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Abstract

Reactive carbon capture combines CO2 capture and conversion in a single system.
Reactive carbon electrolyzers receive a liquid eluent from a CO2 capture unit
containing a sorbent that has captured CO2. This electrolyzer releases CO2 electro-
chemically and converts it into a value-added product like CO. The effectiveness
of this system depends on high CO2 utilization and high product formation rates.
We define their product as “reactor yield.” Here, we used a closed-loop, automated
workflow with Bayesian optimization to maximize reactor yield in an electrolyzer
operating with alkaline CO2 capture solutions. We explored a six-dimensional
parameter space and found that a bicarbonate concentration of 1.5 M and carbonate
concentration of 0.75 M achieved the highest reactor yield (44 mA cm−2). Interest-
ingly, this optimum occurred at non-maximum values of CO partial current density
(54 vs. 87 mA cm−2) and CO2 utilization (81% vs. 100%), highlighting the need
for joint optimization of both factors.

1 Introduction

Carbon dioxide (CO2) capture and conversion technologies transform captured CO2 into higher-value
carbon products (e.g., CO, C2H4).[1, 2, 3, 4, 5, 6] Current capture and conversion technologies
require pressurization and thermal steps to purify and release captured CO2 before use.[7, 8, 9]
Reactive carbon capture avoids these steps by using electrolysis to capture and convert CO2 in a
closed-loop.[10]

Kim et al previously demonstrated reactive carbon capture by using a caustic aqueous capture
solution (e.g., OH−) to capture CO2 from air as a (bi)carbonate-enriched solution.[11] They fed
this solution into the electrolyzer. The (bi)carbonate ions in solution (HCO−

3 and CO2−
3 ) then react

with electrolytically generated protons in the cathodic compartment to produce CO2 in situ (i-CO2).
Next, i-CO2 is electrochemically reduced to higher-value products, such as CO, CH4,[12, 13] or
C2H4.[14, 15, 16] The caustic liquid exiting the electrolyzer is recirculated into a capture unit to
capture more CO2.[11, 17] This closed-loop workflow requires less infrastructure and enables the
use of liquid feedstocks that simplify engineering, operation, and impurity management.[10]

We evaluate the performance of a reactive carbon electrolyzer by tracking the partial current density
toward CO (JCO; equation (1)), and CO2 utilization (UCO2; equation (2)). JCO is a measure of CO
formation rate, while UCO2 indicates how efficiently the CO2 is consumed:

JCO (mA cm−2) = Jtotal × FECO (1)
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Figure 1: Closed-loop platform for optimizing reactor yield in a reactive carbon electrolyzer.
(A) AdaCarbon automates the optimization of reactor yield by adjusting six operating parameters
in an automated test cell (ATC). The ATC collects data, which is processed and sent to a Bayesian
optimization algorithm that selects the next experiment. This loop continues until reactor yield stops
improving. (B) Optimization landscape showing reactor yield as a function of partial current density
for CO (JCO) and CO2 utilization (UCO2). Reactor yield peaks at intermediate values of both metrics,
reflecting a trade-off between JCO and UCO2.

UCO2(%) =
nCO2RR

nCO2RR + nCO2
× 100% (2)

where FECO is the Faradaic efficiency toward CO, nCO2RR is the molar amount of CO2 reduction
products exiting the reactor, and nCO2 is the molar amount of CO2 exiting the reactor. These two
performance metrics trade off, where higher JCO reduces UCO2 due to excess CO2 generation or
poor mass transport. This trade-off complicates efforts to improve electrolyzer performance. To
resolve this trade-off, we define the figure of merit “reactor yield”. The reactor yield is the product of
JCO and UCO2 (equation (3)):

Reactor yield (mA cm−2) = JCO × UCO2 (3)

To maximize reactor yield, the CO production rate and CO2 utilization must be balanced. Each
new operating parameter expands the parameter space exponentially, making manual optimization
impractical.[18, 19] We used our self-driving laboratory, “AdaCarbon”,[20, 21] to navigate this
parameter space and optimize reactor yield for reactive carbon electrolysis (Fig. 1A). AdaCarbon
automates electrode fabrication, electrolysis, and data acquisition. Coupled with Bayesian optimiza-
tion, AdaCarbon performs closed-loop experiments that iteratively improve reactor yield (Fig. 1B).
We show that optimizing for reactor yield requires different conditions than optimizing for JCO or
UCO2 alone. Our results provide a framework for tuning reactive carbon electrolyzers using flexible
automation to optimize reactor yield.

2 Results

2.1 Parameter selection and optimization framework

We used AdaCarbon to optimize reactor yield by varying six experimental parameters: bicarbonate
temperature, concentration, and flow rate, KOH concentration and flow rate, and total applied current
density (Supplementary Table 1; Supplementary Figs. 1–3; and Methods section). Prior reports link
some of these parameters individually to JCO and UCO2.[22, 23, 24, 25]

Bicarbonate temperature (25–80 ◦C) affects the CO2 solubility.[22] Bicarbonate concentration
(0.5–3.05 M) controls the availability of i-CO2 for electrochemical reduction.[23] Bicarbonate
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Figure 2: Closed-loop optimization of reactor yield and JCO using AdaCarbon. (A) AdaCarbon
initialized the reactor yield optimization campaign with 12 random experiments, followed by 10
optimizer-guided experiments. Five researcher-defined (RD) experiments were then added to train
the optimizer further. After 37 total runs, the reactor yield peaked at 38 mA cm−2 (star). More
experiments afterwards did not improve reactor yield. (B) The partial current density for CO (JCO)
optimization campaign initialized with all 52 reactor yield experiments. After five more runs, the
optimizer identified a maximum JCO of 140 mA cm−2. (C) Comparison of the two campaigns.
Intermediate JCO and high CO2 utilization (UCO2

) were required to optimize reactor yield. Contour
lines show reactor yield as a function of JCO and UCO2

.

flow rate (30–200 mL min−1) sets the residence time of i-CO2 near the catalyst surface.[24] KOH
concentration (0.05–3.00 M) modulates the cathodic microenvironment,[25] and KOH flow rate
(6–30 mL min−1) was included to probe similar effects. The total applied current density (50–350
mA cm−2) shifts product selectivity (i.e., FE).[10] We chose the parameter ranges from manual
experiments (Supplementary Fig. 4) and physical constraints (e.g. membrane stability).

Manual exploration of this six-dimensional parameter space is infeasible. Even with five values
per parameter, the combinations exceed 15,000 experiments to test (Supplementary Fig. 5). We
addressed this challenge using an automated AdaCarbon platform equipped with machine learning
and Bayesian optimization (Supplementary Note 1; Methods section).[26] This enabled AdaCarbon
to execute experiments, analyze results, and select the next experiments without human intervention.

We trained a surrogate model using Gaussian process regression[27] to predict reactor yield from the
six input parameters. The optimizer utilized a q-noisy expected improvement acquisition function
to select the next experiment.[28] This algorithm prioritized regions most likely to increase reactor
yield and undersampled areas. By accounting for uncertainty in noisy electrolysis data, this algorithm
improved accuracy and robustness (Supplementary Figs. 6–7; Supplementary Note 2).

2.2 Closed-loop reactor yield optimization campaign and champion conditions

We initialized the reactor yield optimization campaign with 12 experiments using randomly distributed
parameter sets (Fig. 2A; Methods section). These experiments trained the Bayesian optimizer to
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predict reactor yield across the six-dimensional parameter space. Before each run, a researcher
loaded fresh components (bipolar membrane, nickel foam, and silver gas-diffusion electrodes) into
the automated test cell (ATC; Fig. 1 and Supplementary Fig. 2). Electrolysis ran for 5 minutes and
products were analyzed through mass spectrometry, then processed and used by the optimizer to
inform the next iteration.

The optimizer proposed 10 additional experiments after the 12 initial runs, bringing the total to 22.
When compared to initialization runs, these runs increased reactor yield by 4%—yielding a 33 mA
cm−2 reactor yield (Fig. 2A). To probe the parameter space further and test hypotheses, we added
5 researcher-defined (RD) experiments (Fig. 2A; Supplementary Table 2; Supplementary Note 3),
raising the total to 27. The optimizer then identified a peak reactor yield of 38 mA cm−2 only in 37
experiments (Fig. 2A; star)—over 3.5 times higher than the best reactor yield from prior spray-coated
silver catalysts.[29] No further gains were observed after 52 total experiments, indicating convergence
(Supplementary Fig. 8).

The champion conditions that yielded 38 mA cm−2 balanced UCO2 (52%) and JCO (73.5 mA cm−2).
These values did not coincide with the maxima for either metric—JCO peaked at 92 mA cm−2 and
UCO2

at 56% (Supplementary Table 3)—reinforcing the trade-off between them. We confirmed this
trade-off during a separate sequential optimization campaign targeting JCO (Fig. 2B). At the peak
JCO of 140 mA cm−2, achieved after only five optimization runs, UCO2

dropped to 13% (Fig. 2C).
As a result, the reactor yield decreased to 18 mA cm−2 (Supplementary Fig. 9).
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Figure 3: SHAP analysis shows how input parameters affect reactor yield and JCO. (A) In
the reactor yield campaign, bicarbonate concentration and current density were most influential.
These parameters control i-CO2 formation and JCO. (B) In the JCO campaign, the same variables
dominated, but the optimizer selected higher values, increasing JCO and decreasing UCO2 . Positive
SHAP values indicate direct correlation with the target metric; negative values indicate inverse
correlation. Each point represents one experiment.

2.3 Reactor yield and JCO sensitivity to input parameters

We used SHAP (SHapley Additive exPlanations) analysis[30, 31] to understand which parameters
most influence reactor yield and JCO. SHAP values quantify the individual impact of each param-
eter, where the sign (+/–) indicates correlation direction and the magnitude indicates strength (see
Supplementary Note 4 for details).

In the reactor yield campaign, bicarbonate concentration and applied current density were most
influential (Fig. 3A) because they directly affect in situ CO2 (i-CO2) formation and JCO.[29] The
optimizer selected low bicarbonate concentrations and moderate current densities (Supplementary
Fig. 10A–B), challenging the assumption that higher bicarbonate concentrations always improve
performance.[16, 17] Lower bicarbonate concentrations improved UCO2

while moderate current
densities balanced product selectivity and, therefore, JCO. By balancing this trade-off, the optimizer
improved reactor yield.

In the JCO campaign, higher bicarbonate concentration and total applied current density again
dominated (Fig. 3B), but the optimizer favoured higher values (Supplementary Fig. 11A–B). These
conditions increased i-CO2 and JCO but sharply reduced UCO2

.

In both campaigns, moderate to high bicarbonate flow rates improved reactor yield (Supplementary
Figs. 10C and 11C). In the JCO campaign, the optimizer mitigated the typical drop in FECO at high
current densities (Supplementary Fig. 12; orange points). We attribute this to improved i-CO2 bubble
management and shorter residence times, enhancing i-CO2 mass transport and reaction rates.[32]

The KOH concentration, KOH flow rate, and bicarbonate temperature had limited influence on reactor
yield and JCO. Although KOH conditions influence ion transport and catalyst behaviour,[25] their
influence was small compared to bicarbonate-related variables and current density. Temperature
effects on CO2 solubility were also minimal.
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2.4 Demonstration of optimized reactor yield under realistic capture conditions

We tested reactor yield under realistic alkaline CO2 capture conditions to assess the relevance of the
optimized conditions under practical carbon capture scenarios.[33] The electrolyte contained varying
concentrations of bicarbonate and carbonate, with a fixed 3 M K+ concentration (Supplementary Note
5). We applied the champion experimental conditions from the reactor yield optimization campaign
(Supplementary Table 3) and varied the bicarbonate:carbonate ratio (Supplementary Table 4). The
reactor yield peaked at 44 mA cm−2 with 1.5 M KHCO3 and 0.75 M K2CO3 (Fig. 4, top panel).

Figure 4: Reactor yield optimization in a realistic reactive carbon capture electrolyte. Top:
Reactor yield plotted as a function of bicarbonate concentration in a fixed 3 M K+ electrolyte.
Carbonate concentration was adjusted to maintain total K+ (Supplementary Table 4). Reactor yield
peaked at 44 mA cm−2 with 1.5 M KHCO3 and 0.75 M K2CO3. Bottom: Corresponding JCO and
UCO2

values. Pure carbonate (0 M bicarbonate) resulted in 100% UCO2
but low JCO (17 mA cm−2).

Pure bicarbonate (3 M) gave high JCO (87 mA cm−2) but low UCO2
(27%). The maximum reactor

yield was observed with intermediate values of 54 mA cm−2 JCO and 81% UCO2
, demonstrating the

trade-off.

These experiments further confirmed the trade-off between JCO and UCO2 (Fig. 4, bottom panel).
With pure carbonate (0 M bicarbonate), UCO2 reached 100%, while JCO dropped to 17 mA cm−2.
With pure bicarbonate (3 M), JCO rose to 87 mA cm−2 but UCO2

fell to 27%. The optimal reactor
yield of 44 mA cm–2 was achieved with intermediate concentrations of 1.5 M KHCO3 and 0.75 M
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K2CO3. These conditions balanced JCO (54 mA cm−2) and UCO2 (81%), maximizing reactor yield.
These results demonstrate that reactor yield remains a robust metric for optimizing reactive carbon
capture.

3 Conclusion

We have shown that optimizing the reactor yield of reactive carbon electrolyzers identifies reaction
conditions that balance the trade-off between product formation rates (JCO) and CO2 utilization.
This contrasts with traditional optimization targets like JCO, which ignore efficiency losses from
unreacted CO2 and upstream separation costs.

By using an automated AdaCarbon platform equipped with machine learning and Bayesian opti-
mization, we navigated a six-variable parameter space to converge on conditions that maximize
reactor yield in fewer than 40 experiments. We validated these results in a realistic mixed bicar-
bonate–carbonate electrolyte, where trade-offs between JCO and CO2 utilization emerged. Optimal
reactor yield was achieved at intermediate JCO and CO2 utilization—not at their extremes.

This work demonstrates that autonomous optimization of reactor yield offers a scalable path to unify
CO2 capture and conversion, opening new directions in carbon-neutral chemical production. Future
work should automate catalyst development to further improve reactor yield by enhancing i-CO2

conversion. Self-driving labs like AdaCarbon will be essential to accelerate the next-generation of
catalyst discovery.

4 Data availability

The raw and processed data generated by the self-driving laboratory in this study are available in the
supplementary information and at https://github.com/berlinguette/ada. All other data related to this
paper are available from the corresponding author upon request.

5 Code availability

All code used in this study was based on open-source Python packages listed in the supplementary
information and are available at https://github.com/berlinguette/ada.
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A Appendix

A.1 Methods

A.1.1 Reagents

Silver nanoparticles (25 nm, 99.5% trace metals basis) were obtained from Sigma Aldrich. Nickel
foam (>99.99%) was sourced from MTI Co. Bipolar membranes (Fumasep FBM) were purchased
from the Fuel Cell Store (USA) and stored in 1 M NaCl Solution for 24 h before use. KHCO3

and KOH (99%) were obtained from Sigma-Aldrich. N2 (99%), CO2 (99%), CO (99%), and Ar
(99.999%) gasses were supplied by Praxair Canada Inc. Freudenberg H23 carbon paper, and Nafion™
Dispersion (D-2020 dispersion, 20% w/w in water and isopropyl alcohol) were purchased from the
Fuel Cell Store (USA). Deionized water (DI water with 18.2 M Ω cm−1, <5 ppb total organic carbon)
was obtained from a Millipore water system.

A.1.2 Catalyst ink preparation

The Ag catalyst ink contained 200 mg of Ag in 10 mL of isopropyl alcohol and 45 µL of Nafion
D-2020 dispersion. All stock solutions were sonicated for 1 hour before being passed to an automated
spray-coater for deposition onto a gas-diffusion electrode.

A.1.3 Gas-diffusion electrode fabrication

After preparing the stock solution, the catalyst ink was automatically sprayed onto a 10 cm × 10
cm H23 hydrophobic carbon paper. A total of 2 mL of the metal-containing solution was sprayed
onto a pre-heated carbon paper substrate. The hotplate temperature was maintained at 150 °C and
was measured using a thermocouple mounted to the surface of the hotplate aluminum fixture. For
details on how the thermocouples maintained the hot-plate temperature, see previous study.[21] When
spraying, the nozzle moves in a serpentine pattern consisting of 50 lines 105 mm in length and evenly
spaced within the 105-mm-wide carbon paper. This pattern was repeated for 10 passes with a 2 s
delay between each pass. Compressed air was fed to the nozzle at 60 PSI but is restricted by an
electronic air control valve (EV-P-20-2550, Clippard, USA) which was kept open at 75% of the
maximum. A valve setting of 100% was measured to be 22 standard cubic feet per hour, while a
value of 75% was measured to be 16 standard cubic feet per hour. The height of the nozzle above the
substrate, controlled by the motorized XYZ gantry system, was kept at 5 mm. The spray flow rate,
controlled by the syringe pump, was kept at 2 mL s˘1. After spray-coating, the samples were left
to rest on the hotplate for a minimum of 60 s. The target loading of Ag nanoparticles was 1.5 mg
cm−2 and the automated spray coating produced the gas-diffusion electrodes with a loading of 1.52 ±
0.74 mg cm−2. The 10 cm × 10 cm gas-diffusion electrodes were then cut into 2 cm × 2 cm smaller
gas-diffusion electrodes, ready to be tested in ATC.

A.1.4 Automated Spray coater

The automated spray coater station is a customized 4-axis robot with an ultrasonic spray head
(Supplementary Fig. 1). The ultrasonic spray coater nozzle extracts the requested volume of solution
from a vial and sprays it onto a carbon paper substrate with user-defined parameters such as air flow
rate, number of passes, number of raster lines, spray height, solution flow rate, and temperature. The
ultrasonic spray nozzle operates at 3 W and 120 kHz. For more details about the components of the
automated spray coater, please refer to previous studies.[34]

A.1.5 Automated test cell (ATC)

We upgraded the previously reported automated gas-fed CO2 electrolyzer to perform bicarbonate
electrolysis.[21] The automated test cell for high-throughput bicarbonate electrolysis testing (Sup-
plementary Fig. 2) consists of an automated reagent (liquid and gas) delivery system, a catholyte
temperature controller (Supplementary Fig. 3), and a power supply unit. The ATC was designed to
have all the elements of a laboratory-scale zero-gap manual bicarbonate electrolyzer (Supplementary
Fig. 4). The gas-diffusion electrode cathode was manually placed in the electrochemical chamber of
the ATC along with a nickel foam anode and a bipolar membrane. This configuration separates the
cathode and anode compartments similar to a traditional electrolyzer. Once the loading procedure
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was complete, automated electrochemical testing was initiated with a single button press. A hydraulic
system automatically closes and seals the cell.

The ATC was also connected to an atmospheric pressure chemical ionization triple-quadrupole
mass spectrometer for quantitative measurements of gaseous products generated at the cathode
(Supplementary Fig. 2).[21] A seven-point mass spectrometry calibration curve was separately
created for CO and CO2. The data acquisition, data processing, and the calculation of the Faradaic
efficiency of CO production (FECO) was performed using automated Python scripts. This allows
for FECO, CO2 utilization, JCO, and reactor yield values to be available immediately. For other
technical details, please refer to the previous publication on the AdaCarbon platform.[21]

A.1.6 ATC reactive carbon electrolysis sequence

The ATC bicarbonate electrolysis sequence was as follows:

Priming: The anodic side of the test cell was primed with the KOH solution at a flow rate of
approximately 30 mL min−1. The cathodic side was primed with the KHCO3 solution at a flow rate
of approximately 90 mL min−1. After priming, the peristaltic pumps were turned off during the
baseline procedure.

Baseline 1: Argon carrier gas flow was turned on, purging the system of air and residual gasses from
previous experiments. A flow of methane gas at 2 mL min−1 was used for standardization. This step
ran for a fixed amount of time that was chosen to allow the mass spectrometer signals for N2, CO2,
CO, methane and Ar to reach a steady state.

Electrolysis: KOH and KHCO3 electrolyte flows were resumed. The potential was applied to the cell
and electrolysis began. This step ran for a fixed amount of time to allow the voltage and the mass
spectrometer signals for the measured products to stabilize.

Baseline 2: The electrolyte flow and potential applied to the cell was halted. Argon and the methane
standard gas flows were maintained. The length of this step was 10% of the initial baseline time to
allow for mass spectrometry signals to return to baseline values. This provided an indication if the
baseline of the system had changed during electrolysis.

CO calibration: A flow of CO at 2 mL min−1 was maintained for 3 min to establish a two-point
correction curve to quantify the amount of CO produced during electrolysis. The detector used to
detect CO was not stable enough to use a previous calibration and therefore a correction is applied
for this drift in the detector.

Purge: The KOH solution was pumped out of the lines and all gas flows were stopped.

A.1.7 ATC validation for reactive carbon electrolysis

We validated our ATC against a manually assembled bicarbonate electrolyzer used in our research
group (Supplementary Fig. 4). The manual electrolyzer in this study consisted of a carbon composite
cathode and a Ni foam anode sandwiched between cathodic and anodic serpentine flow plates. The
cathode was prepared by automated spraying of the catalyst ink onto a 2.5 cm × 2.5 cm piece of H23
carbon paper to form a gas diffusion electrode. The active area of the gas diffusion electrode was the
same as tested in the ATC (4 cm2). The reduction of CO2 occurred at the cathode, forming CO and
OH−.[29] The cathode and anode compartments were separated by a bipolar exchange membrane,
which facilitates water splitting and transport of OH− to the anode and H+ ions toward the cathode.
The cathode was fed with a 3 M KHCO3 solution at a flow rate of 100 mL min−1, while the anode
was fed with recirculated 1 M KOH at a flow rate of 30 mL min−1.

Galvanostatic experiments were performed in triplicate at 100 mA cm−2 for 5 minutes. The gaseous
products were measured with an in-line gas chromatograph connected to the cathode compartment
after electrolysis.[6, 35] The gas chromatograph (Perkin Elmer, Clarus 580) was equipped with a
packed MolSieve 5 Å column, and a packed HayeSepD column. The gas chromatograph was used to
detect CO and H2 using a flame ionization detector, and a thermal conductivity detector, respectively.
The Faradaic efficiencies (FE) of each product generated were calculated using mole fractions of the
H2 and CO from the gas chromatography data.
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For ATC validation, three manufactured silver-based cathode gas-diffusion electrodes were tested in
triplicate in both the manual electrolyzer and the ATC at 100 mA cm−2. To quantify the accuracy of
our ATC, we compared the absolute difference of FECO and CO2 utilization when using the ATC
and manual cell. We found that the absolute error, defined as the difference in mean values between
the ATC and the manual cell, was 3.5% for FECO and 4.2% for CO2 utilization. To quantify the
precision of our ATC, we compared the standard deviation of triplicate measurements of the FECO

and CO2 utilization. We found that the standard deviation, expressed as a relative error, for FECO

and CO2 utilization were 2.08% and 1.45%, respectively. As a result, we concluded that our ATC
platform yields similar results to a manual electrolyzer setup, with minimal variance between runs.

A.1.8 Electrolysis protocol

In each of our experiments, to avoid any effects of material degradation from influencing the data, we
used fresh bipolar membranes, Ni foam, and silver gas-diffusion electrodes. During electrolysis, the
cathode was supplied with bicarbonate catholyte, while the anode was fed with recirculated KOH
solution. Each gas-diffusion electrode sample was tested for 5 minutes in the ATC. Afterwards, the
reactor yield, JCO, and CO2 utilization were determined.

A.1.9 Faradaic efficiency and CO2 utilization

We measured the CO and H2 selectivity of the electrolyzer at a constant current density by quantifying
their respective concentrations using mass spectrometry or gas chromatography.

The Faradaic efficiency of a gaseous product k (FEk) was determined by:

FEk =
nkFχkFm

I
, (4)

where nk is the number of electrons exchanged, F is Faraday’s constant (F = 96,485Cmol−1), χk

is the mole fraction of gaseous product k (CO or H2) in the gaseous mixture analyzed, Fm is the
molar flow rate in mol s−1, and I is the total current in A.

The molar flow rate was calculated from the volume flow rate Fv using the relation:

Fm =
pFv

RT
, (5)

with p being the atmospheric pressure in Pa, R the ideal gas constant (8.314 Jmol−1 K−1), and T
the room temperature in K, which is 298 K in our study.

The CO2 utilization (UCO2) was calculated by:

UCO2
(%) =

[CO]

[CO2] + [CO]
× 100% (6)

where [CO] and [CO2] represent the concentration of product CO produced during electrolysis and
CO2 in the catholyte headspace outlet as measured by in-line gas chromatographic analysis.

A.1.10 Optimization campaign initialization

A set of 12 initial random experiments were chosen to initialize the Bayesian optimization. This
amount was chosen based on an arbitrary 2n rule, where n is the number of dimensions (in our case n
= 6). A random value between the set range of each parameter (Supplementary Table 1) was chosen
for each experimental condition from a uniform random distribution (Python numpy.random.random).
This value was then scaled to the range of the variable.

A.1.11 Reactor yield optimization campaign

To choose the next experiment after the initialization, we employed a Bayesian optimization algorithm
that maximized the reactor yield. The Bayesian optimization was performed using the Botorch
Python package[36] and happened in two steps. First, a surrogate Gaussian process regression
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model was built over all existing data to predict the reactor yield of potential formulations using
electrolysis measurements from a limited dataset. The data covariates were normalized to the unit
cube and outcomes were standardized (zero mean, unit variance). The surrogate model predicts
the experimental output (reactor yield) based on inputs such as bicarbonate solution temperature,
concentration, flow rate, current density, KOH concentration, and flow rate. We implemented the
Gaussian process model using the GPyTorch Python package.[37]

A fixed-noise Gaussian process model was used for the surrogate model.[27] We chose 3 mA cm−2

as the noise estimate for the Gaussian process model, which comes from the standard deviation
from three independent runs, performed under the same experimental condition in the initialization
campaign (see Supplementary Note 6). All other hyperparameters for the Gaussian process model
were defaulted. The model prediction performance using leave-one-out cross validation is discussed
in the Supplementary Note 7 and Supplementary Fig. 13.

Next, the best acquisition function was selected based on the simulation of oracle surface results
(Supplementary Note 2), and a new set of experimental conditions were acquired. We selected a
q-noisy expected improvement (qNEI) function[28] (Supplementary Figs. 6–7). All the sampling
strategies were configured to maximize the reactor yield while also effectively searching the parameter
space. The qNEI function helps manage the balance between exploration (probing new regions of
the parameter space) and exploitation (refining existing knowledge where improvements are deemed
likely) during Bayesian optimization. This is achieved by modulating the selection of sampling
points based on both the predicted improvement and the associated uncertainty, thus mitigating the
risk of redundantly sampling the same points. The inclusion of the “Noisy” term accounts for the
inherent variability and uncertainty in the electrolysis experimental measurements, a feature not
typically addressed by the standard expected improvement and upper confidence bound functions
(see Supplementary Note 2 and Supplementary Figs. 6–7). This feature allowed the algorithm to
better navigate the trade-off between exploring new, uncertain regions and exploiting areas known to
yield high outcomes, ensuring robustness against experimental noise and reducing the likelihood of
repetitive sampling in less promising areas.

In order to ensure a comprehensive exploration of the parameter space and test a few human-driven
hypotheses, the results from some researcher-defined (RD) experiments were introduced to the
optimizer (Supplementary Note 3 and Supplementary Table 2). First, the space-filling point selected
an experimental condition in the parameter space that maximized the distance to the closest other
existing experiment.[34] This strategy enhanced exploration by testing a few hypotheses and reducing
the risk of entrapment in local optima. This ensured a comprehensive search of the parameter space.

Once a set of experimental conditions was identified using the qNEI algorithm, the optimizer
provided a set of parameters for new experimental conditions to be tested in ATC. The closed loop
experiments were repeated until no improvement in the reactor yield objective function was observed
over a minimum of 10 consecutive steps, as shown in Fig. 2A. This stabilization was confirmed by
reviewing the contour plots of the predicted outcomes and observing how these predictions changed
as the optimization advanced (Supplementary Note 8 and Supplementary Fig. 8).

A.1.12 JCO optimization campaign

For maximizing JCO, we fed all the data obtained in the reactor yield optimization campaign as
an initialization into our optimizer. The objective function selected this time was JCO, as opposed
to reactor yield. The optimization process was similar to the one performed in the reactor yield
campaign, except that we did not include any space-filling or RD points during this experimental
campaign. This block of optimization relied solely on the extensive initial dataset to guide the
optimization trajectory. The absence of additional gains in JCO after over 10 consecutive samples
(Fig. 2B) substantiated the decision to cease further experimentation.

By starting with a denser initial dataset, the Gaussian process model used in Bayesian optimization
can generate more accurate and reliable estimations of the predicted outcomes across the parameter
space. A more comprehensive initial dataset reduces the uncertainty in these estimations because the
Gaussian process model has access to a wider range of data points that inform its predictions. This
improved estimation capability directly impacts how the acquisition function—such as the qNEI—is
calibrated. With more precise estimations of predicted outcomes, the acquisition function can more
effectively discern between areas of the parameter space that are likely to yield improvements and
those that are still uncertain and thus require further exploration. This refined calibration helps in
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making more informed decisions about where to sample next, enhancing the overall efficiency and
effectiveness of the optimization process.

For example, as shown in Fig. 2B, initially the model favored exploitation, leveraging high confidence
in the parameter space derived from the comprehensive initial data to hone in on areas predicted to
yield high performance. After this phase of intense exploitation, the model shifted to explore a new
region, in response to less certain areas in the existing parameter space. Following this exploratory
point, the optimizer returned to exploitation, discovering another peak performance area (JCO of 140
mA cm−2. After the initial sequence of four points focused on exploitation and one on exploration,
the model adopted a more balanced approach, oscillating between exploring new possibilities and
exploiting known high-yield regions, thereby optimizing the search for global optima.
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A.2 Supplementary Figures and Tables

This section contains supplementary figures 1-13 and supplementary tables 1-4.

Figure S1: Automated catalyst spray-coating station as a part of AdaCarbon platform. The
automated spray-coater station is a purpose-built 4-axis robot with an ultrasonic spray head. The
ultrasonic spray coater nozzle extracted the required amount of solution through a needle from the vial
and commenced spraying onto the 10 cm × 10 cm Freudenberg H23 carbon paper with user-defined
parameters such as air flow rate, number of passes, number of lines, spray height, spray flow rate
and temperature of the hot plate. (the glass slide is only shown as an example). The ultrasonic spray
nozzle operated at 3 W and 120 kHz.
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Figure S2: Automated test cell station for performing liquid-fed bicarbonate electrolysis as a
part of AdaCarbon platform. (A) Photograph of an Automated Test Cell (ATC) platform developed
in this study. Instead of relying on a manual assembly and disassembly process, the cell is sealed
automatically by a hydraulic system once the researcher loads a GDE into it. During electrolysis
validation, a 1 M KOH solution is circulated through the anode, facilitated by a computer-controlled
peristaltic pump. A 3 M KHCO3, is pumped to the cathode from a catholyte reservoir, connected with
the automated temperature controller. The resulting product stream is then subjected to a gas dryer
and analyzed by a mass spectrometer. (B) Models of the automated test cell (ATC) for performing
bicarbonate electrolysis and its comparison with the manually assembled electrolyzer. The ATC is
structured similarly to a manually assembled electrolyzer using the same stack of flow plates, cathode,
anode, and ion-exchange membrane. However, the ATC has no assembly fasteners; instead, it uses a
hydraulic piston to close the cell automatically. The raw data acquisition and processing, including
experimental conditions, is completely automated for the ATC system.
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Figure S3: Automated catholyte temperature controller reservoir installed in ATC. (A) The
CAD model of the bicarbonate catholyte reservoir (with pre-existing fittings) was employed in this
study. It uses a thermocouple to sense the accurate measurements of the temperature and has an
immersion heating system which requires minimal hardware and has inherent insulation benefits. It
contains a valve in the electrolyte reservoir which could be automatically relieved. (B) The automated
temperature controller was used in this study. The leads of the instrument are directly connected to the
thermocouple in the bicarbonate reservoir. A user can set the temperature manually. The temperature
of the electrolyte reservoir can be controlled within ± 3 ◦C for the duration of an experiment. A
temperature range between 25–80 ◦C can be achieved. If a temperature >100 ◦C is detected, the
heating apparatus automatically shuts off.
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Figure S4: Manual Bicarbonate electrolysis setup. A manual cell consists of a gas-diffusion
cathode and Ni foam anode separated by a bipolar exchange membrane. A power supply is connected
to the cathode and anode terminals to perform electrolysis in galvanostatic mode. A peristaltic pump
transports 1 M KOH at a desired flow rate through the anode flow plate to a nickel foam anode (unless
stated). The flow is recycled to the 1 M KOH reservoir and O2 is vented. The cathode flow plate is fed
with a 3 M KHCO3 solution (unless stated). The gas flow is controlled by a mass flow controller (FC).
The mixture of gaseous products (CO, CO2, and H2) is passed through the condenser which then is
allowed to pass through a gas chromatogram for FECO, JCO, UCO2 and reactor yield quantification.
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Figure S5: Number of points vs. number of variables tested. For this specific search space with
6 dimensions, there are about 15,600 possible combinations. To elucidate the computation of the
15,600 combinations mentioned, consider the method of calculating the number of potential settings
for each parameter. For each of the six dimensions, we assume that the researcher selects 5 discrete
points within the total range of the parameter, which gives 5 possible settings for each parameter.
The product of these individual counts across all parameters yields the total number of possible
combinations. Multiplying these numbers together (5 × 5 × 5 × 5 × 5 × 5) provides the total number
of combinations, which is 15,625. This multiplication reflects the exponential growth of the search
space with each added dimension and the corresponding discrete settings, showcasing the massive
scale of our exploration space.
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Figure S6: Q-noisy expected improvement function benchmarking against alternative sampling
strategies. The performance of the q-noisy expected improvement algorithm is compared to alterna-
tive single-objective sampling strategies (namely the qEI and qUCB algorithms, random sampling) in
simulated optimization campaigns for (A) reactor yield and (b) JCO. The median (solid line) and
interquartile range (shaded bands) from replicate simulations are shown. 50 replicate simulations
were performed for all methods except random, for which random where 100,000 replicates were
performed.
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Figure S7: Quantitative assessment of the improvement provided by the q-noisy expected
improvement algorithm in the simulated optimization campaign. The enhancement factor
achieved by the simulated q-noisy expected improvement algorithm relative to random searches is
depicted, based on the (A) reactor yield and (B) JCO optimization experimental data. The x-axis
represents the samples, which correspond to the experiment numbers used throughout the manuscript.
For the simulations, the median results are shown with a solid line, the interquartile range is indicated
by shaded bands, and the geometric mean is represented by a dashed line.
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Figure S8: Contour plots of the posterior mean at three stages: after initialization, after the first
optimization campaign, and after the final optimization campaign. Contour plots are presented
for two pairs of parameters: (A) KOH concentration vs. bicarbonate flow rate, and (B) bicarbonate
flow rate vs. current density. In the plots, black points represent the initialization samples, orange
points represent all samples collected after initialization, including optimization samples, and the red
star indicates the champion point for the reactor yield optimization campaign.
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Figure S9: Variation of reactor yield with (A) CO2 utilization and (B) JCO “Other" represents
initialization and other researcher-defined (RD) points.
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Figure S10: Variation of six parameters when optimizing for reactor yield. Six input parameters
were manipulated: four electrolyzer parameters (Current density, bicarbonate flow rate, KOH flow
rate, bicarbonate temperature) and two chemical variables (KOH concentration and bicarbonate
concentration). The experimental conditions requested for each experiment are shown in panels A–F.
The bounds of the experimental variables are shown as the minimum and maximum y-axis values for
each plot (see also Table S1). The orange line represents the input values associated with the running
best reactor yield.
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Figure S11: Variation of six parameters when optimizing for JCO. Six input variables were
manipulated: four electrolyzer parameters (Current density, bicarbonate flow rate, KOH flow rate,
bicarbonate temperature) and two chemical variables (KOH concentration and bicarbonate concentra-
tion). The experimental parameter optimized for is shown in each panel (A–F). The bounds of the
experimental variables are shown as the minimum and maximum y-axis values for each plot (see also
Table S2). The orange line represents the input values associated with the running best JCO.

25



Figure S12: Variation of FECO versus input current density. During the JCO optimization where
the initialization points came from the reactor yield optimization process, the optimizer successfully
overcame the typical trend of lower JCO values at higher current densities, usually due to mass
transport limitations. The Bayesian optimizer helps achieve high FECO values even at elevated
current densities.
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Figure S13: Leave-One-Out Cross-Validation (LOOCV) and model residuals of the experimental
response surfaces for the reactor yield. (A) Model residuals plotted as a function of the model
output: the reactor yield. The residuals from the LOOCV analysis are shown against the predicted
reactor yield values. The coefficient of determination (R2) for the model is 0.86, indicating a high
level of predictive accuracy. (B) LOOCV analysis of the experimental response surfaces for the
reactor yield. The Gaussian process model was trained on all the combined data from the reactor
yield optimization campaign.
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Table S1: A list of six electrolyzer parameters manipulated in this work. The parameter range
and importance are also mentioned.

Parameters Range What does this parameter influence?
Bicarbonate temperature (°C) 25–80 solubility of i-CO2
Bicarbonate concentration (M) 0.5–3.05 source of i-CO2
Bicarbonate flow rate (mL min-1) 30–200 residence time of i-CO2
Current density (mA cm-2) 50–350 CO selectivity
KOH concentration (M) 0.05–3 cathodic chemistry
KOH flow rate (mL min-1) 5–30 cathodic chemistry
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Table S2: An overview of researcher-defined (RD) points.1 The first condition is for testing a
human-driven hypothesis with points selected from manual cell experiments. The second and third
points relate to testing the effect of low and high bicarbonate concentration on reactor yield, keeping
all other variables at standard conditions. The fourth and fifth points relate to varying bicarbonate
concentrations for champion reactor yield conditions. The champion reactor yield was obtained at
the bicarbonate concentration of 0.52 M. The last five points came from the space filling algorithm.

No. Bicarbonate
temperature (°C)

Bicarbonate
concentration (M)

Bicarbonate
flow rate

(mL min−1)

Current
density

(mA cm−2)

[KOH]
(M)

KOH flow
rate

(mL min−1)

Reactor
yield

(mA cm−2)
1 40 1.5 150 200 1.5 30 23.67
2 25 3.0 100 100 1.0 30 11.01
3 25 0.5 100 100 1.0 30 12.99
4 55 3.0 106 249 1.7 24 13.83
5 55 1.5 106 249 1.7 24 17.77
6 61 2.3 187 332 0.1 28 24.32
7 68 2.5 88 184 2.5 7 15.19
8 31 2.7 52 300 1.7 20 13.38
9 34 1.7 54 110 1.4 28 9.11
10 74 1.0 54 213 0.6 29 16.55
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Table S3: The list of parameters corresponding to the highest reactor yield and JCO values
obtained from their respective optimization experiments.

Parameters Maximized reactor yield Maximized JCO

Bicarbonate concentration 0.52 M 2.37 M
Bicarbonate flow rate 144 mL min−1 192 mL min−1

Bicarbonate temperature 54 ◦C 63.8 ◦C
KOH concentration 2.4 M 0.19 M
KOH flow rate 24 mL min−1 28.1 mL min−1

Current density 249 mA cm−2 329 mA cm−2

30



Table S4: Parameters for demonstration of the practical scenario. The total concentration of the
K+ ions was kept constant at 3 M. All other parameters were constant as obtained for the champion
condition for the reactor yield. Bicarbonate flow rate = 144 mL min−1, bicarbonate temperature =
54 ◦C, KOH concentration = 2.4 M, KOH flow rate = 24 mL min−1, and current density = 249 mA
cm−2.

[HCO−
3 ] (M) [CO2−

3 ] (M) UCO2 (%) JCO (mA cm−2) Reactor yield (mA cm−2)
0.0 1.50 100.0 17.3 17.3
0.5 1.25 98.0 31.6 30.9
1.0 1.00 94.0 42.7 40.2
1.2 0.90 89.0 43.9 39.0
1.5 0.75 81.1 54.2 43.9
1.8 0.60 75.3 55.5 41.8
3.0 0.00 27.1 87.4 23.7
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A.3 Supplementary Note 1: Bayesian optimization and acquisition function

Bayesian optimization is a powerful method for optimizing black-box functions that are expensive to
evaluate and may include observation noise. It employs a probabilistic surrogate model, such as a
Gaussian Process (GP), to model the objective function f(x) and quantify uncertainty in predictions.
This surrogate model allows the algorithm to make informed decisions about where to sample next
by balancing exploring uncertain areas and exploiting promising regions.

The selection of the next evaluation point is guided by an acquisition function, which measures the
expected utility of sampling at a candidate point. In noisy settings, the q-noisy expected improvement
(qNEI) is an appropriate choice as it extends the standard Expected Improvement (EI) criterion to
account for observation noise. In this study, we use a batch of one experiment (q = 1).

The standard Expected Improvement (EI) at a candidate point x is defined as:

EI(x) = E [max (0, fbest − f(x))] ,

where fbest is the best-observed function value so far. However, when observations are noisy, we
observe

y = f(x) + ϵ,

with ϵ representing noise, and the true fbest is uncertain.

The Noisy Expected Improvement (NEI) addresses this by integrating over the posterior distributions
of both the true function values at the observed points and the candidate point. The NEI is formulated
as:

NEI(x) = Ef(x),fD [max (0, fmin − f(x))] ,

where fD are the true function values at the observed data points D, and

fmin = min(fD).

Under the Gaussian Process (GP) model, the joint distribution of f(x) and fD is multivariate normal.
The NEI can be estimated using Monte Carlo integration:

1. Sample true function values f (i)
D from their posterior distribution given the noisy observa-

tions.

2. Compute the minimal true value f
(i)
min = min

(
f
(i)
D

)
for each sample.

3. Sample the function value at x, f (i)(x), from the conditional posterior distribution given
f
(i)
D .

4. Calculate the improvement

I(i) = max
(
0, f

(i)
min − f (i)(x)

)
.

5. Estimate NEI as

NEI(x) ≈ 1

N

N∑
i=1

I(i),

where N is the number of Monte Carlo samples.

Alternatively, NEI can be approximated analytically under certain assumptions. When the noise is
small and the GP posterior at x remains approximately Gaussian, NEI simplifies to:

NEI(x) ≈ (fbest − µ(x)) Φ

(
fbest − µ(x)

σ(x)

)
+ σ(x)ϕ

(
fbest − µ(x)

σ(x)

)
,

where

• µ(x) is the posterior mean of the GP at point x,

• σ(x) is the posterior standard deviation at x,
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• Φ(·) and ϕ(·) are the cumulative distribution function and probability density function of
the standard normal distribution, respectively.

In this approximation, fbest is often taken as the minimal posterior mean among observed points.

The NEI effectively accounts for the uncertainty due to noise by considering the distribution over the
true function values rather than just the observed noisy outputs. This leads to more robust optimization
in noisy settings, as it prevents the algorithm from being overly optimistic about noisy observations.

A.4 Supplementary Note 2: Simulation to model the oracle surface and quantification of the
algorithm performance

We employed computer simulations to evaluate the efficacy of the qNEI algorithm in the optimization
of reactor yield and JCO experiments. An experimental response surface model, constructed from
collected data, served as the basis for these simulations. We conducted simulated optimizations
using various algorithms—random search, qUCB, qEI, and qNEI—sampling the model to compare
their performances (Fig. S6). The effectiveness of the qNEI algorithm, particularly against random
sampling, was assessed using the enhancement factor (EF) metric (shown in Fig. S7). Detailed
descriptions of these simulation procedures are further elaborated below.

A.4.1 Models of the experimental response surface

: To accurately model the experimental conditions, Gaussian process (GP) regression was employed
to develop two distinct response surface models (oracles), each tailored to one of the objectives:
reactor yield and JCO. These models predict the experimental outputs based on inputs such as
bicarbonate temperature, concentration, current density, flow rate, KOH concentration, and flow rate.
We implemented the GP response surfaces using the GPyTorch Python package.2 For each model,
normalization of the input data, as well as standardization (zero mean, unit variance) of the respective
objective (reactor yield or JCO), was performed before training each model (response surface).

A.4.2 Sampling strategies

:

For evaluating the efficacy of various sampling strategies, we conducted simulations using different
sampling strategies (random search, qUCB, qEI, and qNEI algorithms) on the reactor yield and
JCO experimental models. Each simulation utilized identical initialization points across the reactor
yield and JCO setups consistent with the corresponding reactor yield and JCO experiments to ensure
comparability. Random search involved generating samples from a uniform distribution throughout
the normalized input space. The qUCB algorithm was configured with a beta value of 1 (beta values
can control the exploration of space), chosen to balance exploration and exploitation effectively within
this context, ensuring moderate confidence in the uncertainty bounds of the predictions. Both qEI
and qNEI algorithms were configured using BoTorch’s default settings. The complete benchmarking
results are illustrated in Fig. S6 and Fig. S7, providing a visual comparison of the performances of
these algorithms.

A.4.3 Simulated optimization campaigns

:

Each simulated optimization campaign was performed for 50 replicates and 100 experimental
iterations, except for random which was performed for one hundred thousand iterations for use in
the enhancement factor calculations (shown in Fig. S6 and Fig. S7). If an optimization algorithm
produced an error during optimization, then that replicate was removed and repeated.

A.4.4 Enhancement Factor Calculation

: The enhancement factor for a given sampling technique, relative to another, is defined as the ratio
of their performance values when the same number of samples are used. For instance, if sampling
method A achieves a performance value of 10 with 50 samples, and method B achieves a value of
5 with the same 50 samples, then the enhancement factor of technique A at 50 samples is 2. The
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calculation follows the equation below:

EFA:B(n) =
PA(n)

PB(n)
,

where EFA:B(n) is the enhancement factor of sampling technique A to B after n samples. When
PB(n) = 0, then EFA:B(n) is not calculable.

To compare the enhancement factor of the qNEI algorithm relative to random search across 50
replicate simulations, the median, geometric mean, and interquartile range of the enhancement factor
were computed and illustrated in Fig. S7.

A.5 Supplementary Note 3: Reactor yield optimization strategy and interventions by
researcher

The reactor yield optimization campaign commenced with an initialization phase comprising 12
experiments using randomized parameters. Subsequently, 10 experiments utilizing Bayesian opti-
mization (BO) followed, increasing reactor yield from 31 mA cm−2 to 33.5 mA cm−2 by the 13th
experiment. However, the optimizer concentrated on exploiting regions around previously high
reactor yield values, potentially constraining broader parameter space exploration.

To address this, two targeted interventions were introduced by the researcher, which we call researcher-
defined (RD) points:

1. Space-filling points for enhanced exploration:
After the 22nd experiment, 5 space-filling (SF) points3 were added to maximize diversity
in the input space, steering the optimization away from previously explored regions. This
intervention broadened the search and facilitated a restart of the optimization process.
Consequently, a new maximum reactor yield of 38 mA cm−2 (the champion condition)
was achieved after 9 additional experiments, demonstrating the effectiveness of combining
space-filling exploration with targeted optimization.

2. Human-in-the-loop (HIL) interventions:
Following the discovery of the champion condition, the optimizer trended toward lower bi-
carbonate concentrations. To counter this, 5 human-in-the-loop points were added, focusing
on two objectives:

(a) Encourage exploration by varying bicarbonate concentrations (0.5 M, 1.5 M, 3 M)
under both champion and standard conditions.

(b) Test researcher-driven hypotheses to balance CO2 utilization and JCO (Table S2).

Although none of the HIL points outperformed the optimizer, they validated process stabi-
lization and tested some hypotheses. This was confirmed by examining contour plots of
predicted outcomes and their evolution throughout optimization (see Fig. S13).

A.6 Supplementary Note 4: SHAP Analysis

To explain the underlying Gaussian process models that drive Bayesian optimization for reactor
yield and JCO, we used the SHAP (Shapley Additive exPlanations) framework,4 which is based
on a coalitional game-theoretic approach. We first fit the entire dataset using a random forest (RF)
regressor model, which constructs a multitude of decision trees.5

SHAP was then used to identify the important features that best explain the output of the RF model
and gain additional physical insights. The major goal of SHAP is to explain the prediction (or
instance) of the black-box decision of an ML model by a stepwise decomposition of the model
predictions and compute the contribution of each feature (or group of features) to the prediction. The
SHAP values for a specific data point (which is an experiment number in our case) are generated by
comparing the model outcome difference of including or not including a certain parameter or feature.

To compute SHAP values, a baseline or reference value is determined for each feature, representing its
expected or average value in the dataset. The SHAP value of a feature indicates how much its specific
value in a prediction deviates from the baseline. In essence, it quantifies the feature’s contribution to
shifting the model’s prediction away from the average or expected output.
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The features of an instance are treated as players in a coalition, with the coalition representing the set
of features involved in a particular prediction. Using SHAP values to interpret an ML model allows
us to understand how each feature (or player) contributes to the prediction. The phrase “players in a
coalition” refers to the individual features or variables considered when calculating SHAP values for
a specific prediction or outcome.

SHAP can provide both local (for a single data point, a single surface in our case) and global (takes
into account the entire dataset, and all experiments) explanations for the predictions of an ML model.4
A so-called beeswarm SHAP summary plot,4 which provides a global explanation of the RF model
predictions (Figs. 3A and 3B in the main text). For each feature (or parameter), the SHAP values for
the entire dataset are plotted as points along the horizontal axis. In positions with a high density of
SHAP values, the points are vertically stacked. The global importance of each feature in prediction is
ranked according to its mean absolute SHAP value, which is averaged over the complete dataset.

The horizontal axis (Figs. 3A and 3B in the main text) shows the SHAP values, where a value of zero
represents no contribution of that particular feature to the prediction; contributions increase in either
direction as the SHAP value moves away from zero. Whether a SHAP value is positive or negative
depends on how the feature’s value in the prediction compares to its expected or average value as
discussed above. The width of the distribution of points along the horizontal axis gives a qualitative
indication of how strongly that particular feature impacts the model prediction. The vertical color bar
depicts the absolute feature value (in our case - electrolysis parameters) from low (blue) to high (red).
We emphasize that the color indicates the “raw” value of the feature in the dataset.

A.7 Supplementary Note 5: Demonstration of practical experimental scenario

As a practical scenario, the bicarbonate electrolyzer needs to be connected with the CO2 capture plant.
The CO2 capture plant has a mixture of carbonate (CO2−

3 ) and bicarbonate ions (HCO−
3 ) in varying

ratios as an eluent. To demonstrate this experimentally, we selected the champion parameters that
achieved the highest reactor yield (see Table S3) and varied the composition of the capture solution.
We only varied the bicarbonate concentration in the carbonate/bicarbonate mixture from 0 to 3 M and
supplemented the rest of the K+ ions coming from the carbonate solution while maintaining a total
K+ concentration of 3 M (see Table S4). We show that for a bicarbonate electrolysis technology to
be a viable solution (measured by reactor yield), we only require 1–1.8 M bicarbonate concentration
in the eluent as opposed to 3 M, which has been the focus of most of the previous studies.1,6,7

A.8 Supplementary Note 6: Source of variability in the experiments

The standard deviation for reactor yield and JCO values for three independent experiments were
found to be 3 mA cm−2. There are several possible sources of variations in these metrics. These
sources include variations in the loading of Ag on GDEs during automated spraying (caused due to
variable thermal contact of GDEs on the hot plate); variation in manual dilution of the catholyte and
anolyte solutions, or variability in the ion exchange membranes from batch to batch.

A.9 Supplementary Note 7: Leave-one-out cross-validation (LOOCV) analysis of the
experimental response surface

In the LOOCV analysis, the model’s accuracy is evaluated by systematically leaving out one data
point at a time from the dataset. The model is then trained on the remaining data to predict the
outcome for the excluded point. This process is repeated for each data point, providing an overall
measure of the model’s performance. The residuals, which represent the differences between the
predicted and actual objective values (in this case, the reactor yield), are used to assess how accurately
the model captures the experimental results. These residuals are plotted against the predicted reactor
yield to highlight any discrepancies. Additionally, the predicted reactor yields are compared with the
measured values, and the coefficient of determination (R2) is calculated (Fig. S12).

A.10 Supplementary Note 8: Progress of the optimizer using the contour plots and
quantifying posterior mean

To observe how the optimizer progresses over the reactor yield optimization experiment, we plotted a
contour plot for each combination of the 6 input parameters to give us 15 pair plots (results for two
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pair plots are shown in Fig. S13 as examples). The contour plots illustrate the dynamic evolution of
the posterior mean (expected outcome) throughout the optimization experiments for various parameter
configurations relevant to electrolysis.

Initially, the distribution of initialization points (black) spans a broad expanse of the parameter space,
setting a baseline for the response surface. As optimization proceeds, the insertion of points derived
from optimization algorithms (orange) progressively refines our understanding, focusing on areas
of the parameter space suggestive of higher yields, as indicated by shifts in the contour lines and
intensification of colors towards warmer hues in specific plots (Fig. S13).

The decision to conclude the optimization campaign was based on observed diminishing marginal
returns in the adjustments to the posterior mean, signaling convergence toward an optimal set of
parameters. The strategic inclusion of SF and HIL points, systematically integrated after every ten
optimization experiments, facilitated enhanced exploration and minimized the risk of local optima
entrapment, ensuring a thorough exploration of the parameter space. This approach, coupled with
the evident stabilization in the evolution of the posterior mean plots after each block — comprising
initialization, optimization, space-filling, and HIL stages — provided robust empirical justification for
terminating further experimentation, as continued efforts were projected to yield minimal additional
gains.
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