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Abstract

Stroke causes significant damage due to the interruption or reduction of blood
supply to an area of the brain. This condition can result in severe sequelae, includ-
ing cognitive impairment, paralysis, speech and coordination difficulties, directly
affecting the patient’s quality of life. The brain damage resulting from a stroke
can have irreversible impacts on physical and mental capacity, highlighting the
importance of preventive measures, rapid interventions, and rehabilitation to min-
imize adverse consequences. In this study, we propose a method for monitoring
and predicting strokes that integrates Internet of Things (IoT) devices for remote
patient monitoring. Recognizing the severity of stroke-associated sequelae, our
approach aims to mitigate adverse impacts through preventive measures and timely
interventions. Using a combination of machine learning algorithms, including
Naive Bayes, Multilayer Perceptron, Support Vector Machine, k-Neighbors, De-
cision Tree, XGBoost, and Random Forest, we aim to assess the risk of stroke
occurrence, with XGBoost standing out with an Accuracy of 98.52% and a testing
time of 0.076ms.
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1 Introduction

According to the World Health Organization (WHO) (1), 15 million people worldwide suffer a stroke
annually, with 5 million fatalities and another 5 million left permanently disabled. A stroke occurs
when the brain’s blood supply is interrupted, leading to brain damage due to lack of oxygen and
nutrients. Strokes are classified as ischemic, caused by blood vessel blockage, or hemorrhagic, due to
brain bleeding (2). Symptoms include weakness, speech difficulties, severe headache, and loss of
consciousness.

Risk factors include prior stroke, transient ischemic attack (TIA), heart conditions such as heart
failure (3) and atrial fibrillation (4), and being over 55 years old (5). Other risk factors are smoking,
high cholesterol, diabetes (6), obesity (7), sedentary lifestyle, excessive alcohol (8), blood clotting
disorders, estrogen therapy, and psychoactive substances. Work-related stress, extreme temperatures,
long working hours (9), and socioeconomic factors (10) also increase stroke risk.

Given stroke’s severe consequences, predicting its occurrence is crucial. Wearable devices integrated
with IoT allow for remote monitoring, and IoT health systems improve patient-doctor communication
and data visualization (11). This article proposes a novel approach to classify stroke risk using
machine learning algorithms in conjunction with wearable devices. To enhance the transparency
of the decision-making process, Explainable AI (XAI) techniques are employed, allowing both
healthcare professionals and patients to understand the risk predictions. The system comprises a
web platform for healthcare providers and a mobile application for patients, facilitating real-time
monitoring and alerts.

2 Explained Artificial Intelligence

In this section, we will explore the two explainable artificial intelligence methods used in the
proposed approach: SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME). These methods will explain which features are most important for the decision-
making of the models, as well as identify which attributes contribute positively or negatively to
classifying the patient as belonging to the stroke-affected class.

2.1 SHapley Additive exPlanations

The SHapley Additive exPlanations (SHAP) method (12) is a technique used to interpret machine
learning models, based on Shapley value theory, which ensures a fair distribution of the importance of
each input feature in the model’s predictions. In classifications, SHAP provides explanations for the
overall importance of features by calculating the marginal contribution of each feature. Compatible
with various models, such as decision trees and neural networks, SHAP enhances transparency,
helps detect issues, and reduces biases in the model, offering a clear and detailed understanding
of predictions. The Shapley values (ϕi) for a given attribute i are calculated using the following
mathematical expression:

ϕi =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (1)

where:

• N is the set of all features.
• S is a subset of N that does not include feature i.
• |S| is the number of elements in S.
• v(S) is the value of the value function (in this context, the model prediction) with the subset

of features S.
• v(S ∪ {i}) is the value of the value function with the subset S plus feature i.

In the proposed method, SHAP reveals which features were most important for the model’s decision-
making, providing a detailed and transparent understanding of each feature’s contributions to the
model predictions. SHAP helps reduce biases in machine learning by explaining the contribution
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of each feature to the model’s predictions. It reveals biases, such as disproportionate influences of
features related to demographic groups, and identifies when the model overly relies on irrelevant
information. This enables adjustments to data and models for fairer and more transparent decisions.

2.2 Local Interpretable Model-Agnostic Explanations

Local Interpretable Model-agnostic Explanations (LIME) method explains individual AI model
predictions by creating local interpretations around specific points, such as a single prediction. It fits
simple models like linear regressions to the data around that point to identify influential features in
that context (13). The following steps illustrate its operation:

1. Perturbed Points: The first step is to generate perturbed points around the example we
want to explain. Let x′ be the original example, and xi a perturbed example. The goal is to
generate xi so that they are similar to x′ with small changes.

2. Importance Weights: Importance weights are assigned to each perturbed example xi,
indicating its relevance in the explanation. These weights are determined based on the
proximity between xi and the original example x′, using a similarity function such as
Euclidean distance or Manhattan distance.

3. Interpretable Model: An interpretable model, such as a linear regression, is trained using
the perturbed examples and the importance weights assigned to them. This model is trained
to predict the outputs of the original machine learning model.

4. Final Explanation: Finally, the final explanation for the original model prediction is derived
from the coefficients of the trained interpretable model. These coefficients indicate the
relative contribution of each feature to the original model prediction.

Although LIME offers a flexible approach applicable to various machine learning models, it has
limitations that should be considered, such as the potential instability of explanations with small
changes in input data and the reliance on the choice of perturbed points. These limitations can affect
the consistency of the generated explanations and their representativeness in relation to the model’s
global behavior (13).

3 Connection with Wearable Devices

In this section, we will explore the operation of the connection with wearable devices within the
context of the developed system. A mobile application has been developed, compatible with various
smartphones, which is made available to the patients. Data collection is performed through the mobile
application, exclusively developed for the patients, which connects to compatible devices such as
smartbands, blood pressure monitors, or glucose meters, via Bluetooth. Obtaining information from
these devices is carried out through their respective Bluetooth profile implementations (14). Table 1
presents the UUIDs of the services and characteristics used for data acquisition.

Table 1: Summary of Service and Characteristic UUIDs.
Function Service UUID Characteristic UUID
Heart Rate 0x180D 0x2A37
Glucose 0x1808 G0x2A18
Blood Pressure 0x1810 0x2A35

Periodically, the application checks the new data collected, being responsible for sending it to a
cloud-based platform where classification is carried out by the pre-trained model as detailed in
Section 3.0.1. The application and its testing were conducted using a Fitbit Inspire 2 smart band, an
Omron HEM-6232T blood pressure monitor, and a G-Tech Lite glucose meter. The Fitbit Inspire 2
smart band utilizes an optical heart rate sensor that employs photoplethysmography technology to
measure heartbeats by monitoring changes in blood flow. The Omron HEM-6232T blood pressure
monitor has an oscillometric sensor that detects pressure fluctuations in the cuff as it inflates and
deflates, capturing pulse waves generated by blood flow. The G-Tech Lite glucose meter uses an
amperometric sensor that measures the electric current, which the device processes to calculate and
display the blood glucose concentration.
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3.0.1 Proposed Methodology

In this section, we present the methodology developed for classifying patients as either healthy or
afflicted with stroke. Initially, we provide a detailed description of the dataset employed in this
study. Subsequently, we highlight the preprocessing applied. Next, we introduce the classification
techniques implemented, describing the stages of the training process. Finally, we define the metrics
used in evaluating the results. Figure 1 graphically illustrates the proposal, with each stage explained
in detail in the following subsections.

Figure 1: Proposed Methodology.

3.1 Dataset

For the development of the solution, we employed a clinical dataset (15) that includes information
from 5110 patients, covering 10 attributes described below: Gender: Refers to the patient’s gender.
The number of males is 1260, while the number of females is 1994. Age (years): Refers to the age
of the participants. Heart Disease: Refers to the presence of heart disease in the patient, with 6.33%
of participants having heart diseases. Hypertension: Refers to the presence of hypertension in the
patient, with 12.54% of participants having hypertension. Ever Married: Indicates marital status of
participants, with 79.84% of patients being married. Work Type: Represents the type of employment
of the patient, with 4 categories: self-employed 19.21%, private 65.02%, public 15.67%, and never
worked 0.1%. Residence Type: Represents the type of residence of the patient, with 2 categories:
rural 48.86% and urban 51.14%. Avg Glucose Level (mg/dL): Indicates the average glucose level of
the patient. BMI (Body Mass Index): Indicates the body mass index of the participants. Smoking
Status: Indicates whether the patient is a smoker 22.37%, never smoked 52.64%, or an ex-smoker
24.99%. Stroke: Indicates whether the patient has had a stroke.

3.2 Data Preprocessing

The first step in preprocessing involved converting nominal features into numerical values using the
One-Hot Encoding technique (16). The next step was to balance the dataset, as only 249 participants
had suffered a stroke. Balancing was achieved by randomly selecting 249 healthy participants to form
a balanced subset. Additionally, to improve the generalization capacity of the trained models, the
SMOTENC technique (17) was used to generate new samples of stroke patients and equalize them
with the healthy ones. Several tests were conducted to determine the optimal number of new samples
generated with the mentioned classifiers, and it was found that the best accuracy was achieved when
140 new samples per class were generated. Thus, the new dataset consists of balanced classes, with
389 samples per class. The use of the imbalanced dataset, prior to balancing, caused the model to
tend to classify all patients as healthy, impairing its ability to correctly identify patients with the
condition.

3.3 Classification Steps

To classify the patients, we chose machine learning methods frequently cited in the literature: Bayes
(18), k-Nearest Neighbors (kNN), Multilayer Perceptron (MLP) (19), (20), Optimal Path Forest
(OPF) Classifier (21), and Support Vector Machine (SVM) (22), eXtreme Gradient Boosting (XGB)
(23), and Random Forest (RF) (24).

The classification is performed in three steps: i) model training, ii) model testing, and iii) repetition
of steps i) and ii). Each subset of data consists of samples from the original dataset.
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1. Model Training: In this stage, we use 80% of the subset to perform model training. We
consider the hyperparameter configurations presented in Table 2 to find the classifier settings
on the training set. Classifiers configured for random search perform a 10-iteration search.
Hyperparameters for all classifiers, except the Bayes classifier, are determined after 10-fold
cross-validation.

2. Model Testing: In this stage, we perform testing on the remaining 20% of the data subset
using the saved classifiers. The system determines a class for each sample in the data subset.
Additionally, metrics are calculated in this stage.

3. Repeat Steps 1) and 2): The data subsets are randomly split into other training and testing
sets. These sets are differentiated from each other by the seed used. We then perform ten
repetitions of steps 1) and 2).

Table 2: Hyperparameter Tuning for Classifiers.
Classifier Search Type Parameter Setup
SVM(Linear) Random C 2˘5 to 215

SVM(RBF) Random C, γ 2˘5 to 215

KNN Grid Number of neighbors 3, 5, 7, 9, 11, 13, 15
Bayes(Normal) – – Gaussian probability density function
OPF – – Euclidian distance
XGB Random learning rate and Nº of estimators 1−4 to 1−2, 40 to 100
MLP Random Number in hidden layer 2 to 1000 Levenberg-Marquardt method
RF Random Number of estimators 2 to 100

3.4 Remote Patient Monitoring

The patient classification model was implemented on a cloud server, developed using a Microservices-
based Architecture. In this model, each functionality, such as risk classification, user management,
and integration with wearable devices, was implemented as an independent microservice. The server
was developed using Django (Python) to ensure robustness and scalability, while communication
between services is handled through REST APIs, enabling efficient integration between the system’s
various modules.

New data from the application is sent to a cloud platform for processing and checking discrepancies.
For example, heart rate is considered healthy if it follows the rule HRmax = 208 − 0.7age (25);
otherwise, it indicates irregular heartbeats. According to the European Society of Hypertension (26)
and the European Society of Cardiology (ESC), blood pressure for individuals aged 16 and over is
classified as follows, as illustrated in Table 3.

Table 3: Blood Pressure Classification Ranges.
Category Systolic (mmHg) Diastolic (mmHg)
Optimal <120 <80
Normal 120− 129 80− 84
Elevated 130− 139 85− 89
Hypertension - Stage 1 140− 159 90− 99
Hypertension - Stage 2 160− 179 100− 109
Hypertension - Stage 3 ≥ 180 ≥ 110

This classification is used within the website as a metric for evaluating blood pressure measurements
obtained from patients. The monitoring system proposed in this approach is aimed at adults or older
people, which is why these measures become valid for use.

In terms of glucose measurements, the guidelines from the American Diabetes Association (ADA)
(27) and the World Health Organization (WHO) are important references. The ranges for classifying
fasting and postprandial glucose align with the recommendations of these organizations and are
widely adopted in clinical practice for the diagnosis and monitoring of diabetes and prediabetes.
Table 4 presents the classification of glucose based on observed values.

The comparison of glucose levels may vary depending on the protocol established by the physician,
being customized for each patient, including the frequency of measurements. If data outside the
established standards is received, a notification will be sent to the attending physician. It is worth
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Table 4: Classification of Blood Glucose Levels.
Classification Anonymous Authors Address Anonymous Authors Address
Healthy Less than 100 Less than 140
Pre-diabetes 100 - 125 140 - 199
Diabetes 126 or more 200 or more

noting that patient data is encrypted to anonymize it and is in compliance with the LGPD (General
Data Protection Law) (28) in force in Brazil.

4 Results and Discussions

In this section, the results achieved by the stroke patient monitoring system are investigated. We
analyzed the results of this article using the following metrics: Accuracy, Recall and Precision.
We present the data obtained from the training of the machine learning model, highlighting its
effectiveness in predicting stroke risk. Additionally, we discuss the insights provided by the SHAP
method, which allowed us to interpret and understand the model’s decisions in more detail. The
system infrastructure used was an Intel i7, 16 GB of RAM, running Ubuntu 20.04 Linux without a
graphical processing unit (GPU). Table 5 presents the metrics and their standard deviations from the
results after 10 iterations of the steps described in Section 3.3, with the best results highlighted in
green.

Observing the obtained results, it is possible to verify that the XGB classifier stood out with an
Accuracy of 98.51%, followed by the OPF and SVM(RBF) classifiers with 97.11% and 96.05%,
respectively. A comparison between the XGB, SVM with RBF kernel, and OPF classifiers highlights
XGB as the most effective, with an accuracy of 98.51%, due to its ability to handle complex and
imbalanced data through boosting. The SVM with RBF kernel (96.05%) performs well but relies
on fine-tuning and can be sensitive to outliers. The OPF (97.11%) uses a graph-based approach,
efficient for structured data but sensitive to data distribution. The performance differences reflect the
characteristics of each method, and factors like dataset biases and generalizability should also be
considered.

Still observing the results from Table 5, the XGB classifier showed the highest score in terms of
Recall, with 98.06%, meaning that the model correctly identified a good percentage of positive cases
of strokes compared to the total number of actual stroke cases in the dataset. In other words, the
model captured the vast majority of stroke cases, missing only a small proportion of them. This
indicates a high level of sensitivity of the model in detecting stroke cases. Following, the OPF and
SVM(RBF) classifiers stood out with 97.03% and 96.25%, respectively.

Regarding Precision, the XGB classifier stood out with a score of 98.01%, followed by the OPF
classifier with 96.39% and SVM(RBF) with 95.18%, respectively. These results indicate that these
classifiers were able to identify most of the actual stroke cases, minimizing false positives. This
demonstrates the ability of the models to make accurate and reliable predictions about stroke cases.

Table 5: Metrics Obtained by Each Classifier.
Classifier Accuracy(%) Recall(%) Precision(%)
SVM(Linear) 92.88 ± 0.31 92.19±0.27 92.15±0.45
SVM(RBF) 96.05±0.48 96.24±0.36 95.18±0.64
kNN 94.03±0.52 94.12±0.42 94.09 ± 0.58
Bayes(Normal) 94.08±0.67 92.34 ± 0.58 92.28±0.73
OPF 97.11±0.79 97.03±0.67 96.39±0.85
XGB 98.51±0.55 98.06±0.33 98.01±0.39
MLP 95.18±0.47 95.23±0.38 95.17±0.57
RF 93.11±0.55 91.06±0.33 92.01±0.39

Table 6: Training and Testing Times Obtained
for Each Classifier.

Classifier Training Time(s) Testing Time(ms)
SVM(Linear) 17.43±3.189 1.412±0.021
SVM(RBF) 19.457±0.147 1.509±0.018
kNN 0.371±0.049 2.248±0.042
Bayes(Normal) 0.094±0.016 0.006±0.001
OPF 765.178±4.421 0.934±0.008
XGB 98.585±19.343 0.076±0.002
MLP 1420.715±29.453 0.096±0.008
RF 442.715±13.343 0.098±0.012

Evaluating the training and testing times of classifiers is crucial to ensure the efficiency and practical
viability of the models. The training time affects the scalability of the model, while the testing time
influences its ability to predict in real-time. Table 6 presents the training and testing times obtained
for the evaluated classifiers.

6



Observing the results, the Bayesian (Normal) classifier had the shortest training time, at 0.094s,
followed by the kNN and Linear SVM classifiers, which completed the task in 0.371s and 17.43s,
respectively. Regarding test time, the Bayesian classifier also stood out with 0.006ms, followed by the
XGB and MLP classifiers, with times of 0.076ms and 0.096ms, respectively. Although the Bayesian
classifier provides faster responses for prediction requests, the evaluation of accuracy, precision, and
recall values indicates that the XGB classifier is more suitable for the task, even though it requires
significant more time.

4.1 XAI Performace

To assess the impact of each predictor on the model outcome, we calculated the average values
using the SHAP method for the XGB classifier. We observed that the seven factors with the greatest
influence are Age, Average glucose level, Type of job, Type of residence, Body mass index, Gender,
and Marital status.

(a) Average Feature Impact on Model Output Magni-
tude

0.6 0.4 0.2 0.0 0.2 0.4 0.6
SHAP value (impact on model output)

Residence type

Gender 

Ever married

Body mass index

Work type

Avg glucose leve

Age

Low

High

Fe
at

ur
e 

va
lu

e

(b) SHAP Value Impact on Model Output (Each
Class).

Figure 2: Comparative Analysis of Feature Impacts on Model Outputs.

Through Figure 2a, it is possible to observe the average importance of each feature. Additionally,
the Shapley values (on the x-axis) indicate the individual impact of each variable on the prediction.
Positive values indicate that the feature increased the probability of class 1 (Stroke), while negative
values indicate an increase in the probability of class 0 (Healthy). A Shapley value of 0 means that
the variable had no influence on the prediction. The age had the greatest weight for the prediction,
while the type of residence was the least relevant variable.

In Figure 2b, when observing the considered variables, it is evident that the attributed impact makes
sense. For example, it is natural for strokes to be more common in older individuals and those with
higher glucose levels, as observed in Figure 2. As higher values of these quantities are observed,
higher Shapley values are also observed, indicating a positive contribution to the classification of the
stroke class (illustrated in red). The same pattern can be observed for body mass index, as found in
the study conducted by (29). . Female patients (labeled as 1) contributed more to the stroke class
(30). Married patients (labeled as 1) also showed a higher contribution to the positive class, as noted
in (31). Regarding residence type, patients living in rural areas (labeled as 1) had a slight contribution
to the stroke class, according to (32).

Table 7: Explanations of Two Instances from The Dataset.
Feature Healthy Stroke
Gender 0.00 0.00

Age 25.00 65.00
Work type 0.00 0.00

Avg glucose level 96.00 120.00
Ever married 0.00 0.00

Body mass index 19.00 26.00
Residence type 1.00 1.00

Table 7 illustrates the explanations of two instances from the dataset. For the Healthy prediction, the
result indicates the analysis of feature values, we can identify which characteristics are most relevant
for this prediction. Similarly, in the prediction associated with the diagnosis of a stroke, XAI provides
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a detailed explanation, highlighting the features and essential information for doctors and patients to
understand and trust computer-assisted diagnoses.

We have the instance of a healthy patient: a 25-year-old woman residing in an urban environment,
with an average glucose level within normal range and a body mass index considered healthy. Based
on this information, the model classified the patient as healthy. In contrast, in the Stroke column,
we have the instance of a patient who suffered a stroke. The classification was Stroke due to the
advanced age, above-normal glucose level, and unhealthy body mass index highlighted in orange. It
is observed that both patients reside in urban areas, which may facilitate access to controlling risk
factors for stroke. This is considered a positive factor in managing this type of occurrence, since
mortality due to stroke is higher in rural areas than in urban areas, due to difficulty in accessing
medical treatment, especially related to poverty.

4.2 Comparisons With Related Work

As shown in Table 8, we compared the proposed approach with the studies of (33), (34), (35) and
(36). In (33), the authors used stacking classification to predict strokes, achieving an accuracy of 98%.
Despite the good results obtained, the method adds an extra layer of complexity to the model, as it
involves training multiple base models and then combining their predictions into a meta-model. This
can make model implementation and maintenance more challenging. Furthermore, the computational
cost for using this model also increases.

Table 8: Comparison of Other Works with the Proposed Methodology.
Author Method Accuracy XAI Techniques
Our Approach XGB 98.51% SHAP and LIME
(33) Stacking 98.00% No
(34) Random Forest 94.70% No
(35) Random Forest 98.94% No
(36) Random Forest 98.94% SHAPE and LIME

Still observing the Table 8, in (34) and (35), similar approaches were used for the classification
task, in which the Random Forest classifier stood out as the best, presenting accuracies of 94.7%
and 98.94%, respectively. In the study presented in (36), an accuracy of 90.36% was achieved
in classifying stroke patients. To provide insights into machine learning models considered black
boxes, two explainable techniques were also studied: SHAP and LIME. The results were in line
with what was presented in the work, with the same features being selected as the most relevant for
decision-making in the algorithms.

5 Conclusions and Future Works

In this paper, we present an approach for classifying patients regarding the risk of stroke based on their
clinical data, utilizing the XGBoost classifier. We achieved an accuracy of 98.51% and performed the
classification task in just 0.076ms. Although the system exhibited high accuracy and sensitivity, it is
fundamental to evaluate the clinical implications of these results. Accurately predicting stroke risk,
for instance, could enable earlier interventions, enhanced patient monitoring, and the development of
personalized treatment plans, contributing to improved clinical outcomes.

Additionally, we developed an application that presents the features considered in decision-making
through the LIME algorithm. For patients with potential stroke risk, remote monitoring, including
alerts, is possible. It is important to note that our method does not replace medical expertise. Instead,
it can serve as an auxiliary diagnostic resource, automating and expediting the process of evaluating
patients with potential stroke risk.

For future work, we plan to increase the size of the dataset by incorporating information collected in
clinics or hospitals. We also intend to explore other machine learning methods, such as the Minimal
Learning Machine and Minimal Learning Machine Nearest Neighbours (37; 38). Additionally, we aim
to improve the interpretability of model predictions, potentially integrating Symbolic AI techniques to
explain decisions through rules based on medical knowledge. This hybrid approach aims to increase
healthcare professionals’ confidence by providing clearer and more justified predictions and enabling
continuous adjustments based on new findings and clinical guidelines.

8



References
[1] W. H. Organization. (2024) Stroke (cerebrovascular accident). Accessed in: 20-12-2023.

[Online]. Available: https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/
index.html

[2] A. Bustamante, A. Penalba, C. Orset, L. Azurmendi, V. Llombart, A. Simats, E. Pecharro-
man, O. Ventura, M. Ribó, D. Vivien et al., “Blood biomarkers to differentiate ischemic and
hemorrhagic strokes,” Neurology, vol. 96, no. 15, pp. e1928–e1939, 2021.

[3] C. W. Tsao, A. W. Aday, Z. I. Almarzooq, A. Alonso, A. Z. Beaton, M. S. Bittencourt, A. K.
Boehme, A. E. Buxton, A. P. Carson, Y. Commodore-Mensah et al., “Heart disease and stroke
statistics—2022 update: a report from the american heart association,” Circulation, vol. 145,
no. 8, pp. e153–e639, 2022.

[4] X. Xia, W. Yue, B. Chao, M. Li, L. Cao, L. Wang, Y. Shen, and X. Li, “Prevalence and risk
factors of stroke in the elderly in northern china: data from the national stroke screening survey,”
Journal of neurology, vol. 266, pp. 1449–1458, 2019.

[5] K. M. Rexrode, T. E. Madsen, A. Y. Yu, C. Carcel, J. H. Lichtman, and E. C. Miller, “The
impact of sex and gender on stroke,” Circulation research, vol. 130, no. 4, pp. 512–528, 2022.

[6] A. Alloubani, A. Saleh, and I. Abdelhafiz, “Hypertension and diabetes mellitus as a predictive
risk factors for stroke,” Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 12,
no. 4, pp. 577–584, 2018.

[7] S. Elsayed and M. Othman, “The effect of body mass index (bmi) on the mortality among
patients with stroke,” Eur. J. Mol. Clin. Med, vol. 8, pp. 181–187, 2021.

[8] J. Patra, B. Taylor, H. Irving, M. Roerecke, D. Baliunas, S. Mohapatra, and J. Rehm, “Alcohol
consumption and the risk of morbidity and mortality for different stroke types-a systematic
review and meta-analysis,” BMC public health, vol. 10, no. 1, pp. 1–12, 2010.

[9] M. Yang, H. Yoo, S.-Y. Kim, O. Kwon, M.-W. Nam, K. H. Pan, and M.-Y. Kang, “Occupational
risk factors for stroke: A comprehensive review,” Journal of Stroke, vol. 25, no. 3, p. 327, 2023.

[10] A. M. Cox, C. McKevitt, A. G. Rudd, and C. D. Wolfe, “Socioeconomic status and stroke,” The
Lancet Neurology, vol. 5, no. 2, pp. 181–188, 2006.

[11] A. Onasanya and M. Elshakankiri, “Smart integrated iot healthcare system for cancer care,”
Wireless Networks, vol. 27, pp. 4297–4312, 2021.

[12] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” in
Proceedings of the 31st International Conference on Neural Information Processing Systems
(NeurIPS), 2017, pp. 4765–4774.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you? explaining the predictions
of any classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2016, pp. 1135–1144.

[14] Bluetooth specifications. Accessed in 2024-02-12. [Online]. Available: https://www.bluetooth.
com/specifications/specs/

[15] Fedesoriano, “Stroke prediction dataset,” https://www.kaggle.com/datasets/fedesoriano/
stroke-dataset, 2023.

[16] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer encoding: One hot way to
resist adversarial examples,” in International conference on learning representations, 2018.

[17] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling approach for
imbalanced learning,” in 2008 IEEE international joint conference on neural networks (IEEE
world congress on computational intelligence). Ieee, 2008, pp. 1322–1328.

[18] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons, 2012.

9

https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://www.kaggle.com/datasets /fedesoriano/stroke-dataset
https://www.kaggle.com/datasets /fedesoriano/stroke-dataset


[19] S. Haykin, Redes Neurais - Princípios e Prática, 2nd ed. Porto Alegre: Boolman, 10 2000,
900 páginas.

[20] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” Information Theory, IEEE
Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

[21] T. M. Nunes, A. L. Coelho, C. A. Lima, J. P. Papa, and V. H. C. De Albuquerque, “Eeg
signal classification for epilepsy diagnosis via optimum path forest–a systematic assessment,”
Neurocomputing, vol. 136, pp. 103–123, 2014.

[22] S. Theodoridis and K. Koutroumbas, “Pattern recognition–fourth edition, 2009.”

[23] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 785–794.

[24] L. Breiman and A. Cutler, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[25] R. A. Robergs and R. Landwehr, “The surprising history of the “hrmax= 220-age” equation,” J
Exerc Physiol, vol. 5, no. 2, pp. 1–10, 2002.

[26] A. V. Chobanian, G. L. Bakris, H. R. Black, W. C. Cushman, L. A. Green, J. L. Izzo Jr,
D. W. Jones, B. J. Materson, S. Oparil, J. T. Wright Jr et al., “Seventh report of the joint
national committee on prevention, detection, evaluation, and treatment of high blood pressure,”
hypertension, vol. 42, no. 6, pp. 1206–1252, 2003.

[27] American Diabetes Association. (2022) Standards of medical care in diabetes. Accessed: May
26, 2024. [Online]. Available: https://professional.diabetes.org/sites/professional.diabetes.or.pdf

[28] “General data protection law (lgpd),” law No. 13,709, of August 14, 2018.

[29] Y. G. Wang, G. Li, Y. S. Han, X. H. Jin, and Y. S. Xu, “Body mass index and risk of stroke: A
dose-response meta-analysis of prospective studies,” Medicine (Baltimore), vol. 96, no. 12, p.
e5711, 2017.

[30] K. M. Rexrode, T. E. Madsen, A. Y. Yu, C. Carcel, J. H. Lichtman, and E. C. Miller, “The
impact of sex and gender on stroke,” Circulation research, vol. 130, no. 4, pp. 512–528, 2022.

[31] K. Andersen and T. Olsen, “Stroke case-fatality and marital status,” Acta Neurologica Scandi-
navica, vol. 138, no. 4, pp. 377–383, 2018.

[32] J. Joubert, L. F. Prentice, T. Moulin, S.-T. Liaw, L. B. Joubert, P.-M. Preux, D. Ware,
E. Medeiros de Bustos, and A. McLean, “Stroke in rural areas and small communities,” Stroke,
vol. 39, no. 6, pp. 1920–1928, 2008.

[33] E. Dritsas and M. Trigka, “Stroke risk prediction with machine learning techniques,” Sensors,
vol. 22, no. 13, p. 4670, 2022.

[34] H. Al-Zubaidi, M. Dweik, and A. Al-Mousa, “Stroke prediction using machine learning classifi-
cation methods,” in 2022 International Arab Conference on Information Technology (ACIT).
IEEE, 2022, pp. 1–8.

[35] N. S. Adi, R. Farhany, R. Ghina, and H. Napitupulu, “Stroke risk prediction model using
machine learning,” in 2021 International Conference on Artificial Intelligence and Big Data
Analytics. IEEE, 2021, pp. 56–60.

[36] K. Mridha, S. Ghimire, J. Shin, A. Aran, M. M. Uddin, and M. F. Mridha, “Automated stroke
prediction using machine learning: An explainable and exploratory study with a web application
for early intervention,” IEEE Access, 2023.

[37] A. H. de Souza Junior, F. Corona, G. A. Barreto, Y. Miche, and A. Lendasse, “Minimal
learning machine: A novel supervised distance-based approach for regression and classification,”
Neurocomputing, vol. 164, pp. 34–44, 2015.

[38] D. P. P. Mesquita, J. P. P. Gomes, and A. H. S. Junior, “Ensemble of minimal learning machines
for pattern classification,” in Advances in Computational Intelligence: 13th International Work-
Conference on Artificial Neural Networks, IWANN 2015, Palma de Mallorca, Spain, June 10-12,
2015. Proceedings, Part II 13. Springer, 2015, pp. 142–152.

10

https://professional.diabetes.org/sites/professional.diabetes.or.pdf

	Introduction
	Explained Artificial Intelligence
	SHapley Additive exPlanations
	Local Interpretable Model-Agnostic Explanations

	Connection with Wearable Devices
	Proposed Methodology
	Dataset
	Data Preprocessing
	Classification Steps
	Remote Patient Monitoring

	Results and Discussions
	XAI Performace
	Comparisons With Related Work

	Conclusions and Future Works

