ) + d log(1 +K/λ)) +
εK√
λ

≤ 2Rh+1

√
2 log(|Nh+1(ε)|) + 2 log(3H/δ) + d log(2e2βK) +

√
dRh+1

(37)

with probability 1 − δ
3H . As Rh+1/Rβ = 20

√
dζ(H−h)√
Kκ

≤ 20
√
dζH√
Kκ

and ε =
√
λdRh+1/K, given that K ≥ Ω̃(d2H2/κ),
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the upper bound in (29) becomes

log |Nh(ε)| ≤ d log(1 + 8eβRβ

√
Kd/ε) + d log(1 + 16e3βRβKd/ε)

+ d2 log(1 + 8c2e2βR2
βd

5/2ζ/ε2)

≤ d log(
320e2βK3/2H

√
dζ√

Kκ
) + d log(

640e4βRβK
2Hd
√
ζ√

Kκ
)

+ d2 log(
6400c2e4βK3/2Hd5/2ζ2√

Kκ
)

≤ 3d2 log(
6400c2e4βK2Hd5/2ζ2√

Kκ
)

≤ O
(
3d2 log(6400c2e4βK2d3/2ζ2)

)
≤ O

(
3d2(10ζ + 2 log(c))

)
.

(38)

Combining (37) and (38), we have∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(fh+1)

∥∥∥∥∥
Λ−1

h

1{∥fh+1∥∞ ≤ Rh+1} = O
(
d
√
ζRh+1

)
≤ O

(
20d3/2ζH√

Kκ
Rβ

)
.

When K ≥ Ω̃(d2H2/κ), the term is smaller than
√
dRβ and thus non-dominating. In other words, on the event Ẽh+1 =

{∥fh+1∥∞ ≤ Rh+1}, (vi) in (35) is smaller than
√
dRβ . Together with (36) and (25), we have∣∣∣Bh(Sh+1V̂h+1)(s, a)− B̂h(Sh+1V̂h+1)(s, a)

∣∣∣ ≤ (2
√
d+ 2

√
dζ +

√
d)Rβ ∥ϕ(s, a)∥Λ−1

h

≤ 5
√

dζRβ ∥ϕ(s, a)∥Λ−1
h

= Γh(s, a)

with probability at least 1− 2δ
3H on the event Ẽh+1, which is equivalent to

P(Ech ∩ Ẽh+1) ≤
2δ

3H
. (39)

In addition, on event Eh ∩ Ẽh+1, Lemma B.2, Lemma B.3, and Lemma F.3 (which we recall is a restatement of Lemma H.5
of (Min et al., 2021)) jointly imply that

ShV ∗
h (sh)− ShV̂h(sh) ≤ 2Eπ∗ [Γh(sh, ah)|sh] + Eπ∗ [Sh+1V

∗
h+1(sh+1)− Sh+1V̂h+1(sh+1)|sh]

≤ 10
√
dζRβEπ∗ [∥ϕ(sh, ah)∥Λ−1

h
|sh] +Rh+1

≤ 20
√
dζRβ√
Kκ

+Rh+1 = Rh

with probability 1− δ
3H for that K ≥ max{512 log(6dH/δ)/κ2, 4λ/κ}. Therefore, we have

P(Ẽch ∩ Eh ∩ Ẽh+1) ≤
δ

3H
. (40)

Using (39) and (40), we have

P
(
(Ẽch ∪ Ech) ∩ Ẽh+1

)
= P(Ẽch ∩ Eh ∩ Ẽh+1) + P(Ech ∩ Ẽh+1) ≤

2δ

3H
+

δ

3H
=

δ

H
. (41)

Consequently, by direct calculation, we have

P
(
(∪Hh′=hEch′) ∪ (∪Hh′=hẼch′)

)
=P
(
(∪Hh′=h+1Ech′) ∪ (∪Hh′=h+1Ẽch′)

)
+ P

(
(Ẽch ∪ Ech) ∩

(
(∪Hh′=h+1Ech′) ∪ (∪Hh′=h+1Ẽch′)

))
≤P
(
(∪Hh′=h+1Ech′) ∪ (∪Hh′=h+1Ẽch′)

)
+ P

(
(Ẽch ∪ Ech) ∩ Ẽh+1

)
≤δ(H − h)

H
+

δ

H
=

δ(H + 1− h)

H
.

(42)
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In the last step of (42), we use (41) and the induction assumption that (34) holds for h+ 1.

By induction, (42) shows that (34) holds for any h ∈ [H], which implies that 1− P(∩Hh=1Eh) = P(∪Hh=1Ech) ≤ δ with the
bonus parameter γ = 5

√
dζRβ . The rest of the proof of Theorem 5.2 then follows that of Theorem 5.1, completing the

proof.

D. Proof of Theorem 5.3
Proof. A key technique used by Algorithm 2 is incorporating variance information in estimation. In this section, we
highlight how the technique remains viable and beneficial in the risk-sensitive setting.

Let us recall the ingredients from Appendix B and Appendix C that we reuse. In Appendix B, we have provided the outline
for proving the performance of value-iteration style algorithms in risk-averse offline RL in linear MDPs. In Appendix C,
we show how Assumption 2.2 and reference-advantage decomposition sharpens the uncertainty bonus Γh. Finally, in this
section, we show how incorporating the variance estimator ensures Algorithm 2’s performance is never worse than that of
Algorithm 1 under Assumption 2.2.

We start with the consistency of the variance estimator σ̂2
h(s, a) and then use the Bernstein-type inequality for the self-

normalized process to achieve the tighter upper bound in Theorem 5.3.

Consistency of Variance Estimator. In this section, we will show that, with probability 1− δ
2H ,

∣∣σ2
h(sh, ah)− σ̂2

h(sh, ah)
∣∣ = Õ

(
dH2R2

β√
Kκ

)
. (43)

As the clipping at σ2 is non-expansive, it is sufficient to show that∣∣∣∣∣∣∣∣{ϕ(s, a)
⊤η̂

(2)
h }[0,(e|β|H−1)2] −

(
{ϕ(s, a)⊤η̂(1)h }[0,e|β|H−1]

)2
︸ ︷︷ ︸

(vii)

−Varh(Sh+1V
∗
h+1)(s, a)

∣∣∣∣∣∣∣∣ = Õ

(
dH2R2

β√
Kκ

)
(44)

holds with high probability. To prove (44), we first show that {ϕ⊤η̂
(2)
h }[0,R2

β ]
−
(
{ϕ⊤η̂

(1)
h }[0,Rβ ]

)2
is close to

Varh(Sh+1V̂
aux
h+1) = Ph((Sh+1V̂

aux
h+1)

2)− (Ph(Sh+1V̂
aux
h+1))

2 recalling that Rβ := e|β|H − 1. For the estimation of the first
moment, that is the term Ph(Sh+1V̂

aux
h+1), the proof is the same as that of Theorem 5.1 for the term (ii) in (22), which gives

us ∣∣∣ϕ(s, a)⊤η̂(1)h − Ph(Sh+1V̂
aux
h+1)(s, a)

∣∣∣ = Õ(dRβ) ∥ϕ(s, a)∥Λ−1
h

= Õ

(
dRβ√
Kκ

)
(45)

with probability 1− δ
8H given that K ≥ max{512 log(16dH/δ)/κ2, 4λ/κ}, where we use Lemma F.3 in the last step. For

the second moment, it is sufficient to bound
∥∥∥∑τ ϕ

τ
hϵ

τ
h((Sh+1V̂

aux
h+1)

2)
∥∥∥
Λ−1

h

, which we control by a uniform concentration

similar to that in Appendix B.

Consider the same ε-coverNh+1(ε) as in the proof of Theorem 5.1, similar to (30) and (33), with ε =
√
λdRβ/K, we have,

with probability 1− δ
8H , ∥∥∥∥∥ ∑

τ∈Daux

ϕτ
hϵ

τ
h((Sh+1V̂

aux
h+1)

2)

∥∥∥∥∥
Λ−1

h

= Õ(dR2
β) +

2εKRβ√
λ

= Õ(dR2
β), (46)

where the second term in the first equation shares the same spirit of (32). Specifically, for Uε ∈ Nh+1(ε) such that∥∥∥Uε − Sh+1V̂h+1

∥∥∥
∞
≤ ε, we have∥∥∥∥∥ ∑

τ∈Daux

ϕτ
hϵ

τ
h((Sh+1V̂h+1)

2 − U2
ε )

∥∥∥∥∥
Λ−1

h

≤ 2

K∑
τ=1

∥ϕτ
h∥
∥∥∥Λ−1/2

h

∥∥∥
2
Rβε ≤

2εKRβ√
λ

,
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where the first step follows the fact that
∣∣a2 − b2

∣∣ ≤ 2max{|a| , |b|} · |a− b|. With (46) and Lemma B.5, a standard analysis
of ridge regression leads to

∣∣∣ϕ(s, a)⊤η̂(2)h − Ph((Sh+1V̂
aux
h+1)

2)(s, a)
∣∣∣ = Õ(dR2

β) ∥ϕ(s, a)∥Λ−1
h

= Õ

(
dR2

β√
Kκ

)
. (47)

Combing (45) and (47), we have, with probability 1− δ
4H∥∥∥∥{ϕ⊤η̂

(2)
h }[0,(e|β|H−1)2] −

(
{ϕ⊤η̂

(1)
h }[0,e|β|H−1]

)2
−Varh(Sh+1V̂

aux
h+1)

∥∥∥∥
∞

≤
∥∥∥∥({ϕ⊤η̂

(1)
h }[0,e|β|H−1]

)2
− (Ph(Sh+1V̂

aux
h+1))

2

∥∥∥∥
∞

+
∥∥∥ϕ⊤η̂

(2)
h − Ph((Sh+1V̂

aux
h+1)

2)
∥∥∥
∞

≤ 2Rβ

∥∥∥ϕ⊤η̂
(1)
h − Ph(Sh+1V̂

aux
h+1)

∥∥∥
∞

+
∥∥∥ϕ⊤η̂

(2)
h − Ph((Sh+1V̂

aux
h+1)

2)
∥∥∥
∞

= Õ

(
dR2

β√
Kκ

)
.

(48)

Recalling (34) in the proof of Theorem 5.2, we know
∥∥∥Sh+1V̂

aux
h+1 − Sh+1V

∗
h+1

∥∥∥
∞
≤ Rh+1 with probability 1−δ. Replacing

δ by δ
4H , it still holds that, with probability 1− δ

4H ,

∥∥∥Sh+1V̂
aux
h+1 − Sh+1V

∗
h+1

∥∥∥
∞

= Õ(Rh+1) = Õ

(√
dHRβ√
Kκ

)
.

Consequently, we have∥∥∥Varh(Sh+1V̂
aux
h+1)−Varh(Sh+1V

∗
h+1)

∥∥∥
∞

≤
∥∥∥Ph

(
(Sh+1V̂

aux
h+1)

2 − (Sh+1V
∗
h+1)

2
)∥∥∥

∞
+
∥∥∥(Ph(Sh+1V̂

aux
h+1)

)2 − (Ph(Sh+1V
∗
h+1)

)2∥∥∥
∞

≤ 2Rβ

∥∥∥Sh+1V̂
aux
h+1 − Sh+1V

∗
h+1

∥∥∥
∞

+ 2Rβ

∥∥∥Ph(Sh+1V̂
aux
h+1)− Ph(Sh+1V

∗
h+1)

∥∥∥
∞

=Õ

(√
dHR2

β√
Kκ

)
,

(49)

with probability 1− δ
4H . Combing (48) and (49) completes the proof of (44).

Bernstein-Type Inequality for Self-Normalized Process. A well-known result in RL is that using a Bernstein-type
concentration analysis, as opposed to a Hoeffding-type analysis, sharpens the bounds, and we show that the same technique
benefits offline risk-sensitive RL in linear MDPs. Similar to the proof of Theorem 5.1 and 5.2, suggested by Lemma B.5, it
is sufficient to show that ∥∥∥∥∥∑

τ∈D

ϕτ
h

σ̂h(sτh, a
τ
h)

ϵ̃τh(Sh+1V̂h+1)

∥∥∥∥∥
Σ−1

h︸ ︷︷ ︸
(viii)

= Õ(
√
d). (50)

where ϵ̃τh(g) =
g(sτh+1)−Phg(s

τ
h,a

τ
h)

σ̂h(sτh,a
τ
h)

. Similar to (35), we use the reference-advantage decomposition an obtain

(viii) ≤

∥∥∥∥∥∑
τ∈D

ϕτ
h

σ̂h(sτh, a
τ
h)

ϵ̃τh(Sh+1V
∗
h+1)

∥∥∥∥∥
Σ−1

h︸ ︷︷ ︸
(ix)

+

∥∥∥∥∥∑
τ∈D

ϕτ
h

σ̂h(sτh, a
τ
h)

ϵ̃τh(Sh+1V̂h+1 − Sh+1V
∗
h+1)

∥∥∥∥∥
Σ−1

h︸ ︷︷ ︸
(x)

.

Following the proof of Theorem 5.2, we focus on the reference term (ix) first. As V ∗
h+1 is independent of the data, we can

apply a Bernstein-style bound, which we detail in Lemma F.2, to (ix) directly.
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To utilize Lemma F.2, we need to show that the conditional mean of ϵ̃τh(Sh+1V
∗
h+1) is 0 and bound the magnitude and

conditional variance of ϵ̃τh(Sh+1V
∗
h+1). Specifically, we define the σ-algebra

Fh,τ−1 = σ
(
{(sjh, a

j
h)}

τ
j=1,j∈D ∪ {s

j
h+1}

τ−1
j=1,j∈D

)
.

As σ̂2
h is calculated from the dataset Daux and therefore independent of D, ϵ̃τh(Sh+1V

∗
h+1) is Fh,τ -measurable and

E[ϵ̃τh(Sh+1V
∗
h+1)|Fh,τ−1] =

E[Sh+1V
∗
h+1(s

τ
h+1)|sτh, aτh]− Ph(Sh+1V

∗
h+1)(s

τ
h, a

τ
h)

σ̂h(sτh, a
τ
h)

= 0. (51)

To bound the magnitude of ϵ̃τh(Sh+1V
∗
h+1), we use (43) and the assumption on K that K ≥ Ω̃(d2H2R4

β/(κσ
4)), which

guarantees that the bias in (43) is smaller than σ2/2 for sufficiently large K and thus

1

2
σ2
h(sh, ah) ≤ σ2

h(sh, ah)−
1

2
σ2 ≤ σ̂2

h(sh, ah) ≤ σ2
h(sh, ah) +

1

2
σ2 ≤ 3

2
σ2
h(sh, ah) ≤

3

2
R2

β . (52)

Therefore, we have

∣∣ϵ̃τh(Sh+1V
∗
h+1)

∣∣ ≤ ∣∣Sh+1V
∗
h+1(s

′)− Ph(Sh+1V
∗
h+1)(s, a)

∣∣√
1
2 max{σ2,Varh(Sh+1V ∗

h+1)(s, a)}
≤
√
2ξ(σ2), (53)

where we let

ξ(σ2) = sup
h,s,a,s′∼Ph(·|s,a)

(Sh+1V
∗
h+1(s

′)− Ph(Sh+1V
∗
h+1)(s, a))

2

max{σ2,Varh(Sh+1V ∗
h+1)(s, a)}

.

Using (52), the conditional variance of ϵ̃τh(Sh+1V
∗
h+1) can also be bounded by

Var[ϵ̃τh(Sh+1V
∗
h+1)|Fh,τ−1] =

Var[Sh+1V
∗
h+1(s

τ
h+1)|sτh, aτh]

σ̂2
h(s

τ
h, a

τ
h)

≤ σ2
h(s

τ
h, a

τ
h)

σ̂2
h(s

τ
h, a

τ
h)
≤ 2. (54)

Plugging (51), (53) and (54) into Lemma F.2, with the assumption that ξ(σ2) = O(d), we have

(ix) = Õ(
√
d)

holds with probability 1− δ
4H when (43) holds. Following the proof of Theorem 5.2, the analysis of (x) is the same as that

of (vi) in (35), in which we use Lemma F.1 and B.7. With the same analysis, we have

∥∥∥Sh+1V̂h+1 − Sh+1V
∗
h+1

∥∥∥
∞

= Õ

(√
dHRβ√
Kκ

)
, and (x) = Õ

(
d3/2HRβ√

Kκσ

)
with probability 1 − δ

4H given that K ≥ max{512R4
β log(8dH/δ)/(σ4κ2), 4λRβ/κ}. Together with the assumption

that K ≥ Ω̃(d2H2R4
β/(κσ

4)), we have (x) = Õ(
√
d) and thus (50) holds for all h ∈ [H] with probability at least

1−H · ( δ
4H + δ

4H + δ
2H ) = 1− δ. In other words, with Lemma B.2, Lemma B.3 and Lemma B.5, we have

V ∗
1 (s1)− V π̂

1 (s1) ≤ Õ

(√
d

|β|

)
H∑

h=1

Eπ∗

[
∥ϕ(sh, ah)∥Σ−1

h

∣∣∣s1 = s
]
, (55)

with probability 1− δ. Moreover, from (52), we have σ̂2
h ≤ 3

2σ
2
h ≤ 3

2R
2
β , which implies that

∥ϕ(sh, ah)∥Σ−1
h
≤
√

3

2
∥ϕ(sh, ah)∥(Σ∗

h)
−1 ≤

√
3

2
Rβ ∥ϕ(sh, ah)∥Λ−1

h
. (56)

Plugging (56) into (55), the proof of Theorem 5.3 is completed, and we can see that Theorem 5.3 produces a tighter bound
compared to Theorem 5.2.
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E. Proof of Lemmas for Main Theorems
E.1. Proof of Lemma B.1

Proof. By mean value theorem, for any x, y satisfying 0 ≤ y ≤ x ≤ H ,

eβx − eβy = βeβz(x− y)

for some z ∈ [x, y] ∈ [0, H]. When β > 0, it implies that eβx− eβy ≥ β(x− y), together with V ∗
1 (s1)−V π̂

1 (s1) ≥ 0 from
the definition of V ∗

1 , we have

V ∗
1 (s1)− V π̂

1 (s1) ≤
1

β
(eβV

∗
1 (s1) − eβV

π̂
1 (s1)) =

1

|β|
(S1V ∗

1 (s1)− S1V π̂
1 (s1)).

When β < 0, the mean value theorem gives eβx − eβy ≤ βeβH(x− y) and thus

V ∗
1 (s1)− V π̂

1 (s1) ≤
e−βH

β
(eβV

∗
1 (s1) − eβV

π̂
1 (s1)) =

1

|β|
(S1V ∗

1 (s1)− S1V π̂
1 (s1)).

The proof of Lemma B.1 is thus concluded.

E.2. Proof of Lemma B.2

Proof. We divide our proof into two cases.

Case 1: β > 0. Given the definition of Sh and ιh, multiplying both sides of (13) and (14) by eβ(h−1), we obtain (16) and
(17) directly. Using them iteratively with V ∗

H+1 = V̂H+1 = V π̂
H+1 = 0, we have

S1V ∗
1 (s1)− S1V π̂

1 (s1) ≤ S1V ∗
1 (s1)− S1V̂1(s1)

≤ Eπ∗ [ι1(s1, a1)|s1] + Eπ∗ [S2V ∗
2 (s2)− S2V̂2(s2)|s1]

...

≤
H∑

h=1

Eπ∗ [ιh(sh, ah)|s1].

Case 2: β < 0. Similarly, multiplying both sides of (13) and (14) by −eβH leads to the desired results. This completes the
proof.

E.3. Proof of Lemma B.3

Proof. We divide our proof into two cases.

Case 1: β > 0. For positive β, we have

eβ(Q̂h+h−1)(s, a) = {eβ(r̂h(s,a)−1)(ϕ(s, a)⊤ŵh + eβh)− Γh(s, a)}[eβ(h−1),eβH ]

= {eβ(r̂h(s,a)−1)(P̂h(Sh+1V̂h+1) + eβh)− Γh(s, a)}[eβ(h−1),eβH ]

and

ιh(s, a) = eβ(rh(s,a)−1)(Ph(Sh+1V̂h+1)(s, a) + eβh)− eβ(Q̂h+h−1)(s, a).

We show that ιh(s, a) ≥ 0 first. If eβ(Q̂h+h−1)(s, a) ≤ eβ(h−1), it is straight forward that ιh(s, a) ≥ 0 as r̂h(s, a) ∈ [0, 1]

and Sh+1V̂h+1 ≥ eβh. Otherwise, by the definition of Bh and B̂h in (18), on the event Eh, we have

eβ(Q̂h+h−1)(s, a) ≤ eβ(r̂h(s,a)−1)(P̂h(Sh+1V̂h+1)(s, a) + eβh)− Γh(·, ·)

≤ eβ(rh(s,a)−1)(Ph(Sh+1V̂h+1)(s, a) + eβh).
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Equivalent, we have ιh(s, a) ≥ 0. For the upper bound of ιh, we have

eβ(r̂h(s,a)−1)(P̂h(Sh+1V̂h+1)(s, a) + eβh)− Γh(s, a)

≤ eβ(rh(s,a)−1)(Ph(Sh+1V̂h+1)(s, a) + eβh)

≤ eβH

on Eh, which leads to

eβ(Q̂h+h−1)(s, a) ≥ eβ(r̂h(s,a)−1)(P̂h(Sh+1V̂h+1)(s, a) + eβh)− Γh(s, a)

and thus ιh(s, a) ≤ 2Γh(s, a).

Case 2: β < 0. Similarly, following the above proof, the proof for negative β can be established by

eβ(Q̂h−H)(s, a) = {eβr̂h(s,a)(e−βH − P̂h(Sh+1V̂h+1)) + Γh(s, a)}[e−β(h−1),e−βH ]

and

ιh(s, a) = eβrh(s,a)(e−βH − Ph(Sh+1V̂h+1)(s, a))− eβ(Q̂h−H)(s, a).

This completes the proof.

E.4. Proof of Lemma B.5

Proof. This is a standard result for ridge regression. From the definition of P̂h, we have

Phgh+1(s, a)− P̂hgh+1(s, a)

= ϕ(s, a)⊤wh − ϕ(s, a)⊤Σ−1
h (Σh − λ · I)wh + ϕ(s, a)⊤Σ−1

h (Σh − λ · I)wh

− ϕ(s, a)⊤Σ−1
h

(∑
τ

ϕτ
h · gh+1(s

τ
h+1)

σ̂2
h(s

τ
h, a

τ
h)

)

= λϕ(s, a)⊤Σ−1
h wh + ϕ(s, a)⊤Σ−1

h

(∑
τ

ϕτ
h · (Phgh+1(s

τ
h, a

τ
h)− gh+1(s

τ
h+1))

σ̂2
h(s

τ
h, a

τ
h)

)
,

which implies that ∣∣∣Phgh+1(s, a)− P̂hgh+1(s, a)
∣∣∣

≤ λ ∥wh∥Σ−1
h
∥ϕ(s, a)∥Σ−1

h
+

∥∥∥∥∥∑
τ

ϕτ
h

σ̂h(sτh, a
τ
h)
· ϵ̃τh(gh+1)

∥∥∥∥∥
Σ−1

h

∥ϕ(s, a)∥Σ−1
h

.
(57)

As ∥wh∥ =
∥∥∫

S gh+1(s
′)µh(s

′)ds′
∥∥ ≤ R

√
d from the assumptions of linear MDP, we have

λ ∥wh∥Σ−1
h

= λ
∥∥∥Σ−1/2

h wh

∥∥∥ ≤ λ
∥∥∥Σ−1/2

h

∥∥∥
2
∥wh∥ ≤ R

√
dλ.

Plugging this inequality into (57), we obtain the desired result for
∣∣∣Phgh+1(s, a)− P̂hgh+1(s, a)

∣∣∣. The proof of
|rh(s, a)− r̂h(s, a)| can be viewed as the case that ϵ̃τh(·) = 0 and is omitted here. This completes the proof.

E.5. Proof of Lemma B.4

Proof. Again we divide the proof into the following two cases.

Case 1: β > 0. By the definition in (18), we have∣∣∣eβ(rh(s,a)−1)(Ph(Sh+1V̂h+1)(s, a) + eβh)− eβ(r̂h(s,a)−1)(P̂h(Sh+1V̂h+1)(s, a) + eβh)
∣∣∣

≤ eβH
∣∣∣eβ(rh(s,a)−1) − eβ(r̂h(s,a)−1)

∣∣∣+ ∣∣∣Ph(Sh+1V̂h+1)− P̂h(Sh+1V̂h+1)
∣∣∣

≤ eβHβ |rh − r̂h|+
∣∣∣Ph(Sh+1V̂h+1)− P̂h(Sh+1V̂h+1)

∣∣∣ .
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The first inequality follows
∣∣∣Ph(Sh+1V̂h+1)(s, a) + eβh

∣∣∣ ≤ eβH , rh(s, a) ∈ [0, 1] and the triangular inequality. The second

inequality follows the fact that
∣∣eβx − eβy

∣∣ ≤ β |x− y| for β > 0 and −1 ≤ x, y ≤ 0, which can be obtained by the mean
value theorem as in the proof of Lemma B.1.

Case 2: β < 0. The proof of negative β is similar with the fact that
∣∣∣Ph(e

−βH − Sh+1V̂h+1)(s, a)
∣∣∣ ≤ eβH and rh(s, a) ∈

[0, 1].

This completes the proof.

E.6. Proof of Lemma B.6

Proof. By the definition of ŵh in Algorithm 2, we have

∥ŵh∥ =

∥∥∥∥∥Σ−1
h

(
K∑

τ=1

ϕτ
h · Sh+1V̂h+1(s

τ
h+1)

σ̂2
h(s

τ
h, a

τ
h)

)∥∥∥∥∥ ≤
K∑

τ=1

∥∥∥Σ−1
h ϕτ

h · Sh+1V̂h+1(s
τ
h+1)

∥∥∥ .
Note that

∣∣∣Sh+1V̂h+1(s
τ
h+1)

∣∣∣ ≤ Rβ , we have

∥ŵh∥ ≤ Rβ

K∑
τ=1

∥∥∥Σ−1/2
h

∥∥∥ ∥ϕτ
h∥Λ−1

h
≤ Rβ√

λ

K∑
τ=1

∥ϕτ
h∥Λ−1

h
=

Rβ√
λ

K∑
τ=1

√
(ϕτ

h)
⊤Σ−1

h ϕτ
h.

By the Cauchy-Schwarz inequality, we have

∥ŵh∥ ≤
Rβ

√
K√
λ

√√√√ K∑
τ=1

(ϕτ
h)

⊤Σ−1
h ϕτ

h =
Rβ

√
K√
λ

√√√√Tr

(
Σ−1

h

K∑
τ=1

(ϕτ
h)

⊤ϕτ
h

)
. (58)

Weights ŵh in Algorithm 1. If σ̂h = 1, we are using the standard ridge regression without variance information, then ŵ
becomes that in Algorithm 1. In this case, Σh =

∑K
τ=1(ϕ

τ
h)

⊤ϕτ
h + λ · I and (58) leads to

∥ŵh∥ ≤
Rβ

√
K√
λ

√
Tr
(
Σ−1

h (Σh − λ · I)
)
≤ Rβ

√
K√
λ

√
Tr
(
Σ−1

h Σh

)
= Rβ

√
Kd/λ.

Weights ŵh in Algorithm 2. In Algorithm 2, as σ̂2
h(s

τ
h, a

τ
h) ≤ R2

β , we have

Σh =

K∑
τ=1

(ϕτ
h)

⊤ϕτ
h/σ̂

2
h(s

τ
h, a

τ
h) + λ · I ≳

K∑
τ=1

(ϕτ
h)

⊤ϕτ
h/R

2
β + λ · I =

1

R2
β

Φh + λ · I,

where Φh =
∑K

τ=1(ϕ
τ
h)

⊤ϕτ
h. Then, by (58), we have

∥ŵh∥ ≤
Rβ

√
K√
λ

√√√√√Tr

( 1

R2
β

Φh + λ · I

)−1

Φh

 ≤ R2
β

√
Kd/λ.

The proof of θ̂h is similar. With rh(s, a) ∈ [0, 1], we have the desired result in Lemma B.6. This completes the proof.

E.7. Proof of Lemma B.7

Proof. We first more formally introduce the corresponding function classes and covering numbers for when β < 0. As B̂h

will be different for β > 0 and β < 0, we consider two corresponding function classes.

Case 1: β > 0. We consider the function class

Uh(Lθ, Lw, Lγ , λ)

= {Uh(s; θ, w, γ,Σ) : S → [0, Rβ ] with ∥θ∥ ≤ Lθ, ∥w∥ ≤ Lw, γ ∈ [0, Lγ ],Σ ≳ λ · I} ,
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where

Uh(s; θ, w, γ,Σ)

= max
a

{
eβ[{ϕ(s,a)

⊤θ}[0,1]−1](ϕ(s, a)⊤w + eβh)− γ
√
ϕ(s, a)⊤Σ−1ϕ(s, a)

}
[eβ(h−1),eβH ]

.

Case 2: β < 0. We consider the function class

U ′
h(Lθ, Lw, Lγ , λ)

= {U ′
h(s; θ, w, γ,Σ) : S → [0, Rβ ] with ∥θ∥ ≤ Lθ, ∥w∥ ≤ Lw, γ ∈ [0, Lγ ],Σ ≳ λ · I} ,

where

U ′
h(s; θ, w, γ,Σ)

= max
a

{
eβ{ϕ(s,a)

⊤θ}[0,1](e−βH − ϕ(s, a)⊤w) + γ
√
ϕ(s, a)⊤Σ−1ϕ(s, a)

}
[eβ(h−1),eβH ]

.
(59)

Even though the representation of Uh and U ′
h are slightly different.

We now provide bounds for the covering numbers, again dividing the proof into two cases.

Case 1: β > 0. For any two functions U1 and U2 from U , let them take parameters (θ1, w1, γ1,Σ1) and (θ2, w2, γ2,Σ2),
respectively. As {·}a,b and maxa are contraction map, we have

∥U1 − U2∥∞ ≤ sup
∥ϕ∥≤1

∣∣∣eβ[{ϕ⊤θ1}[0,1]−1](ϕ⊤w1 + eβh)− eβ[{ϕ
⊤θ2}[0,1]−1](ϕ⊤w2 + eβh)

∣∣∣︸ ︷︷ ︸
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∣∣∣∣√γ2
1ϕ
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1 ϕ−

√
γ2
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2 ϕ

∣∣∣∣
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∣∣ϕ⊤θ1 − ϕ⊤θ2
∣∣+ sup

∥ϕ∥≤1

∣∣ϕ⊤w1 − ϕ⊤w2

∣∣
+ sup

∥ϕ∥≤1

∣∣∣∣√γ2
1ϕ

⊤Σ−1
1 ϕ−

√
γ2
2ϕ

⊤Σ−1
2 ϕ

∣∣∣∣
≤β(Lw + eβH) ∥θ1 − θ2∥+ ∥w1 − w2∥+

√∥∥γ2
1Σ

−1
1 − γ2

2Σ
−1
2

∥∥
F
.

(60)

The second step follows from
∣∣ϕ⊤w1 + eβh

∣∣ ≤ Lw + eβH , eβ[{ϕ
⊤θ1}[0,1]−1] ≤ 1 and the fact that

∣∣eβx − eβy
∣∣ ≤ β |x− y|

for β > 0 and −1 ≤ x, y ≤ 0. Let Cw be the ε/4-cover of {w ∈ Rd : ∥w∥ ≤ Lw}, Cθ be the ε/(4β(Lw + eβH))-
cover of {θ ∈ Rd : ∥θ∥ ≤ Lθ} and CA be the ε2/4-cover of {A ∈ Rd×d : ∥A∥F ≤ d1/2L2

γλ
−1}. As we have∥∥γ2Σ−1

∥∥
F
≤ d1/2L2

γλ
−1, we can see that Cw, Cθ and CA provide a ε−cover of Uh. Together with Lemma F.4 for the

covering number of the Euclidean ball, we have

logN (ε) ≤ d log(1 + 8Lw/ε) + d log(1 + 8βLθ(Lw + eβH)/ε) + d2 log(1 + 8d1/2L2
γ/(λε

2)).

Case 2: β < 0. In the proof of negative β, the term (a) in (60) becomes

sup
∥ϕ∥≤1

∣∣∣eβ{ϕ⊤θ1}[0,1](e−βH − ϕ⊤w1)− eβ{ϕ
⊤θ2}[0,1](e−βH − ϕ⊤w2)

∣∣∣ .
As
∣∣e−βH − ϕ⊤w1

∣∣ ≤ e|β|H + Lw and eβ{ϕ
⊤θ1}[0,1] ≤ 1, the second step in (60) remains valid if we replace β by |β|.

Therefore, we will reach the same upper bound for N ′
h(ε). This completes the proof.

F. Additional Technical Lemmas
In this section, we provide technical lemmas which are widely used in theoretical reinforcement learning. The proofs of
them are omitted and we refer interested readers to the cited sources.
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Lemma F.1 (Lemma B.2 of (Jin et al., 2021)). Let f : S → [0, R] be any fixed function, for any δ ∈ (0, 1), we have

P

∥∥∥∥∥∑
τ

ϕτ
hϵ

τ
h(f)

∥∥∥∥∥
2

Λ−1
h

≥ R2(2 log(1/δ) + d log(1 +K/λ))

 ≤ δ.

Lemma F.2 (Bernstein-type inequality for self-normalized process in (Zhou et al., 2021a)). Let {ηt}∞t=1 be a real-valued
stochastic process and let {Ft}∞t=1 be a filtration such that ηt is Ft-measurable. Let {xt}∞t=1 be an Rd-valued stochastic
process where xt is Ft−1 measurable and ∥xt∥ ≤ L. Let Λt = λId +

∑t
s=1 xsx

⊤
s . Assume that

|ηt| ≤ R, E[ηt|Ft−1] = 0, E[η2t |Ft−1] ≤ σ2.

Then, for any δ > 0, with probability at least 1− δ, for all t > 0, we have∥∥∥∥∥
t∑

s=1

xsηs

∥∥∥∥∥
Λ−1

h

≤ 8σ

√
d log

(
1 +

tL2

λd

)
· log

(
4t2

δ

)
+ 4R log

(
4t2

δ

)
= Õ(σ

√
d+R).

Lemma F.3 (Lemma H.5 of (Min et al., 2021)). Let ϕ : S × A → Rd satisfying ∥ϕ(s, a)∥ ≤ C for all (s, a) ∈ S × A.
For any K > 0 and λ > 0, define ḠK =

∑K
k=1 ϕ(sk, ak)ϕ(sk, ak)

⊤ + λId where (sk, ak)’s are i.i.d, samples from some
distribution ν over S ×A. Let G = Eν [ϕ(s, a)ϕ(s, a)

⊤]. Then, for any δ ∈ (0, 1), if K satisfies that

K ≥ max

{
512C4

∥∥G−1
∥∥2 log(2d

δ

)
, 4λ

∥∥G−1
∥∥} ,

with probability at least 1− δ, it holds simultaneously for all u ∈ Rd that

∥u∥Ḡ−1
K
≤ 2√

K
∥u∥G−1 .

Lemma F.4 (Lemma D.5 of (Jin et al., 2020)). For any ε > 0, the ε-covering number of the Euclidean ball in Rd with
radius R > 0 is upper bounded by (1 + 2R/ε)d.

G. Numerical Simulations
For completeness, we examine a variant of the ModelWin MDP introduced in Thomas & Brunskill (2016) to verify
theoretical findings. This particular instance contains 3 states (S1, S2, S3) and 2 actions (a1, a2). Each episode starts from
the state S1, where the agent must choose between two actions. Action a1 transitions the agent to either S2 or S3 with
probability 0.5 to each state. In contrast, the second action, a2, causes the agent to stay at S1 with probability 0.6; otherwise,
the agent will transit to S2 or S3 with equal probability. In states S2 and S3, the agent still has two possible actions, but both
always produce a deterministic transition back to S1. The rewards are state-dependent, with S1, S2, and S3 yielding 0.5, 1,
and 0, respectively. Formally,

P(S2|S1, a1) = P(S3|S1, a1) = 0.5, P(S1|S1, a1) = 0

P(S2|S1, a2) = P(S3|S1, a2) = 0.2, P(S1|S1, a2) = 0.6

P(S1|S3, a) = P(S1|S2, a) = 1 for a = a1 or a2.

and

r(S1, a) = 0.5, r(S2, a) = 1, r(S1, a) = 0 for a = a1 or a2.

In this MDP, the expectation of the total reward is consistently E(
∑H

h=1 rh) = 0.5H , indicating that all policies are equally
optimal when β = 0. Consequently, all policies have a suboptimality of 0. However, this MDP is intriguing if we consider
how policy choices can impact the reward variance. Staying at S1 guarantees a 0.5 reward, but leaving S1 yields a 0.5
chance of obtaining either 1 or 0. One can imagine that a1 is a more risky action compared to a2 as a2 is more likely to
keep the agent at S1. The behavior policy we use to generate the offline data is taking a1 and a2 randomly with equal
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probability. Considering the entropic risk measure we study, the agent is risk-seeking when β > 0 and risk-averse when
β < 0. Therefore, the optimal policy will be consistently taking action a1 when β > 0 and consistently taking a2 when
β < 0. We take our first algorithm as an example and conduct experiments using the above environment based on this
algorithm.

We evaluate the scenarios H = 5, 10, 15, 20 and β = 0.5, 1 in the experiment. The suboptimality results are reported in
Figure 1. We can see that with a larger K, the suboptimality goes to 0, which serves as simulation evidence for our algorithm.
Moreover, Figure 1 illustrates that with an increase in H and |β|, there is a corresponding rise in the suboptimality gap,
aligning with our theoretical result.

Figure 1. Each panel reports the suboptimality of the learned policy from Algorithm 1 for different K and h. β = 0.5 (left) and β = 1
(right). The results are averaged over 20 independent trails, and the mean results are plotted as solid lines. The error bar area corresponds
to the 80% confidence interval.
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