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ABSTRACT

Scale is a primary factor that influences the performance and generalization of a
robot learning system. In this paper, we aim to scale up the trajectory prediction
model by using broad out-of-domain data to improve its robustness and general-
ization ability. Trajectory model is designed to predict any-point trajectories in
the current frame given an instruction and can provide detailed control guidance
for robotic policy learning. To handle the diverse out-of-domain data distribu-
tion, we propose a sparsely-gated MoE (Top-1 gating strategy) architecture for
trajectory model, coined as Tra-MoE. The sparse activation design enables good
balance between parameter cooperation and specialization, effectively benefiting
from large-scale out-of-domain data while maintaining constant FLOPs per token.
In addition, we further introduce an adaptive policy conditioning technique by
learning 2D mask representations for predicted trajectories, which is explicitly
aligned with image observations to guide policy prediction more flexibly. We
perform experiments on both simulation and real-world scenarios to verify the
effectiveness of our Tra-MoE and adaptive policy conditioning technique. We
jointly train the Tra-MoE model on all 130 tasks in the LIBERO benchmark and
conduct a comprehensive empirical analysis, demonstrating that our Tra-MoE
consistently exhibits superior performance compared to the dense baseline model,
even when the latter is scaled to match Tra-MoE’s parameter count.

1 INTRODUCTION

In computer vision (CV) and natural language processing (NLP), significant progress has been made
through scaling up models from large-scale out-of-domain data. For example, many works use broad
data to perform self-supervised pre-training, and then adapt to diverse downstream tasks through
zero-shot (Brown, 2020; Radford et al., 2021; Achiam et al., 2023) or fine-tuning (Devlin, 2018; Chen
et al., 2021; He et al., 2022; Tong et al., 2022). Additionally, some research efforts (Lu et al., 2022;
Zhu et al., 2022b;a) focus on learning a generalist model capable of unifying various tasks. In contrast,
in robot learning, due to data scarcity and homogeneity, some groundbreaking methods (Levine
et al., 2016; Andrychowicz et al., 2020) resort to training only using in-domain data. Recently, some
works (Seo et al., 2022; Bahl et al., 2023; Wang et al.; Bharadhwaj et al., 2024a) have shifted to
learn from action-free human video data. A particularly scalable and promising paradigm (Wen
et al., 2023; Xu et al., 2024; Bharadhwaj et al., 2024b) involves learning a trajectory prediction
model from action-free video data, and then using small-scale action-labeled demonstrations to learn
trajectory-guided policies, thereby achieving greater sample efficiency and better generalization.

Despite the potential benefits, it still remains underexplored how to effectively leverage broad out-
of-domain video data for training trajectory models. In particular, the impact of incorporating data
encompassing diverse skills, environments, objects, and even embodiments has not fully investigated
for downstream tasks. For instance, ATM (Wen et al., 2023), a notable work in this field, mainly relies
on in-domain data for training both trajectory models and policies. We argue that scale is the primary
factor to build a powerful trajectory model for policy conditioning. Therefore, we propose to scale up
the training of trajectory model under the setup of jointly learning from large-scale out-of-domain and
small-scale in-domain data, as shown in Fig. 2(a). However, directly using large-scale out-of-domain
video data for hybrid pre-training involves two critical challenges: (i) Joint training on data from
different skills, environments, objects, and even embodiments will add learning difficulty and might
lead to optimization conflicts. It is unclear how to fuse the complementary information of different
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data within a single unified model. (ii) How to ensure both high performance and computational
efficiency during model scaling up process.

(b)

Without MoE

With MoE (Top-1 gating)
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Figure 1: (a) Training with small-scale, in-
domain data. (b) Training with small-scale, in-
domain data and large-scale, out-of-domain data.

To address these challenges, we design a new
sparsely-gated Mixture-of-Expert (MoE) archi-
tecture (Shazeer et al., 2017) to scale up our tra-
jectory model, coined as Tra-MoE. Specifically,
we integrate several MoE blocks to replace the
original transformer blocks. This design enables
efficient joint training of most parameters on the
large-scale broad out-of-domain data, capturing
the complementary patterns for mutual coopera-
tion and the shared knowledge for better gener-
alization. Meanwhile, for different data and dif-
ferent tokens within the same data, our Tra-MoE
naturally forms a specialization when activating
different experts. To maintain high computational
efficiency while scaling up model capacity, we im-
plement a top-1 gating strategy for token-choice,
ensuring constant FLOPs per token. In sparse
MoE, some auxiliary losses are commonly used
to enhance performance, including the router z-
loss (Zoph et al., 2022) for improving training
stability and the load-balancing loss (Lepikhin
et al., 2020) for balancing expert activations.

We conduct a comprehensive empirical study on scaling trajectory models and find that the touter
z-loss improves performance while the load-balancing loss tends to cause performance degradation.
Furthermore, we observe that when scaling pre-training data from small-scale in-domain to large-scale
in-domain and out-of-domain data, employing MoE (Tra-MoE) can lead to obvious performance
improvement, whereas the dense counterpart (Tra-baseline) suffers from performance drop, as
illustrated in Fig. 1. Notably, even when expanding the dense Tra-baseline’s parameter to match that
of Tra-MoE, performance improvements remain elusive. These findings collectively demonstrate
the effectiveness of our sparse MoE architecture, attributing its capability of balancing parameter
cooperation and specialization when scaling up training with out-of-domain data.

Furthermore, given a pre-trained trajectory model, how to effectively condition the policy module
using the 2D trajectories still remains an unresolved challenge. We further propose an adaptive policy
conditioning technique for trajectory-guided policy. This enables better spatial alignment between
2D trajectories and images, while achieving more flexible trajectory representation and guidance for
the policy. Finally, we also conduct real-world experiments to further strengthen our conclusions. In
summary, our main contributions can be summarized as follows:

• We propose a sparsely-gated MoE architecture to scale up trajectory models, called as
Tra-MoE, with large-scale, out-of-domain, and action-free video data, coupled with a
comprehensive empirical study on its training techniques.

• Both simulation and real-world environments demonstrate that our Tra-MoE (with Top-1
gating) can more effectively benefit from out-of-domain data compared to the dense baseline.

• We demonstrate that Tra-MoE still significantly outperform expanded dense counterpart
with equivalent parameters, highlighting the effectiveness of sparse MoE architecture in
leveraging out-of-domain data through better parameter cooperation and specialization.

• We further propose an adaptive policy conditioning technique for trajectory-guided policy,
which ensures adaptive 2D trajectory representation and explicit spatial alignment with the
image observations, thereby achieving superior performance.

2 RELATED WORK

Scaling in Robot Learning. Scaling laws (Kaplan et al., 2020) have fueled substantial advancements
in various machine learning fields, including natural language processing and computer vision.
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Figure 2: Scaling up trajectory prediction model. (a) The visualization of Dataset Dood and Din.
The former contains additional skills, environments, objects. (b) Our pipeline: first co-train trajectory
prediction model and then adapt for downstream policy learning.

In robot learning, many recent studies (Reed et al., 2022; Jiang et al., 2022; Brohan et al., 2022;
Bousmalis et al., 2023) investigate how compute, model size, and training data quantity affect the
model performance on a range of robotic manipulation tasks. Based on this, recent works have
focused on collecting larger-scale real-world robotic datasets (Fang et al., 2023; Walke et al., 2023;
Khazatsky et al., 2024), and have successfully trained several robotics foundational models (Brohan
et al., 2023; Li et al.; Padalkar et al., 2023; Team et al., 2024; Kim et al., 2024; Doshi et al.) that
demonstrate superior transfer capabilities. These works directly combine heterogeneous robotic data
with different action and observation spaces for joint training, potentially leading to sub-optimal
solutions. In contrast, we leverages sparsely-gated MoE to incorporate larger-scale, out-of-domain,
and action-less video data. Furthermore, our experiments demonstrate the importance of MoE for
scaling out-of-domain data due to its superior capacity for parameter cooperation and specialization.

Mixture-of-Experts. The Mixture-of-Experts (MoE) framework (Cai et al., 2024) is built upon
a simple yet effective concept: dividing a model into specialized components, or ‘experts’, each
focusing on distinct tasks or data aspects. This paradigm allows for selective activation of relevant
experts based on the input, thereby maintaining computational efficiency while leveraging a vast
reservoir of specialized knowledge through increased model capacity. Recently, in computer vision,
natural language processing, and multi-modal, there has been a surge of foundation models trained
based on the MoE architecture, including Swin-Moe (Hwang et al., 2023), MoE-LLaVA (Lin et al.,
2024), DeepSeek-V2 (Liu et al., 2024a), Mixtral-8x22B (Jiang et al., 2024), and so on. MoE typically
encompass dense (Puigcerver et al., 2023) and sparse (Chen et al., 2023) variants. Dense MoE
activates all experts in each iteration, while sparse MoE activates only a subset, generally resulting
in lower computational overhead. However, sparse MoE can suffer from expert load imbalance and
training instability issues. Techniques such as adding noise, load balancing loss (Lepikhin et al.,
2020), and router z-loss (Zoph et al., 2022) are often employed to mitigate these issues and improve
performance. In our work, we conduct a comprehensive empirical study of these techniques when
training our sparsely-gated MoE-based trajectory model.

Representations and Techniques for Policy Conditioning. Policy conditioning equips a multi-
task robot policy with the ability to modulate its behavior by incorporating task-specific guidance
information. This information, which may take various forms, guides the policy’s action generation,
enabling a single model to effectively learn and perform diverse tasks. Classic policy conditioning
representations often encompass task identifiers (Rahmatizadeh et al., 2018), natural language
instructions (Shridhar et al., 2022; Guhur et al., 2023; Lynch et al., 2023; Brohan et al., 2022),
goal images (Lynch et al., 2020), and demonstration videos (Jang et al., 2022; Jain et al., 2024).
These are typically integrated with visual observations within the policy through concatenation or
attention mechanisms. Recent works have explored alternative policy conditioning representations
to enhance generalization and sample efficiency. These include leveraging internet-trained models
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Figure 3: (a) The pipeline of our sparsely-gated MoE-based trajectory model (Tra-MoE). (b) The
pipeline of our trajectory-guided policy using the adaptive policy conditioning technique.

to obtain bounding box (Stone et al., 2023) and object mask (Zhu et al.; Yang et al., 2023), as well
as learning plan (Bharadhwaj et al., 2024a), affordance (Bahl et al., 2023), future observations (Du
et al., 2024; Du et al.; Yang et al., 2024; Ko et al.), 2D or 3D trajectory (Wang et al.; Wen et al.,
2023; Yuan et al., 2024; Bharadhwaj et al., 2024b; Xu et al., 2024) from human video data, and also
hand-drawn trajectory (Gu et al.) or sketch (Sundaresan et al., 2024). Different from these approaches
that directly utilize raw or manually crafted signals for integration with visual observations, we
introduce an adaptive policy conditioning technique that explicitly maps 2D trajectories onto the
visual observations in space and encodes them as learnable embeddings. These designs ensure
adaptive 2D trajectory representation and explicit spatial alignment with the visual observations.

3 METHODOLOGY

In this section, we first describe our problem formulation in Sec. 3.1. Subsequently, we give an
overview of our proposed framework, which is composed of a sparsely-gated MoE-based trajec-
tory prediction model and a trajectory-guided policy model using the adaptive policy conditioning
technique, detailed in Sec. 3.2. Finally, we describe our training process and loss functions in Sec. 3.3.

3.1 PROBLEM FORMULATION

Following the setup of previous works (Wen et al., 2023; Bharadhwaj et al., 2024b; Xu et al.,
2024), our approach encompasses a trajectory prediction model to conduct language-conditioned
any-point trajectory prediction and a trajectory-guided policy model to predict executable robot
actions. In particular, as depicted in Fig. 2, we consider two types of datasets for training, which
are large-scale, out-of-domain, and action-free videos Dood, as well as small-scale, in-domain, and
action-labeled demonstrations Din. For trajectory prediction model, we employ Dood and Din for
joint pre-training, whereas for trajectory-guided policy model, we only use Din for training.

3.2 ARCHITECTURE

ATM Revisited. We develop our approach based on ATM (Wen et al., 2023), an advanced and
promising framework of robotic learning from videos. The overall pipeline of ATM is illustrated on
Fig. 2(b). It first learns a trajectory model from video data to perform language-conditioned any-point
trajectory prediction. The predicted trajectories provide detailed control guidance, which is then
used to learn a trajectory-guided policy model using action-labeled demonstration data. Specifically,
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as for a trajectory model, its objective is to predict the future of any-point trajectories in a frame.
Formally, given an image observation ot at timestep t, any set of 2D query points simpled on the
image frame pt = {pt,k}Kk=1, and a language instruction ℓ, the trajectory model learns a mapping
pt:t+H = τθ(ot,pt, ℓ) that predicts the coordinates of these query points in the camera frame for
the next H time steps, where pt:t+H ∈ RH×K×2. For the trajectory-guided policy, it leverages the
current observation ot and the predicted trajectory pt:t+H to predict the subsequent robot actions.

Sparsely-gated MoE-based trajectory model (Tra-MoE). ATM proposes a track transformer to
implement the trajectory model. In track transformer, language tokens, image tokens, and track
tokens to be decoded involve global interactions within the transformer block. However, directly
processing diverse domains and multiple modalities data within a unified transformer may yield
suboptimal results. Hence, we propose our Tra-MoE framework. To develop our sparsely-gated
MoE-based trajectory model, as depicted in Fig. 3(a), we replace certain layers of the transformer
with MoE blocks. In each MoE block, it incorporates multiple feedforward networks (FFNs), each
designated as an expert, and utilizes a gating function to activate a selected subset (Top-K) of these
experts. In this paper, we set K to a fixed value of 1 to ensure that the FLOPs per token remain
constant relative to the baseline. Formally, the gating network G, parameterized by Θ and typically
consisting of a linear-softmax network, yields the output G(xs;Θ), where xs represents our token
sequences input. We formulate the sparsely-gated token-choice mechanism as follows:

G(xs;Θ)i = softmax(Top-K(g(xs;Θ), k))i, (1)

Top-K(g(xs;Θ), k)i =

{
g(x;Θ)i, condition,
−∞, otherwise.

, (2)

condition : if g(x;Θ)i is in the top-k elements of g(x;Θ). (3)

More specifically, Top-K(·, k) function retains only the top-k values in a vector, setting the rest to
−∞. Consequently, the output of the sparsely-gated MoE layer can be formulated as:

FMoE
sparse(xs;Θ, {Wi}Ki=1) =

K∑
i=1

G(xs;Θ)ifi(xs;Wi), (4)

where fi represents the i-th expert, usually a linear-GELU-linear FFN layer, is parameterized by Wi.

Trajectory-guided policy using the adaptive policy conditioning technique. After completing the
trajectory model learning, we develop our trajectory-guided policy model through the adaptive policy
conditioning technique in accordance with the initial ATM framework, as shown in Fig. 3(b). In our
policy model, independently encoded track tokens and image tokens undergo a early fusion within
the fusion transformer. Subsequently, the fused features are further integrated with the raw trajectory
data through a late fusion mechanism along the channel dimension, ensuring the preservation of
original trajectory information for more accurate action prediction.

Fundamentally, the policy model bridges the gap between the predicted 2D any-point trajectories
and the executable 3D robot actions, functioning as an inverse dynamic model and eliminating the
necessity of other task specification. However, how to effectively condition the policy using the
predicted 2D trajectories remains an unresolved challenge. Based on our analysis, we present two key
insights: (i) Explicit spatial alignment and fusion of the 2D trajectories with image observations turns
out to be highly beneficial. It simplifies the mapping of 2D trajectories to image space and highlights
motion-relevant regions, enabling the policy model to focus on important areas and reducing the
learning difficulty. (ii) Trajectory positions exhibit different characteristics: starting points typically
emphasize local motion, while endpoints focus more on global trend. Therefore, an adaptive trajectory
representation and conditioning technique is expected to flexibly guide the policy by effectively
capturing these variations.

Based on the aforementioned analysis, we propose an adaptive policy conditioning technique to
incorporate trajectory information into 2D images. Specifically, we construct an additional mask
modality, and populate it with 2D trajectories based on their specific spatial locations, while setting
the value of each point in the trajectory as a learnable embedding. Before encoding the image, we
concatenate this mask modality with the image observations on the channel dimension, forming a
tensor of dimensions H ×W × 4, as shown in Fig. 3(b). To sum up, our adaptive policy conditioning
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technique yield an adaptive 2D trajectory representation, which could be explicitly aligned with the
image observations to guide the policy prediction more flexibly.

3.3 TRAINING

We argue that trajectory models could be viewed as general foundation model, which can be shared by
data across multiple domains. Therefore, we first propose to pre-train a generalizable trajectory model
on Dood ∪Din. The Dood typically contains additional skills, environments, objects, and even
embodiments. Then we train the trajectory-guided policy model on Din based on the pre-trained
trajectory model. In trajectory-guided policy training phase, we freeze the trajectory model.

Pre-training sparsely-gated MoE-based trajectory model. Following ATM, we train the trajectory
model using the ground truth tracks generated by CoTracker (Karaev et al., 2023). We use MSE to
optimize the trajectory prediction loss Ltrajectory. Additionally, we also consider adding an auxiliary
load-balancing loss (Lepikhin et al., 2020) to balance the activation frequency among experts. Given
a batch of queries B, it contains B samples and each sample contains S tokens. We define Qi as
the proportion of tokens distributed to expert i, and Pi as the proportion of the gating probability
assigned to expert i. The Lload-balancing can be formulated as follows:

Qi =
1

S ·B
∑

xm
s ∈B

1{argmaxG(xm
s ;Θ) = i}, (5)

Pi =
1

S ·B
∑

xm
s ∈B

G(xm
s ;Θ)i, (6)

Lload-balancing = N

N∑
i=1

QiPi. (7)

Additionally, ST-MoE (Zoph et al., 2022) proposed using the router z-loss to penalize large logits
entering the gating network, thereby improving training stability. We similarly applies it to the
training of our trajectory model, as shown below:

Lz(x) =
1

S

S∑
k=1

(
log

N∑
i=1

eg
(k)
i

)2

, (8)

where S is the total number of tokens, N is the total number of experts, and g ∈ RS×N are the logits
going into the router. In summary, the trajectory model’s training loss is as follow:

Ltotal = λtrajectory · Ltrajectory + λload-balancing · Lload-balancing + λz · Lz. (9)

Training trajectory-guided policy through adaptive policy conditioning technique. For trajectory-
guided policy training, we employ the paradigm of behavior cloning by learning from demonstrations
(Lfd). Specifically, we use the MSE between predicted actions and ground truths as the loss function.

4 EXPERIMENTS

In this section, we perform experiments using the LIBERO benchmark (Liu et al., 2024b) and a real
low-cost dual-arm robot (Koch, 2024). Our experiments aim to study the following questions:

Q1: Does the use of techniques like router z-loss, load-balancing loss, and adding noise to gating
logits enhance the training of trajectory models (Tra-MoE) that utilize sparsely-gated MoE?

Q2: Does sparsely-gated Tra-MoE, compared to the dense Tra-baseline, benefit more from large-scale
out-of-domain data and demonstrate superior scaling up capabilities?

Q3: When we scale up the dense Tra-baseline to match the parameter count of Tra-MoE, does the
sparsely-gated Tra-MoE still maintain its advantage?

6
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Table 1: The ablation experiments on the challenging LIBERO benchmark.

(a) The value of λz .

Spatial Goal Object Long Avg.
0 62.0 73.0 71.0 21.5 56.9

5·10−4 69.5 73.5 68.0 22.5 58.4
1·10−4 62.5 81.0 73.5 28.5 61.4
1·10−5 60.0 65.5 68.5 27.0 55.3
1·10−6 60.0 79.0 53.0 31.5 55.9

(b) The value of λload−balancing .

Spatial Goal Object Long Avg.
0 62.0 73.0 71.0 22.5 56.9

1·10−3 58.5 74.0 60.0 18.0 52.6
1·10−5 61.0 69.5 56.0 26.0 53.1
1·10−7 66.5 67.0 73.5 22.0 57.3

(c) Adding a noise term to the gating logits.

Spatial Goal Object Long Avg.
w/o. noise 62.0 73.0 71.0 22.5 56.9
w. noise 71.5 67.0 57.5 27.0 55.8

(d) Scaling Tra-baseline from width and depth.

Spatial Goal Object Long Avg.
MoE 62.5 81.0 73.5 28.5 61.4
Width 66.5 50.5 61.5 15.0 48.4
Depth 61.5 75.5 46.5 26.5 52.5

(e) The number of experts.

Num. Spatial Goal Object Long Avg.
1 49.5 67.0 56.5 35.0 52.0
2 59.0 72.5 65.5 27.0 56.0
3 64.0 68.0 71.0 17.5 55.1
4 62.0 73.0 71.0 21.5 56.9

(f) Scaling with MoE and OOD data.

MoE OOD Spatial Goal Object Long Avg.
67.5 68.5 68.0 26.5 57.6

✓ 63.0 64.0 60.5 19.5 51.8
✓ 49.5 67.0 56.5 35.0 52.0

✓ ✓ 62.5 81.0 73.5 28.5 61.4

Q4: Is our proposed adaptive policy conditioning technique for trajectory-guided policies more
effective than other baseline methods?

4.1 SIMULATION EXPERIMENTS

Experiment setup. We conduct simulation experiments using the LIBERO (Liu et al., 2024b)
benchmark, which is divided into five categories: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal,
LIBERO-Long, and LIBERO-90. LIBERO-90 includes 90 tasks, while each of the other categories
contains 10 tasks. Accompanied by skilled human demonstrations, these tasks are designed as follows:
LIBERO-Spatial focuses on identical objects across varying layouts; LIBERO-Object emphasizes the
same layouts with a change in objects; LIBERO-Goal retains the same object types and layouts but
introduces dissimilar goals; LIBERO-Long encompasses a broad range of object types and layouts
alongside extended task objectives; Lastly, LIBERO-90 presents a highly varied selection of object
categories, layouts, environments, and task goals. Specifically, we select 90 tasks from LIBERO-90
to construct dataset Dood, utilizing 20 action-free videos per task; and we also choose 40 tasks from
LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long to build dataset Din, using
10 action-labeled demonstrations per task. In summary, for training Tra-MoE, we use a total of 2200
action-free videos, with an out-of-domain to in-domain data ratio of 9 : 2. For the trajectory-guided
policy, we train a separate multi-task policy for each category: LIBERO-Spatial, LIBERO-Object,
LIBERO-Goal, and LIBERO-Long. Each policy undergoes behavioral cloning training with 100
action-labeled demonstrations from 10 tasks.

Implement details. Building on the implementation of ATM (Wen et al., 2023), we develop our
sparsely-gated Tra-MoE and adaptive policy conditioning technique. Specifically, we replace the first,
last, and middle layers of the track transformer with MoE blocks. Unless otherwise specified, we
set the number of experts to 4 by default and use a top-1 gating strategy for token choice to ensure
the FLOPs per token remain constant. The default Tra-baseline and Tra-MoE have 13.0 M and 23.6
M parameters, respectively. Each expert contains approximately 3.5 M parameters. Please see the
appendix for more detailed training and evaluation information.

Experiment results and analysis. We present empirical simulation results to address the aforemen-
tioned research questions and make the following findings:

Result 1: In Tab. 1a, we examine the effect of the router z-loss weight λz . The results indicate that
a higher λz can effectively enhance performance, with an improvement of 4.5 (61.4 vs. 56.9) at
λz = 1 · 10−4. In Tab. 1b, we study the impact of the load-balancing loss weight λload−balancing.
The results show a significant performance decline with larger values of λload−balancing , with only a
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Table 2: The ablation experiments of the adaptive policy conditioning technique.

Spatial Goal Object Long Average
ATM 62.5 81.0 73.5 28.5 61.4
+ hand-drawn mask 69.0 58.0 85.5 33.5 61.5
+ adaptive mask 72.5 74.0 86.0 34.5 66.8

Table 3: The real-world ablation experiments.

moe ood data Reaching-cube Folding-cloth Average
50.0 15.0 32.5

✓ 50.0 40.0 45.0
✓ ✓ 65.0 45.0 55.0

slight improvement at λload−balancing = 1 · 10−7. In Tab. 1c, we verify the effectiveness of adding
noise to the gating logits, which results in a performance decrease of by 1.1 (from 56.9 to 55.8).

Finding 1: Based on the above results, we find that using router z-loss to penalize large logits
entering the gating network can effectively improve training stability and lead to performance gains.
Meanwhile, the load-balancing loss used to balance the activation frequency among experts and
the addition of noise to enhance expert allocation exploration cannot bring effective performance
improvements. An intuitive explanation is that the load-balancing loss might force experts to set
shared parameters on data with large domain gap, which could lead to mutual counteraction of
learning gradients. This undermines the advantage of parameter specialization in sparsely-gated MoE.
Similarly, adding noise is also detrimental to learning parameter specialization among experts.

Result 2: We comprehensively investigate the impact of introducing sparsely-gated MoE and large-
scale out-of-domain data on scaling up trajectory models in Tab. 1f. Firstly, when training only
with in-domain data, Tra-baseline achieves an average success rate of 57.6, while Tra-MoE only
achieves an average success rate of 51.8. Secondly, when adding out-of-domain data to jointly train
Tra-baseline with in-domain data, the average success rate drops to 52.0 (from 57.6 to 52.0), with
particularly significant performance declines in LIBERO-Spatial and LIBERO-Object. However,
when adding out-of-domain data to jointly train Tra-MoE with in-domain data, the average success
rate increases to 61.4 (from 51.8 to 61.4). Finally, in Tab. 1e, we also explore the impact of the
number of experts in sparsely-gated MoE on performance. The results show that using just two
experts can lead to an increase of 4.0 (52.0 vs. 56.0) in the average success rate. With additional
experts, performance generally trends upward, albeit with some fluctuations.

Finding 2: Based on the above experimental results, we have the following findings and analysis: (i)
When the data scale is small, naively expanding the model capacity through sparsely-gated MoE does
not lead to performance improvements. A reasonable explanation is that the larger model may lead to
a overfitting problem when training on a small-scale dataset. Moreover, when the data scale is small,
training sparsely-gated MoE usually results in some experts not being sufficiently trained, thereby
affecting performance. (ii) Naively introducing out-of-domain data for joint training often leads to
performance degradation in the target domain. However, simultaneously incorporating out-of-domain
data and scaling up models with sparsely-gated MoE improves performance. This phenomenon
suggests that although out-of-domain data generally enhances model generalization, it could hinder
task-specific performance in the target domain due to insufficient in-domain data learning. In contrast,
expanding the model with out-of-domain data using sparsely-gated MoE achieves a more optimal
balance between parameter cooperation and specialization across diverse data and even different
tokens within the same data input. This design allows these large-scale data to jointly train most of
parameters, ensuring the capture of general patterns for mutual cooperation. (iii) Even with a few
experts, Tra-MoE exhibits significant scaling up capabilities. Additionally, further increasing the
number of experts generally leads to performance improvement. However, this improvement is not
guaranteed due to factors like data-expert complexity matching and training stability.

Result 3: In Tab. 1d, we further investigate the performance comparison between the dense Tra-
baseline and the sparse Tra-MoE with the same number of parameters. Specifically, we expand
Tra-baseline to match the model capacity of Tra-MoE by increasing both its model width and depth
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Left view Right view

Left view Right view

Figure 4: The setup of our real-world experiments. We use two camera views (left and right) to
ensure better environment perception.

separately. These expanded versions achieve average success rates of 48.4 and 52.5 respectively,
which are significantly lower than Tra-MoE’s 61.4.

Finding 3: Based on these results, we are surprised to find that simply expanding the dense Tra-
baseline in depth and width can not effectively improve performance. This highlights the importance
of the sparsely-gated MoE architecture when training with large-scale out-of-domain data, as it
ensures dynamic activation of different experts based on different data input and different tokens
within the same data input, significantly reducing optimization conflict problems.

Result 4: In Tab. 2, we investigate the effectiveness of the adaptive policy conditioning technique.
Specifically, building upon ATM, we introduce an additional hand-drawn mask modality before image
encoding. In this mask, the first half of the trajectory is set to 128, while the second half is set to
255. We call it ‘ATM + hand-drawn mask’. Next, we replace the hand-drawn mask modality with an
adaptive mask modality, where each point on the trajectory is instantiated as a learnable embedding.
We call it ‘ATM + adaptive mask’. The results show that ‘ATM + hand-drawn mask’ achieves only a
0.1 improvement compared to the baseline. However, except for a significant performance decrease
in LIBERO-Goal, it achieves performance improvements of 6.5, 12.0, and 5.0 in LIBERO-Spatial,
LIBERO-Object, and LIBERO-Long respectively. In addition, the ‘ATM + adaptive mask’ achieves
a performance improvement of 5.4 (66.8 vs. 61.4) compared to the baseline. It further improves
performance across all suites compared to ‘ATM + hand-drawn mask’, especially achieving a 16.0
performance gains in LIBERO-Goal (74.0 vs. 58.0).

Finding 4: Based on these results, we find that explicitly mapping 2D trajectories to visual observa-
tions significantly improves the performance of LIBERO-Spatial, LIBERO-Object, and LIBERO-
Long, but causes a notable decrease in LIBERO-Goal. By instantiating the points in the 2D trajectory
as learnable embeddings, we not only further enhances the performance of LIBERO-Spatial, LIBERO-
Object, and LIBERO-Long, but also significantly improves LIBERO-Goal. We analyze that the
decline in LIBERO-Goal is mainly due to overlapping front and back parts of some trajectories
in the 2D images, leading to mapping errors. However, our adaptive trajectory representation and
conditioning technique effectively mitigates this issue. In summary, these experiments collectively
demonstrate the effectiveness of explicitly aligning 2D trajectories with images in space as well as
applying the adaptive conditioning technique.

4.2 REAL-WORLD EXPERIMENTS

Experiment setup. As depicted in Fig. 4, we utilize a open-sourced low-cost dual-arm robot Koch
(2024) to conduct real-world experiments. Additionally, based on two RealSense cameras, our
real-world scenario includes two camera viewpoints: left and right. We evaluate two real-world
tasks: a single-arm reaching-cube task and a dual-arm folding-cloth task. The former requires the
end-effector of the right arm to successfully contact a red cube on the table, while the latter requires
the left and right arms to cooperatively fold a towel on the table. Please see the appendix for more
detailed evaluation details and real-world setup.

Implement details. Following our simulation experiments, we utilize two camera views and uni-
formly resize their resolution to 128×128 for trajectory model and policy training. We train a
two-expert Tra-MoE (16.3M parameters) on video data from two tasks, with a separate policy trained
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Fold

Reach

Figure 5: The evaluation demonstrations of our real-world tasks. We evaluate a single-arm reaching-
cube and a dual-arm folding-cloth task.

for each task. Therefore, our real-world Tra-MoE integrates data across different embodiments
(single-arm and dual-arm). The evaluation demonstrations of our real-world tasks is shown in Fig. 5.

Experiment results and analysis. To further strengthen our conclusion that sparsely-gated MoE can
better scale up models and out-of-domain data, we conduct real-world experiments. Specifically, for
Reaching-cube video data, Folding-cloth is considered out-of-domain data as it involves different
embodiments and skills, and similarly for the reverse case. As shown in Tab. 3, due to the limited
amount of real-world video data used, even simply adding out-of-domain data to train the trajectory
model improves in-domain task performance, especially for the Folding-cloth task. Moreover, further
applying MoE (Tra-MoE) leads to additional performance gains. This demonstrates the effectiveness
of our sparsely-gated MoE architecture in scaling up out-of-domain data and model capacity.

5 CONCLUSION

In this work, we have introduced Tra-MoE, a novel framework that utilizes a sparsely-gated MoE
architecture with Top-1 gating strategy to scale up trajectory models. Tra-MoE achieves superior
parameter cooperation and specialization, enabling more effective utilization of large-scale out-of-
domain data while maintaining constant FLOPs per token. We train our Tra-MoE on all 130 tasks in
the LIBERO benchmark and conduct a comprehensive empirical study, demonstrating that Tra-MoE
consistently exhibits superior performance compared to the dense baseline model, even when the
latter is scaled to match Tra-MoE’s parameter count. Additionally, we propose an adaptive policy
conditioning technique for trajectory-guided policies, ensuring adaptive 2D trajectory representation
and explicit spatial alignment with image observations, thereby achieving superior performance.
Extensive experiments in both simulated and real-world environments validate our findings and
demonstrate the effectiveness of our proposed methods.

6 LIMITATIONS AND FUTURE WORK

In our work, we demonstrate the effectiveness of using sparsely-gated Mixture-of-Experts (MoE)
for comprehensively scaling model capacity and leveraging large-scale out-of-domain data, while
conducting a thorough experimental study of its training techniques. To the best of our knowledge,
this is the first attempt of using sparse MoE architecture for scaling up in robot learning. We hope
it can serve as a strong baseline and facilitate further research in this direction. While we are
encouraged by the strong results across a wide range of simulated and real-world experiments, a
number of limitations and future works still remain. On one hand, we plan to further scale up
our Tra-MoE by incorporating more diverse simulation environments, different embodiments, and
even real-world human videos. On the other hand, with the increasing availability of large-scale
robotic dataset (Padalkar et al., 2023), our sparse MoE architecture could be directly applied to train
end-to-end policies, potentially leading a powerful robotic foundation model, akin to Octo (Team
et al., 2024) and OpenVLA (Kim et al., 2024). Finally, as for our adaptive policy conditioning
technique, a further avenue of exploration is to extend it to other policy conditioning representations,
such as human hand trajectories (Wang et al.; Mendonca et al., 2023).
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A SIMULATION EXPERIMENTS DETAILS

In this section, we further elaborate on the details of our simulation experiments. The training
hyperparameters for the trajectory model and the trajectory-guided policy are shown in Tab. 4 and
Tab. 5, respectively. For the majority of the hyperparameters, we inherit the settings from ATM (Wen
et al., 2023). Additionally, when we extend Tra-baseline in depth, the depth is increased from 8 to 14;
when we extend Tra-baseline in width, the dimension is increased from 384 to 512. Finally, following
the original LIBERO (Liu et al., 2024b) setup, we perform 20 trials for each task evaluation, ensuring
a total of 800 trials for each model evaluation.

Table 4: Hyperparameters of our trajectory model.

Hyperparameters In-domain data Out-of-domain data

Number of videos 400 2200
Epoch 1000 300

Batch size 2048
Optimizer AdamW

Learning rate 1e-4
Weight decay 1e-4
LR scheduler Cosine
LR warm-up 5

Clip grad 10
Point sampling Variance filtering

Number of points 32
Track length 16

Augmentation ColorJitter, RandomShift
dropout 0.2
depth 8

dimension 384

Table 5: Hyperparameters of our trajectory-guided policy.

Hyperparameters Policy

Number of demonstrations 100
epoch 120

batch size 384
optimizer AdamW

learning rate 5e-4
weight decay 1e-4
lr scheduler Cosine
lr warm up 0
clip grad 100

point sampling grid
number of points 32

track length 16
frame stack 10

augmentation ColorJitter,RandomShift
dropout 0.1

B REAL-WORLD EXPERIMENTS DETAILS

In this section, we further elaborate on the details of our real-world experiments. Specifically, we
use two leader arms to perform teleoperation for data collection, as shown in Fig. 6, where 50
demonstrations are collected for each task for trajectory model and policy training. For our real-world
evaluations, we conduct 20 triasl for each task, while ensuring, to the extent possible, that the object
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poses in the training set differ from those in the test set. For the relevant training hyperparameters,
we maintain consistency with the simulation experiments.

camera
camera

Follower Arms

Leader Arms

Figure 6: Our real-world hardware platform.
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