
Language Models Use Simple Vector Arithmetic to Solve some Tasks

Anonymous ACL submission

Abstract

A primary criticism towards language mod-001
els (LMs) is their inscrutability. This paper002
presents evidence that, despite their size and003
complexity, LMs sometimes exploit a simple004
vector arithmetic style mechanism to solve005
some relational tasks using regularities en-006
coded in the hidden space of the model (e.g.,007
Poland:Warsaw::China:Beijing). We investi-008
gate a range of language model sizes (from009
124M parameters to 176B parameters) in an010
in-context learning setting, and find that for a011
variety of tasks (involving capital cities, upper-012
casing, and past-tensing) a key part of the mech-013
anism reduces to a simple additive update typ-014
ically applied by the feedforward (FFN) net-015
works. We further show that this mechanism016
is specific to tasks that require retrieval from017
pretraining memory, rather than retrieval from018
local context. Our results contribute to a grow-019
ing body of work on the interpretability of LMs,020
and offer reason to be optimistic that, despite021
the massive and non-linear nature of the mod-022
els, the strategies they ultimately use to solve023
tasks can sometimes reduce to familiar and024
even intuitive algorithms.025

1 Introduction026

The growing capabilities of large language mod-027

els (LLMs) have led to an equally growing inter-028

est in understanding how such models work un-029

der the hood. Such understanding is critical for030

ensuring that LLMs are reliable and trustworthy031

once deployed. Recent work in interpretability032

has contributed to this understanding by reverse-033

engineering the data structures and algorithms that034

are implicitly encoded in the model’s weights, e.g.,035

by identifying detailed circuits (Wang et al., 2022;036

Elhage et al., 2021; Olsson et al., 2022) or by iden-037

tifying mechanisms for factual storage and retrieval038

which support intervention and editing (Geva et al.,039

2021a; Li et al., 2022; Meng et al., 2022a,c; Dai040

et al., 2022).041

Here, we contribute to this growing body of work 042

by analyzing how LLMs recall information during 043

in-context learning. Modern LLMs are based on a 044

complex transformer architecture (Vaswani et al., 045

2017) which produces contextualized word embed- 046

dings (Peters et al., 2018; Devlin et al., 2019) con- 047

nected via multiple non-linearities. Despite this, we 048

find that LLMs implement a basic vector-addition 049

mechanism qualitatively similar to relational infor- 050

mation encoded in their static word embeddings 051

predecessors Mikolov et al. (2013). We also find 052

that for non-injective relations that static embed- 053

dings typically fail to encode (Gladkova et al., 054

2016), LMs do not use the identified mechanism 055

(Appendix G). 056

We study this phenomenon across nine tasks, but 057

focus on three in the main paper: recalling capital 058

cities, uppercasing tokens, and past-tensing verbs. 059

Our key findings are: 060

• We find evidence of a distinct process- 061

ing signature in the forward pass which 062

characterizes argument-function processing 063

(§3). That is, if models need to perform the 064

get_capital(x) function, which takes an ar- 065

gument x and yields an answer y, they first 066

surface the argument x in earlier layers which 067

enables them to apply the function and yield 068

y as the final output (Figure 2). This signature 069

generalizes across models and tasks, but ap- 070

pears to become sharper as models increase 071

in size. 072

• We take a closer look at GPT2-Medium, and 073

find that the vector arithmetic mechanism is 074

often implemented by mid-to-late layer feed- 075

forward networks (FFNs) in a way that is mod- 076

ular and supports intervention (§4). E.g., 077

an FFN outputs a content-independent update 078

which produces Warsaw given Poland and can 079

be patched into an unrelated context to pro- 080

duce Beijing given China. We don’t find this 081

1

evidence of this mechanism being used for082

tasks in which word embedding vector arith-083

metic classically fails (Appendix G).084

• We demonstrate that this mechanism is spe-085

cific to recalling information from pretrain-086

ing memory (§5). For settings in which087

the correct answer can be retrieved from the088

prompt, this mechanism does not appear to089

play any role, and FFNs can be ablated en-090

tirely with relatively minimal performance091

degradation. Thus, we present new evidence092

supporting the claim that FFNs and attention093

specialize for different roles, with FFNs sup-094

porting factual recall and attention copying095

and pasting from local context.096

Taken together, our results offer new insights about097

one component of the complex algorithms that un-098

derlie in-context learning. The mechanism’s sim-099

plicity raises the possibility that other apparently100

complicated behaviors may be supported by a se-101

quence of simple operations under the hood. More-102

over, our results suggest a distinct processing sig-103

nature and hint at a method for intervention. These104

ideas could support future work on detecting and105

preventing unwanted behavior by LLMs at runtime.106

2 Methods107

In decoder-only transformer language models108

(Vaswani et al., 2017), a sentence is processed one109

word at a time, from left to right. In this paper, we110

focus on the transformations that the next-token111

prediction undergoes in order to predict the an-112

swer to some task. At each layer, an attention113

module and feed-forward network (FFN) module114

apply subsequent additive updates to this represen-115

tation. Consider the FFN update at layer i, where116

xi is the current next-token representation. The117

update applied by the FFN here is calculated as118

FFN(x⃗i) = o⃗i, ⃗xi+1 = x⃗i + o⃗i where ⃗xi+1 is the119

updated token for the next layer. Due to the resid-120

ual connection, the output vector o⃗i is added to the121

input. x⃗ is updated this way by the attention and122

FFNs until the end of the model, where the token123

is decoded into the vocab space with the language124

modeling head E: softmax(Ex⃗). From start to end,125

x is only updated by additive updates, forming a126

residual stream (Elhage et al., 2021). Thus, the to-127

ken representation xi represents all of the additions128

made into the residual stream up to layer i.129

2.1 Early Decoding 130

A key insight from the residual stream perspective 131

is that we can decode the next token prediction with 132

the LM head before it reaches the final layer. This 133

effectively allows for “print statements” through- 134

out the model’s processing. The intuition behind 135

this technique is that LMs incrementally update the 136

token representation x⃗ to build and refine an encod- 137

ing of the vocabulary distribution. This technique 138

was initially introduced in nostalgebraist (2020) as 139

the logit lens, and Geva et al. (2022b) show that 140

LMs do in fact refine the output distribution over 141

the course of the model. Figure 1 illustrates the 142

process we use to decode hidden states into the 143

vocabulary space using the pre-trained language 144

modeling head E. After decoding, we apply a soft- 145

max to get a probability distribution over all tokens. 146

When we decode at some layer, we say that the 147

most likely token in the resulting vocab distribu- 148

tion is currently being represented in the residual 149

stream. We examine the evolution of these predic- 150

tions over the course of the forward pass for several 151

tasks. 152

2.2 Tasks 153

We apply early decoding to suite of in-context learn- 154

ing tasks to explore the transformations the next 155

token prediction undergoes in order to predict the 156

answer. 157

World Capitals The World Capitals task 158

requires the model to retrieve the capital city for 159

various states and countries in a few-shot setting. 160

The dataset we use contains 248 countries and 161

territories. A one-shot example is shown below: 162

“Q: What is the capital of France? A: Paris Q:
What is the capital of Poland? A:___" Expected
Answer: “ Warsaw"

163

Reasoning about Colored Objects We focus on 164

a subset of 200 of the reasoning about colored 165

objects dataset prompts (i.e., the colored objects 166

dataset) from BIG-Bench (Srivastava et al., 2022). 167

A list of colored common objects is given to the 168

model before being asked about one object’s color. 169

For the purposes of this paper, we focus only 170

on one aspect of this task–the model’s ability to 171

output the final answer in the correct format.1 172

1The reason for this is that most of the results in this paper
were originally observed as incidental findings while studying
the Colored Objects task more generally. We thus zoom in on
this one component for the purposes of the mechanism studied
here, acknowledging that the full task involves many other
steps that will no doubt involve other types of mechanisms.

2

The unembedding  
matrix projects into

the vocabulary space.

Attention FFN

LM
HeadEmbed

Because of the residual connection, Attention and FFN blocks
can be viewed as reading from the residual stream and adding

their outputs back into it

FFN

LM
Head

+a18 +ofunc+o18
Attention

+a19

…

LM
Head

LM
Head

LM
Head

…

Selected by example

Figure 1: When decoding the next word, additive updates are made through the residual connections of each
attention/FFN sub-layer. To decode the running prediction at every layer, the pre-trained language modeling head is
applied at various points in each layer as in Geva et al. (2022a); nostalgebraist (2020). The o⃗ vector interventions
we make (§4.1) are illustrated by patching one or more FFN outputs with one from another example

“Q: On the floor, I see a silver keychain, [...] and a
blue cat toy. What color is the keychain?
A: Silver
Q: On the table, you see a brown sheet of paper, a
red fidget spinner, a blue pair of sunglasses, a teal
dog leash, and a gold cup. What color is the sheet
of paper?
A:___" Expected answer: “ Brown"

173

Past Tense Verb Mapping Lastly, we examine174

whether an LM can accurately predict the past175

tense form of a verb given a pattern of its present176

tense. The dataset used is the combination of177

the regular and irregular partitions of the past178

tense linguistic mapping task in BIG-Bench179

(Srivastava et al., 2022). After filtering verbs in180

which the present and past tense forms start with181

the same token, we have a total of 1,567 verbs.182

An example one-shot example is given below:183

“Today I abandon. Yesterday I abandoned. Today
I abolish. Yesterday I___" Expected answer: “
abolished"

184

The above tasks could all be described as one-185

to-one (e.g., each country has one capital, each186

word only has one uppercase/past tense form). In187

Appendix G we explore six additional tasks, three188

of which are either many-to-many or many-to-one.189

We find that the observed mechanism only applies190

to one-to-one relations, indicating that the model191

learns some sensitivity to this type of relation in192

order for it to represent the structure required for193

the mechanism described here, similar to static194

embeddings (Gladkova et al., 2016)/195

2.3 Models196

We experiment on decoder-only transformer LMs197

across various sizes and pre-training corpora.198

When not specified, results in figures are from199

GPT2-medium. We also include results portraying200

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 No
7 C
8 A
9 A
10 A
11 A
12 Unknown
13 C
14 St
15 Poland
16 Poland
17 Poland
18 Poland
19 Warsaw
20 Warsaw
21 Warsaw
22 Warsaw
23 Warsaw

Layer Top Token
0 The
1 The
2 The
3 [
4 [
5 M
6 M
7 No
8 The
9 No
10 No
11 None
12 None
13 None
14 None
15 None
16 None
17 white
18 white
19 Brown
20 Brown
21 Brown
22 Brown
23 Brown

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 A
7 A
8 A
9 The
10 The
11 The
12 The
13 The
14 The
15 The
16 The
17 The
18 Poland
19 Poland
20 Poland
21 Poland
22 Poland
23 The

Table 1: These are the top tokens per layer in GPT2-
Medium on the example zero-shot Poland example

10

A

B

C

Figure 2: Decoding the next token prediction at each
layer reveals distinct stages of processing. The red box
(A) shows where the model prepares an argument for
transformation, the blue box (B) shows the function
application phase during which the argument is trans-
formed (here with the capital_of function, and the
yellow box (C) shows a saturation event, in which the
model has found the answer, and stops updating the top
prediction. The dashed line shows the logit difference
between argument and answer at each layer.

the stages of processing signatures in the resid- 201

ual streams of the small, large, and extra large 202

variants (Radford et al.), the 6B parameter GPT- 203

J model (Wang and Komatsuzaki, 2021), and the 204

176B BLOOM model (Scao et al., 2022), either in 205

the main paper or in the Appendix. 206

3 Stages of Processing in Predicting the 207

Next Token 208

First, we use the early decoding method in order to 209

investigate how the processing proceeds over the 210

course of a forward pass to the model. Each task 211

requires the model to infer some relation to recall 212

some fact, e.g., retrieving the capital of Poland. In 213

these experiments, we see several discrete stages 214

of processing that the next token undergoes before 215

3

reaching the final answer. These states together pro-216

vide evidence that the models "apply" the relevant217

functions (e.g., get_capital) abruptly at some218

mid-late layer to retrieve the answer. Moreover, in219

these cases, the model prepares the argument to220

this function in the layers prior to that in which the221

function is applied.222

In Figure 2 we illustrate an example of the stages223

we observe across models. For the first several lay-224

ers, we see no movement on the words of interest.225

Then, during Argument Formation, the model226

first represents the argument to the desired rela-227

tion in the residual stream. This means that the228

top token in the vocabulary distribution at some229

intermediate layer(s) is the subject the question230

inquires about (e.g., the x, in get_capital(x)).231

During Function Application we find that the232

model abruptly switches from the argument to the233

output of the function (the y, in get_capital(x)234

= y). We find that function application is typically235

applied by the FFN update at that layer to the resid-236

ual stream. This is done by adding the output vector237

o⃗ of the FFN to the residual stream representation,238

thus transforming it with an additive update. We239

study these o⃗ vectors in detail in Section 4. Finally,240

the model enters Saturation2, where the model241

recognizes it has solved the next token, and ceases242

updating the token representation for the remaining243

layers.244

The trend can be characterized by an X-shaped245

pattern of the argument and final output tokens246

when plotting the ranks of the argument(x) and247

output (y) tokens. We refer to this behavior as248

argument-function processing. Figure 3 shows that249

this same processing signature can be observed250

consistently across tasks and models. Moreover, it251

appears to become more prominent as the models252

increase in size. Interestingly, despite large differ-253

ences in number of layers and overall size, models254

tend to undergo this process at similar points pro-255

portionally in the model.256

4 Implementation of257

Context-Independent Functions in FFN258

Updates259

The above results on processing signature suggest260

that the models “apply” a function about 2/3rds of261

the way through the network with the addition of an262

2Saturation events are described in Geva et al. (2022a)
where detection of such events is used to “early-exit” out of
the forward pass

FFN update. Here, we investigate the mechanism 263

via which that function is applied more closely. 264

Specifically, focusing on GPT2-Medium3, we show 265

that we can force the encoded function to be applied 266

to new arguments in new contexts by isolating the 267

responsible FFN output vector and then dropping 268

into a forward pass on a new input. 269

4.1 o⃗ Vector Interventions 270

Consider the example in Figure 2. At layer 18, the 271

residual stream (x⃗18) is in argument formation, and 272

represents the “ Poland" token. At the end of layer 273

19, a function is applied, transforming x⃗19 into the 274

answer token “ Warsaw. 275

As discussed in the previous section, we can iso- 276

late the function application in this case to FFN 19; 277

let x̃19 represent the residual stream after the atten- 278

tion update, but before the FFN update at layer 19 279

(which still represents Poland). Recall that the up- 280

date made by FFN 19 is written FFN19(x̃19) = o⃗19 281

and x⃗19 = x̃19 + o⃗19. We find that o⃗19 will apply 282

the get_capital function regardless of the content 283

of x̃19. For example, if we add o⃗19 to some x̃ which 284

represents the “ China" token, it will transform into 285

“ Beijing". Thus we refer to o⃗19 as ⃗ocity since it 286

retrieves the capital cities of locations stored in the 287

residual stream. We locate such o⃗ vectors in the 288

uppercasing and past tense mapping tasks in the 289

examples given in Section 2.2, which we refer to 290

as ⃗oupper and ⃗opast, respectively.4 291

We test whether these updates have the same ef- 292

fect, and thus implement the same function, as they 293

do in the original contexts from which they were 294

extracted. To do so, we replace entire FFN layers 295

with these vectors and run new inputs through the 296

intervened model.5 297

Data: We are interested in whether the captured 298

o vectors can be applied in a novel context, in par- 299

ticular, to a context that is otherwise devoid of cues 300

as to the function of interest. Thus, we synthesize 301

a new dataset where each entry is a string of three 302

3We focus on one model because manual analysis was
required in order to determine how to perform the interven-
tion. See Appendix for results on GPT-J and Section 7 for
discussion.

4In Appendix A, we extend these results to GPT-J, for
which the same procedure leads to strong effects on uppercas-
ing, but smaller overall positive effects on capital cities and
past tensing (see Section 7).

5Which FFNs to replace is a hyperparameter; we find that
replacing layers 18-23 in GPT2-Medium leads to good results.
It also appears necessary to replace multiple FFNs at a time.
See additional experiments in Appendix E. It is likely that the
o⃗ vectors are added over the course of several layers, consistent
with the idea gradual updates from Jastrzebski et al. (2017).

4

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

World
Capitals

GPT2-Small

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Medium

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Large

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-XL

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0
GPT-J

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0
Bloom

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Upper-
casing

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Past
Tensing

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0

Argument
Answer Argument-Function Processing in the Last Token across Task/Models

M
ea

n
Re

cip
ro

ca
l R

an
k

Layer

Figure 3: Argument formation and function application is characterized by a promotion of the argument (red)
followed by it being replaced with the answer token (blue), forming an X when plotting reciprocal ranks. Across the
three tasks we evaluate, we see that most of the models exhibit these traces, and despite the major differences in
model depths, the stages occur at similar points in the models. Data shown is filtered by examples in which the
models got the correct answer.

random tokens (with leading spaces) followed by303

a token x which represents a potential argument304

to the function of interest. For example, in experi-305

ments involving ocity, we might include a sequence306

such as table mug free China table mug free307

China table mug free. This input primes the308

model to produce “China” at the top of the resid-309

ual stream, but provides no cues that the capital310

city is relevant, and thus allows us to isolate the ef-311

fect of ocity in promoting “Beijing” in the residual312

stream. In addition to the original categories, we313

also include an “out-of-domain” dataset for each314

task: US states and capitals, 100 non-color words,315

and 128 irregular verbs. These additional data test316

the sensitivity of the o⃗ vectors to different types of317

arguments.318

Results: Figure 4 shows results for a single ex-319

ample. Here, we see that “Beijing” is promoted all320

the way to the top of the distribution solely due to321

the injection of ⃗ocity into the forward pass. Figure322

5 shows that this pattern holds in aggregate. In all323

settings, we see that the outputs of the intended324

functions are strongly promoted by adding the cor-325

responding o⃗ vectors. By the last layer, for world326

and state capitals, the mean reciprocal rank of the327

target city name across all examples improves from328

roughly the 10th to the 3rd-highest ranked word329

and 17th and 4th-ranked words respectively. The330

target output token becomes the top token in 21.3%,331

53.5%, and 7.8% of the time in the last layer in the332

world capitals, uppercasing, and past tensing tasks,333

Figure 4: The gray area indicates layers with the FFN
intervention. Even if the input context is nonsense (re-
peating pattern), when “China" is represented in the
residual stream, the ⃗ocity vector promotes the correct
capital city.
respectively. 334

We also see the promotion of the proper past 335

tense verbs by ⃗opast. The reciprocal ranks improve 336

similarly for both regular (approx. 7th to 3rd rank) 337

and irregular verbs (approx. 6th to 3rd), indicat- 338

ing that the relationship between tenses is encoded 339

similarly by the model for these two types. ⃗oupper 340

promotes the capitalized version of the test token 341

almost every time, although the target word starts 342

at a higher rank (on average, rank 5). These results 343

together show that regardless of the surrounding 344

context and the argument to which it is applied, o⃗ 345

vectors consistently apply the expected functions. 346

Since each vector was originally extracted from 347

the model’s processing of a single naturalistic in- 348

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mapping Locations to their Capital Cities
Intervention from Poland -> Warsaw

Control World Capitals
ocity Interv. World Capitals
Control US State Capitals
ocity Interv. US State Capitals

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Uppercasing
Intervention from brown -> Brown

Control Color Words
oupper Interv. Color Words
Control Non-Color Words
oupper Interv. Non-Color Words

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Mapping Verbs to Past Tense
Intervention from abolish -> abolished

Control Regular Verbs
oupper Interv. Regular Verbs
Control Irregular Verbs
opast Interv. Irregular Verbs

Layer

M
ea

n
Re

cip
ro

ca
l R

an
k

Random Tokens Pattern Task

Figure 5: We intervene on GPT2-Medium’s forward pass while it is predicting the completion of a pattern. The
control indicates normal model execution, while the gray boxes indicate which FFNs are replaced with our selected
o⃗ vectors. We can see a significant increase in the reciprocal rank of the output of the function implemented by the o⃗
vector used even though the context is completely absent of any indication of the original task.

put, this generalizability suggests cross-context349

abstraction within the learned embedding space.350

Common Errors: While the above trend clearly351

holds on the aggregate, the intervention is not per-352

fect for individual cases. The most common error353

is that the intervention has no real effect. In the354

in-domain (out-domain) settings, this occurred in355

about 37% (20%) of capital cities, 4% (5%) on356

uppercasing, and 19% (22%) for past tensing. We357

believe the rate is so much higher for world capitals358

because the model did not have a strong association359

between certain country-capital pairs from pretrain-360

ing, e.g, for less frequently mentioned countries.361

Typically, in these cases, the top token remains362

the argument, but sometimes becomes some ran-363

dom other city, for example, predicting the capital364

of Armenia is Vienna. We also find that the way365

tokenization splits the argument and target words366

affects the ability of the o⃗ vector to work and is367

another source of errors. This is discussed further368

in Appendix F.369

5 The Role of FFNs in Out-of-Context370

Retrieval371

So far, we have shown that FFN output vectors372

can encode functions that transfer across contexts.373

Here, we investigate the role of this mechanism374

when we control whether the answer occurs in375

context. The tasks we study previously require376

recalling a token that does not appear in the given377

context (abstractive tasks). In this section we show378

that mid-higher layer FFNs are crucial for this pro-379

cess. When the answer to the question does appear380

in context (extractive tasks), we find that ablating381

a subset of FFNs has a comparatively minor effect 382

on performance, indicating that they are relatively 383

modular and there is a learned division of labor 384

within the model. This observation holds across 385

the decoder-only LMs tested in this paper. This 386

breakdown is consistent with previous work find- 387

ing that FFNs store facts learned from pre-training 388

(Geva et al., 2021b; Meng et al., 2022b,c) and atten- 389

tion heads copy from the previous context (Wang 390

et al.; Olsson et al., 2022). 391

5.1 Abstractive vs. Extractive Tasks 392

Extractive Tasks: Extractive tasks are those in 393

which the exact tokens required to answer a prompt 394

can be found in the input context. These tasks can 395

thus be solved by parsing the local context alone, 396

and thus do not necessarily require the model to 397

apply a function of the type we have focused on in 398

this paper (e.g., a function like get_capital). 399

Abstractive Tasks: Are those in which the 400

answer to a prompt is not given in the input context 401

and must be retrieved from pretraining memory. 402

Our results suggest this is done primarily through 403

argument-function processing, requiring function 404

application through (typically) FFN updates as 405

described in Section 3. 406

407

We provide examples with their associated 408

GPT2-Medium layerwise decodings in Figure 7. 409

We expect that the argument formation and func- 410

tion application stages of processing occur primar- 411

ily in abstractive tasks. Indeed, in Appendix A, 412

we show that the characteristic argument-answer X 413

pattern disappears on extractive inputs. We hypoth- 414

esize that applying out-of-context transformations 415

6

0 0.5 1
0

10

20

30

40

Colored
Objects

GPT2-Medium

0 0.5 1
0

20

40

GPT-J

0 0.5 1
0

20

40

60

80
Bloom

Extractive
Abstractive

0 0.5 1
0

25

50

75

100

World
Capitals

0 0.5 1
0

25

50

75

100

0 0.5 1
0

25

50

75

100 Extractive
Abstractive

Proportion of FFNs Intact

Ac
cu

ra
cy

Figure 6: Removing FFNs negatively affects performance when the task is abstractive: the in-context label is an
out-of-context transformation of the in-context prompt (e.g., “ silver” in context, answer given as “ Silver”). In
comparison, on the extractive dataset, performance is robust to a large proportion of FFNs being removed. Other
models tested are shown in Appendix B

to the predicted token representation is one of the416

primary functions of FFNs in the mid-to-late layers,417

and that removing them should only have a major418

effect on tasks that require out-of-context retrieval.419

5.2 Effect of Ablating FFNs420

Data: Consider the example shown in Section 2.2421

demonstrating the ⃗oupper function. By providing422

the answer to the in-context example as “ Silver",423

the task is abstractive by requiring the in-context424

token “ brown" to be transformed to “ Brown" in the425

test example. However, if we provide the in-context426

label as “ silver", the task becomes extractive, as427

the expected answer becomes “ brown". We create428

an extractive version of this dataset by lowercasing429

the example answer. All data is presented to the430

model with a single example (one-shot). We repeat431

this experiment on the world capitals (see Figure432

7), thought note that since the answer is provided433

explicitly, this task is much easier for the models434

in the extractive case.435

Results: We run the one-shot extractive and ab-436

stractive datasets on the full models, and then re-437

peatedly remove an additional set of FFNs from438

the top down (e.g., in 24 layer GPT2-Medium: re-439

moving the 20-24th FFNs, then the 15-24th, etc.).440

Our results are shown in Figure 6. Despite the441

fact that the inputs in the abstractive and extractive442

datasets only slightly differ (by a single character in443

Top Tokens per Layer
Abstractive Task Extractive Task

Layer

Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

The capital of
Somalia is Mogadishu.
The capital of Poland
is Warsaw.
Q: What is the capital
of Somalia?
A: Mogadishu
Q: What is the capital
of Poland?
A:

...
14 St St
15 Poland St
16 Poland Warsaw
17 Poland Warsaw
18 Poland Warsaw
19 Warsaw Warsaw
20 Warsaw Warsaw
21 Warsaw Warsaw
22 Warsaw Warsaw
23 Warsaw Warsaw

28

V2 switch colors

Figure 7: The abstractive task undergoes argument for-
mation and function application, while the extractive
task immediately saturates (yellow). Layers 0-11 de-
code as nonsense and are omitted for brevity.

the colored objects case) we find that performance 444

plummets on the abstractive task as FFNs are ab- 445

lated, while accuracy on the extractive task drops 446

much more slowly. For example, even after 24 FFN 447

sublayers are removed from Bloom (totaling 39B 448

parameters) extractive task accuracy for the colored 449

objects dataset drops 17% from the full model’s 450

performance, while abstractive accuracy drops 73% 451

(down to 1% accuracy). The case is similar across 452

7

model sizes and pretraining corpora; we include453

results on additional models in Appendix B. This454

indicates that we can isolate the effect of locating455

and retrieving out of context tokens in this setting456

to the FFNs. Additionally, because the model re-457

tains reasonably strong performance compared to458

using the full model, we do not find convincing459

evidence that the later layer FFNs are contributing460

to the extractive task performance, supporting the461

idea of modularity within the network.462

6 Related Work463

Attributing roles to components in pretrained LMs464

is a widely studied topic. In particular, the atten-465

tion layers (Olsson et al., 2022; Kobayashi et al.,466

2020; Wang et al.) and in the FFN modules, which467

are frequently associated with factual recall and468

knowledge storage (Geva et al., 2021b; Meng et al.,469

2022a,c). How language models store and use470

knowledge has been studied more generally as well471

(Petroni et al., 2019; Cao et al., 2021; Dai et al.,472

2022; Bouraoui et al., 2019; Burns et al., 2022;473

Dalvi et al., 2022; Da et al., 2021) as well as in474

static embeddings (Dufter et al., 2021). Recent475

work in mechanistic interpretability aims to fully476

reverse engineer how LMs perform some behav-477

iors (Elhage et al., 2021). Our work builds on the478

finding that FFN layers promote concepts in the479

vocabulary space (Geva et al., 2022a) by breaking480

down the process the model uses to do this in con-481

text; Bansal et al. (2022) perform ablation studies482

to test the importance of attention and FFN layers483

on in-context learning tasks. Other work analyze484

information flow within an LM to study how rep-485

resentations are built through the layers, finding486

discrete processing stages (Voita et al., 2019; Ten-487

ney et al., 2019). We also follow this approach,488

but our analysis focuses on interpreting how mod-489

els use individual updates within the forward pass,490

rather than probing for information encoded within491

some representation. Ilharco et al. (2023) show492

that vector arithmetic can be performed with the493

weights of finetuned models to compose tasks, sim-494

ilar to how o⃗ vectors can induce functions in the495

activation space of the model.496

7 Discussion & Conclusion497

A core challenge in interpreting neural networks498

is determining whether the information attributed499

to certain model components is actually used for500

that purpose during inference (Hase and Bansal,501

2022; Leavitt and Morcos, 2020). While previous 502

work has implicated FFNs in recalling factual as- 503

sociations (Geva et al., 2022a; Meng et al., 2022a), 504

we show through intervention experiments that we 505

can manipulate the information flowing through 506

the model according to these stages. This process 507

provides a simple explanation for the internal sub- 508

processes used by LMs and our findings invite fu- 509

ture work aimed at understanding why, and under 510

what conditions, LMs learn to use this mechanism 511

when they are capable of solving such tasks using, 512

e.g., adhoc memorization. 513

The mechanism we identify bears similarities 514

to linguistic regularities that allow for vector 515

arithmetic analogies in static word embeddings 516

(Mikolov et al., 2013) suggesting at least a quali- 517

tative similarity between large complex contextual 518

models and these simpler static models. Gladkova 519

et al. (2016) show that not all relations can be en- 520

coded with vector arithmetic analogies, specifically, 521

relations that are not one-to-one (e.g., mapping a 522

country to its official language). In Appendix G we 523

find evidence that LMs exhibit similar success and 524

failure cases by analyzing six additional tasks. We 525

provide our most detailed investigation on GPT2- 526

Medium, which clearly illustrates the phenomenon. 527

Our experiments on stages of processing with GPT- 528

J suggest that the same phenomena is in play, al- 529

though (as discussed in Section 4 and Appendix 530

A), the procedures we derive for interventions on 531

GPT2-Medium do not transfer perfectly. Specifi- 532

cally, we can strongly reproduce the intervention 533

results on uppercasing for GPT-J; results on the 534

other two tasks are positive but with overall weaker 535

effects. As we understand these processes more 536

deeply, a priority in future work must be to general- 537

ize specific findings to model-agnostic phenomena. 538

That said, in this work and other similar efforts, 539

a single positive example as a proof of concept 540

is often sufficient to advance understanding and 541

spur future work that improves robustness across 542

models. 543

Contemporaneous work (Geva et al., 2023) has 544

studied a different mechanism for factual recall in 545

LMs, but it is unclear how and when these mech- 546

anisms interact. Eventually, if we can understand 547

how models break down complex problems into 548

simple and predictable subprocesses, we can help 549

more readily audit their behavior. Interpreting the 550

processing signatures of model behaviors might 551

offer an avenue via which to evaluate and intervene 552

at runtime in order to prevent unwanted behavior. 553

8

References554

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal,555
Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.556
2022. Rethinking the Role of Scale for In-Context557
Learning: An Interpretability-based Case Study at 66558
Billion Scale. ArXiv:2212.09095 [cs].559

Zied Bouraoui, Jose Camacho-Collados, and Steven560
Schockaert. 2019. Inducing Relational Knowledge561
from BERT.562

Collin Burns, Haotian Ye, Dan Klein, and Jacob563
Steinhardt. 2022. Discovering Latent Knowl-564
edge in Language Models Without Supervision.565
ArXiv:2212.03827 [cs].566

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-567
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021.568
Knowledgeable or Educated Guess? Revisiting Lan-569
guage Models as Knowledge Bases. In Proceedings570
of the 59th Annual Meeting of the Association for571
Computational Linguistics and the 11th International572
Joint Conference on Natural Language Processing573
(Volume 1: Long Papers), pages 1860–1874, Online.574
Association for Computational Linguistics.575

Jeff Da, Ronan Le Bras, Ximing Lu, Yejin Choi, and576
Antoine Bosselut. 2021. Analyzing Commonsense577
Emergence in Few-shot Knowledge Models.578

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao579
Chang, and Furu Wei. 2022. Knowledge neurons in580
pretrained transformers. In Proceedings of the 60th581
Annual Meeting of the Association for Computational582
Linguistics (Volume 1: Long Papers), pages 8493–583
8502.584

Fahim Dalvi, Abdul Rafae Khan, Firoj Alam,585
Nadir Durrani, Jia Xu, and Hassan Sajjad. 2022.586
Discovering Latent Concepts Learned in BERT.587
ArXiv:2205.07237 [cs].588

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and589
Kristina Toutanova. 2019. BERT: Pre-training of590
deep bidirectional transformers for language under-591
standing. In Proceedings of the 2019 Conference of592
the North American Chapter of the Association for593
Computational Linguistics: Human Language Tech-594
nologies, Volume 1 (Long and Short Papers), pages595
4171–4186, Minneapolis, Minnesota. Association for596
Computational Linguistics.597

Philipp Dufter, Nora Kassner, and Hinrich Schütze.598
2021. Static Embeddings as Efficient Knowledge599
Bases? In Proceedings of the 2021 Conference of600
the North American Chapter of the Association for601
Computational Linguistics: Human Language Tech-602
nologies, pages 2353–2363, Online. Association for603
Computational Linguistics.604

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph,605
B Mann, A Askell, Y Bai, A Chen, T Conerly, et al.606
2021. A mathematical framework for transformer607
circuits. Transformer Circuits Thread.608

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir 609
Globerson. 2023. Dissecting recall of factual associ- 610
ations in auto-regressive language models. 611

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav 612
Goldberg. 2022a. Transformer feed-forward layers 613
build predictions by promoting concepts in the vo- 614
cabulary space. arXiv preprint arXiv:2203.14680. 615

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav 616
Goldberg. 2022b. Transformer Feed-Forward Lay- 617
ers Build Predictions by Promoting Concepts in the 618
Vocabulary Space. ArXiv:2203.14680 [cs]. 619

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 620
Levy. 2021a. Transformer Feed-Forward Layers Are 621
Key-Value Memories. In Proceedings of the 2021 622
Conference on Empirical Methods in Natural Lan- 623
guage Processing, pages 5484–5495, Online and 624
Punta Cana, Dominican Republic. Association for 625
Computational Linguistics. 626

Mor Geva, Roei Schuster, Jonathan Berant, and Omer 627
Levy. 2021b. Transformer feed-forward layers are 628
key-value memories. In Proceedings of the 2021 629
Conference on Empirical Methods in Natural Lan- 630
guage Processing, pages 5484–5495. 631

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat- 632
suoka. 2016. Analogy-based detection of morpholog- 633
ical and semantic relations with word embeddings: 634
what works and what doesn’t. In Proceedings of the 635
NAACL Student Research Workshop, pages 8–15, San 636
Diego, California. Association for Computational 637
Linguistics. 638

Peter Hase and Mohit Bansal. 2022. When can mod- 639
els learn from explanations? a formal framework 640
for understanding the roles of explanation data. In 641
Proceedings of the First Workshop on Learning with 642
Natural Language Supervision, pages 29–39, Dublin, 643
Ireland. Association for Computational Linguistics. 644

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts- 645
man, Suchin Gururangan, Ludwig Schmidt, Han- 646
naneh Hajishirzi, and Ali Farhadi. 2023. Editing 647
models with task arithmetic. ICLR. 648

Stanisław Jastrzebski, Devansh Arpit, Nicolas Ballas, 649
Vikas Verma, Tong Che, and Yoshua Bengio. 2017. 650
Residual connections encourage iterative inference. 651
In International Conference on Learning Representa- 652
tions. 653

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and 654
Kentaro Inui. 2020. Attention is not only a weight: 655
Analyzing transformers with vector norms. In 656
Proceedings of the 2020 Conference on Empirical 657
Methods in Natural Language Processing (EMNLP), 658
pages 7057–7075, Online. Association for Computa- 659
tional Linguistics. 660

Matthew L Leavitt and Ari Morcos. 2020. Towards 661
falsifiable interpretability research. arXiv preprint 662
arXiv:2010.12016. 663

9

https://doi.org/10.48550/arXiv.2212.09095
https://doi.org/10.48550/arXiv.2212.09095
https://doi.org/10.48550/arXiv.2212.09095
https://doi.org/10.48550/arXiv.2212.09095
https://doi.org/10.48550/arXiv.2212.09095
https://arxiv.org/abs/1911.12753v1
https://arxiv.org/abs/1911.12753v1
https://arxiv.org/abs/1911.12753v1
http://arxiv.org/abs/2212.03827
http://arxiv.org/abs/2212.03827
http://arxiv.org/abs/2212.03827
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://doi.org/10.18653/v1/2021.acl-long.146
https://openreview.net/forum?id=StHCELh9PVE
https://openreview.net/forum?id=StHCELh9PVE
https://openreview.net/forum?id=StHCELh9PVE
http://arxiv.org/abs/2205.07237
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.186
https://doi.org/10.18653/v1/2021.naacl-main.186
https://doi.org/10.18653/v1/2021.naacl-main.186
http://arxiv.org/abs/2304.14767
http://arxiv.org/abs/2304.14767
http://arxiv.org/abs/2304.14767
https://doi.org/10.48550/arXiv.2203.14680
https://doi.org/10.48550/arXiv.2203.14680
https://doi.org/10.48550/arXiv.2203.14680
https://doi.org/10.48550/arXiv.2203.14680
https://doi.org/10.48550/arXiv.2203.14680
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/N16-2002
https://doi.org/10.18653/v1/N16-2002
https://doi.org/10.18653/v1/N16-2002
https://doi.org/10.18653/v1/N16-2002
https://doi.org/10.18653/v1/N16-2002
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2022.lnls-1.4
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda664
Viégas, Hanspeter Pfister, and Martin Wattenberg.665
2022. Emergent world representations: Exploring a666
sequence model trained on a synthetic task. arXiv667
preprint arXiv:2210.13382.668

Kevin Meng, David Bau, Alex Andonian, and Yonatan669
Belinkov. 2022a. Locating and Editing Factual As-670
sociations in GPT. ArXiv:2202.05262 [cs] version:671
4.672

Kevin Meng, David Bau, Alex J Andonian, and Yonatan673
Belinkov. 2022b. Locating and editing factual asso-674
ciations in gpt. In Advances in Neural Information675
Processing Systems.676

Kevin Meng, Arnab Sen Sharma, Alex Andonian,677
Yonatan Belinkov, and David Bau. 2022c. Mass678
editing memory in a transformer. arXiv preprint679
arXiv:2210.07229.680

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2023.681
Circuit component reuse across tasks in transformer682
language models.683

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig.684
2013. Linguistic regularities in continuous space685
word representations. In Proceedings of the 2013686
conference of the north american chapter of the as-687
sociation for computational linguistics: Human lan-688
guage technologies, pages 746–751.689

nostalgebraist. 2020. interpreting GPT: the logit lens.690

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas691
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,692
Amanda Askell, Yuntao Bai, Anna Chen, Tom Con-693
erly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,694
Danny Hernandez, Scott Johnston, Andy Jones, Jack-695
son Kernion, Liane Lovitt, Kamal Ndousse, Dario696
Amodei, Tom Brown, Jack Clark, Jared Kaplan,697
Sam McCandlish, and Chris Olah. 2022. In-context698
learning and induction heads. Transformer Circuits699
Thread. Https://transformer-circuits.pub/2022/in-700
context-learning-and-induction-heads/index.html.701

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt702
Gardner, Christopher Clark, Kenton Lee, and Luke703
Zettlemoyer. 2018. Deep contextualized word repre-704
sentations. In Proceedings of the 2018 Conference of705
the North American Chapter of the Association for706
Computational Linguistics: Human Language Tech-707
nologies, Volume 1 (Long Papers), pages 2227–2237,708
New Orleans, Louisiana. Association for Computa-709
tional Linguistics.710

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,711
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and712
Alexander Miller. 2019. Language Models as Knowl-713
edge Bases? In Proceedings of the 2019 Confer-714
ence on Empirical Methods in Natural Language Pro-715
cessing and the 9th International Joint Conference716
on Natural Language Processing (EMNLP-IJCNLP),717
pages 2463–2473, Hong Kong, China. Association718
for Computational Linguistics.719

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 720
Dario Amodei, Ilya Sutskever, et al. Language mod- 721
els are unsupervised multitask learners. 722

Teven Le Scao, Angela Fan, Christopher Akiki, El- 723
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman 724
Castagné, Alexandra Sasha Luccioni, François Yvon, 725
Matthias Gallé, et al. 2022. Bloom: A 176b- 726
parameter open-access multilingual language model. 727
arXiv preprint arXiv:2211.05100. 728

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 729
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, 730
Adam R Brown, Adam Santoro, Aditya Gupta, 731
Adrià Garriga-Alonso, et al. 2022. Beyond the 732
imitation game: Quantifying and extrapolating the 733
capabilities of language models. arXiv preprint 734
arXiv:2206.04615. 735

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. Bert 736
rediscovers the classical nlp pipeline. In Proceedings 737
of the 57th Annual Meeting of the Association for 738
Computational Linguistics, pages 4593–4601. 739

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 740
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 741
Kaiser, and Illia Polosukhin. 2017. Attention is all 742
you need. Advances in neural information processing 743
systems, 30. 744

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The 745
Bottom-up Evolution of Representations in the Trans- 746
former: A Study with Machine Translation and Lan- 747
guage Modeling Objectives. In Proceedings of the 748
2019 Conference on Empirical Methods in Natu- 749
ral Language Processing and the 9th International 750
Joint Conference on Natural Language Processing 751
(EMNLP-IJCNLP), pages 4396–4406, Hong Kong, 752
China. Association for Computational Linguistics. 753

Ben Wang and Aran Komatsuzaki. 2021. GPT-J- 754
6B: A 6 Billion Parameter Autoregressive Lan- 755
guage Model. https://github.com/kingoflolz/ 756
mesh-transformer-jax. 757

Kevin Wang, Alexandre Variengien, Arthur Conmy, 758
Buck Shlegeris, and Jacob Steinhardt. 2022. Inter- 759
pretability in the Wild: a Circuit for Indirect Object 760
Identification in GPT-2 small. ArXiv:2211.00593 761
[cs]. 762

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, 763
Buck Shlegeris, and Jacob Steinhardt. Interpretabil- 764
ity in the wild: a circuit for indirect object identifica- 765
tion in gpt-2 small. In NeurIPS ML Safety Workshop. 766

A Argument-Function Processing in 767

Other Models 768

In Section 3 we show that GPT2-Medium and 769

Bloom promote the in-context ‘argument’ token 770

to some function before promoting the answer to 771

that function. In figure 8we show that this effect 772

is present across other models as well in the three 773

10

https://doi.org/10.48550/arXiv.2202.05262
https://doi.org/10.48550/arXiv.2202.05262
https://doi.org/10.48550/arXiv.2202.05262
http://arxiv.org/abs/2310.08744
http://arxiv.org/abs/2310.08744
http://arxiv.org/abs/2310.08744
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://doi.org/10.18653/v1/D19-1448
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593
https://doi.org/10.48550/arXiv.2211.00593

tasks we test. Qualitatively, we find that the pattern774

is more prominent in models that have more layers,775

likely because we are able to get more measure-776

ments after the FFN updates, so it is less likely that777

entire argument formation stage happens within778

a single layer (i.e., after the attention module up-779

date – we only take measurements after the FFN780

update for simplicity). In the extractive task set-781

ting, we would not expect the model to go through782

argument-function processing in order to reach the783

prediction, since it already appears in context (al-784

though this does not preclude it from doing so – it785

is still a valid way to retrieve the required informa-786

tion). We see that this X shaped pattern disappears787

when we plot the argument-answer curves for the788

extractive world capitals data, as shown next to the789

abstractive setting in Figure 9.790

We repeat the random tokens task on GPT-J us-791

ing the same stimuli as in the main paper to select792

o⃗ vectors. We find that we can locate o⃗ vectors793

occurring in other models, however the success794

rate varies for the tasks that we evaluate in this795

work. Results are shown in Figure 10. Although796

the uppercasing function works very well, we get797

weaker responses for the past tense and world capi-798

tals mappings. One explanation could be that these799

tasks are not solved with an as-general solution800

as in GPT2, but the process for carrying out this801

intervention depends on hyperparameters which802

are often model-specific (i.e., the exact layer at803

which to perform the intervention), so future work804

is needed to understand where differences between805

these models lie.806

B Additional Results on Ablating FFNs807

We include the results for all six models we test808

for the FFN ablation study for both the colored809

objects task (Figure 11) and the world capitals task810

(Figure 12). We find that the trend of abstractive811

performance dropping off far before extractive per-812

formance is reflected across all models.813

B.1 +/-ocase Intervention on Colors814

As described in the main paper, adding ocase to815

the residual stream (x19 + ocase) has the effect816

of capitalizing the first letter in the word ‘brown’.817

Similar to the results in Sections 2.2 and 2.2, we818

find that adding ocase to the residual stream has819

the effect of uppercasing the token prediction on820

arbitrary contextualized representations in the mid821

layers of GPT2-Medium. However, we also find822

that lowercasing the first letter can be accomplished 823

by subtracting it. Qualitatively, this works much 824

the same way as adding the o⃗ vectors previously 825

discussed. We show this effect empirically, by 826

showing the difference between replacing the FFN 827

updates in GPT2-Medium with either positive or 828

negative ocase (having the effect of adding or sub- 829

tracting from the residual stream). 830

We progressively remove FFNs from the top 831

of the model, and show the effect of adding or 832

subtracting ocase in Figure 13. In the abstractive 833

case, we find that accuracy is greatly boosted when 834

adding ocase which we identify as implementing 835

an uppercasing function, and reflects the results in 836

Sections 2.2 and 2.2. We find that we can replace 837

the top third of GPT2-Medium FFN layers (FFNs 838

in layers 16-24, around 20% of all parameters) with 839

+ocase to gain 25% in total accuracy (from 4.5% to 840

29.5%) and recovering to 72% of the performance 841

of the un-ablated model (41%). Conversely, if we 842

subtract ocase in the abstractive setting to encourage 843

lowercasing (i.e., encouraging the model to output 844

a lowercased answer when the answer it should 845

have a capital first letter), the model immediately 846

hits 0% performance. We see the opposite effect 847

in the extractive setting, where adding ocase hurts 848

performance to a greater degree than subtracting 849

it. According to our results presented so far, we 850

would expect FFNs to be unnecessary for solving 851

the extractive dataset examples, which is possibly 852

why performance is degraded in both cases we 853

intervene, but we don’t test this idea in this work. 854

C What are the Attention Heads Doing? 855

We focus on the outputs of the FFN layers in this 856

work, but that is not to say that the attention heads 857

are not contributing to the final answer. As shown 858

in Section 5, the attention layers are able to get 859

the final answer when it already appears explicitly 860

in context (when it’s extractive). This leads to a 861

possible explanation for why LMs learn to imple- 862

ment argument-function processing. We speculate 863

that this process may be the result of a natural pro- 864

gression in training. When the argument token 865

needs to be transformed ("brown" to "Brown"), the 866

model notices that it is the subject of the next token, 867

and uses attention heads to copy the value of that 868

token into the next token prediction. This opera- 869

tion could be done using mover heads (Wang et al., 870

2022; Merullo et al., 2023) or induction heads (Ols- 871

son et al., 2022). In the following layers, the model 872

11

World Capitals Task Mapping to Uppercase Mapping Verbs to Past
Tense

Figure 8: Across several model architectures and tasks, we find evidence that on average, the argument (which
appears in context) rises to the top of the vocab distribution before crossing with the answer to the task. We describe
this as argument-function processing where the argument to some function is represented in the residual stream
before some update from the model is added to it to produce the output of that function. Qualitatively, we observe
that models with more layers display this pattern more prominently.

12

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Extractive

GPT2-Small

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Medium

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-Large

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0
GPT2-XL

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0
GPT-J

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0
Bloom

Argument
Answer

0 6 12
0.0

0.2

0.4

0.6

0.8

1.0

Abstractive

0 12 24
0.0

0.2

0.4

0.6

0.8

1.0

0 18 36
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48
0.0

0.2

0.4

0.6

0.8

1.0

0 14 28
0.0

0.2

0.4

0.6

0.8

1.0

0 35 70
0.0

0.2

0.4

0.6

0.8

1.0 Argument
Answer

Comparison of Abstractive and Extractive Versions of the World Capitals Task
M

ea
n

Re
cip

ro
ca

l R
an

k

Layer

Figure 9: The ‘X’ pattern of argument and answer tokens crossing in the course of the forward pass is the
characteristic pattern in argument-function processing. In the main text, we show how the models we test use this
type of processing to recall the capital cities of locations. When we make the task extractive (by including the
correct capital in the given context), the model does not have to setup an argument and function in order to get
the answer, and the pattern disappears. This highlights the differences we describe in processing extractive and
abstractive tasks. Both datasets are filtered for examples where the models were correct.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Layer

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
cip

ro
ca

l R
an

k

Mapping Locations to their Capital Cities
Intervention from Poland -> Warsaw
Control World Capitals
ocity Intervention

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Re

cip
ro

ca
l R

an
k

Uppercasing
Intervention from brown -> Brown

Control Color Words
oupper Intervention

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Layer

0.00

0.05

0.10

0.15

0.20

Mapping Verbs to Past Tense
Intervention from abolish -> abolished
Control Regular+Irregular Verbs
opast Intervention

Figure 10: We use the same stimuli to extract o⃗ vectors on GPT-J. Results are similar for the uppercasing function,
but only very weakly positive on the world capitals task.

0 0.5 1
0

10

20

GPT2-Small

0 0.5 1
0

20

40
GPT2-Medium

0 0.5 1
0

20

40
GPT2-Large

0 0.5 1
0

20

40
GPT2-XL

0 0.5 1
0

20

40

GPT-J

0 0.5 1
0

25

50

75
Bloom (176B)

Extractive
Abstractive

Proportion of FFNs Intact

Ac
cu

ra
cy

Figure 11: Results of removing FFN sublayers for the colored objects task for all models.

13

0 0.5
0

20

GPT2-Small

0 0.5
0

50

100
GPT2-Medium

0 0.5
0

50

100
GPT2-Large

0 0.5
0

50

100
GPT2-XL

0 0.5
0

50

100
GPT-J

0 0.5
0

50

100
Bloom

Extractive
Abstractive

Proportion of FFNs Intact

Ac
cu

ra
cy

Figure 12: Results of removing FFN sublayers for the world capitals task for all models.

Figure 13: Replacing FFN updates with +ocase helps
recover accuracy in abstractive tasks where the answer
is expected to be uppercase compared to subtracting it
or ablating the FFNs. In extractive tasks, the task is
primarily solved by attention modules and adding or
subtracting ocase only hurts performance.

transforms this representation into the final output. 873

When subject enrichment (Geva et al., 2023) is not 874

possible, these same pseudo mover heads would 875

then copy the unenriched subjects (i.e., the regular 876

argument tokens). In these cases, the model would 877

have to apply the function after already copying it 878

over, creating the argument-processing signature. 879

Future work is needed to see if it is possible to unify 880

these different interpretations and perspectives. 881

D Effect on Zero-shot Performance 882

Layer Top Token
0 (
1 A
2 A
3 A
4 A
5 A
6 A
7 A
8 A
9 The
10 The
11 The
12 The
13 The
14 The
15 The
16 The
17 The
18 Poland
19 Poland
20 Poland
21 Poland
22 Poland
23 The

Table 1: These are the top tokens
per layer in GPT2-Medium on the
example zero-shot Poland exam-
ple.

We find that 883

intervening on 884

the model with 885

o⃗ vectors has 886

applications 887

in controllable 888

generation, 889

that is, guiding 890

the genera- 891

tion process 892

towards some 893

relevant text. 894

We showed 895

this was the 896

case in Section 897

4, but we can 898

also apply 899

this idea to 900

the context of 901

14

zero-shot learn-902

ing. When903

we provide904

in-context905

examples,906

we are also907

providing the908

output format909

of the prompt.910

Consider the911

example “Q:912

What is the913

capital of Poland? A:". unlike the one shot914

example given in Figure 2, there is no indication915

that the next word should be “ Warsaw" over916

continuing the generation as a complete sentence917

“The capital of Poland is Warsaw", which is what918

GPT2-Medium actually generates. If we decode919

at every layer, as is shown in Table ?? we can920

see that the model still goes through argument921

formation despite preferring to generate the full922

sentence. We can take advantage of this behavior923

by replacing the FFN layers in the later layers924

with ⃗ocity in order to guide the generation to the925

expected response of immediately generating the926

capital. We can perform this experiment on the927

past tensing task as well. Results on the zero-shot928

tasks are shown in Figure 14. We find that on the929

world capitals task, we can greatly improve the930

propensity of the model to output the expected931

answer by performing an o⃗ vector intervention,932

improving zero-shot performance from 5.6% to933

33.0%. On the past tense mapping task, where934

perhaps the output format is more obvious from935

the prompt, the zero and one shot performances are936

about equal, but we still see a modest improvement937

over the one shot results of about 4.2%. Although938

the tasks are very simple, we achieve this by939

effectively ablating FFN layers (layers 19-23) and940

precomputing their activations, suggesting it might941

be possible to edit models extensively to limit their942

expressiveness to one type of output while also943

making them more efficient. We are optimistic944

about future work in this area.945

E Effect of Layer Choice on Intervention946

Results947

In the main text, we replace FFNs starting at either948

layer 18 or 19 GPT2-Medium to the end (indexed949

at 0). We find that intervening on only one layer950

promotes the output token, but not to the top of951

the distribution. One possibility is that the model 952

makes gradual updates that are pushing the token 953

representation in generally the same direction (Jas- 954

trzebski et al., 2017). In Figure 15, we show that 955

adding any of the o⃗ vector interventions at any sin- 956

gle layer at 18 or afterwards, there is a roughly 957

equivalent increase to the average reciprocal rank 958

of the target word. The logit difference between 959

the argument and answer token (in the logits of 960

each early-decoded layer) shows this as well as a 961

gradual increase. This is exemplified in Figure 2 in 962

the main paper. 963

F Effect of Tokenization on the 964

Effectiveness of o⃗ Vectors 965

The tokenizer can split one word into multiple 966

subtokens, such as “Purple" into the tokens “Pur" 967

and “ple". This occurs with words that were less 968

frequent in the training data. We find that this pro- 969

cess has a generally negative effect on the perfor- 970

mance of the intervention we perform. Intuitively, 971

if we are trying to use ⃗oupper to capitalize the “pur- 972

ple" token into “Purple", it must map from “purple" 973

(one token) to “Pur". It seems less obvious, then, 974

that the embeddings would encode a linear relation- 975

ship between these two, since “Pur" is a subtoken 976

in many other words. We explore this specific phe- 977

nomenon on the random tokens task from Section 978

4 with the ⃗oupper intervention. We take 100 single 979

token words that capitalize to a single token, and 980

100 others that capitalize to words that break down 981

into multiple tokens. Our results can be seen in Fig- 982

ure 16. We find that tokens that get broken up into 983

multiple tokens are less probable than for tokens 984

that capitalize to single token forms. 985

G Additional Tasks: One-to-One, 986

Many-to-One, and Many-to-Many 987

Relations 988

In the main paper, we show study three one-to-one 989

relations that exhibit the argument/output pattern, 990

but it remains unclear how well this generalizes to 991

other relations. Using six additional tasks, three 992

many-to-X and three new one-to-one, we provide 993

evidence that suggests that the observed mecha- 994

nism is specific to one-to-one relations, and does 995

not work when mulitple inputs map to one output. 996

This suggests that the model is sensitive to this 997

distinction of relations during pretraining, and the 998

vector arithmetic mechanism structure we observe 999

only presents for the most explicit relations. In 1000

15

Figure 14: By replacing FFN networks with the corresponding o⃗ vectors, we show that we can improve zero-shot
performance by taking advantage of the model going through argument formation in the zero-shot setting.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

World Capitals
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Past Tense
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Uppercasing Color Words
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Uppercasing Words Tokenized as One Token
Control
Intervention 18
Intervention 19
Intervention 20
Intervention 21
Intervention 22
Intervention 23
Intervention 18-23

Layer

Re
cip

ro
ca

l R
an

k

Figure 15: Replacing any individual FFN update is worse than replacing all of them. This supports the idea that
networks made gradual updates to their representations, and that the o⃗ vectors we extract behave this way as well:
multiple similar updates are made k layers in a row. Interestingly, the average boost to the reciprocal rank is about
the same regardless of which single layer we apply the update at, suggesting that this range of FFNs are operating in
same space.

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Control - >1 Token
Intervention - >1 Token
Control - 1 Token
Intervention - 1 Token

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Layer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
Re

cip
ro

ca
l R

an
k

Control - >1 Token
Intervention - >1 Token
Control - 1 Token
Intervention - 1 Token

Probability and MRR Differences when Uppercasing words which are Broken into One vs Multiple Tokens

Figure 16: When the uppercase version of a word gets broken down into multiple subtokens, mapping to that token
becomes much less probable and is generally harder of an association for the model to make.

Table ??, we give examples of the six new tasks,1001

following the same prompt format as the one used1002

in the main paper. In Table ??, we break down the1003

relation type of each task and provide the GPT2-1004

Medium accuracy for each one. Figure 17 shows1005

the early decoding patterns for the argument and1006

answer tokens. While the three one-to-one tasks1007

exhibit the initial promotion of the argument token,1008

followed by the answer token on average, the argu-1009

ment token does not become highly promoted on1010

any of the non one-to-one relations.1011

H Compute1012

All models were run on NVidia RTX 3090s; Bloom1013

was run locally on 3090s in float16 with CPU of-1014

floading.1015

17

Task Example
Animal Hypernyms ...Q: The anaconda is a kind of what?\nA: (snake/reptile/boa/...)
Name to Nationality ...Q: What is the nationality of Balzac?\nA: (French)
Country to Language ...Q: What is the official language of Argentina?\nA: (Spanish)

Adj. to un-Adj. ...Q: What is the opposite of able?\nA: (unable)
3rd Person Verbs ...Q: What is the third person singular of become?\nA: (becomes)

Noun Plurals ...Q: What is the plural of album?\nA: albums

Table 2: Examples from three non-injective and one injective relation. A given animal (anaconda) is a type of snake
and reptile, and other snakes/reptiles also exist (many-to-many). Balzac is only French and other people map to
French (many-to-one), etc.

Task Accuracy (%) Task Type
Animal Hypernyms 30.4±1.7 Many-to-Many
Name to Nationality 73.2±2.0 Many-to-One
Country to Language 71.2±2.4 Many-to-Many

Adj. to un-Adj. 12.0±1.1 One-to-One
3rd Person Verbs 22.4±0.7 One-to-One

Noun Plurals 51.6±1.7 One-to-One

Table 3: One-shot accuracies for each task across 5 random seeds for GPT2-Medium.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

cip
ro

ca
l R

an
k

Animal Hypernyms
Argument
Answer

0 5 10 15 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0
Name to Nationality

Argument
Answer

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Country to Language

Argument
Answer

Figure 17: Non-injective tasks show no evidence of argument-function processing on average. In sharp contrast to
the past tense, colored objects, capital cities, and un-adj. tasks where this is observed, here, the argument token
experiences virtually no spike in reciprocal rank in the intermediate layers.

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Re

cip
ro

ca
l R

an
k

Adjective to un-Adjective
Argument
Answer

0 5 10 15 20
Layer

0.0

0.2

0.4

0.6

0.8

1.0
3rd Person Verbs

Argument
Answer

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0
Noun Plurals

Argument
Answer

Figure 18: For the first two tasks, the average argument-answer spike pattern is similar to the other one-to-one tasks
in which the vector arithmetic analogy held. The results for noun plurals are mostly negative as it appears the model
uses argument-function processing only some of the time. We will expand on this in the camera ready paper.

18

	Introduction
	Methods
	Early Decoding
	Tasks
	Models

	Stages of Processing in Predicting the Next Token
	Implementation of Context-Independent Functions in FFN Updates
	 Vector Interventions

	The Role of FFNs in Out-of-Context Retrieval
	Abstractive vs. Extractive Tasks
	Effect of Ablating FFNs

	Related Work
	Discussion & Conclusion
	Argument-Function Processing in Other Models
	Additional Results on Ablating FFNs
	+/-ocase Intervention on Colors

	What are the Attention Heads Doing?
	Effect on Zero-shot Performance
	Effect of Layer Choice on Intervention Results
	Effect of Tokenization on the Effectiveness of Vectors
	Additional Tasks: One-to-One, Many-to-One, and Many-to-Many Relations
	Compute

