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ABSTRACT

Despite the recent successes of large language models (LLMs), little is known
regarding the representations of linguistic structure they learn during pretraining,
which can lead to unexpected behaviors in response to prompt variation or dis-
tribution shift. To better understand these models and behaviors, we introduce
a general model analysis framework to study LLMs with respect to their repre-
sentation and use of human-interpretable linguistic properties. Our framework,
CALM (Competence-based Analysis of Language Models), is designed to inves-
tigate LLM competence in the context of specific tasks by intervening on models’
internal representations of different linguistic properties using causal probing, and
measuring models’ alignment under these interventions with a given ground-truth
causal model of the task. We also develop a new approach for performing causal
probing interventions using gradient-based adversarial attacks, which can target a
broader range of properties and representations than prior techniques. Finally, we
carry out a case study of CALM using these interventions to analyze and compare
LLM competence across a variety of lexical inference tasks, showing that CALM
can be used to explain and predict behaviors across these tasks.

1 INTRODUCTION

The rise of large, pretrained neural language models (LLMs) has led to rapid progress in a wide
variety of natural language processing tasks Brown et al. (2020); Chowdhery et al. (2022); Dubey
et al. (2024). However, these models can also be quite sensitive to minor changes in input prompts
Elazar et al. (2021a); Moradi & Samwald (2021); Mizrahi et al. (2024) and fail to generalize outside
their training or fine-tuning distribution Wang et al. (2023a); Yang et al. (2023). It is usually unclear
where these limitations come from, as LLM task performance is generally studied using only “black
box” behavioral analysis, in which case one can only detect limitations that are adequately repre-
sented by the benchmark, which cannot cover every possible limitation using a finite dataset Raji
et al. (2021); Siska et al. (2024). Understanding the means by which these models can perform as
well as they do while exhibiting such limitations is a key question in the science of LLM interpreta-
tion and analysis Bereska & Gavves (2024), and is likely necessary in enabling robust, trustworthy,
and socially-responsible LLM-enabled applications Shin (2021); Liao & Vaughan (2023); Zou et al.
(2023); Bereska & Gavves (2024).

We approach this question in terms of competence, drawing on the traditional competence-
performance distinction in linguistic theory (see Section 2.1) to motivate the study of LLMs in
terms of their underlying representation of language. We define LLM competence in the context a
given linguistic task as the alignment between the ground-truth causal structure of the task and the
LLM’s latent representation of the task’s structure, measured by intervening on the LLM’s represen-
tation of task-causal or non-causal properties and observing how its behavior changes in response.
While such representations are not directly observable, we take inspiration from causal probing,
which damages LLMs’ latent representations of linguistic properties using causal interventions to
study how these representations contribute to their behavior Elazar et al. (2021b); Lasri et al. (2022).
We introduce a general framework, CALM (for Competence-based Analysis of Language Models),
to study the competence of LLMs using causal probing and define the first quantitative measure of
LLM competence.
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While CALM can be instantiated using a variety of existing causal probing interventions (e.g., Rav-
fogel et al., 2020; 2022b;a; Shao et al., 2022; Belrose et al., 2024), we develop a new intervention
methodology for damaging LLM representations using gradient-based adversarial attacks against
structural probes, extending causal probing to arbitrarily-encoded representations of relational prop-
erties and thereby enabling the investigation of new questions in language model interpretation. We
carry out a case study of CALM using two well-studied LLMs by implementing interventions as
GBIs in order to measure and compare these LLMs’ competence across 14 lexical inference tasks,
showing that CALM can indeed explain and predict important patterns in behavior across these
tasks by distinguishing between models’ use of causal and spurious properties.

Our primary contributions are as follows:

1. We introduce CALM, a general interpretability framework for studying LLM competence
using causal probing.

2. We provide a causal formulation of linguistic competence in the context of LLMs, using
CALM to define the first quantitative measure of LLM competence.

3. We establish a gradient-based intervention strategy for causal probing, which directly ad-
dresses multiple limitations of prior methodologies.

4. We discuss multiple novel applications enabled by CALM for understanding the represen-
tation and behaviors of LLMs.

5. We implement a preliminary case study of CALM using gradient-based interventions,
demonstrating its utility in explaining and predicting LLM behaviors across several lex-
ical inference tasks.

2 COMPETENCE-BASED ANALYSIS OF LANGUAGE MODELS

2.1 LINGUISTIC COMPETENCE

Linguistic competence is generally understood as the ability to utilize one’s knowledge of a language
in producing and understanding utterances in that language, and is typically defined in contrast
with linguistic performance, which is speakers’ actual use of their language in practice, considered
independently of the underlying knowledge that supports it Marconi (2020).1 Given a linguistic task,
we may understand competence in terms of the underlying linguistic knowledge that one draws upon
to perform the task. If fluent human speakers rely on (implicit or explicit) knowledge of the same
set of linguistic properties to perform a given task, then we may understand their performance of
this task as being causally determined by these properties, and invariant to other properties. For
example, if we consider the two utterances “the chicken crosses the road” and “the chickens cross
the road”, the grammatical number of the subject (i.e., singular and plural, respectively) determines
whether the verb “(to) cross” should be conjugated as “crosses” or “cross”. As English (root) verb
conjugation always depends on the grammatical number of the subject, grammatical number may
be regarded as having a causal role in the task of English verb conjugation, so we may understand
fluent English speakers’ (usually implicit) mental representation of verb tense as having a causal
role in their behavior. In this work, we focus on lexicosemantic competence, the ability to utilize
knowledge of word meaning relationships in performing tasks such as lexical inference Marconi
(1997; 2020).

While the study of human competence has a rich history in linguistics, there is currently no generally
accepted framework for studying LLM competence Mahowald et al. (2023); Pavlick (2023). Our
primary goal in this work is to define and test a general empirical analysis framework for interpreting
and measuring LLM competence, as outlined in the following section.

1There has been significant debate in linguistics and the philosophy of language regarding the precise
definition and nature of competence Lyons (1977); Newmeyer (2001); Sag & Wasow (2011); Marconi (2020).
However, the formalization of competence provided in this work is sufficiently general to incorporate most
notions of competence, which may be flexibly specified by instantiating CALM in different ways.
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Figure 1: Structural causal model (SCM) of
task T ’s data-generating process and how it
may be performed by model M . Shaded and
white nodes denote observed and unobserved
variables, respectively. In CALM, the goal is
to determine which representations Zj = zj are
causally implicated in M ’s predictions ŷ.

Figure 2: SCM of a competent English speaker
on the hypernym prediction task. Shaded and
white nodes denote observed and unobserved
variables, respectively.

2.2 CALM FRAMEWORK

In order to make the study of competence tractable in the context of LLMs, we introduce the CALM
(Competence-based Analysis of Language Models) framework, which describes an LLM’s compe-
tence with respect to a given linguistic task in terms of its latent representation of the causal structure
of the task.

Task Structure Formally, given supervised task T ∼ P (X ,Y) where the goal is to correctly
predict y ∈ Y given x ∈ X , and a collection of latent properties Z = {Zj}mj=1 that are (potentially)
involved in generating x, we formulate the causal structure of T in terms of the data-generating
process

x ∼ Pr(x|Zc,Ze), y ∼ P (y|Zc) (1)
where Z may be decomposed into Z = Zc ∪ Ze,Zc ∩ Ze = ∅, where Zc contains all properties
that causally determine y, and Ze are the remaining properties that may be involved in generating x
(cf. Ilse et al., 2021). However, there may be an unobserved confounder S that produces spurious
correlations between y and Ze, which, if leveraged by language model M in the course of predicting
ŷ, can lead to unexpected failures on T when the spurious association is broken Pearl (2009). The
structural causal model (SCM)2 of this data-generating process is visualized on the left side of
Figure 1.

For example, suppose a speaker wants to communicate that orangutans are a genus of primate. She
might say “orangutans are primates” or “orangutans, a genus of apes, are primates”. In both cases,
the conjugation of the root verb would be “are” because it is independent of whether the subject is
complemented by an appositive phrase like “a genus of apes”, and this phrase does not change the
grammatical number of the subject “orangutans”; so if we define TVC as English verb conjugation,
ZNS as the grammatical number of the subject, and ZAP as the presence of an appositive phrase
modifying the subject, then it is clear that ZNS ∈ Zc and zAP ∈ Ze. However, if we instead consider
the task TH of predicting hypernyms – for example, predicting y in “orangutans are ys”, where y =
“primate” and y = “ape” would both be correct answers – the causal property ZH ∈ Zc will be the
hypernymy relation, and ZNS ∈ Ze (e.g., the same answers will be correct if the question is instead
posed as “an orangutan is a y”). Thus, we expect competent English speakers to be invariant to
grammatical number when performing hypernym prediction (see Figure 2).

Internal Representation Our main concern is measuring how attributable an LLM M ’s behavior
in a given task T is to its representation of various properties Z = {Z1, ..., Zm}, and how these
properties correspond to the causal structure of the task. If M respects the data-generating process
of T , then its behavior should be attributable only to causal properties Z ∈ Zc (and not to envi-
ronmental properties Z ∈ Ze), in which case we say that M is competent with respect to T (see
Figure 2). We study model M ’s use of each property Zj ∈ Z by performing causal interventions
do(Zj) on its representation of Zj in the course of performing task T , and measure the impact that
these interventions have on its predictions.

2An SCM is a directed acyclic graph where each node represents a variable and directed edges indicate
causal dependencies (see Bongers et al. 2021 for an introduction to SCMs).
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2.3 MEASURING COMPETENCE

We evaluate the competence of M with respect to task T ∼ P (X ,Y) by measuring its causal
alignment with a competence graph GT , which we define as a structural causal model (SCM) of T
with nodes corresponding to each latent variables Zj ∈ Z and an additional node for outputs y ∈ Y
and directed edges denoting causal dependencies between these variables. That is, the set of causal
properties Zc defined by GT is the set of all properties Zj ∈ Z such that there is an edge or path
from Zj to y.

To determine the extent to which M ’s behavior is correctly explained by the causal dependencies
(and lack thereof) in GT , we measure their consistency under interventions do(z), where setting z =
{zj}mj=1 ∼ val(Z) is a combination of values Zj = zj ∈ val(Zj) taken by each corresponding latent
variable Zj ∈ Z. For instance, under the hypernym prediction task TH , for input xi =“orangutans
are ys” and ground-truth output y =“primate”, the values taken by zi would be ZH = 1, ZNS = 1
(where 1 indicates the presence of hypernymy and a plural noun subject, respectively), and we might
define an alternative z′ where ZH = 0, ZNS = 1, under which a competent model’s prediction would
be expected to change with the causal variable ZH (i.e., M(x|do(z′)) ̸= M(x)).

The alignment of M with GT is measured in terms of the similarity S of their predictions under
interventions do(z) given input x ∼ P (X ), and can be computed using a given similarity metric
S : Y,Y → [0, 1] (e.g., equality, n-gram overlap, cosine similarity, etc.) depending on the SCM GT
and output space Y . That is, we define CT (M |GT ) as M ’s competence with respect to task T as a
function of its alignment with corresponding task SCM GT under interventions do(z) measured by
similarity metric S, as follows:

CT (M |GT ) = Ex,z∼P (X ,val(Z))S
(
M(x|do(z)),GT (x|do(z))

)
(2)

This CT (M |GT ) metric (bounded by [0, 1]) is an adaptation of the Interchange Intervention Accu-
racy (IIA) metric (Geiger et al., 2022; 2023) to the context of causal probing, where instance-level
interventions are replaced with concept-level interventions enabled by the gradient-based interven-
tion methodology we introduce in Section 3. (See Appendix C.1 for a detailed comparison of our
competence metric with IIA.)

2.4 CAUSAL PROBING

A key technical challenge in implementing CALM (and causal probing more generally) is design-
ing an algorithm to perform causal interventions do(Z) that maximally damage the representation
of a property Z while otherwise minimally damaging representations of other properties Z ′ Rav-
fogel et al. (2022b). For example, amnesic probing Elazar et al. (2021b) uses the INLP algorithm
Ravfogel et al. (2020) to produce interventions gZ that remove all information that is linearly pre-
dictive of property Z from a pre-computed set of embedding representations H, showing that BERT
makes variable use of parts-of-speech, syntactic dependencies, and named-entity types in perform-
ing masked language modeling. However, Elazar et al. (2021b) also found that, when INLP is used
to remove BERT’s representation of these properties in early layers, it is often able to “recover” this
representation in later layers, which is likely due to BERT encoding these properties nonlinearly;
and later work has found that the same “recoverability” problem persists even when linear infor-
mation removal methods like INLP are kernelized Ravfogel et al. (2022b). Thus, it is necessary to
develop interventions that do not require restrictive assumptions about the structure of LLMs’ rep-
resentations (e.g., linearity; see Vargas & Cotterell 2020), a problem which we aim to solve in the
following section.

3 GRADIENT-BASED INTERVENTIONS

Our goal in developing gradient-based interventions (GBIs) as a causal probing technique is to
enable interventions over arbitrarily-encoded LLM representations. GBIs allow users to flexibly
specify the class of representations they wish to target, expanding the scope of causal probing to
arbitrarily-encoded properties. We take inspiration from Kos et al. (2018), who developed a tech-
nique to perturb latent representations using gradient-based adversarial attacks.3 They begin by

3Notably, Tucker et al. (2021) developed a similar methodology without explicit use of such attacks (see
Section 7).
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Figure 3: Gradient-Based Interventions. Input tokens x = (x1, ..., x|x|) are passed through layers
L = 1, ..., l, where embedding hl

i (encoding the value Z = z) is extracted from layer l and given
to gZ as input. Next, the embedding is modified by gradient-based attacks on gZ to encode the
counterfactual value Z = z′, then fed back into subsequent layers L = l + 1, ..., |L| and language
modeling head fLM to obtain the intervened predictions M(x|do(Z = z′)).

training probe gZ : h 7→ z to predict image class z ∈ Z from latent representations h = fenc(x)
of images x, where fenc is the encoder of a VAE-GAN Larsen et al. (2016) trained on an unsuper-
vised image reconstruction task (i.e., fdec(fenc(x)) = x̂ ≈ x, for decoder fdec and reconstructed
image x̂ approximating x). Next, gradient-based attacks like FGSM Goodfellow et al. (2015) and
PGD Madry et al. (2017) are performed against gZ in order to minimally manipulate h such that it
resembles encoded representations of target image class Z = z′ (where z′ ̸= z, the original image
class), yielding perturbed representation h′. Finally, h and h′ are each fed into the VAE decoder
to reconstruct corresponding output images x̂ and x̂′ (respectively), where x̂ resembles input image
class Z = z and x̂′ resembles target class Z = z′.

We reformulate this approach in the context of causal probing as visualized in Figure 3, treating
layers L = 1, ..., l as the encoder and layers L = l + 1, ..., |L| (composed with language modeling
head fLM) as the decoder, allowing us to target representations of property Z across embeddings hl

i

of token xi ∈ x in layer l. We train gZ to predict Z from a set of such hl
i, then attack gZ using FGSM

and PGD to intervene on hl
i (representing the original value Z = z), producing hl′

i (representing
the counterfactual value Z = z′). Finally, we replace hl

i with hl′

i in the LLMs’ forward pass from
layers L = l+1, ..., |L|, simulating the intervention do(Z = z′), and observe the impact on its word
predictions M(x|do(Z = z′)).

Benefits and Drawbacks The key advantage of gradient-based interventions (GBIs) as a causal
probing methodology is that they may be applied to any differentiable probe. For example, if we
are investigating the hypothesis that M ’s representation of Z is captured by a linear subspace of
representations in a given layer (see Vargas & Cotterell, 2020), then we may train a linear probe and
various nonlinear probes on representations and observe whether GBIs against the linear probe have
a comparable impact to those against the nonlinear probes. Alternatively, if we believe that a probe’s
architecture should mirror the architecture of the model it is probing (as argued by Pimentel et al.,
2022), we may implement probes as such. Finally, where previous intervention methodologies for
causal probing have focused on nullifying interventions that remove the representation of the target
property Z Ravfogel et al. (2020; 2022b;a); Shao et al. (2022); Belrose et al. (2024), GBIs allow one
to perform targeted interventions that set LLMs’ representations to counterfactual values do(Z =
z′), effectively simulating the model’s behavior under counterfactual inputs, which may be useful
for predicting behaviors under various distribution shifts (see Appendix C.1). However, the benefits
associated with GBIs do come with some important limitations, as we discuss in Appendix A.

4 APPLICATIONS OF CALM

Once we instantiate the general CALM framework with a specific probing technique such as the
GBI introduced in the previous section, CALM would be “operational” and can be used in many
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novel ways to both facilitate understanding of representations learned in LLMs and predict behav-
iors of LLMs in many application contexts, which would otherwise be impossible without such a
framework. We briefly discuss some of them below for the purpose of demonstrating the generality
and great potential of CALM.

4.1 REPRESENTATION LEARNING

The CALM framework, competence measure, and GBI methodology developed in Sections 2 and 3
are sufficiently general to be directly applied to analyze arbitrary LLMs on any language modeling
task whose causal structure is already well understood (or, for tasks where this is not the case,
we may apply the causal graph discovery approach described in Section 4.4), allowing us to study
the impact of various model architectures, pre-training regimes, and fine-tuning strategies on the
representations LLMs learn and use for arbitrary tasks of interest. For example, just using the
proposed competence measure as an additional dimension of evaluation as we have done in our
experiments should already enable obtaining additional insights about the behaviors of the models.
As the competence measure can be expected to have better correlation with the behavior of a model
than a regular task performance measure, using the competence measure or using it in addition to
regular performance measures can lead to better decisions in optimizing all kinds of decisions such
as model architecture and hyperparameters.

4.2 MULTITASK LEARNING

Are high competence scores on task T correlated with an LLMs’ robustness to meaning-preserving
transformations (see, e.g., Elazar et al., 2021a) on tasks T ′ that share several causal properties Zc

with task T ? Through the lens of causally invariant prediction (Peters et al., 2016; Arjovsky et al.,
2019; Bühlmann, 2020), this hypothesis is likely true (however, see Rosenfeld et al. 2020 for ap-
propriate caveats) – if so, this would make it possible to use clusters of related tasks to predict
LLMs’ robustness (and other behavioral patterns, such as brittleness in the face of distribution shifts
introduced by spurious dependencies) between related tasks using CALM, given an appropriate
experimental model. Furthermore, the ability to characterize tasks based on mutual (learned) de-
pendency structures could be valuable in transfer learning applications such as guiding the selection
of auxiliary tasks in multi-task learning (Ruder, 2017) or predicting the impact of intermediate task
fine-tuning on downstream target tasks (Choshen et al., 2022).

4.3 TASK DEPENDENCIES

Another possible application of CALM concerns causal invariance under multi-task applications.
Existing approaches in invariant representation learning generally require task-specific training Zhao
et al. (2022), as the notion of invariance is inherently task-centric (i.e., the properties which are in-
variant predictors of output values vary by task, and different tasks may have opposite notions of
which properties are causal versus environmental; see Section 2.2), so applying such approaches to
train models to be causally invariant with respect to a specific downstream task T is expected to
come at the cost of performance on other downstream tasks T ′. Therefore, considering the recent
rise of open-ended, task-general LLMs Zhang et al. (2022); BigScience et al. (2022); Touvron et al.
(2023a;b); Groeneveld et al. (2024), it is important to find alternative approaches for studying mod-
els’ causal dependencies in a task-general setting to account for applications involving tasks with
different (and perhaps contradictory) causal structures, such as CALM.

4.4 CAUSAL COMPETENCE GRAPH DISCOVERY

One of the key benefits of CALM is that, instead of simply measuring consistency with respect to a
known, static task description GT , the competence metric in Equation (2) can also be used to discover
a competence graph G which most faithfully explains a model M ’s behavior in a given task or context
(see Section 2.3) by computing C(M |G) “in-the-loop” of existing causal graph discovery algorithms
like IGSP (Yang et al., 2018). Such algorithms can be used both to suggest likely competence
graphs based on interventional data collected by running CALM experiments, to recommend the
experiments that would yield the most useful interventional data for the graph discovery algorithm,
and to evaluate candidate graphs G using our competence metric, terminating the graph discovery
algorithm once a competence graph G that offers sufficiently faithful explanations of M ’s behavior

6
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has been found. In this case, it is still necessary to define the set of properties Z being probed and
the scoring function S used to compare the predictions of M and G; but no knowledge of the causal
dependencies (or structural functions F : pa(Zj) 7→ Zj mapping from causal parents pa(Zj) to
causal dependents Zj ; see Bongers et al. 2021) is required.

These are only some of the possible applications enabled by the new CALM framework. One can
easily imagine other possibilities, but a full discussion of all those possibilities is out the scope of
this paper.

5 EXPERIMENTS

As the main contribution of our work is a theoretical framework, a general competence measure,
and a general perturbation method, our experiments are mainly to evaluate its feasibility in studying
specific models on some specific tasks to measure and understand their competence, with the hope
of generating quantitative measures of the competence of LLMs for the first time.

We begin by examining BERT Devlin et al. (2019) and RoBERTa Liu et al. (2019),4 two language
models which have been extensively studied in the context of probing Rogers et al. (2020); Ravfogel
et al. (2020); Liu et al. (2021); Elazar et al. (2021b); Lasri et al. (2022). Our primary goal in the
following experiments is to develop and test an experimental implementation of CALM using GBIs
in the context of comparatively small, well-studied models and tasks in order to validate whether
CALM can explain behavioral findings of earlier work in this simplified environment. (We motivate
this choice in greater detail in Appendix B.1.)

5.1 TASKS

Masked language models like BERT and RoBERTa are trained to predict Pr(x[MASK] = w|x) for
text input (token sequence) x = (x1, x2, ..., x|x|), mask token x[MASK] ∈ x, and token vocabulary
V = {w1, w2, ..., w|V |}. As such, it is common to study them by providing them with “fill-in-the-
blank” style masked prompts (e.g., “a cat is a type of [MASK]”) and evaluating their accuracy in
predicting the correct answer (e.g., “animal”, “pet”, etc.), a task known cloze prompting (Liu et al.,
2023).

We use the collection of 14 lexical inference tasks included in the ConceptNet Speer et al. (2017)
subset of LAMA Petroni et al. (2019), each of which are formulated as a collection cloze prompts.
For example, the LAMA “IsA” task contains ∼2K hypernym prompts corresponding to the “IsA”
ConceptNet relation (including, e.g., “A laser is a [MASK] which creates coherent light.”, where the
task is to predict that the [MASK] token should be replaced with “device”, a hypernym of “laser”),
with the remaining 13 LAMA ConceptNet tasks corresponding to other lexical relations such as
“PartOf”, “HasProperty”, and “CapableOf”. (See Appendix B.2 for additional details.)

Using these task datasets allow us to test how the representation of each relation is used across all
other tasks. In the context of a single task Tj , intervening on a model’s representation of the task-
causal relation Zj allows us to measure the extent to which its predictions are attributable to its
representation of the causal property Zc = {Zj} (where a large impact indicates competence). On
the other hand, intervening on the representations of the other 13 lexical relations Zk ∈ Ze allows
us (in the aggregate) to measure how much the model is performing task Tj by leveraging represen-
tations of general, non-causal lexical information (where a large impact indicates incompetence).5

5.2 EXPERIMENTALLY MEASURING COMPETENCE

Given LLM M and task T , measuring the competence CT (M |GT ) of M given GT requires us to
specify an experimental model E = (Z,GT , S), where Z is a set of properties, GT is a competence
graph for task T , and S is a scoring function that compares the predictions of M and GT . Given that
each task Ti is defined by a single causal lexical relation Zi (i.e., Zci = {Zi}), we model settings z

4Specifically, BERT-base-uncased and RoBERTa-base Wolf et al. (2019).
5Note that the strictest interpretation of this formulation of competence makes the simplifying assumption

that each non-causal property is equally (un)related to the target property, which is not generally true; see
Appendix A.
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Figure 4: Competence and Performance Results. Performance (top) and competence (bottom)
of BERT (left bars) and RoBERTa (right bars) for all tasks, using FGSM with ϵ = 0.1. In the
competence plot, y-values are the average competence score and error bars are the maximum and
minimum competence score, as measured over 10 experimental iterations (each with a different
randomly-initialized probe gZ).

as a collection of values Zj = zj taken by each property Zj in the context of a specific task instance
(x,y) ∼ Ti, where Zj = 1 if i = j (i.e., where the property Zj is the causal property for the task Ti)
or Zj = 0 otherwise. That is, for each instance (x,y) ∼ Ti, the corresponding setting z is a one-hot
vector whose i-th element zi = 1. We may specify GTi

in a similar manner: for task Ti ∼ P (X ,Y),
outputs y ∈ Y are causally dependent on the property Zi, and invariant to other concepts Zj , j ̸= i.,
meaning that the only direct parent node of y in GTi is Zi. Finally, as we are dealing with masked
language models whose output space Y for each task consists only of single tokens in M ’s vocab-
ulary VM , our experimental model can define the scoring function S as the overlap overlap(yi,yj)
for top-k token predictions yi = {y1, ..., yk} ⊂ VM , where overlap(·, ·) is the size of the intersec-
tion of each set of predictions divided by the total number of predictions overlap(yi,yj) =

|yi∩yj |
k .

(See Appendix C.2 for additional details on how we compute competence in each experiment.)

5.3 PROBES

We implement probes gZ as a 2-layer MLP over each language model’s final hidden layer, and train
the probe on the task of classifying whether there is a particular relation Z between a final-layer
[MASK] token in the context of a cloze prompt and the final-layer object token from the “unmasked”
version of the same prompt. All reported figures are the average of 10 runs of our experiment, using
different randomly-initialized gZ each time. (See Appendix B.3 for further details.)

5.4 INTERVENTIONS

We implement GBIs against gZ using two gradient attack strategies, FGSM Goodfellow et al. (2015)
and PGD Madry et al. (2017). We bound the magnitude of each intervention as follows: where h
is the input to gZ and h′ is the intervened representation following a GBI, ||h − h′||∞ ≤ ϵ. For all
experiments reported in our main paper, we use FGSM with ϵ = 0.1. (See Appendix B.4 for more
details and PGD results.)
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6 RESULTS

In Figure 4, we visualize the performance and competence of BERT and RoBERTa across the test
set of each LAMA ConceptNet task. Performance is measured using (0, 1)-accuracy, competence is
measured using the experimental competence metric in Equation (3), and both metrics are averaged
across the top-k predictions of each model for k ∈ [1, 10]. Specifically, for accuracy, we compute

1

n

n∑
k=1

1[y ∈ top-k
ŷ

Pr(ŷ|x)]

for ground truth (x, y) and n = 10; and for competence, we compute

1

n

n∑
k=1

CT (M |GT )

To account for stochasticity in initializing and training probes gZ , scores are also averaged over 10
randomized experiments for each target task where the probe is randomly re-initialized each time
(resulting in different GBIs).

6.1 ANALYSIS

Performance While their accuracies on individual tasks vary, BERT and RoBERTa have quite
similar aggregate performance: BERT outperforms RoBERTa on just over half (8/14) of the tasks,
achieving essentially equivalent performance when averaged across all tasks (0.3099 versus 0.3094).

Competence Given our experimental model E with m = 14 tasks, consider a random baseline
language model R whose predictions always change in response to each intervention, making equal
use of all properties in each task. R would yield a competence score of C(R|GT ) =

1
m ≈ 0.0714

for each task. Both BERT and RoBERTa score above this threshold for all tasks, meaning that their
competence is consistently greater than that of a model (R) that does not distinguish between causal
and environmental properties. However, RoBERTa is consistently less competent than BERT (on
12/14 tasks), and also has lower competence scores averaged across all tasks (0.381 vs. 0.334).

We also observe that, for the two tasks (HasSubevent and MotivatedByGoal) where RoBERTa is
more competent than BERT, it also achieves substantially higher performance. Specifically, relative
performance and competence are correlated: the Spearman’s Rank correlation coefficient between
the average difference in accuracy and average difference in performance is a moderately strong
positive correlation ρ = 0.508 with significance p = 0.064.

6.2 DISCUSSION

A priori, we might expect an LLM with nontrivial performance to also exhibit greater competence
than a random baseline like R; but this is not necessarily the case, given that it is common for deep
learning models to achieve remarkable performance by exploiting spurious correlations inherent
in a given task dataset McCoy et al. (2019); Geirhos et al. (2020); Feder et al. (2022). Thus, the
finding that BERT and RoBERTa’s performance on each task is supported by an intermediate level
of competence on the part of both models is meaningful: for each task, their behavior is generally
more attributable to their representations of causally-invariant properties than to spurious lexical
associations, and this competence varies substantially between tasks.

Explananda Prior work has shown that BERT and RoBERTa have widely varying performance
in response to lexical inference tasks, depending on the specific manner in which they are prompted
(Hanna & Mareček, 2021; Ravichander et al., 2020; Ettinger, 2020; Elazar et al., 2021a; see Sec-
tion 7). One possible explanation for this phenomenon is that these models may not consistently
utilize a representation of the task-causal lexical relations (i.e., they are not highly competent for
these tasks), instead relying (at least in part) on spurious lexical associations learned from its train-
ing data. Previously, it has not been possible to empirically assess this hypothesis; but using CALM,
it is possible to provide direct evidence in its favor, as we find that both models possesses (only) an
intermediate degree of competence for lexical inference prompt tasks.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7 RELATED WORK

Hypernym Prompting The performance of BERT-like models on lexical inference tasks such
as hypernym prediction is known to be highly variable under small changes to prompts Hanna &
Mareček (2021); Ravichander et al. (2020); Ettinger (2020); Elazar et al. (2021a). Our findings offer
one possible explanation for such brittle performance: BERT and RoBERTa’s partial competence in
hypernym prediction indicates that it should be possible to prompt these models in a way that will
yield high performance, but that its reliance on spurious lexical associations may lead it to fail when
these correlations are broken – e.g., by substituting singular terms for plurals Ravichander et al.
(2020) or paraphrasing a prompt Elazar et al. (2021a).

Causal Probing Most related to our work is amnesic probing Elazar et al. (2021b), which we
discuss at length in Section 2.4. Lasri et al. (2022) applied amnesic probing to study the use of
grammatical number representations in performing an English verb conjugation prompt task. As
this experiment involves intervening on the representation of a property which is causal with respect
to the prompt task, it may be understood as an informal instantiation of CALM (albeit without
considering environmental properties or measuring competence).

Gradient-based Interventions Tucker et al. (2021) developed a similar approach to our GBI
causal probing methodology (as outlined in Section 2.4) without explicit use of gradient-based ad-
versarial attacks. Their methodology is equivalent to performing a targeted, unconstrained attack
using standard gradient descent.6 In such attacks, it is standard practice to constrain the magnitude
of resulting perturbations Goodfellow et al. (2015); Madry et al. (2017); Kos et al. (2018), which we
do here in order to minimize the effect of “collateral damage” done by such attacks (see Section 5.4
and Appendix B.4); so failing to impose such constraints may result in indiscriminate damage to
representations.

Unsupervised Probing Instead of training supervised probes to predict a pre-determined property
of interest (as we do here), an alternative approach is to train unsupervised probes such as Sparse
Auto-Encoders (SAEs; Subramanian et al., 2018; Yun et al., 2021; Cunningham et al., 2023) to
automatically learn an overcomplete basis of features that are useful for sparsely representing em-
beddings, which can also be used to control models’ use of these learned features Bricken et al.
(2023); Templeton et al. (2024). However, as SAEs are unsupervised probes, they yield feature
vectors that are not inherently interpretable and must be retroactively interpreted, meaning that the
task of creating a supervised probe training dataset (as required for conventional causal probing) is
substituted for the task of interpreting learned features Davies & Khakzar (2024). However, given
features that can be reliably interpreted as representing task-causal or -environmental features, it is
also possible to implement CALM using unsupervised probes like SAEs.

8 CONCLUSION

In this work, we introduced CALM, a general analysis framework that enables the study of LLMs’
linguistic competence using causal probing, including the first quantitative measure of linguistic
competence. We developed the gradient-based intervention (GBI) methodology, a novel approach
to causal probing that can target a far greater range of representations than previous techniques,
expanding the scope of causal probing to new questions in LLM interpretability and analysis. We
discussed multiple new applications of CALM in analyzing and understanding the learned repre-
sentations of LLMs as well as predicting their behaviors. Finally, we carried out a preliminary case
study of CALM using GBIs, analyzing BERT and RoBERTa’s competence across a collection of
lexical inference tasks, finding that even a simple experimental model is sufficient to explain and
predict their behavior across a variety of lexical inference tasks. These results demonstrated the
great potential of CALM in studying representations and behaviors of LLMs in novel ways that we
could not do today.

6I.e., they continue running gradient updates until the targeted probe loss saturates, irrespective of resulting
perturbation magnitude.
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A LIMITATIONS

Gradient-Based Interventions While GBIs are applicable to a more general range of model rep-
resentations than other interventions (see Section 3), this generality comes with a lack of constraints
on probes (gZ); and as a result, GBIs cannot provide the strong theoretical constraints on collateral
damage as can methods like, e.g., INLP Ravfogel et al. (2020), which provably preserves distances
between embeddings as well as possible while completely removing the linear representation of the
target property. To minimize collateral damage to representations, the magnitude of perturbations
should be modulated via constraints on gradient attacks against gZ (see Section 5.4) and experimen-
tally validated to control the damage done to representations (see Appendix B.4). Thus, in cases
where the structure of representations is believed to satisfy strong assumptions (e.g., being restricted
to a linear subspace; Vargas & Cotterell, 2020) or strong upper bounds on collateral damage are
required, CALM interventions can be implemented with methods like INLP rather than GBIs.7

7It may also be possible to control for collateral damage by developing GBI strategies that offer more
principled protection against damage to non-targeted properties, such as adding a loss term to penalize dam-
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Tasks In our experiments, we modeled the 14 LAMA ConceptNet tasks as representing fully
independent properties, which is not necessarily true – e.g., knowing that a tree is made of bark or
contains leaves tells us something about whether it is a type of plant. However, in the aggregate (with
impacts summed across 14 widely-varying lexical relation types in computing the final competence
score for each task; see Appendix C.2), it may nonetheless be appropriate to treat the relations which
are not causal with respect to a given task as collectively capturing spurious lexical associations.

B EXPERIMENTAL DETAILS

B.1 SIMPLIFIED ENVIRONMENT

As noted in Section 5, our primary goal in our experiments is to validate CALM by testing it in a
simplified experimental setting consisting of comparatively small, well-studied models and tasks. As
such, we need models that are just complex enough for CALM to be applicable (i.e., neural language
models that are capable of performing the tasks we consider at a nontrivial level of performance),
making BERT and RoBERTa ideal candidates; and in future work plan to scale CALM to more
complex contexts covering larger, more powerful models as they perform more difficult tasks (see
??). This is a common setting in the context of substantial recent interpretability work: first, a
theoretical framework is developed for interpreting an internal representation or mechanism and
initially tested in the context of “toy” models or tasks Elhage et al. (2021); Olsson et al. (2022);
Zhong et al. (2023); Geiger et al. (2023), and subsequent work scales these frameworks to the context
of larger models “in the wild” Wang et al. (2023b); Conmy et al. (2023); Wu et al. (2023). We
anticipate that all of our major contributions (the CALM framework, competence metric, and GBI
causal probing method) will in principle be scalable to much larger, more recent LLMs (e.g., Zhang
et al. 2022; BigScience et al. 2022; Touvron et al. 2023a;b; Groeneveld et al. 2024, etc.), and predict
that the main challenge will be in finding an appropriate probing architecture (see Pimentel et al.
2022).

B.2 TASKS

The full set of LAMA ConceptNet tasks is as follows: IsA, HasA, PartOf, HasSubEvent, MadeOf,
HasPrerequisite, MotivatedByGoal, AtLocation, CausesDesire, NotDesires, CapableOf, UsedFor,
ReceivesAction, and HasProperty. We split each task dataset into train, validation, and test sets with
a random 80%/10%/10% split. Train and validation instances are fed to each model to produce
embeddings used to train gZ and select hyperparameters, respectively; and test instances are used to
measure LLMs’ competence with respect to each task by observing how predictions change under
various interventions. In all experiments, we restrict each model M ’s output space for each task
T to the subset of vocabulary VM that occurs as a ground-truth answer y∗ for at least one instance
(x, y∗) ∼ T in the respective task dataset. This lowers the probability of false negatives in evaluation
(e.g., penalizing the model for predicting ŷ = “mammal” for “a dog is a type of y” instead of y∗ =
“animal”).

B.3 PROBES

We use BERT’s final layer L to encode hl
i embeddings for each such example, where i is the index

of the [MASK] token or target word in the input prompt xi. To encode the [MASK] token, we issue
BERT masked prompts (as discussed above) to extract h[MASK], then repeat with the [MASK] token
filled-in with the target word to encode it as h+ (e.g., “device” in “A laser is a device which creates
coherent light.”), and concatenate matching embeddings h = (h[MASK];h+) to produce positive
(y = 1) training instances. We also construct one negative (y = 0) instance, h = (h[MASK];h−),
for each h[MASK] by sampling an incorrect target word xi corresponding to an answer to a random
prompt from the same task, feeding it into the cloze prompt in the place of the correct answer, and
obtaining BERT’s contextualized final-layer embedding of this token (h−). Finally, we train gZ on
the set of all such (h, y).

age to non-targeted probes or leveraging interval bound propagation Gowal et al. (2019) to place intervened
embeddings inside the adversarial polytope for non-targeted properties. We leave such possibilities to future
work.
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Figure 5: Competence of BERT (left bars) and RoBERTa (right bars) for all tasks, using PGD with
ϵ = 0.1. Y-values are the average competence score and error bars are the maximum and minimum
competence score, as measured over 10 experimental iterations (each with a different randomly-
initialized probe gZ).

We implement gZ as a multi-layer perceptron with 2 hidden layers, each with a width of 768 (which
is one half the concatenated input dimension of 1536), using ReLU activations and dropout with
p = 0.1, training it for 32 epochs using Binary Cross Entropy with Logits Loss8 and the Adam
optimizer, saving the model from the epoch with the highest validation-set accuracy for use in all
experiments.

For all competence results reported in Section 6, we run the same experiment 10 times – each with
a different random initialization of gZ and shuffled training data – and report each figure as the
average among all 10 runs.

B.4 INTERVENTIONS

For instance (h, y), classifier gZ , loss function L, and L∞-bound ϵ ∈ {0.01, 0.03, 0.1, 0.3}9,
each intervention (gradient attack) gz may be used to produce perturbed representations h′ =
gz(h, y, fcls,L, ϵ) where ||h − h′||∞ ≤ ϵ. In particular, given h = (h[MASK];h±) ∈ R2d, let
h′
[MASK] be the first d dimensions of h′ (which also satisfies the L∞-bound with respect to h[MASK],

||h[MASK] − h′
[MASK]||∞ ≤ ϵ). To measure BERT’s use of internal representations of Z on each

prompt task, we evaluate its performance when perturbed h′
[MASK] is used to compute masked-word

predictions, compared to unperturbed h[MASK].

Our intent in intervening only on the final-layer mask embedding h[MASK] in our experiments is that,
in the final layer of a masked language model such as BERT or RoBERTa, the only embedding which
is used to compute masked-word probabilities is that of the [MASK] token. Thus, any representation
of the property that is used by the model in its final layer must be a part of its representation of the
[MASK] token, preventing “recoverability” phenomena such as those observed by Elazar et al.
(2021b).

FGSM We implement Fast Gradient Sign Method (FGSM; Goodfellow et al., 2015) interventions
as

h′ = h+ ϵ · sgn(∇hL(fcls, x, y))

PGD We implement Projected Gradient Descent (PGD; Bubeck et al., 2015; Madry et al., 2017)
interventions as h′ = hT where

ht+1 = ΠN(h)

(
ht + α · sgn(∇hL(fcls, x, y))

)
8https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.

html
9All reported results use ϵ = 0.1, as greater ϵ resulted in unacceptably high “collateral damage” across

target tasks (e.g., even random perturbations of magnitude ϵ = 0.3 do considerable damage), and lesser values
meant that predictions changed on target tasks consisted of only a few test instances.
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for iterations t = 0, 1, ..., T , projection operator Π, and L∞-neighborhood N(h) = {h′ : ||h −
h′|| ≤ ϵ}. This method also introduces two hyperparameters, the number of PGD iterations T
and step size α. We use hyperparameter grid search over α ∈ {0.001, 0.003, 0.01, 0.03} and T ∈
{20, 40, 60, 80, 100}, finding that setting α = ϵ

10 and T = 40 produces the most consistent impact
on gZ accuracy across all tasks; so we use these values for the results visualized in Figure 5.

B.5 COMPUTE BUDGET

BERT-base-uncased has 110 million parameters, and RoBERTa-base has 125M parameters. As our
goal is to study the internal representation and use of linguistic properties in existing pre-trained
models, and we are not directly concerned with training or fine-tuning such models, we use these
models only for inference (including encoding text inputs, using embeddings to train probes, and
feeding intervened embeddings back into the language models). The only models we trained were
probes gZ , which each had 1.77M parameters.

Each experimental iteration (including encoding text inputs, training probes on all 14 tasks, and
performing all GBIs) for either BERT or RoBERTa took less than one hour on a single NVIDIA
GeForce GTX 1080 GPU, meaning that running all 10 iterations across both language models took
less than 20 hours on a single GPU. Each iteration, probe, and GBI can easily be parallelized across
GPUs: in our case, running all iterations across both models took less than 3 hours total across 8
GTX 1080 GPUs.

C COMPETENCE METRIC

C.1 COMPARISON WITH IIA

As noted in Section 2.3, the CT (M |GT ) metric defined in Equation (2) is an adaptation of the In-
terchange Intervention Accuracy (IIA) metric (Geiger et al., 2022; 2023), which evaluates the faith-
fulness of a causal abstraction like GT as a (potential) explanation of the behavior of a “black box”
system like M . In our case, this is equivalent to evaluating the competence of M on task T , provided
that GT is the appropriate SCM for T , as an LLM is competent only to the extent that its behavior is
determined by a causally invariant representation of the task.10 IIA requires performing interchange
interventions M(xi|do(zi)), where the part of M ’s intermediate representation of input xi hypoth-
esized to encode latent variables Z (taking the values zi when provided input xi) is replaced with
that of xj (which, in the ideal case, causes M ’s representation to encode the values zj instead of zi),
and compute the accuracy of GT (xi|do(zj)) in predicting M ’s behavior under these interventions.
Thus, given access to high-quality interchange interventions over M , IIA measures the extent to
which GT correctly models M ’s behavior under counterfactuals, and thus its faithfulness as a causal
abstraction of M .

To adapt IIA to the context of causal probing and define CT (M |GT ), we replace instance-level in-
terchange interventions with concept-level interventions: instead of swapping M ’s representation of
variables Z given input xi with that of xj , we intervene on representations at the level of arbitrary
concept settings z that need not correspond to previously sampled x, allowing us to simulate the
behavior of M under previously-unseen distribution shifts (i.e., settings z representing previously-
unseen combinations of property values) and therefore make broader predictions about M ’s consis-
tency with a given causal model GT under such conditions. As one of the key desiderata in studying
LLM competence is to predict behavior under distribution shifts where spurious correlations are
broken, CT is more appropriate than IIA in this setting. However, it also introduces an additional
challenge: where interchange interventions only require localizing candidate representations – as
counterfactual representations are obtained merely by “plugging in” values from a different input –
computing CT instead requires one to both localize representations and directly intervene on them
to change the encoded value. Previous causal probing intervention strategies (e.g., Ravfogel et al.,
2020; 2022b) have generally performed interventions by neutralizing concept representations, not
modifying them to encode specific counterfactual values; so in order to carry out our study, it is also

10For many tasks, there is more than one valid GT (see, e.g., the “price tagging game” constructed by Wu
et al. (2023)). In such cases, CT (M |GT ) should be computed with respect to each valid GT and the highest
result should be selected, as conforming to any such GT carries the same implications.
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CT (M |GT ) ≈
1

n ·m

n∑
i=1

m∑
j=1

overlap
(
M

(
xi|do(Zj = 0)

)
,GT

(
xi|do(Zj = 0)

))
(3)

necessary to develop a novel approach to perform such interventions. We develop a solution to this
problem, gradient-based interventions (GBIs), in Section 3.

C.2 EXPERIMENTAL COMPETENCE METRIC

To compute the expectation in Equation (2) for test set {xi,yi, zi}ni=1 ∼ T × Z, we sum the
competence score over all samples xi and perform one intervention do(Zj = 0) correspond-
ing to each concept Zj ∈ Z.11 As our goal is to measure the extent to which M ’s behavior is
attributable to an underlying representation of the causal property Zc or environmental property
Z ∈ Ze, our experimental model defines GT ’s predictions with reference to M ’s original predic-
tions M(xi) = ŷi, according to the following principle: if M is competent, then its prediction
M(xi) = ŷi is wholly attributable to its representation of causal property Zc, so its predictions
M(xi|do(Zc)) = ŷi

′ will not overlap with its original predictions ŷi (i.e., overlap(ŷi, ŷi
′) = 0);

and conversely, a competent M will make the same predictions M(xi|do(Zj)) = ŷi
′′ for any

Zj ∈ Ze, because its prediction is not caused by its representation of these environmental prop-
erties (i.e., overlap(ŷi, ŷi

′′) = 1). Motivated by this reasoning, our experimental model defines
GT (xi|do(Zj = 0)) = M(xi) for environmental Zj ∈ Ze; and for causal property Zc, defines
GT (xi|do(Zc = 0)) = {y′ ∈ VM : y′ /∈ M(xi)} (i.e., the set of all tokens y′ in M ’s vocabulary
that were not in its original prediction M(xi)). Thus, under experimental model E, we approximate
CT (M |GT ) by computing Equation (3).

Notably, our experimental model E only accounts for the relationship between M ’s intervened and
non-intervened predictions, independently of ground truth labels – instead, what is being measured is
M ’s consistency under meaning-preserving interventions do(Zj′) and its mutability under meaning-
altering interventions do(Zj). However, as we find in Section 6.1, the resulting competence metric
CT (M |GT ) is nonetheless useful for predicting M ’s accuracy.

11Note that this intervention changes the prediction GT (xi) ̸= GT (xi| do(Zj = 0)) if and only if (xi,yi) ∈
Tj – i.e., where the corresponding (zi)j = 1 – otherwise, (zi)j is already 0, so the intervention has no effect.
Thus, as CT (M |GT ) measures M ’s consistency with GT , then to the extent that M is competent, its prediction
should change under all and only the same interventions as GT .
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