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ABSTRACT: When confronted with a substance of unknown identity,
researchers often perform mass spectrometry on the sample and compare the
observed spectrum to a library of previously collected spectra to identify the
molecule. While popular, this approach will fail to identify molecules that are
not in the existing library. In response, we propose to improve the library’s
coverage by augmenting it with synthetic spectra that are predicted from
candidate molecules using machine learning. We contribute a lightweight
neural network model that quickly predicts mass spectra for small molecules,
averaging 5 ms per molecule with a recall-at-10 accuracy of 91.8%. Achieving
high-accuracy predictions requires a novel neural network architecture that is
designed to capture typical fragmentation patterns from electron ionization.
We analyze the effects of our modeling innovations on library matching
performance and compare our models to prior machine-learning-based work
on spectrum prediction.

■ INTRODUCTION

Mass spectrometry (MS) is an important tool used to identify
unknown molecular samples in a variety of applications, from
characterization of organic synthesis products, to pharmacoki-
netic studies,1 to forensic studies,2 to analyzing gaseous
samples on remote satellites.3 In electron−ionization mass
spectrometry (EI-MS), molecular samples are ionized by an
electron beam and broken into fragments. The resultant ions
are separated by an electric field until they reach a detector.
The mass spectrum is a distribution of the frequency or
intensity of each type of ion, ordered by mass-to-charge (m/z)
ratio.
A popular method for identifying a sample from its mass

spectrum is to look up the sample’s spectrum in a reference
library.4,5 Here, a similarity function is used to measure the
similarity between the query spectrum from the sample and
each spectrum in the library. If the measurement noise when
obtaining the query spectrum is reasonable, then the library
spectrum with the highest similarity will correspond to the
correct identification of the sample.6,7 A schematic of this
process is shown in Figure 1a.
This library matching approach is very popular, but it suffers

from a coverage problem: if the sample consists of a molecule
that is not in the library, then correct identification is
impossible. This is an issue in practice, since existing mass
spectral reference libraries, such as the NIST/NIH/EPA MS
database,4 Wiley Registry of Mass Spectral Data,5 and
MassBank,8 only contain hundreds of thousands of reference
spectra. The coverage problem could be reduced by recording

spectra for additional molecules, but this is time-consuming
and expensive. For example, NIST releases updates to its
library every 3 years, containing roughly 20 000 new spectra.
Additionally, mass spectra of new molecules are only added to
the library if the molecule is of common interest; molecules for
newly synthesized compounds are typically not incorpo-
rated.4,9

An alternative solution is to use de novo methods that input a
spectrum and directly generate a molecule, without using a
fixed list of molecules; we discuss some of these methods in the
Background section. These approaches currently have low
accuracy and are difficult for practitioners to incorporate into
their existing work-flows.
Another method for alleviating the coverage problem is to

augment existing libraries with synthetic spectra that are
generated by a model. Thus far, this approach has not been
practical, as existing spectrum prediction methods are very
computationally expensive. These prediction models use
quantum mechanics calculations10−12 or machine learning13

to estimate the probability of each bond breaking under
ionization, and thus the frequency of each ion fragment. Since
these methods must either compute molecular orbital energies
with high accuracy using expensive calculations, or else
stochastically simulate the fragmentation of the molecule, the
time needed for each model to make a prediction scales with
the size of the molecule, taking up to 10 min for large

Received: January 25, 2019
Published: March 19, 2019

Research Article

http://pubs.acs.org/journal/acsciiCite This: ACS Cent. Sci. 2019, 5, 700−708

© 2019 American Chemical Society 700 DOI: 10.1021/acscentsci.9b00085
ACS Cent. Sci. 2019, 5, 700−708

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

13
0.

44
.1

63
.1

39
 o

n 
Ja

nu
ar

y 
30

, 2
02

3 
at

 2
3:

29
:0

5 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

http://pubs.acs.org/journal/acscii
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acscentsci.9b00085
http://dx.doi.org/10.1021/acscentsci.9b00085
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


molecules.10,13 For applications of identifying metabolites from
a metabolomic spectra, much faster predictions of individual
molecular spectra are required.14

In response, we present Neural Electron−Ionization Mass
Spectrometry (NEIMS), a neural network that predicts the
electron−ionization mass spectrum for a given small molecule.
Since our model directly predicts spectra, instead of bond-
breaking probabilities, it is dramatically faster than previously
reported methods, making it possible to generate predictions
for thousands of possible candidates in seconds. Furthermore,
the approach does not rely on specific details of EI, and thus
our model could be easily retrained to predict mass spectra for
other ionization methods. We envision that this tool can
expand coverage in areas of molecular space of interest to
researchers that are likely candidates for the identity of the
molecule.
We test the performance of our model by predicting mass

spectra for small molecules from the NIST 2017 Mass Spectral

Library. We find that the predictive capability of our model is
similar to previously reported machine learning models, but
requires much less time to make predictions. Additionally, we
report the similarity of the spectra predicted by NEIMS. The
code repository for NEIMS is publicly available at github.com/
brain-research/deep-molecular-massspec.

■ BACKGROUND

De Novo Prediction of Molecules from Mass Spectra.
Several algorithms have been developed previously either for
predicting spectra or for predicting the molecule’s identity
given the spectrum. One of the earliest efforts in artificial
intelligence was a model used to identify molecules from their
mass spectrum. Heuristic DENDRAL (Dentritic Algorithm)
was a collaboration between chemists and computer scientists
at Stanford in the 1960s.15 This algorithm used expert rules
from chemistry to help identify patterns in the spectra and
suggest possible identities for the molecule. A few years later,

Figure 1. Library matching task. (a) Depiction of how query spectra are matched to a collection of reference spectra as performed by mass
spectrometry software. (b) Query spectra are compared against a library comprising spectra from the NIST 2017 main library and spectra predicted
by our model (outlined in blue). Spectral images adapted from NIST Webbook.29
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Meta DENDRAL was introduced to learn the expert rules that
originally been given to Heuristic DENDRAL.16

Since then, several models have been reported to predict
identities of samples directly from the spectrum. Many have
been developed for tandem mass spectrometry, where the task
is to predict the original peptide sequences from digested
fragments given the mass spectrum.17 Some of these methods
use machine learning to achieve this task.18,19 Several
previously published models use neural network models to
analyze mass spectra to predict molecules directly. One
approach predicts the fingerprint from the spectrum and
looks up the fingerprint in a library of fingerprints.20 Another
approach predicts the molecule directly either as a SMILES
representation21,22 or from a ranked list of possible structural
conformers.23

Prediction of Mass Spectra from Molecules. In this
work, we focus on the prediction of spectra from molecules.
The advantage of this approach over de novo approaches is that
new libraries of synthetic spectra can be easily incorporated
into the existing mass spectrometry software to improve the
coverage of existing libraries.
The first prediction methods for EI-MS spectrum used

quantum mechanical simulation techniques to predict
fragmentation events. There are three methods of predicting
the mass spectrum using first principles.10 The first is to use
quasiequilibrium theory, also known as Rice−Ramsperger−
Kassel−Marcus theory, to estimate the rate constants for
ionization reaction.24−26 The second is to estimate the bond
order energies within a molecule, and estimate where a
molecule may fragment. A related method to this second
method is to calculate the cross-section of molecular orbitals
upon electron impact to predict the molecule’s ionization
behavior.12,27 The third method uses Born−Oppenheimer
Molecular Dynamics. Quantum Chemistry Electron−Ioniza-
tion Mass Spectrometry (QCEIMS) is a particularly recent
example of the ab initio molecular dynamics method.10,11,28

The trajectories resulting from this simulation are then
analyzed for the presence of ionic fragments. The distribution
of the ion fragments aggregated from all the simulations is then
renormalized to generate a calculated EI-MS spectrum. Each of
these methods requires at least 1000 s per molecule,13 and may
even take days or weeks for molecules of 50 atoms. While these
methods may be fast for methods involving density functional
theory, they do not have the speed needed to rapidly generate
a collection of spectra of thousands of molecules. Furthermore,
some of the basis sets used for the density functional theory
might not support the presence of inorganic atoms.
Allen et al.13 introduced a machine learning model,

Competitive Fragmentation Modeling-Electron Ionization
(CFM-EI), to predict EI-MS spectra. This probabilistic
model predicts the probability of breaking molecular bonds
under electron ionization, and also predicts the charged
fragment that is likely to form. To generate the spectra, it is
necessary to run a stochastic simulation to determine the
frequency of each molecular fragment. In the Results and
Discussion section, we directly compare this method with our
proposed model.

■ METHODS

Our goal is to design a model that will accurately predict the
EI-MS spectrum for any molecule. This will be used to
produce an augmented reference library containing both

predicted spectra and experimentally measured spectra. This
task is outlined in Figure 1b.
We first discuss our choice of similarity metrics for mass

spectra. Next, we describe our method for spectra prediction,
describing our new architecture which is required for high
accuracy of mass spectra. We then explain how we evaluate our
model’s impact on the library matching task.

Similarity Metrics for Mass Spectra. The ability to a
match a query spectrum from a sample to the correct spectrum
in the library depends on the choice of similarity metric
between spectra.7,30 A weighted cosine similarity is commonly
used by mass spectrometry software. The exact form of the
cosine similarity is given below:7
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Here, Iq and Il are vectors of m/z intensities representing the
query spectrum and the library spectrum, respectively; mk and
Ik are the mass-to-charge ratio and intensity found at m z k/ = ;
Ml and Mq are the largest indices of Iq and Il with nonzero
values; and Mmax is the larger of Ml and Mq . The motivation
for the weighting by m z/ is because the peaks in mass spectra
corresponding to larger fragments are more characteristic and
useful in practice for identifying the true molecule.
Other similarity metrics besides cosine distance similarities

are also employed. For example, one other similarity method
involves estimating the relative importance of one peak given
the other peaks.30 Other methods uses a Euclidian difference
between peaks, or use a variation of the Hamming distance.7,31

Another similarity metric accounts for neutral losses, or the
intensity peaks corresponding to the loss of small, neutral
fragments from the original molecular ion.32 It is also possible
to use the same form of the similarity function as in eq 1, but
with different weighting given to the intensity or the masses.7

In principle, machine learning could be also used to learn a
parametrized similarity metric that yields improved library
matching performance. However, this custom metric would be
difficult to deploy, since it would require changing the software
used by practitioners.
We develop our model with the assumption that eq 1 will be

used for the similarity metric in downstream library matching
software that consumes an augmented library.

Spectral Prediction. We treat the prediction of mass
spectrometry spectra as a multidimensional regression task.
The output of our model is a vector that represents the
intensity at every integral m/z bin. We use this discretization
granularity for m/z because it is what is provided in the NIST
data sets we use for training our model.
In the NEIMS model (Figure 3), we first map molecules to

additive Extended Circular Fingerprints (ECFPs).33 These
fingerprints are similar to their binary counterparts34 in that
they record molecular subgraphs made up from local
neighborhoods around each atom node in the molecule, but
differ in that they count the occurrences for each subgroup.
This information is then hashed into a vector representation.
The difference is that additive fingerprints record the
frequency that each bit is set, rather than just the presence.
The RDKit Cheminformatics package33 was used to generate
the fingerprints. We use a fingerprint length of 4096 with a
radius of 2. These features are then passed into a multilayer
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perceptron neural network (MLP). To account for some of the
physical phenomena of ionization, we make some application-
specific adjustments to the prediction from the MLP, described
in the Adjustments for Physical Phenomena section.
In the Library Matching Results section, we compare the

performance of NEIMS to that of a simple linear regression
(LR) model. Here, we apply a linear transformation to the
ECFP features.
To train the model, we use a modified mean-squared-error

loss function. This loss function, shown below, follows the
same weighting pattern as in eq 1:
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where I is the ground truth spectrum, I ̂ is the predicted
spectrum, and M x( ) is the mass of the input molecule. We
used stochastic gradient descent to optimize the parameters of
the MLP with the Adam optimizer.35 We use Tensorflow36 to
construct and train the model.

Adjustments for Physical Phenomena. In practice, we
have found that the conventional MLP described in the
previous section struggles to accurately predict the right-hand
side of spectra (Figure 2a). Errors in this region, which
correspond to large m z/ , are particularly damaging for library
matching with the weighting in eq 1.
This section introduces a revised neural network architec-

ture (Figure 3) designed to better model the underlying
fragmentation process that occurs in mass spectrometry. We
have found that it improves prediction in the high mass region
of the spectrum (Figure 2b), which yields improvements in
library matching as discussed in the Results and Discussion
section.
As is standard for MLPs used for regression, the predictions

of the above MLP model on an input molecule x are an affine
transformation of a set of features f x( ), which are computed
by all but the final layer of the network. For reasons that will
become apparent, we refer to the above MLP as performing
forward prediction. At bin m z i/ = , we have the following
predicted intensity:

Figure 2. Spectral prediction with MLP forward model (a) and MLP bidirectional model (b). For both spectra plots, the true spectrum is shown in
blue on top, while the predicted spectrum is shown inverted in red. Note that the spectrum predicted by the bidirectional model shows fewer stray
peaks than the forward model, particularly for larger m/z values. These peaks are much easier to predict with the reverse prediction mode.

Figure 3. Molecular representations are passed into a multilayer perceptron to generate an initial output. This output is used to make a forward
prediction starting at m z/ 0= and m z M/ = and in reverse starting from m z M/ = and ending at m z/ 0= . A sigmoid gating is applied to the
inputs as shown in eq 5.
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p x w f x b( ) ( )i i i
f f f= +Τ

(3)

where wi
f and bi

f are the model’s weights and biases for forward
prediction at bin i.
The input ECFP features, from which f x( ) is computed,

capture local structures in the molecule, so generally f x( ) will
be more accurate in capturing the presence of small
substructures of molecule x. Often, there is a direct
correspondence between the presence of such substructures
and spectral peaks with small m z/ . For example, in Figure 2a a
peak occurs at m z/ 35= , due to the presence of chlorine.
Therefore, an accurate forward prediction model will have a
learned weight w35 that will output a high intensity at i 35= if
there is evidence in f x( ) for the presence of chlorine.
On the other hand, forward prediction often struggles to

accurately predict intensities for large fragments that are the
result of neutral losses.6 One reason for this is that the
composition of large fragments is not captured well by the
ECFP representation. Another reason is that information
learned about the cleavage of a small group does not transfer
well across molecules of different masses. For pentachlor-
obenzene, which has a molecular mass of 250 Da, the fragment
that results from the loss of a neutral chlorine atom results in a
peak at 215 Da. Meanwhile, for chlorobenzene, which has a
mass of 112 Da, the fragment resulting from a loss of a chlorine
atom would have a peak at 77 Da. Despite the clear
relationship between these intensity peaks, the forward
model is not parametrized to capture this pattern.
In response, following the physical phenomenon that created

the fragments, we define larger ion peaks as a function of the
residual groups that were broken off from the original
molecule. Referring to our previous example of pentachlor-
obenzene (M x( ) 250= ), we can parametrize the m z/ ratio of
the f ragment which los t a ch lo r ine group as
m z/ 250 35 215= − = . The corresponding fragment in
chlorobenzene would have a mass of m z/ 215 35 77= − = .
By defining the peaks in this way, it is possible for these
predictions of spectral intensities to be linked by the prediction
at index 35. This leads to the indexing scheme of our reverse
prediction model:

p x w f x b( ) ( )M x i i i( )
r r r= +τ+ −

Τ
(4)

Here, 0τ > is a small shift that allows for peaks to occur at
intensities greater than M x( ), due to isotopes. In practice,
reverse prediction is implemented using a copy of the forward
model, with separate sets of parameters for the final affine
layer, but shared parameters for f x( ). The outputs of this
model are postprocessed on a per-molecule basis to obey the
indexing in eq 4, which depends on each molecule’s mass.
Both the forward and reverse predictions are combined to

form a bidirectional prediction. That is, the final prediction at
index i is a combination of both pi

f and pi
r. In the case of

pentachlorobenzene, the prediction of spectral intensity at
m z/ 215= is a function of p215

f from the forward mode and

p35
r

τ+ from the reverse mode. Instead of simply averaging the
two prediction modes, we have found that small additional
performance improvements can be obtained using a
coordinate-wise gate. Here, the output p x( )i at position i is
given by

p x p x p x( ) (gate ) ( ) (1 (gate )) ( )i i i i i
f rσ σ= + − (5)

where gatei is an affine transformation of f x( ), and ( )σ · is a
sigmoid function. This approach echoes the formulation of the
Hybrid Similarity Search designed by Moorthy et al.,32 which
accounts for peaks that are created by small fragment ions and
those which are created by large fragments which have lost
smaller groups.
Finally, for all models, we zero out predicted intensities at

m z/ that are greater than M x( ) τ+ .
By adding these features, we incorporate some of the

physical phenomena that occur in mass spectrometry into our
model while maintaining the overall simplicity of the MLP. In
this way, we are able to predict the spectrum directly without
resorting to sampling bond-breaking events within the
molecule, which requires subsequent stochastic sampling to
obtain a spectrum.

Library Matching Evaluation. We evaluate NEIMS using
an augmented reference library consisting of a combination of
observed spectra and model-predicted spectra, with library
matching performance computed with respect to a query set of
spectra. These are from the NIST 2017 replicates library,
which is a collection of noisier spectra for molecules that are
contained in the NIST main library. The inconsistencies in
these spectra reflect experimental variation, and make an
informative data set to test our model’s performance.
To construct the augmented reference library, we edit the

NIST main library, removing spectra corresponding to the
query set molecules and replacing them with the predictions
from NEIMS. We then perform library matching and calculate
the similarity between each query spectrum and every
spectrum from the augmented library. We record the rank of
the correct spectrum, i.e., the rank of the predicted spectrum
corresponding to the molecule which made the query
spectrum. The similarity metric is eq 1.
For the purposes of tuning model hyperparameters, we

chose to optimize recall@10, i.e., the percentage of our query
set for which the correct spectra had a matching rank of less
than or equal to 10 in the library matching task. Half of the
replicates library was used for tuning hyperparameters, and the
remaining half was used to evaluate test performance. All
models were trained on the spectra prediction task for 100 000
training steps with a batch size of 100.
During the library match search, we have a mass f iltering

option. This feature reduces the library size so it only includes
spectra from molecular candidates that have a molecular mass
that differ by a few Daltons from the mass of the query
molecule. If the EI-MS analysis is combined with mass
spectrometry techniques using soft ionization methods, it is
possible to determine the mass of the molecule being analyzed.
In the CFM-EI model, the molecular formula is used to filter
the search library.13 Using the molecular mass to filter the
library allows more possible candidate spectra to be considered
in the search than using a molecular formula filter.

■ RESULTS AND DISCUSSION

To analyze the performance of the models, we trained with
240 942 spectra from the NIST 2017 Mass Spectral Main
Library. These spectra were selected so that no molecules in
the replicates library have spectra in the training set.
After hyperparameter tuning using Vizier,37 we found that

the optimal MLP architecture has seven layers of 2000 nodes,
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with residual network connections between the layers,38 using
ReLU activation and a dropout rate of 0.25.
Library Matching Results. We first examine the effects of

our various modeling decisions on performance. Figure 4a
compares the performance of forward, reverse, and bidirec-
tional versions of the linear regression and MLP models on the
library matching task. For bidirectional prediction in the linear
regression model, the forward and reverse predictions are
simply averaged together, rather than applying the gate
described in eq 5.
The top row of Figure 4a shows that it is not possible to

achieve perfect recall accuracy on the library matching task
even when using the full NIST main library as the reference
library, without any model-predicted spectra. Observing Figure
4b we see that, using the NIST main library as the reference
library, we have 86% recall@1 accuracy, and 98.3% recall@10
accuracy. This serves as a practical upper bound on achievable
library matching accuracy and reflects the experimental
inconsistencies between the main library spectra and replicates
spectra.9

The forward prediction mode for both the linear regression
model and the multilayer perceptron (MLP) has poor
performance. The linear regression model is improved by
20% when switching to using reverse mode prediction. Using
bidirectional prediction mode improves recall@10 accuracy by
30% for both the linear regression and the multilayer
perceptron model. This finding suggests that the bidirectional
prediction mode is more effective at capturing the
fragmentation events than the forward-only model.
Figure 2 shows the improvement in spectral prediction for

pentachlorobenzene using the bidirectional MLP model. Note
that the bidirectional model on the right more accurately
models intensities at larger m/z. The intensity peaks for larger
m/z are critical for determining the identity of a molecule, and
are more heavily weighted in eq 1.
NEIMS achieves 91.7% recall@10 after applying a mass

filter. The mass filter was set to a tolerance of 5 Da of the query
molecule’s mass; this reduces the size of the library to a median
of 6696 spectra for each query molecule. In practice, this
tolerance window could be set to a larger window, depending
on the uncertainty of the information about the molecular
mass of the ion. For the rest of this report, we will refer to the
bidirectional multilayer perceptron model with mass filtering of
5 Da as the default settings for NEIMS.

From Figure 4b we see that while NEIMS has decent
performance for recall levels of 10 and above compared to the
NIST spectral library, it has considerably worse performance
for recall values of 1 and 5. This result is unsurprising given
that the hyperparameters of the model were trained to
maximize performance on recall@10. As many experimentalists
will examine the top matches to find the library spectrum that
best matches the sample’s spectrum, we believe that tuning for
recall@10 is sufficient for an initial approach.

Comparison to Previously Reported Models. We next
compared our model’s performance directly to the perform-
ance of the CFM-EI model.13 The setup of Allen et al. differs
from our current setup in a few ways. First, they evaluate their
model on the NIST 14 spectral library. Second, for the library
matching task, their augmented reference library contains only
spectra predicted by their model, and none from the original
NIST collection. Third, the cosine similarity metric eq 1 used
for evaluation in library matching in CFM-EI uses a different
weighting scheme. In their analysis, the cosine similarity is
weighted by mk

0.5 instead of mk to de-emphasize the larger
peaks in the mass spectrum, as they ran their experiments on
other data sets with a higher proportion of larger molecules.13

To compare the performance of NEIMS to that of CFM-EI,
we match their setup identically. We retrain our NEIMS model
on the NIST 14 data set, and evaluate the performance using
the NIST 14 replicates as the query set. For library matching,
we incorporate only predicted spectra into our augmented
library, and using the same modified similarity metric.
The library matching performances for CFM-EI and NEIMS

are compared against the NIST 14 library, as reported in Table
1. NEIMS performs slightly better than CFM-EI on the library
matching task. More importantly, NEIMS is able to make
spectral predictions orders of magnitude faster than CFM-EI.

Figure 4. Performance of different model architectures. (a) Comparison of the recall@10 accuracy of the linear regression model and the multilayer
perceptron model using the forward, reverse, and bidirectional architecture. (b) Performance of NEIMS at different recall levels, and its comparison
against the performance of using the NIST main library itself.

Table 1. Performance on Library Matching Task for NIST
17a

model
recall@1
(%)

recall@10
(%)

average run time
(ms)

NIST 14 Reference
Library

77 99a −

CFM-EI 42.6 89a 300 000
NEIMS 54.3 92.7 0.47

aValues were estimated from Figure 4 of Allen et al.13.
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With NEIMS, it would be possible to generate spectra for 1
million molecules in 90 min on a CPU, with potential for
considerable speedup with using a GPU.
Distances between Predicted and Ground Truth

Spectra. So far, we have evaluated the quality of the
NEIMS predictions indirectly, by way of how they affect
library matching with an augmented library. Next, we assess
the prediction accuracy directly, by measuring the similarity
(eq 1) between spectra in the NIST main library and the
model’s predictions. We refer to this similarity as the predicted
similarity.
There is inherent noise in mass spectra due to stochasticity

of the underlying physical process and also to experimental
inconsistencies.9 The NIST replicates library provides multiple
spectra for each molecule, and we can use these sets of spectra
to characterize the scale of this noise for each molecule.
Specifically, we define the inherent noise for a given molecule
as the average pairwise similarity between all corresponding
spectra, in both the NIST main library and the NIST replicates
library, and refer to this as the overall similarity.
For each molecule, we compute the ratio of the predicted

similarity to overall similarity as a normalized metric for the
quality of our predictions. A ratio of 1.0 would suggest that
there are is limited available headroom for improvements using
machine learning, since the model’s errors are comparable to
the variability in the data.
Figure 5 shows the improvement in this ratio for the MLP

bidirectional model over the MLP forward model, confirming

that the bidirectional model has better spectral prediction
performance. For the MLP bidirectional model, roughly half of
the molecules have a predicted similarity to overall similarity
ratio that is greater than 0.9, indicating that there is potential
for further improvement to the model. Some of these
molecules have ratios that are greater than 1, which is possible
if there is more variation between the spectra (i.e., a lower
overall similarity) than between the predicted spectrum and
the main library spectrum (i.e., predicted similarity).
To analyze the ability of our model to extrapolate we

analyzed the relationship between predicted similarity and
similarity of the query molecule to the training set molecules.
The molecules in the test set have limited structural similarity
to the molecules in the training set. We observe that 22.7% of
molecules in the test set have a Tanimoto similarity of greater

than 0.8 with at least one molecule in the training set. A plot of
this relationship between predicted spectral similarity and
closely related molecules in terms of Tanimoto similarity can
be found in Figure S3 in the Supporting Information. Based on
these results, we believe that our model is able to extrapolate to
some areas of molecular space that were not fully covered by
the training set. Future work will examine the limitations of the
model’s ability to extrapolate.

■ CONCLUSION

We demonstrate that NEIMS achieves high library matching
performance on an augmented spectral library containing
predictions for molecules in the query set. The performance of
NEIMS is also slightly better than existing machine learning
models for predicting EI-MS spectra, with significant boost in
speed of prediction.
The high performance in library matching is attributable to

the bidirectional prediction mode. The reverse mode in
particular allows the model to more accurately predict
intensities for larger fragments which result from the loss of
small neutral subgroups. We observe that the improvement in
the library matching task also corresponds with improvement
in the similarity of the predicted spectra to the ground truth
spectra.
Several adjustments could be made to further improve the

predictive accuracy of NEIMS. For example, NEIMS currently
does not have a method to model intensity peaks
corresponding to isotopes in ion fragments. If we were to
train on spectral data with greater precision in the peaks
locations, we should be able to learn the exact identities of
atoms based on the decimal values of the m/z peak locations.
Mass filtering improved the performance of NEIMS by 6%.

This suggests that, for experimental setups where it is possible
to know the molecular mass of the sample with some accuracy,
it is possible to improve the accuracy of matching on the
augmented spectral library. It would also be interesting to
explore other settings for mass filtering, such as filtering out
spectra which have a molecular mass that is much smaller than
the position of the largest m/z peak.
Using graph-convolutional molecular representations,39,40

especially bond-centered representations,41 would likely
improve predictive accuracy at a slightly higher computational
cost. The predictions made from ECFP are limited by the
descriptiveness of the fingerprint.42 In particular, the overlap in
representation for different molecular features represents a
huge limitation to the representation of the molecule.
Combining NEIMS with transfer learning methods could

allow for spectral prediction specific to individual spectrometry
machines. A library of such machine-specific spectra would
improve matching.9

The lightweight framework of NEIMS makes it possible to
rapidly generate spectral predictions for large numbers of
molecular candidates. This collection of predicted spectra can
then be used directly in mass spectrometry software to expand
the coverage of molecules which can be identified by mass
spectrometry. Because the requirements of NEIMS has limited
dependence to EI mass spectrometry, it likely that some of the
principles used here could be extended to other types of mass
spectrometry.

Figure 5. Comparing the similarity between the predicted spectrum
and the ground truth spectrum to the overall similarity between
spectra for the same molecule.
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