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Figure 1: Audio-based video editing. Within a set of speech videos, speech audio of a randomly chosen
speaker, extracted from the video, can be used to drive any video featuring a random speaker.

ABSTRACT

We present a method to edit a target portrait footage by taking a sequence of audio
as input to synthesize a photo-realistic video. This method is unique because it is
highly dynamic. It does not assume a person-specific rendering network yet ca-
pable of translating one source audio into one random chosen video output within
a set of speech videos. Instead of learning a highly heterogeneous and nonlin-
ear mapping from audio to the video directly, we first factorize each target video
frame into orthogonal parameter spaces, i.e., expression, geometry, and pose, via
monocular 3D face reconstruction. Next, a recurrent network is introduced to
translate source audio into expression parameters that are primarily related to the
audio content. The audio-translated expression parameters are then used to syn-
thesize a photo-realistic human subject in each video frame, with the movement of
the mouth regions precisely mapped to the source audio. The geometry and pose
parameters of the target human portrait are retained, therefore preserving the con-
text of the original video footage. Finally, we introduce a novel video rendering
network and a dynamic programming method to construct a temporally coherent
and photo-realistic video. Extensive experiments demonstrate the superiority of
our method over existing approaches. Our method is end-to-end learnable and
robust to voice variations in the source audio. Some results are shown in Fig. 1.

1 INTRODUCTION

Video portrait editing is a highly sought-after technique in view of its wide applications, such as
filmmaking, video production, and telepresence. Commercial video editing applications, such as
Adobe Premiere and Apple iMovie, are resource-intensive tools. Indeed, editing audio-visual con-
tent would require one or more footage to be reshot. Moreover, the quality of the edited video is
highly dependent on the prowess of editors.

Audio-based approach is an attractive technique for automatic video portrait editing. Several meth-
ods (Chen et al., 2018; Zhu et al., 2018) are proposed to animate the mouth region of a still image to
follow an audio speech. The result is an animated static image rather than a video, hence sacrificing
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realism. Audio-driven 3D head animation (Taylor et al., 2016) is an audio-based approach but aim-
ing at a different goal, namely to drive stylized 3D computer graphic avatars, rather than to generate
a photo-realistic video. Suwajanakorn et al. (2017) attempted to synthesize photo-realistic videos
driven by audio. While impressive performance was achieved, the method assumes the source audio
and target video to come from the same identity. The method is only demonstrated on the audio
tracks and videos of Barack Obama. Besides, it requires long hours of single-identity data (up to 14
hours (Suwajanakorn et al., 2017)) for training using relatively controlled and high-quality shots.

In this paper, we investigate a learning-based framework that can perform many-to-many audio-
to-video translation, i.e., without assuming a single identity of source audio and the target video.
We further assume a scarce number of target video available for training, e.g., at most a 15-minute
footage of a person is needed. Such assumptions make our problem non-trivial: 1) Without sufficient
data, especially in the absence of source video, it is challenging to learn direct mapping from audio to
video. 2) To apply the framework on randomly chosen source audios and target videos, our method
needs to cope with large audio-video variations between different subjects. 3) Without explicitly
specifying scene geometry, materials, lighting, and dynamics, as in the case of a standard graphics
rendering engine, it is hard for a learning-based framework to generate photo-realistic yet temporally
coherent videos.

To overcome the aforementioned challenges, we propose to use the expression parameter space,
rather than the full pixels, as the target space for audio-to-video mapping. This facilitates the learning
of more effective mapping, since the expression is semantically more relevant to the audio source,
compared to other orthogonal spaces, such as geometry and pose. In particular, we manipulate the
expression of a target face by generating a new set of parameters through a novel LSTM-based
Audio-to-Expression Translation Network. The newly generated expression parameters, combined
with geometry and pose parameters of the target human portrait, allow us to reconstruct a 3D face
mesh with the same identity and head pose of the target but with new expression (i.e., lip movements)
that matches the phonemes of the source audio.

We further propose an Audio ID-Removing Network that keeps audio-to-expression translation ag-
nostic to the identity of the source audio. Thus, the translation is robust to variations in the voices
of different people in different source audio. Finally, we solve the difficult face generation problem
as a face completion problem conditioned on facial landmarks. Specifically, after reconstructing a
3D face mesh with new expression parameters, we extract the associated 2D landmarks from the
mouth region and represent them as heatmaps. These heatmaps are combined with target frames
where the mouth region is masked. Taking the landmark heatmaps and the masked target frames as
inputs, a video rendering network is then used to complete the mouth region of each frame guided
by dynamics of the landmarks.

We summarize our contributions as follows: 1) We formulate an end-to-end learnable framework
that supports audio-based video portrait editing. We demonstrate coherent and photo-realistic results
by focusing specifically on expression parameter space as the target space, from which source audios
can be effectively translated into target videos. 2) We present an Audio ID-Removing Network that
encourages an identity-agnostic audio-to-expression translation. This network allows our framework
to cope with large variations in voices that are present in the audio sources. 3) We propose a Neural
Video Rendering Network based on the notion of face completion with a masked face as input and
mesh landmarks as conditions. This approach facilitates the generation of photo-realistic video for
multi-personal within one single network.

2 RELATED WORK

Audio-based Facial Animation. Driving a 3D head model by input audio learns to associate speech
features or phonemes with visemes. Taylor et al. (2017) propose to directly map speech phonemes
to face rig control parameters. Different 3D head models are applied in speech-driven facial an-
imation, e.g., face rig (Zhou et al., 2018), face mesh (Karras et al., 2017), and expression blend-
shapes (Pham et al., 2017). Generating photo-realistic portrait videos is more challenging than
driving 3D head model since speaker-specific appearance and head pose are crucial for the quality
of generated videos. Many methods (Jamaludin et al., 2019; Vougioukas et al., 2018; Zhou et al.,
2019; 2020) take a reference image for video generation, and the result is an animation of a still
image rather than a natural video. Recently, Suwajanakorn et al. (2017) obtain the state-of-the-art
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result in synthesizing the Obama video portrait. However, it assumes the source and target to have
the same identity and requires long hour of training data (up to 14 hours). Thus, it is not applicable
in audio-based video editing that need to cope with different sources of voice and target actors. In
addition, the target video data is relatively scarce. Fried et al. (2019) proposed a time-consuming
retrieve algorithm to edit a talking-head video based on its transcript to produce a realistic video.
Thies et al. (2020) present a method to extract speech content by DeepSpeech Hannun et al. (2014)
to drive frontal talking videos of different speakers. These methods Suwajanakorn et al. (2017);
Fried et al. (2019); Kim et al. (2019); Thies et al. (2020) require a person-specific face rendering
network for each target person. To generate lip-synced video with natural or speaker-specific head
motion, recent methods try to learn head motions from short talkings videos (Chen et al., 2020) or
speech audios (Yi et al., 2020).

Video-based Facial Reenactment. It is inherently difficult to synthesize mouth movements based
solely on speech audio. Therefore, many methods turn to learning mouth movements from videos
comprising the same/intended speech content. (Geng et al., 2018; Wiles et al., 2018; Thies et al.,
2016; Kim et al., 2018; Nagano et al., 2018). From source portrait video, facial landmarks (Geng
et al., 2018; Qian et al., 2019) or expression parameters (Wiles et al., 2018) are estimated to drive the
target face image. In these methods, the generated portrait videos are frame-wise realistic but they
suffer from poor temporal continuity. ReenactGAN (Wu et al., 2018) is the first end-to-end learn-
able video-based facial reenactment method. It introduces a notion of “boundary latent space” to
perform many-to-one face reenactment. However, ReenactGAN needs person-specific transformers
and decoders, which makes the model size increase linearly with person identities raising.

Many model-based methods (Thies et al., 2016; Kim et al., 2018; Nagano et al., 2018) leverage
a 3D head model to disentangle facial geometry, expression, and pose. Face2Face (Thies et al.,
2016) transfers expressions in parameter space from the source to the target actor. To synthesize a
realistic target mouth region, the best mouth image of the target actor is retrieved and warped. Kim
et al. (2018) present a method that transfers expression, pose parameters, and eye movement from
the source to the target actor. These methods are person-specific therefore rigid in practice (Kim
et al., 2018) and suffer audio-visual misalignment therefore creating artifacts leading to unrealistic
results (Thies et al., 2016; Kim et al., 2018; Nagano et al., 2018).

Deep Generative Models. Inspired by the successful application of GAN (Goodfellow et al., 2014)
in image generation (Radford et al., 2015; Mao et al., 2017; Zhu et al., 2017), many methods (Zhou
et al., 2019; Thies et al., 2020; Kim et al., 2018) leverage GAN to generate photo-realistic talking
face images conditioned on coarse rendering image (Kim et al., 2018), fused audio, and image
features (Zhou et al., 2019). Generative inpainting networks (Iizuka et al., 2017; Liu et al., 2018; Yu
et al., 2018) are capable of modifying image content by imposing guided object edges or semantic
maps (Yu et al., 2018). We convert talking face generation into an inpainting problem of mouth
region, since mouth movement is primarily induced by input speeches.

Monocular 3D Face Reconstruction. Reconstructing 3D face shape and texture from a single
face image has extensive applications in face image manipulation and animation (Fyffe et al., 2014;
Garrido et al., 2015; Thies et al., 2016; Roth et al., 2016; Suwajanakorn et al., 2017). In general,
monocular 3D face reconstruction produces facial shape, expression, texture, and pose parameters
by solving a non-linear optimization problem constrained by a statistical linear model of facial shape
and texture, such as Basel face model (Paysan et al., 2009), FaceWarehouse model (Cao et al., 2014),
and Flame (Li et al., 2017). Recently, different 3D head models have been increasingly applied in
talking portrait video synthesis (Thies et al., 2016; Suwajanakorn et al., 2017; Kim et al., 2018;
Nagano et al., 2018; Fried et al., 2019; Kim et al., 2019).

3 METHODOLOGY

The architecture of the proposed method is shown in Fig. 2. First, we register a parametric 3D face
model (Cao et al., 2014) in the target video, for every portrait video frame to extract face geometry,
pose, and expression parameters. Then, the Audio-to-Expression Translation Network learns the
mapping from the source audio feature to face expression parameters. We design an Audio ID-
Removing Network to alleviate the issues on large variations caused by multiple speakers. Lastly,
we formulate the talking face generation problem as a face completion problem guided by mouth
region landmarks, in which the landmarks are projected from the reconstructured 3D facial mesh.
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Figure 2: Architecture. Our network contains an Audio-to-Expression Translation Network that learns facial
expression parameters from speech audio and a Neural Video Rendering Network that generates mouth region
guided by projected mouth landmarks.

We propose a Neural Video Rendering network to complete the mouth region of each frame, guided
by the dynamics of the landmarks to generate a photo-realistic portrait video.

3.1 3D FACE MODELING

We leverage a parametric 3D face model (Cao et al., 2014) on portrait video frame to recover low
dimensional geometry, expression, and pose parameters. To reduce parameter dimension, geometry
and expression bases are computed based on high-quality head scans (Blanz & Vetter, 1999) and
facial blendshapes (Cao et al., 2014; Alexander et al., 2010) via principal component analysis (PCA).
The geometry parameters s ∈ R199 and the expression parameters e ∈ R29 are the coefficients of
geometry and expression principal components in the PCA, respectively. The pose of the head
p ∈ R6 which contains 3 head rotation coefficients, 2 translation coefficients (x and y directions on
the screen surface), and 1 scaling coefficient. All the parameters are computed by solving a non-
linear optimization problem, constrained by the statistical linear 3D face model (Blanz & Vetter,
1999). By optimizing the geometry, expression, and pose parameters of a given monocular face
image based on its detected facial landmarks, portrait video frames will be automatically annotated
with low dimensional vectors (Blanz & Vetter, 1999). The recovered expression parameters are
used as the learning target in the Audio-to-Expression Translation Network. Then, the recovered
geometry and pose parameters, together with the expression parameters inferred by the Audio-to-
Expression Translation Network, are employed for reconstructing the 3D facial mesh.

3.2 AUDIO-TO-EXPRESSION TRANSLATION

3.2.1 AUDIO ID-REMOVING NETWORK.

We empirically find that identity information embedded in the speech feature degrades the perfor-
mance of mapping speech to mouth movement. Inspired by the speaker adaptation method in the
literature of speech recognition (Visweswariah et al., 2002; Povey & Yao, 2012), we transfer the
speech feature lies in different speaker domains onto a “global speaker” domain by applying a linear
transformation, in the form (Visweswariah et al., 2002):

x′ = Wix+ bi = W̄ix̄, where W̄i = (Wi, bi), x̄ = (x; 1), W̄i = I +
∑k

j=1 λjW̄
j (1)

Here, x and x′ represent the raw and transferred speech feature respectively, I means an identity
matrix padding an all-zero column vector at the rightest side, while W̄i = I +

∑k
j=1 λjW̄

j repre-
sents the speaker-specific adaptation parameter that is factorized into a matrix I plus weighted sum
of k components W̄ j (Povey & Yao, 2012). In speech recognition, these parameters are iteratively
optimized by fMLLR (Digalakis et al., 1995; Gales, 1998) and EM algorithms. We formulate the
above method into a neural network to be integrated with our end-to-end deep learning network.

From Eq.(1), the parameters λj need to be learned from the input speech feature, while the matrix
components W̄ j is general speech features of different speakers. Thus, we design an LSTM+FC
network to infer λj from the input and set the matrix components W̄ j as the optimizing parame-
ter of the Audio ID-Removing Network. The matrix components W̄ j of the Audio ID-Removing
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Network are updated by the gradient descent-based algorithm. The details of the network is de-
picted in Fig. 3. The output of the Audio ID-Removing Network is a new MFCC (Mel-frequency
cepstral coefficients) spectrum. We apply a pre-trained speaker identity network VGGVox (Nagrani
et al., 2017; Chung et al., 2018) on the new MFCC spectrum and constrain the Audio ID-Removing
Network by the following cross-entropy loss function:

Lnorm = −
N∑
c=1

1

N
log p(c|x′), (2)

where N is the number of speakers, c is the speaker class label. The p(c|x′) is the probability of
assigning MFCC x′ to speaker c, which is inferred from the pre-trained VGGVox. Eq. 2 enforces
the Audio ID-Removing Network to produce an MFCC spectrum that is not distinguishable by the
pre-trained VGGVox.

3.2.2 AUDIO-TO-EXPRESSION TRANSLATION NETWORK.

Figure 3: Audio ID-Removing Network. We formu-
late the speaker adaptation method from speech recog-
nition (Visweswariah et al., 2002; Povey & Yao, 2012)
as a neural network. The network removes identity in
speech MFCC spectrum by transferring it to the “global
speaker” domain.

We formulate a simple but effective Audio-to-
Expression Translation Network that learns the
mapping from the ID-removed MFCC feature
to the corresponding facial expression parame-
ters. To infer the expression parameters at time
t, the translation network observes a sliding
window speech clip of 1 second, which spans
0.8 seconds before t and 0.2 seconds after t.

We empirically find it challenging to train a net-
work to solely regress the expression parame-
ters (Sanyal et al., 2019; Tewari et al., 2017).
The underlying reason could be that the expres-
sion parameters are defined and related to the
3DMM model that is hard to model by the net-
work. To facilitate the learning, we introduce
a shape constraint. In particular, with the pre-
dicted expression parameters from audio and the ground truth geometry/pose parameters of the
video portrait, we can obtain a predicted reconstructed 3D facial mesh. Then, we project 3D points
of mouth area to the 2D space to obtain the predicted 2D mouth landmarks. Using a similar method,
we can obtain a set of ground-truth 2D mouth landmarks from the ground-truth expression pa-
rameters. The shape constraint can be introduced between the predicted 2D mouth landmarks and
ground-truth 2D mouth landmarks. The whole process of generating mouth landmarks from ex-
pression parameters only involves linear operations and thus is differentiable. The loss function is
written as follows:

Ltrans = Lexp + Lshape = ||ê− e||2 + ||l̂ − l||2, (3)

where e and l are the ground truth expression and landmark, respectively, and ê and l̂ are the output
expression and landmark of the translation network, respectively. The Audio ID-Removing and
Audio-to-Expression Translation Networks are trained jointly, whose objective function is weighted
sum of Lnorm (Eq. 2) and Ltrans (Eq. 3).

3.3 NEURAL VIDEO RENDERING NETWORK

3.3.1 NETWORK ARCHITECTURE.

Our final step is to generate photo-realistic talking face video that is conditioned on dynamic back-
ground portrait video and guided by the mouth region landmark heatmap sequence. We design a
completion-based generation network that completes the mouth region guided by mouth landmarks.
First, to obtain the masked face images, a tailored dynamic programming based on retiming algo-
rithm inspired by (Suwajanakorn et al., 2017) is introduced to select frame sequence whose head
shaking and blink of eyes look compatible with the source speech. Then, the mouth area that con-
tains lip, jaw, and nasolabial folds are manually occluded by a square mask filled with random
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noise. To make the conversion from the landmark coordinates to heatmap differentiable, we fol-
low (Jakab et al., 2017) to generate heatmaps with Gaussian-like functions centered at landmark
locations. We modify a U-Net-based (Ronneberger et al., 2015; Qian et al., 2019) network as our
generation network. The employed skip-connection enables our network to transfer fine-scale struc-
ture information. In this way, the landmark heatmap at the input can directly guide the mouth region
generation at the output, and the structure of the generated mouth obeys the heatmaps (Qian et al.,
2019; Wang et al., 2019).

We composite the generated mouth region over the target face frame according to the input mouth
region mask. To obtain the mouth region mask, we connect the outermost mouth landmarks as a
polygon and fill it with white color, then we erode the binary mask and smooth its boundaries with
a Gaussian filter (Kim et al., 2019). With the soft mask, we leverage Poisson blending (Pérez et al.,
2003) to achieve seamless blending. To improve the temporal continuity of generated video, we
apply a sliding window on the input masked video frames and heatmaps (Kim et al., 2018; 2019).
The input of the Neural Video Rendering Network is a tensor stacked by seven RGB frames and
seven heatmap gray images (Kim et al., 2019). It works well in most cases while a little lip motion
jitters and appearance flicker might emerge in the final video. Then, a video temporal flicker removal
algorithm improved from (Bonneel et al., 2015a) is applied to eliminate these artifacts. Please refer
to Appendix for more details of the flicker removal algorithm.

3.3.2 LOSS FUNCTIONS.

The loss function for training the Neural Video Rendering Network is written as follows:

Lrender = Lrecon + Ladv + Lvgg + Ltv + Lgp. (4)

The reconstruction loss Lrecon is the pixel-wise L1 loss between the ground truth and generated
images. To improve the realism of the generated video, we apply the LSGAN (Mao et al., 2017)
adversarial loss Ladv and add the gradient penalty term Lgp (Gulrajani et al., 2017) for faster and
more stable training. We also apply the perception loss Lvgg (Johnson et al., 2016) to improve
the quality of generated images by constraining the image features at different scales. The total
variation regularization term Ltv is used to reduce spike artifact that usually occurs when Lvgg is
applied (Johnson et al., 2016). The network is trained end-to-end with Ltotal = Lnorm + Ltrans +
Lrender (Eq. 2,3, and 4) with different coefficients. Due to the limited space, we report the details
of the loss function, network architecture, and experimental settings in our Appendix.

4 RESULTS

We show qualitative and quantitative results on a variety of videos to demonstrate the superiority
of our method over existing techniques and the effectiveness of proposed components. The details
of datasets, evaluation metrics and training strategy are presented in Sec. A. The ablation study and
user study are presented in the Appendix. For all results, we recommend viewing the supplementary
video for subjective evaluation.

4.1 AUDIO-TO-VIDEO TRANSLATION

Many-to-Many Results. To prove that the audio-to-expression network is capable of handling
various speakers and the face completion network can generalize on multiple speakers, we present
one-to-many results and many-to-one results in Fig. 4. In the one-to-many results, we use the speech
audio of one speaker to drive different speakers. Note that different speakers share a single generator
instead of multiple person-specific generators. In the many-to-one results, we use the speech audio
of different speakers to drive the same speaker. This is in contrast to recent methods, where the
whole pipeline (Suwajanakorn et al., 2017) or part of components (Kim et al., 2019; Fried et al.,
2019) is designed for a specific person, which prevents these methods in handling different voice
timbres and facial appearances.

The many-to-many results demonstrate the better generalization ability of our method compared to
existing methods (Kim et al., 2019; Fried et al., 2019; Suwajanakorn et al., 2017). Coping with
multiple subjects only requires the algorithm to see 15 minutes video for training. This is more

6



Under review as a conference paper at ICLR 2021

Figure 4: Many-to-many results. (a) One-to-many results: we use speech audio of one speaker to drive face
of three different speakers. (b) Many-to-one results: we use speech audio of two different speakers to drive the
same speaker.

Figure 5: Large pose results. We demonstrate four head poses including up, down, and left. Video results of
all of seven head poses can be viewed the supplementary video.

efficient than existing method, e.g., (Suwajanakorn et al., 2017), which needs up to 17 hours of
single identity. Interestingly, once scaling up the number of subjects in the training set further by
an order of magnitude, our model can generalize to audio and subject that are totally unseen during
training.

Large Pose Results. The main purpose of leveraging 3D face model is to handle head pose varia-
tions in generating talking face videos. As far as we know, a majority of recent audio-driving meth-
ods focus on generating frontal face video no matter whether a 3D head model is applied (Suwa-
janakorn et al., 2017; Kim et al., 2019; Thies et al., 2020) or not (Vondrick et al., 2016; Zhou
et al., 2018; Chen et al., 2019). Our method, however, can generate portrait videos under various
large poses driven by audio input, thanks to the decomposition that relates audio only to the ex-
pression parameters rather than shape or pose parameters. Many previous methods directly learn
a mapping from audio to landmarks (Suwajanakorn et al., 2017; Chen et al., 2019) or frontalized
landmrks (Suwajanakorn et al., 2017), which involves the shape and pose information that is actu-
ally independent to the input audio. Results are shown in Fig. 5.

Audio Editing & Singing Results. Our method can also be used to edit the speech contents of
a pre-recorded video by splitting and recombining the words or sentences taken from any source
audio. In addition, we also ask a person to record singing and the audio is fed into our network.
The driving result can be viewed in Fig. 6. This demonstrates the generalization capability of our
method and its potential in more complex audio-to-video tasks.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with the recent state-of-the-art portrait video generation methods, e.g.,
Audio2Obama (Suwajanakorn et al., 2017), Face2Face (Thies et al., 2016), Deep Video Portrait
(DVP) (Kim et al., 2018), Text-based Editing (TBE) (Fried et al., 2019) and Neural Voice Puppetry
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Figure 6: (a) Audio editing. We select “knowledge is” and “virtue” from “Knowledge is one thing, virtue is
another” in the source audio, then recombine them as “Knowledge is virtue” as input. (b) Singing. We evaluate
our network on the singing audio clips. Video result can be viewed in the supplementary video.

Figure 7: Comparison to state-of-the-art. Comparison between our method with Audio2Obama (Suwa-
janakorn et al., 2017), Face2Face (Thies et al., 2016), DVP (Kim et al., 2018), TBE (Fried et al., 2019) and
NVP (Thies et al., 2020).

(NVP) (Thies et al., 2020). The comparison and user study results are demonstrated in Fig. 7 and
Sec. B.2.

First, the Audio2Obama (Suwajanakorn et al., 2017) combines a weighted median texture for syn-
thesizing lower face texture and a teeth proxy for capturing teeth sharp details. Our GAN-based
rendering network generates better texture details compare to the weighted median texture synthe-
sis (Suwajanakorn et al., 2017), e.g., nasolabial folds (Fig. 7 (a)). Then, we compare our method to
Face2Face (Thies et al., 2016) that supports talking face generation driving by source video in Fig. 7
(b). Face2Face (Thies et al., 2016) directly transfers facial expression of source video in the param-
eter space while our method infers facial expression from source audio. The similar lip movement
of Face2Face and our method in Fig. 7 (b) suggests the effectiveness of our Audio-to-Expression
Translation Network in learning accurate lip movement from speech audio. Moreover, our GAN-
based rendering network generates better texture details, such as mouth corners and nasolabial folds.
We also compare to another video-driving method DVP (Kim et al., 2018) that supports talking face
generation (Fig. 7 (c)). In DVP, a rendering-to-video translation network is designed to synthesize
the whole frame other than the face region. It avoids the blending of face region and background
that might be easily detectable. DVP might fail in a complex and dynamic background as shown in
Fig. 7 (c). In contrast, our method uses the original background and achieves seamless blending that
is hard to distinguish. We compare our method with the contemporary text-based talking face editing
method TBE (Fried et al., 2019) in Fig. 7 (d). In TBE, the mouth region is searched by phoneme and
a semi-parametric inpainting network is proposed to inpaint the seam between the retrieved mouth
and the original face background. This method requires training of a person-specific network per
input video while our method can generalize on multiple speakers and head poses. Besides, our
generation network produces competitive mouth details as shown in Fig. 7 (d). Finally, we compare
our method with NVP (Thies et al., 2020) in Fig. 7 (c). Our method achieves competitive visual
quality and lip-sync accuracy. The neural rendering network of NVP is person-specific while ours
can be applied to multiple persons.

5 CONCLUSION

In this work, we present an end-to-end learnable audio-based video editing method. At the core
of our approach is the learning from audio to expression space bypassing the ill-posed problem of
directly mapping audio source to target video. Audio ID-Removing Network and Neural Video
Rendering Network are introduced to enable generation of photo-realistic videos given randomly
chosen targets and audio sources, within a set of speech videos. Extensive experiments demonstrate
the robustness of our method and the effectiveness of each pivotal component. We believe our
approach is a step forward towards solving the important problem of audio-based video editing and
we hope it will inspire more explorations in this direction.
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man, Dan B Goldman, Kyle Genova, Zeyu Jin, and Christian Theobalt. Text-based editing of
talking-head video. ACM TOG, 38:68, 2019.

Graham Fyffe, Andrew Jones, Oleg Alexander, Ryosuke Ichikari, and Paul E. Debevec. Driving
high-resolution facial scans with video performance capture. ACM TOG, 34:8, 2014.

Mark JF Gales. Maximum likelihood linear transformations for hmm-based speech recognition.
Computer Speech & Language, 12(2):75–98, 1998.

Pablo Garrido, Levi Valgaerts, H. Sarmadi, Ingmar Steiner, Kiran Varanasi, Patrick Pérez, and Chris-
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APPENDIX

A DATASETS, METRICS AND TRAINING DETAILS

Datasets. We evaluate our method on a talking face benchmark dataset GRID (Cooke et al., 2006)
and a newly collected speech dataset with seven videos. The GRID dataset contains 1,000 sentences
spoken by 18 males and 16 females. We follow the train/test splits of Chen et al. (2018). Since GRID
only provides frontal face videos of minor head movement, we additionally collected seven videos
for our evaluation. The first portion of these videos are collected from four different speakers who
show multiple head poses and time-varying head motion. Example videos of one of the speakers
are shown in Fig. 5. Each speaker contributes 15 minutes video for training and 2 minutes video
for testing, all videos are captured from seven viewpoints to provide seven head poses. Resolution
of each video is 1920 × 1080. The second portion of the new dataset contains videos downloaded
from YouTube featuring three subjects (Barack Obama, Yoshua Bengio and Sara Seager). Videos
of each subject are divided similarly to training (15 minutes) and testing (2 minutes). Different
from GRID that is redundant of word contents in training and test sets, the samples of our collected
dataset consist of totally different words. In the following evaluations, we use only two models, i.e.,
Model Pub trained on GRID dataset and Model Pri trained on the collected dataset.

Evaluation Metrics. To evaluate the accuracy of the expression parameters and the projected land-
marks under various head poses and motions, we apply the following distance metric:

Eexp = 1
Nexp

∑Nexp

i=1 ||ê(i)− e(i)||2, Eldmk = 1
Nldmk

∑Nldmk

i=1 ||l̂(i)− l(i)||2 , (5)

where Nldmk and Nexp are the number of landmarks and expression parameters, respectively, and i
is the index of landmarks or expression parameters. To quantitatively evaluate the generated quality
of portrait videos, we apply common image quality metrics like PSNR (Wang et al., 2004) and
SSIM (Wang et al., 2004). To qualitatively evaluate the generated quality of portrait videos, we
conduct a user study in Sec. B.2.

Training Details. We train the Audio-to-Expression Network and Neural Video Rendering Network
together in an end-to-end way. All the preprocessings(e.g. frame selection) and post-processings(e.g.
teeth proxy, temporal flicker removal) are nor applied during training. We use the Adam opti-
mizer (Kingma & Ba, 2015) with β1 = 0.5, β2 = 0.999. We set the batch size as 1 since our
network processes seven frames once, which cost vast GPU memory. In experiments, we find that
the Neural Video Rendering Network has a more steep curve than the Audio-to-Expression Net-
work. After hyper parameter tuning, we set the learning rate as 0.001 and 0.0001 for the Neural
Video Rendering Network and the Audio-to-Expression Network respectively. The learning rate is
decreased with scale factor 0.8 every 10, 000 iterations. Both the Audio-to-Expression and Neural
Video Rendering Network are trained for 100, 000 iterations.

B MORE EXPERIMENTS

B.1 ABLATION STUDY

Evaluation of Parameter Regression. To prove the superiority of incorporating the 3D face model,
we compare our network with the one that replaces Audio-to-Expression Translation Network with
an Audio-to-Landmark Translation Network as performed in (Suwajanakorn et al., 2017). The
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Audio-to-Landmark Translation Network modifies the last fully connected layer of the Audio-to-
Expression Translation Network so that its output dimension is the coordinate number of mouth
region landmarks. The qualitative comparison can be viewed in Fig. 8 (a). We also compare the
quantitative metric on GRID and collected dataset as shown in Tab. 1 (a). In the collected dataset
that contains more head motion and poses, our method achieves better lip synchronization results
while the mouth generated by the one that applies Audio-to-Landmark Translation Network might
not even open (supplementary video).

Table 1: (a) 2D vs 3D quantitative comparison. Eexp, Eldmk, PSNR, and SSIM comparison of 2D and
3D parameter regression. (b) ID-removing quantitative comparison. “BL” is the 3D parameter regression
baseline; “IR” is “id-removing”.

(a) 2D vs 3D Eexp Eldmk PSNR SSIM

GRID 2D - 3.99 28.06 0.89
3D 0.65 2.24 31.19 0.95

Collected 2D - 3.13 26.76 0.93
3D 0.595 1.82 29.16 0.95

(b) ID Removing Eexp Eldmk PSNR SSIM

GRID BL 0.84 3.09 30.88 0.94
+IR 0.65 2.24 32.23 0.97

Collected BL 0.68 1.92 26.86 0.95
+IR 0.59 1.83 31.21 0.96

Figure 8: (a) 2D vs 3D qualitative comparison. 3D parameter regression outperforms 2D parameter regression
for head motion and poses. (b) ID-removing qualitative comparison. Improvement can be observed on a
failure case caused by not applying Audio ID-Removing Network.

Evaluation of ID-removing. Our Audio ID-Removing Network transfers the speech feature of
different speakers to a “global speaker”. The tSNE (van der Maaten & Hinton, 2008) maps in
Figure 9 demonstrate the 2D visualized the distribution of the input MFCC spectrum and the identity
removed MFCC spectrum produced by our Audio ID-Removing Network. We can see that the
speaker identity can not be distinguished after removing identity in the MFCC spectrum.

Figure 9: tSNE before and after id-removing. 2D visualized distributions of input MFCC and normalized
MFCC. Different color represents different speaker. Our audio normalization erases the identity information
embedded in the MFCC spectrum.

We also demonstrate the lip-sync improvement improvement in Fig. 8 (b) and supplementary video.
Quantitative metrics on GRID and collected dataset also validate its effectiveness as shown in Tab. 1
(b) and Tab. 2.

Evaluation of Temporal Flicker Removal Algorithm The temporal flicker removal algorithm tries
to smooth the output landmark coordinates and eliminate the appearance flicker. The quantitative
improvement is slight as shown in Table 2 but the temporal continuity improvement is obvious as
shown in the supplementary video, especially when the mouth does not open. We demonstrate
the quantitative results of our 3D parameter regression baseline, Audio ID-Removing Network and
Temporal Flicker Removal Algorithm in Table 2.

Evaluation of Completion-Based Generation. We evaluate the effects of the proposed completion-
based generation that benefits from joint training on data of different people. As shown in Tab. 3,
joint training outperforms training person-specific generators separately, enjoying much fewer net-
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Table 2: ID-removing & Deflicker quantitative comparison. “BL” is the 3D parameter regression baseline;
“IR” is “id-removing”; “DF” is “deflicker”. The metrics validate the effectiveness of the proposed components
except for the deflicker algorithm. The deflicker algorithm mainly focus on removing temporal discontinuity
that can be viewed in the supplementary video.

Method Eexp Eldmk PSNR SSIM

GRID

BL 0.84 3.09 30.88 0.94
+IR 0.65 2.24 32.23 0.97
+DF 0.84 3.07 27.71 0.92

+IR+DF 0.65 2.24 31.19 0.95

Collected

BL 0.68 1.92 26.86 0.95
+IR 0.59 1.83 31.21 0.96
+DF 0.68 1.92 27.46 0.93

+IR+DF 0.59 1.82 29.16 0.95

Table 3: Training data size and training scheme. PSNR/SSIM of different amount of training data and
training scheme. “Joint” means joint training one generator for all speakers and “Split” means training multiple
person-specific generators separately. One generation network contains 75 million parameters and N (N = 4
in the table) is the speaker number.

Time 2 mins 5 mins 10 mins 15 mins
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Split (N× 75M) 29.621/0.868 29.338/0.875 29.487/0.849 29.650/0.876
Joint (75M) 30.421/0.886 30.664/0.888 30.787/0.892 31.072/0.897

work parameters when the number of speakers increases, regardless of the time length of the training
data.

B.2 USER STUDY

To quantitatively evaluate the visual quality of generated portrait videos, following (Fried et al.,
2019), we conduct a web-based user study involving 100 participants on the collected dataset. The
study includes three generated video clips for each of the seven cameras and for each of the four
speakers, hence a total of 84 video clips. Similarly, we also collect 84 ground truth video clips and
mix them up with the generated video clips to perform the user study. We separately calculate the
study results of the generated and ground truth video clips.

All the 84 × 2 = 168 video clips are randomly shown to the participants and they are asked to
evaluate its realism by evaluating if the clips are real on a likert scale of 1-5 (5-absolutely real, 4-real,
3-hard to judge, 2-fake, 1-absolutely fake) (Fried et al., 2019). As shown in Tab. 4, the generated and
the ground truth video clips are rated as “real”(score 4 and 5) in 55.0% and 70.1% cases, respectively.
Since humans are highly tuned to the slight audio-video misalignment and generation flaws, the user
study results demonstrate that our method can generate deceptive audio-video content under large
poses in most cases.

Table 4: User study compared with ground truth videos. Results on generated and ground truth video clips
for 7 poses.

Generated Videos Ground Truth Videos
score 1 2 3 4 5 “real” 1 2 3 4 5 “real”
front 5.2 8.5 20.6 42.6 23.2 65.8% 0.6 12.1 10.1 29.7 47.5 77.2%

up-30◦ 4.6 25.0 14.2 36.9 19.3 56.3% 0.8 13.5 13.2 29.1 43.4 72.5%
down-30◦ 4.8 22.0 15.2 39.7 18.3 58.0% 0.9 13.6 14.1 30.2 41.3 71.5%
right-30◦ 3.9 22.9 15.8 42.1 15.3 57.4% 1.3 15.6 14.4 29.2 39.6 68.8%
right-60◦ 7.3 33.8 11.4 36.9 10.6 47.5% 0.8 17.8 15.1 29.1 37.2 66.3%
left-30◦ 3.2 20.9 21.9 40.1 13.9 54.0% 1.1 12.8 16.1 31.5 38.6 70.1%
left-60◦ 7.9 33.7 12.1 35.1 11.3 46.3% 0.7 17.5 14.1 27.2 40.5 67.7%
all poses 5.3 23.8 15.9 39.0 16.0 55.0% 0.9 14.7 13.9 29.4 41.2 70.6%
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We also conduct a web-based user study to compare the visual quality, lip-sync accuracy and talking
naturalness of our method and recent state-of-the-art methods (Suwajanakorn et al., 2017; Thies
et al., 2016; Kim et al., 2018; Fried et al., 2019; Thies et al., 2020). To make fair comparisons with
these methods, we use the same audio and background frames. We also asked the participants to
evaluate the realisticness, lip-sync accuracy and talking naturalness on a likert scale of 1-5. We
present the comparison results in Tab. 5. Even comparing with the perfect results released by these
state-of-art methods. Our method still generates comparative results.

Table 5: User study compared with state-of-the-art methods. Comparsion of our methods and recent state-
of-the-art methods on realisticness, lip-sync accuracy and talking naturalness.

Realisticness Lip-sync Accuracy Natural
score 1 2 3 4 5 “real” 1 2 3 4 5 “real” 1 2 3 4 5 “real”

Audio2Obama 0 0 14 29 57 86% 1 4 11 36 48 84% 0 8 9 40 43 83%
Face2Face 4 19 28 31 18 49% 20 21 29 24 6 30% 15 21 34 25 5 30%

DVP 64 18 16 1 1 2% 27 22 24 20 7 27% 36 25 25 10 4 14%
TBE 0 2 10 28 60 88% 2 7 14 32 45 77% 1 5 11 26 57 83%
NVP 1 10 22 33 34 67% 5 14 33 30 18 48% 1 11 33 32 23 55%
Ours 1 1 9 27 62 89% 0 3 15 31 51 82% 0 3 10 32 55 87%

B.3 QUANTITATIVE COMPARISON ON GRID DATASET

Our method mainly focuses on talking face video editing, which is different from the recent meth-
ods that generate full face from input audio and reference still face image (Vondrick et al., 2016;
Jamaludin et al., 2019; Chen et al., 2018; Zhu et al., 2018). Here we quantitatively compare our
method with these methods (Vondrick et al., 2016; Jamaludin et al., 2019; Chen et al., 2018; Zhu
et al., 2018) on image generation metrics. For a fair comparison, in our method, we do not apply any
post-process and we also modify the input of the inpainting network to generate the full face other
than the mouth region. Specifically, the original network input tensor is stacked by 7 RGB frames
and 7 heatmap gray images (from time t − 6 to time t), we remove the RGB frame and heatmap
gray image at time t and require the network to generate the complete frame image at time t. Table
6 demonstrates that our approach outperforms these methods in PSNR, SSIM and achieves compa-
rable performance in Eldmk. Note that our Eldmk calculates error of 39 mouth region landmarks,
the number is more than that of (Vondrick et al., 2016; Jamaludin et al., 2019; Chen et al., 2018).

Table 6: Comparison on GRID dataset. SSIM, PSNR and Eldmk results of recent state-of-the-art methods
and ours. For a fair comparison, we generate the full face and do not apply any post-processing(e.g. temporal
flicker removal, teeth proxy).

Method PSNR SSIM Eldmk

Chen et al. (2019) 28.45 0.60 3.28
Vondrick et al. (2016) 28.45 0.60 3.28
Jamaludin et al. (2019) 29.36 0.74 2.23

Chen et al. (2018) 29.89 0.73 1.92
Vougioukas et al. (2018) 27.98 0.84 -

Ours 30.01 0.94 2.24

B.4 EVALUATION ON UNSEEN SUBJECTS AND SENTENCES

In Figure 10, we present the results on GRID dataset, where we evaluate our method on unseen
subjects and sentences. In concrete, we randomly select 80% of sentences and 31 subjects on GRID
to form the training set and select 20% of sentences and 2 subjects to form the unseen test set. The
results demonstrate the ability of our model to generalize to subject and sentence that are totally
unseen during training, once scaling up the number of subjects in the training set further by an order
of magnitude.

C DETAILS OF AUDIO-TO-EXPRESSION TRANSLATION NETWORK

The network architecture of our Audio-to-Expression Translation Network can be viewed in Fig-
ure 11. In the training phase, we use paired audio and video frames from the training footage as
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Figure 10: Test on unseen subjects and sentences. The testing subjects and sentences are unseen during
training. For video results please refer to the supplementary video.

Figure 11: Architecture of Audio-to-Expression Network. The Audio ID-Removing Network eliminates
identity information in speech audio. The Audio-to-Expression Translation Network estimate expression pa-
rameters from input audio. We constrain the predicted expression parameters and the projected 2D mouth
landmark from the reconstructed facial mesh.

network input. Ground truth facial shape, expression and pose parameters are calculated from video
frame by monocular reconstruction. From the input audio, our Audio-to-Expression Translation
Network infers predicted expression parameters that are supervised by the ground truth expression
parameters. The loss function is Lexp = ||ê − e||2 in Eq. 6. We reconstruct facial 3D mesh by
predicted expression parameters and ground truth shape parameters, then we use the ground truth
pose parameters to project 2D mouth landmarks that are supervised by the ground truth 2D mouth
landmarks. The loss function is Lshape = ||l̂− l||2 in Eq. 6. The ground truth 2D mouth landmarks
are projected in a similar way where ground truth expression parameters are used. In the testing
phase, the predicted expression parameters from the source audio together with ground truth shape
and pose parameters from target video are used to estimate 2D mouth landmarks. The embedded
mouth identity and head pose of estimated 2D mouth landmarks are the same as those of the target
video while the mouth movement in accord with the source audio.

Ltrans = Lexp + Lshape = ||ê− e||2 + ||l̂ − l||2 (6)

D DETAILS OF NEURAL VIDEO RENDERING NETWORK

Our Neural Video Rendering Network modifies a U-Net based (Ronneberger et al., 2015; Qian
et al., 2019) architecture and take sequences of masked face and landmark heatmap to generate
mouth sequences. The network architecture of our Neural Video Rendering Network is listed in
Table 7. In this table, the Resolution column indicates the spatial resolution of the output feature
map. EncBlock means a convolutional layer where stride is 2, padding is 1 and kernel size is 4× 4.
DecBlock means a convolutional layer where stride is 2, padding is 1 and kernel size is 4 × 4,
followed by a pixel shuffle (Shi et al., 2016) layer where upscale factor is 2. Skip(E) means a
skip connection that concatenates the encoding feature maps from E and previous decoding feature
maps. Discriminator architecture of the Neural Video Rendering Network is very similar to the
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encoder (E1-E7) of the Neural Video Rendering Network. The architecture is listed in Tab. 8, where
AvgPool means an average pooling layer and FC means a fully connected layer.

Table 7: Architecture of the Neural Video Rendering Network

Layer Name Resolution Layer Structure
Input 384× 384 Sequences of Maked Face and Heatmap

E1 192× 192 EncBlock ((3 + 1)× 7)→ 64 + LeakyReLU(0.2)
E2 96× 96 EncBlock 64→ 128 + LeakyReLU(0.2)
E3 48× 48 EncBlock 128→ 256 + LeakyReLU(0.2)
E4 24× 24 EncBlock 256→ 512 +LeakyReLU(0.2)
E5 12× 12 EncBlock 512→ 512 + LeakyReLU(0.2)
E6 6× 6 EncBlock 512→ 512 + ReLU
E7 3× 3 EncBlock 512→ 512 + ReLU
D7 6× 6 DecBlock 512→ 512 + ReLU
D6 12× 12 Skip(E6)+DecBlock (512 + 512)→ 512 + ReLU
D5 24× 24 Skip(E5)+DecBlock (512 + 512)→ 512 + ReLU
D4 48× 48 Skip(E4)+DecBlock (512 + 512)→ 256 + ReLU
D3 96× 96 Skip(E3)+DecBlock (256 + 256)→ 128 + ReLU
D2 192× 192 Skip(E2)+DecBlock (128 + 128)→ 64 + ReLU
D1 384× 384 Skip(E1)+DecBlock (64 + 64)→ 3× 7

Table 8: Architecture of the Discriminator Network

Layer Name Resolution Layer Structure
Input 384× 384 Sequences of Generated/Real Face Images

E1 192× 192 EncBlock (3× 7)→ 64 + LeakyReLU(0.2)
E2 96× 96 EncBlock 64→ 128 + LeakyReLU(0.2)
E3 48× 48 EncBlock 128→ 256 + LeakyReLU(0.2)
E4 24× 24 EncBlock 256→ 512 +LeakyReLU(0.2)
E5 12× 12 EncBlock 512→ 512 + LeakyReLU(0.2)
E6 6× 6 EncBlock 512→ 512 + ReLU
E7 3× 3 EncBlock 512→ 512 + ReLU

Output 1× 1 AvgPool + FC 512→ 1× 7

E FRAME SELECTION ALGORITHM

In the generated video, our generated mouth region is composited into face frames of a long video
footage. Our Frame Selection Algorithm aims at selecting face frames based on input audio to ensure
the head motion looks natural with the input audio. For example, it prefers more head motion and
eyes blink during utterance (Suwajanakorn et al., 2017). Our Frame Selection Algorithm modifies
the Video Re-timing Algorithm of Audio2Obama (Suwajanakorn et al., 2017) to adopt for our setting
of multiple speakers . For more algorithm design considerations, please refer to the Video Re-
timing Algorithm of Audio2Obama (Suwajanakorn et al., 2017). Here we formulate the dynamic
programming objective and present the pseudo-code of our Frame Selection Algorithm.

The Frame Selection Algorithm searches face frames from M target video frames to composite N
generated mouth animation frames. To formulate the dynamic programming objective, we apply a
threshold on the testing audio volume and compute a binary flagA(i) to indicate slience or utterance,
where i denotes frame index of the audio. Like Audio2Obama (Suwajanakorn et al., 2017), we also
apply dilation followed by erosion to remove the salt and pepper noise in the binary flag sequences.
We use the first derivative of the nose tip landmark position to represent the head motion V (j),
where j denotes the frame index of the target video. Here, we use the nose tip landmark position to
replace the facial landmarks used in the Re-timing Algorithm (Suwajanakorn et al., 2017) since head
motion represented by noise tip will not be influenced by non-rigid part like mouth and eyelid and it
represents head motion better. We denote the eyes blink as a binary flagB(j) by applying a threshold
on the ratio of eyes height to eyes width. The eyes height are computed by the distance of the highest
eye landmark between the lowest eye landmark, and the eyes width are computed similarly. The Re-
timing Algorithm (Suwajanakorn et al., 2017) is designed for Obama only. It applies threshold to
the size of eyes landmarks in B(j), which is unsuitable for our multiple speaker setting. We also set
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Algorithm 1 Frame Selection Algorithm

Require: A(i): binary flag of utterance and slience in source audio at frame i (i ∈ {0, · · · , N−1});
V (j): head motion and eyes blink representation in target video at frame j (j ∈ {0, · · · ,M−1});
M,N : number of target video frames, number of source audio frames;

Ensure: O(i): target frame index for source audio at frame i (i ∈ {0, · · · , N − 1});
// Initialize F for F (0, j, 0), F (i, 0, 0), F (0, j, 1), F (i, j, 1).
F (0, :, 0) = V (:); F (0, 0, 0) = 0; F (:, 0, 0) = F (:, 0, 1) = F (0, :, 1) = −∞;
Evaluate G(i, j) (i ∈ {0, · · · , N − 1}, j ∈ {0, · · · ,M − 1}) following Audio2Obama;
// Back track table for F : Fbt.
for i in {1, · · · , N − 1} do

for j in {1, · · · ,M − 1} do
F (i, j, 0) = F (i− 1, j − 1, argmin(F (i− 1, j − 1, :))) +G(i, j);
F (i, j, 1) = F (i− 1, j, 0) + αsV (j) +G(i, j);
Fbt(i, j, 0) = (i− 1, j − 1, argmin(F (i− 1, j − 1, :)));
Fbt(i, j, 1) = (i− 1, j, 0);

end for
end for
// By back tracking the optimal match score table F , we reversely get the target frame index that
matches input audio.
j, r = argmin(F (N − 1, :, :)); idx = (N − 1, j, r);
for i ∈ {N − 1, · · · , 0} do

O(i) = idx(1);
idx = Fbt(idx(0), idx(1), idx(2));

end for
return O(i) (i ∈ {0, · · · , N − 1})

V (j)← V (j) +αBB(j) as the Re-timing Algorithm (Suwajanakorn et al., 2017). For the dynamic
programming problem formulation, please refer to the Re-timing Algorithm (Suwajanakorn et al.,
2017).

We demonstrate the pseudo code of our Frame Selection Algorithm as in Algorithm 1. It is a typical
dynamic programming algorithm. In the pseudo code, F stores the match score of generated mouth
frame and target frame, andG is an auxiliary function that penalizes large motion during silence and
small motion during utterane. For more details about definition of F , G and αs, please refer to the
Re-timing Algorithm (Suwajanakorn et al., 2017). Following Audio2Obama (Suwajanakorn et al.,
2017), each target frame is allowed to appear twice at most.

F TEETH PROXY ALGORITHM

Our Neural Video Rendering Network implements an GAN-based architecture to generate mouth
areas. The teeth area contains high frequency details and our GAN-based network might not produce
satisfying teeth texture, especially the resolution of the target frame is high. Thus, we design the
Teeth Proxy Algorithm to search teeth texture from target frames and transfer the high frequency
information into our generated teeth texture. First, for each target frame, we connect the inner
mouth landmarks to form the teeth mask. Then, we register teeth texture covered by the teeth
mask. The teeth mask and texture pairs are stored as the target teeth database. During the testing
phase, we apply the same method to get the generated teeth texture and its mask. We search the
most similar teeth texture from the target teeth database by ranking IoU (Intersection over Union)
value between mask of generated teeth and target teeth masks. Note that all the teeth masks are
aligned by mouth center calculated by average value of 4 outmost mouth landmark positions (left,
right, up and down). Since all the face images are corasely aligned and affined to a predefined
mean face, we assume that all the mouth areas have the same scale. At last, we borrow the teeth
enhancement method in Audio2Obama (Suwajanakorn et al., 2017) to transfer the high frequency
details of teeth. Different from Audio2Obama (Suwajanakorn et al., 2017), we use the searched
teeth image to replace the teeth proxy reference frame. Our method automatically search appropriate
teeth texture while Audio2Obama needs to manually chose reference frame from target video. Note
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that our teeth proxy algorithm is an optional post-processing since our GAN-based generator might
produce satisfying teeth texture when the resolution of background face frames is not very high.

G TEMPORAL FLICKER REMOVAL ALGORITHM

In our approach, talking face video is generated frame by frame and temporal information in video
frames is only concerned in landmark estimation. During testing, we find the generated talking face
videos demonstrate acceptable frame continuity even in the circumstance that the video temporal
flicker removal algorithm is not applied. It is due to that audio series clips used to generate time-
adjacent frames contain vast overlap in time. The remaining temporal flicker in the video can be
attributed to two reasons: 1) The inferred mouth and jawline landmarks contain slight jitter. 2)
Appearance flicker, especially color flicker exists in the video frames generated by the inpainting
network. Based on the above analysis, our flicker removal algorithm contains two parts: mouth
landmark motion smoothing and face appearance deflicker. Algorithm 2 demonstrates the mouth
landmark motion smooth algorithm.

Algorithm 2 Mouth Landmark Smoothing Algorithm

Require: lt−1: mouth and jawline landmarks at time t− 1;
lt: mouth and jawline landmarks at time t;
dth: mouth movement distance threshold, s: mouth movement smooth strength;

Ensure: l′t: smoothed mouth and jawline landmarks at time t;
get mouth center position ct at time t from lt
get mouth center position ct−1 at time t− 1 from lt−1
if ||ct − ct−1||2 > dth then

l′t = lt
else

α = exp(−s||ct − ct−1||2)
l′t = αlt−1 + (1− α)lt

end if
return l′t

The appearance deflicker algorithm is modified from (Bonneel et al., 2015b). We take mouth move-
ment into consideration. If the mouth does not move, then the color flicker is more obvious, and
then we increase the deflicker strength. We denote the generated frame and processed frame at time
t as Pt and Ot, respectively. The mouth center moving distance between time t− 1 and t is denoted
as dt. The processed frame at t is written as:

F(Pt) =
4π2f2F(Pt) + λtF(warp(Ot−1))

4π2f2 + λt
(7)

where λt = exp(−dt). Here, F is the Fourier transform and f means frequency. Function
warp(Ot−1) uses optical flow from Pt−1 to Pt to warp input frame Ot−1. Compared with (Bonneel
et al., 2015b), the weight of previous frame λt is measured by the strength of mouth motion instead
of global frame consistency.

H RUNTIME PERFORMANCE

We conduct the inference phrase on a commodity desktop computer with an NVIDIA GTX 1060
and an Intel Core i7-8700. The audio to expression network takes 17 ms per frame and the inpainting
network takes 77 ms per frame. The post processes including deflicker and teeth proxy take 1.3s
and 300 ms per frame respectively. The deflicker algorithm involves the calculation of optical flow
that dominates the inference time. Thus, it takes about 1.7s/100ms to generate one video frame
with/without the post-process on average.
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Figure 12: Failure cases. (a) Poor tongue generation result on phoneme ”Z” that require the use of tongue. (b)
Poor lip-sync accuracy when we use normal speech audio to drive a speaker with strong Russian accent.

I LIMITATIONS

Robustness: The accuracy of 3D face reconstruction is crucial for the quality of our generated
videos. Currently, 3D face reconstruction is not very robust for extreme head pose (e.g. side view)
and low quality face image (e.g. GRID dataset). Thus, the quality of our generated talking face
varies. Generated videos of Obama are better than generated videos of GRID dataset on visual
quality and lip-sync accuracy. Our user study indicates that the realisticness of generated videos
decreases as the head pose increases.

Speaking Style: Each speaker has an unique speaking style in expression and timing (Kim et al.,
2019). Our method assumes that the expression parameters of 3DMM do not contain any speaker
information. The Audio-to-Expression Network applies an ID-removing Network to extract speak-
ing content from audio and build a bijection between speaking content and expression parameters.
We do not pay much attention to speaking styles in our method. However, such setting makes our
method can be extended to generate text-driven talking videos with synchronous artificial voice.

Emotion: Our method does not explicitly model facial emotion or estimate the sentiment from the
input speech audio. Thus, the generated video looks unnatural if the emotion of the driving audio
is different from that of the source video. This problem also appears in (Suwajanakorn et al., 2017)
and we leave this to future improvement.

Tongue: In our method, our Neural Video Rendering Network produces lip fiducials and the teeth
proxy adds the teeth high-frequency details. Our method ignores the tongue movement when some
phonemes (e.g. ”Z” in the word ”result”) are pronounced. The tongue texture can not be well
generated according to lip fiducials and teeth proxy as shown in Figure 12 (a).

Accent: Our method performs poorly when the driving speech audio contains an accent. For exam-
ple, the generated results driven by a speech with a strong Russian accent do not achieve visually
satisfactory lip-sync accuracy as shown in Figure 12 (b). We owe it to the fact that English speech
with a strong accent is an outlier to our Audio-to-Expression Translation Network and we leave it to
future research.

J ETHICAL CONSIDERATIONS

Our method could contribute greatly towards advancement in video editing. We envisage relevant
industries, such as filmmaking, video production, and telepresence to benefit immensely from this
technique. We do acknowledge the potential of such forward-looking technology being misused
or abused for various malevolent purposes, e.g., defamation, media manipulation, or dissemination
of malicious propaganda. Therefore, we strongly advocate and support all safeguarding measures
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against such exploitative practices. We welcome enactment and enforcement of legislation to obli-
gate all edited videos to be distinctly labeled as such, to mandate informed consent be collected from
all subjects involved in the edited video, as well as to impose hefty levy on all law breakers. Being
at the forefront of developing creative and innovative technologies, we strive to develop methodolo-
gies to detect edited video as a countermeasure. We also encourage the public to serve as sentinels
in reporting any suspicious-looking videos to the authority. Working in concert, we shall be able
to promote cutting-edge and innovative technologies without compromising the personal interest of
the general public.
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