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Abstract

Vision–Language Models (VLMs) demonstrate strong performance on a wide range1

of tasks by fine-tuning pretrained language backbones to process projected visual2

tokens alongside text. Yet despite these empirical gains, it remains unclear how3

language backbone representations adapt during multimodal training and when4

vision-specific capabilities emerge. In this work, we present the first mechanistic5

analysis of VLMs adaptation with stage-wise model diffing, a technique that6

isolates representational changes introduced during multimodal fine-tuning to7

reveal how a language model learns to "see". Concretely, we fine-tune sparse8

autoencoders trained on LLaMA-3.1-8B over multimodal activations from LLaVA-9

More (based on LLaMA-3.1-8B) using 50k VQAv2 pairs. We first isolate vision-10

preferring features that appear or reorient during multimodal fine-tuning. We then11

test for spatial selectivity using a controlled shift to spatial prompts to identify the12

attention heads that causally activate these units. Our findings show that stage-13

wise model diffing reveals when and how spatially grounded multimodal features14

arise. It also provides a clearer view of modality fusion by showing how visual15

grounding reshapes features that were previously text-only. This methodology16

enhances the interpretability of multimodal training and provides a foundation for17

understanding and refining how pretrained language backbones acquire vision-18

grounded capabilities.19

1 Introduction20

Large vision–language models (VLMs) have achieved strong performance on multimodal tasks,21

including visual question answering (VQA), image captioning, object detection, and visual grounding22

[28, 27, 1, 2, 11]. These gains are typically realized by fine-tuning pretrained language models to23

process visual inputs through projected token sequences, allowing for seamless fusion of image24

and text representations [49, 19, 51, 13, 12]. Yet we lack a mechanistic account of how language25

representations adapt during multimodal training and when vision-specific capabilities emerge [23,26

45, 46, 42, 5].27

In this work, we introduce a methodology for analyzing multimodal adaptation in VLMs through28

stage-wise model diffing [6]. This mechanistic interpretability technique isolates representational29

changes introduced during fine-tuning by comparing sparse autoencoder (SAE) dictionaries across30

training stages, models, or datasets. By tracking how individual features rotate, emerge, or are31

repurposed, stage-wise diffing has been shown to uncover subtle shifts such as sleeper-agent features32

[21, 6]. We extend this approach to the multimodal setting, presenting the first application of33

stage-wise model diffing to study how pretrained language features evolve under visual grounding.34

Concretely, we fine-tune LLaMA-Scope SAEs on activations extracted from the LLaVA-More model35

[20] on 50k samples from the VQAv2 dataset [17]. This warm-start preserves the original feature basis36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



while adapting to multimodal activations. We isolate features that gain visual preference and undergo37

strong geometric rotation, serving as anchors for studying spatial representations in the backbone. To38

identify which adapted features encode spatial reasoning, we apply a controlled dataset shift from39

general VQA to spatial queries. Features that are preferentially recruited under spatial prompts form40

a selective subset, which we validate through automatic and manual interpretation. These features41

consistently activate on questions about object placement, relative position, and orientation.42

Finally, we use attribution patching to trace the causal pathways by which these spatial features are43

activated. Our results reveal a sparse set of mid-to-deep layer heads that consistently drive spatial44

representations, often localizing to semantically meaningful regions and reappearing across related45

prompts. These findings support the hypothesis that a small number of specialized attention heads46

coordinate visual grounding within the model.47

Our contributions are as follows:48

• We propose stage-wise model diffing as a method for dissecting multimodal adaptation in49

large language models, and show that it isolates the emergence of vision-specific features50

within the backbone.51

• We identify sparse SAE features that encode spatial relationships and are selectively activated52

by spatial prompts.53

• We causally attribute these features to a small subset of attention heads using scalable54

patching methods.55

By focusing on feature-level change, our approach complements high-level alignment analyses and56

probing-based methods, providing a deeper mechanistic view of how models “learn to see”. More57

broadly, this work offers a framework for auditing and refining multimodal training regimes, with58

implications for safety-critical domains and targeted fine-tuning in specialized applications.59

2 Related Work60

Model Diffing and Representation Dynamics Model diffing techniques aim to isolate how internal61

representations change across models or training stages. Early work focused on coarse similarity62

measures, such as visualizing function-space geometry [37, 14], stitching intermediate layers across63

models [26, 3], or defining new similarity metrics [25, 4]. Later studies examined alignment at the64

level of individual neurons, showing convergent units across independently trained networks [29, 36].65

Sparse autoencoders (SAEs) provided a feature-level lens, and Kissane et al. [24] showed that SAEs66

largely transfer between base and fine-tuned models—implying most features are preserved and only67

a minority are altered. This motivates methods that can isolate and interpret precisely those changes.68

Stage-wise model diffing [6] offers such fine-grained resolution, revealing sleeper-agent features and69

distinguishing between base and chat-tuned models [33].70

Extensions to multimodal models highlight similar representational shifts: Khayatan et al. [23]71

proposed concept-shift vectors for steering, while Venhoff et al. [45] found vision-language alignment72

converges in middle-to-late layers. These remain semantic-level analyses, whereas our work applies73

stage-wise diffing with SAEs directly to the backbone, providing the first mechanistic account of74

how multimodal fine-tuning rotates features and induces spatially grounded representations within75

pretrained language models.76

Multimodal Mechanistic Interpretability. Compared to the rapidly growing literature on mecha-77

nistic interpretability of textual LLMs, relatively few studies have examined the internal mechanisms78

of multimodal large language models (MLLMs). Existing work falls into two main categories.79

First, tool-based or causal analyses aim to explain model behavior at a high level. Stan et al. [42]80

introduced an interpretability toolkit for VLMs based on attention patterns, relevancy maps, and81

causal interventions. Basu et al. [5] applied intervention methods to trace how information is stored82

and transferred, while Palit et al. [39] used causal mediation analysis to study how BLIP integrates83

visual evidence. Second, probing-based studies focus on the representations themselves. Tong et84

al. [44], Gandelsman et al. [15], and Chen et al. [8] analyzed CLIP, identifying both strengths and85

limitations. Schwettmann et al. [41] reported multimodal neurons responsive to joint visual–textual86

concepts, and Jiang et al. [22] examined how VLMs differentiate hallucinated from real objects.87
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More recent methods attempt to map visual embeddings into linguistic space, such as Neo et al. [35]88

who projected visual features onto language vocabulary, or Venhoff et al. [46] who studied the late89

emergence of visual signals in LLM backbones.90

In contrast, these studies primarily analyze patterns, interventions, or probing correlations, but do not91

directly track how multimodal fine-tuning restructures the backbone’s internal features. Our work92

addresses this gap by providing a mechanistic perspective.93

3 Preliminaries94

3.1 Vision–Language Models95

A vision–language model (VLM) consists of three components: a visual encoder fV , a pretrained96

language model fLM, and a trainable projector P . The visual encoder (e.g., a ViT [40]) extracts97

image patch embeddings V = fV (x) = [v1, . . . , vNV
], which the projector maps into the token98

space as Ṽ = P (V ). These projected image tokens are concatenated with tokenized text embeddings99

T = [t1, . . . , tNT
] to form the multimodal sequence X = [ṽ1, . . . , ṽNV

, t1, . . . , tNT
]. Alignment100

between modalities is achieved through visual instruction tuning, where image–text pairs fine-tune101

the backbone to follow multimodal instructions.102

The language model processes X through a stack of transformer layers, each consisting of multi-head103

self-attention (MHA) and a feed-forward network. For each head h, attention is computed as104

Attn(Q,K, V ) = Softmax
(

QK⊤

√
dh

+M
)

V, (1)

where M is the causal mask that prevents attending to future tokens. The outputs of all heads are105

concatenated and projected back into the hidden dimension, and the final hidden states are mapped106

through the unembedding matrix to yield next-token probabilities. For our experiments, we adopt107

LLaVA-More [9], which extends LLaVA framework [32, 31] by integrating recent language models108

and diverse visual backbones; specifically, we use the variant combining the CLIP ViT-Large-Patch14–109

336 encoder with a LLaMA-3.1-8B language model backbone [18].110

3.2 Sparse Autoencoders (SAEs)111

Sparse Autoencoders (SAEs) learn a dictionary of features that approximate hidden states as sparse112

linear combinations of interpretable directions. mitigating superposition where many features overlap113

in the same dimensions [7, 10]. Formally, a vanilla SAE encodes an input vector x ∈ R
D into a114

sparse hidden representation115

f(x) = ReLU(Wencx+ benc), Wenc ∈ R
F×D, ; benc ∈ R

F , (2)

which are then decoded back into the input space:116

x̂ = Wdecf(x) + bdec, Wdec ∈ R
D×F , ; bdec ∈ R

D. (3)

Sparsity is encouraged via an L1 penalty on the hidden activations, yielding the objective117

L = |x− x̂|22 + λ
∑

i = 1F |fi(x)|1. (4)

Here, decoder columns (Wdec):,i define the direction of each feature in input space, while encoder118

rows (Wenc)i,: act as detectors that determine when a feature is present.119

Top-K Sparse Autoencoders. Top-K SAEs [16] enforce sparsity by keeping only the K most120

active hidden units per input and setting the rest to zero. The surviving activations are then decoded121

as in the vanilla SAE. This hard selection yields a sharper sparsity–fidelity tradeoff, reduces feature122

co-adaptation, and improves interpretability by ensuring that only a few features contribute to each123

reconstruction.124

We build on the LLAMA-SCOPE suite of SAEs trained on LLaMA-3.1-8B [20], which refine the125

Top-K design with norm-aware selection [43], JumpReLU post-processing to stabilize the number of126

active features, and K-annealing during training. Since our VLM (LLaVA-More) shares the same127

backbone, we warm-start from these pretrained SAEs rather than retraining from scratch, enabling us128

to directly leverage millions of monosemantic features across layers.129
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4 Adapting Language Dictionaries to Vision-Language Space130

To study how multimodal fine-tuning reshapes internal representations, we adapt sparse autoencoders131

(SAEs) of Llama 3.1 8B backbone to the hidden states of LLAVA-MORE (Llama 3.1 8B backbone)132

[9]. We use 50k image–question pairs from the VQAv2 dataset [17], a widely used benchmark for133

visual question answering that pairs natural images with open-ended queries. Each SAE is attached134

to the output of a transformer block and trained on cached activations from these samples. Images135

are represented by 575 consecutive visual tokens, and questions by variable-length text sequences;136

this separation allows token-type–specific masking.137

We initialize SAEs from the pretrained llama_scope_lxr_8x release [20], re-instantiated as a138

top-k model (k=50), to preserve a meaningful basis while enabling sparse, interpretable codes. This139

warm-start ensures continuity with the pretrained language feature space. As a control, we also train140

SAEs from random initialization under identical conditions. Training uses Adam with a layer-scaled141

learning rate, and cached activations are processed in padded mini-batches. To disentangle modality-142

specific contributions, we consider four regimes: (i) full sequence, (ii) image-only, using only the143

visual-token span, (iii) text-only, using only the non-visual span, and (iv) random initialization. In144

all cases, the SAE receives the full hidden state sequence, but masking controls which token spans145

contribute to the training signal.146

We evaluate reconstruction quality using the fraction of variance unexplained (FVU) and report147

sparsity to verify that codes remain selective. Evaluation is performed on a held-out split. Figure148

1 shows FVU as a function of tokens seen across layers and masking regimes. Text-only SAEs149

converge rapidly, while image-only and full-token regimes converge slowly and plateau at higher error,150

reflecting the mismatch between projector embeddings and the LLM basis. Random initialization151

performs worst, underscoring the importance of starting from a pretrained language dictionary.152

These findings establish text-only SAEs as a reliable reconstruction baseline, which we later use for153

stage-wise diffing.154

Metric Full Random Image Text

Mean 0.032 0.050 0.037 0.005

Std 0.028 0.041 0.027 0.009

Min 0.013 0.020 0.017 0.000

Max 0.123 0.198 0.123 0.037

Tokens (M) 31.6 31.6 28.4 3.2

Figure 1: SAE adaptation on LLAVA-MORE. Left: Mean fraction of variance unexplained (FVU)
across layers on the validation set. Right: Summary statistics of FVU values on the validation set,
with decimal alignment; the lowest mean is highlighted in bold.

Implications for stage-wise model diffing. Stage-wise diffing assumes that fine-tuning induces155

localized (feature-level) changes rather than wholesale rotations. Prior work reports that image-156

token representations in early layers exhibit higher reconstruction error than text tokens, indicating157

a distributional gap between projector outputs and the LLM basis [47]. Consistent with this, our158

decoder–cosine analysis (Appx.Fig.6) shows that text-only SAEs remain highly aligned to the base159

LLM dictionary across layers, whereas image-only and full sequence SAEs undergo large rotations in160

shallow layers and only align in later layers. We also note that text-only SAEs begin with slightly161

higher error in the very first layers but adapt extremely quickly, converging to near-zero reconstruction,162

while image and full-sequence SAEs plateau at higher error—underscoring the instability of projector-163

driven spans (see Appx.Fig.7). We therefore avoid stage-wise diffing on image-only or full-sequence164

SAEs in early layers, and focus on text-only SAEs and on later layers where alignment is stable and165

feature-level identifiability is more plausible.166
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5 Identifying Adapted Features167

Our goal is to find SAE features that (i) exhibit a modality preference for vision input and (ii) reorient168

geometrically after multimodal adaptation. Such features are the best targets for stage-wise diffing169

and later causal probes.170

5.1 Signals171

Modality preference (variance gap). View each SAE feature f as a latent direction whose activation172

on hidden state x is hf (x). We quantify f ’s preference for vision states using the variance gap:173

∆f = Evision

[

h2

f

]

− Etext

[

h2

f

]

.

Evision[·] is taken from VQA runs of the VLM (image + question), while Etext[·] comes from the174

base LLM on the same prompts, where images are replaced with captions, and the model receives175

only textual input. A large ∆f indicates that f shows stronger activation on image-conditioned176

representations, suggesting visual specialization.177

Geometric reorientation (decoder cosine). To test if f has been repurposed by multimodal fine-178

tuning, we compare its decoder direction before and after adaptation. Let W LLM
dec,f be the base SAE179

decoder vector and WVLM
dec,f the corresponding vector in the VLM-adapted SAE. We compute180

cf = cos
(

W LLM
dec,f , W

VLM
dec,f

)

.

High cf means the semantic direction of f stayed aligned with the original language dictionary; low181

cf indicates a substantial rotation, consistent with a reallocation of f to encode new multimodal182

structure. We use decoder vectors rather than encoder parameters because decoder directions more183

directly index the feature’s semantics.184

5.2 Selection Procedure185

We identify adapted features using a two-stage filter. All features from every layer are pooled together,186

and thresholds are computed over this global set. Stage one retains the top pgap = 20% of features187

by variance gap ∆f , ensuring a preference for vision-conditioned activations. Stage two further188

narrows this pool to the bottom pcos = 20% by cosine similarity cf , isolating those that underwent the189

strongest decoder rotations. This procedure produces a single globally defined adapted set comprising190

under 5% of all features. The joint distribution of variance gap and cosine similarity is shown in191

Fig. 2, with selected adapted features highlighted. Additional summaries, such as counts of adapted192

features per layer and their mean cosine similarities, are provided in Appx. Fig. 8a and Appx. Fig. 8b.193

Figure 2: Joint distribution of variance gap vs. decoder cosine for all SAE features (gray). Points
highlighted in pink are retained by our two-stage filter yielding the globally defined adapted set.
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6 Case Study: Identifying Spatial Reasoning Features194

We aim to isolate SAE features that encode spatial grounding by comparing firing patterns under a195

controlled dataset shift from general VQA to spatial queries.196

Datasets. We consider two evaluation sets derived from VQAv2. The baseline is the full validation197

split, denoted Dbase. To induce a targeted shift, we construct a spatial subset Dsp by filtering questions198

that contain spatial cues (e.g., left/right/above/behind). This contrast tests whether some SAE features199

are selectively recruited under spatial reasoning.200

Firing frequencies. Let hf (xt) ≥ 0 denote the activation of feature f on token t of input x. For a201

dataset D, the firing frequency of f is202

pf (D) =
1

n(D)

∑

x∈D

∑

t

1{hf (xt) > 0},

where n(D) is the total number of tokens.203

Distribution shift. Figure 3a compares the empirical distributions of feature firing frequencies204

under Dbase and Dsp. The spatial subset exhibits a heavier right tail, suggesting selective recruitment205

under spatial queries.206

For each feature f , we compute the frequency gap ∆pf = pf (Dsp) − pf (Dbase), and the odds207

ratio ORf comparing firing counts across the two splits. Features with large ∆pf and ORf > 1 are208

flagged as spatial candidates.209

Selection and outcome. From the spatial candidates, we retain only those that also lie in the210

adapted set A from Sec. 5, ensuring they both reorient under multimodal fine-tuning and respond to211

spatial distribution shifts (with scatter plot shown in Appx.Fig.9). To remove prompt-lexical artifacts,212

we further probe with a neutral instructions such as “Describe the positions of all objects in the image.”213

and Features that remain active and image-token–dominant are preserved, while prompt-specific214

units are discarded. Figure 3 visualizes the result: across all adapted features, it compares firing215

frequencies on Dbase and Dsp, highlighting the subset that survives this full pipeline. The plot shows216

that adapted features span a wide dynamic range, with the retained spatial set concentrated in the217

high-frequency tail under Dsp.218

(a) Overall distribution shift in feature firing fre-
quencies when moving from generic VQA to
spatial queries.

(b) Adapted features under both splits, with spatially selec-
tive survivors highlighted.

Figure 3: Identifying spatial reasoning features. Evidence of a distribution shift from Dbase to Dsp,
with adapted features highlighted after the full selection pipeline.

6



7 Auto-Interp and Manual Inspection219

To further characterize the adapted features, we developed an automated interpretation pipeline. For220

each feature, we collect its top-activating samples from two sources: general VQA questions from221

VQAv2 (not limited to spatial reasoning) and the Visual Spatial Reasoning (VSR) dataset, which222

is inherently spatial. This pairing highlights whether the same feature meaning—such as object223

orientation or relative position—emerges consistently across both settings (Fig. 4 and 10).224

The combined VQA–VSR samples are passed to the gpt-4o-mini [38] API in JSON mode, which225

assigns a confidence score and generates a short description with common patterns and cue counts.226

Outputs are stored with the selection metrics from Sec. 5 and lightly checked by hand. The retained227

set thus reflects both automatic labeling and human verification.228

Figure 4: Qualitative Auto-Interp example. Layer 16, Feature 176 (conf. 0.95). Top VQA (general)
and VSR (spatial) samples both highlight the same concept of object orientation—firing when items
are described as facing toward, away, or relative to another object.

8 Attribution Patching to Identify Spatial Heads229

Method. Attribution patching [34] is a scalable alternative to activation patching [50], which230

measures causal effects by replacing activations with counterfactual values. While activation patching231

requires a separate forward pass per intervention, attribution patching uses a gradient-based linear232

approximation to estimate the effect of all interventions with only two forward passes and one233

backward pass. This makes it practical to probe attribution scores across all layers and attention234

heads in large multimodal models.235

We adapt attribution patching to identify which attention heads drive spatially selective SAE features.236

For a target feature f at layer L, we define a scalar objective by projecting the layer-L activations onto237

the SAE decoder vector. Gradients of this objective with respect to upstream query/key activations238

indicate how strongly each attention head contributes to f .239

We compare two runs:240

• Clean run: the original image–text input.241
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• Corrupt run: the same input, but with layer-0 visual token embeddings replaced by a242

mean embedding computed over many VQA samples. This corruption preserves plausible243

distributional statistics while deliberately suppressing spatial information.244

We then compute two attribution variants, differing in whether the perturbation direction is taken245

from the corrupted or the clean representation:246

Method A: (corr− clean) · ∇clean,

Method B: (clean− corr) · ∇corr.

Method A measures how strongly the clean gradients indicate that ablating spatial detail affects the247

feature, whereas Method B measures how strongly the corrupted gradients indicate that retaining248

spatial detail matters. In both cases, we obtain per-layer and per-head attribution scores, averaged249

over the top-k VQA samples that most strongly activate f .250

Results. Across the spatially selective features we examined, attribution patching with both meth-251

ods reveals consistent trends. Layer-wise attribution curves typically peak in mid-to-deep layers,252

consistent with the emergence of spatial features in Sec. 6. At the head level, both methods generally253

highlight a small subset of heads with notably high scores, and the top heads identified are often254

consistent across the two attribution methods. This suggests that spatial information is mediated by a255

specialized group of heads rather than being spread uniformly across the model.256

To illustrate the effect of attribution patching on individual features, Appx 11-12 provide detailed257

examples. In each case, attribution scores isolate a handful of mid- to deep-layer heads, and qualitative258

maps confirm that high-scoring heads focus on regions consistent with the queried relation (e.g.,259

“on top of,” “behind”), whereas low-scoring heads fail to do so. Interestingly, when we look across260

multiple related spatial features together, we find that some of the same heads recur across related261

spatial relations. Figure 5 illustrates this pattern. In the top row, L13H1 attends to semantically262

relevant regions across queries. As a control, the middle row shows that bottom-ranked heads on263

the same samples fail to localize meaningfully. The bottom row further confirms that irrelevant264

queries do not trigger spurious activation. More generally, these same heads also attend to meaningful265

regions such as salient objects or attributes under custom prompts (Appx. Fig. 13), underscoring that266

attribution patching identifies a small set of heads that reliably carry spatial–semantic signal.267

Figure 5: Attribution patching across related spatial features. Top: recurring top-scoring head
(L13H1) localizes to relevant regions in queries about “on top of” relations. Middle: bottom-ranked
heads on the same samples fail to capture spatial structure. Bottom: unrelated queries confirm that
the top head does not spuriously activate.
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9 Ablation Study268

We test whether adapted SAE features and attention heads are causally involved in spatial reasoning269

by ablating them during inference and comparing performance on Visual Spatial Reasoning (VSR)270

and a general Yes/No subset of VQAv2. For both datasets, we use Yes/No prompts and evaluate with271

accuracy and mean P (correct). Baseline and ablation runs always use identical cached indices for272

fairness.273

Feature ablation. For a target feature f at layer L, we project out its decoder direction v (unit274

norm) from the residual stream at text positions, leaving image tokens unchanged:275

y ← y − (y⊤v) v.

We compare performance with and without ablation, and also run controls on randomly chosen276

features or on relation-mismatched subsets. This allows us to test whether the feature is specifically277

used for spatial reasoning.278

Attention head ablation. We test causality at the head level by replacing the activations of selected279

attention heads with mean values computed from a small calibration set. This “mean-patching”280

removes head-specific signals while leaving the rest of the model intact, allowing us to measure their281

contribution to VSR performance.282

Interpretation. Ablations provide additional evidence that spatial features and heads carry causal283

weight. Removing a recurring spatial feature (e.g., L26F807) on relation-matched VSR items284

consistently reduces accuracy (approximately 10–20 percentage points) and lowers mean P (correct)285

by a few points. Similar trends are observed when ablating the corresponding attention heads,286

suggesting that both feature- and head-level pathways mediate spatial information. In contrast,287

random or mismatched ablations show little effect, supporting the specificity of the result.288

10 Limitations289

Our analyses indicate spatial selectivity, but more detailed ablation and steering studies are needed to290

fully validate causality. Moreover, our experiments are limited to a single model (LLaVA-More with291

a LLaMA-3.1-8B backbone); applying the method to other backbones and larger corpora will be key292

to assessing generality.293

11 Conclusion294

We set out to understand how a pretrained language backbone learns to “see” under multimodal295

fine-tuning. By extending stage-wise model diffing to the vision–language setting, we isolated vision-296

preferring features that undergo strong rotations during training, showed that a subset reliably encodes297

spatial relations, and traced their causal drivers to a small number of mid-to-deep attention heads.298

These results show that multimodal adaptation is structured and interpretable: it can be localized,299

probed, and explained at the feature level. Beyond spatial reasoning, our methodology offers a general300

framework for uncovering how new capabilities emerge in large models, with practical implications301

for auditing, safety, and domain-specific fine-tuning. We view this work as an early step toward a302

mechanistic science of multimodal training, where models can be interpreted both in terms of their303

outputs and the internal features that support them.304
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A Appendix423

Figure 6: Decoder cosine similarity vs. layer (LLM SAE vs. VLM SAE). Text-only stays highly
aligned across layers; image-only and full-sequence rotate in shallow layers and align later; random
remains near zero. Higher cosine indicates closer alignment of SAE decoder directions.

Figure 7: Per-layer FVU across regimes. Each panel shows the convergence of SAEs trained with
different masking regimes for a specific layer. Text-only SAEs begin with slightly higher error in
the shallowest layers but adapt almost immediately to near-zero reconstruction. Image-only and
full-sequence SAEs converge more slowly and plateau at higher error, while random initialization
performs worst throughout. This confirms that projector-driven spans remain off-distribution in early
layers and only align with the LLM basis in later layers.
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(a) Adapted features per layer. Most concentrate in
mid layers, tapering in deeper blocks.

(b) Decoder cosine by layer. Adapted features remain
less aligned to the base dictionary than the overall
pool.

Figure 8: Per-layer statistics of adapted features. (a) Distribution of adapted feature counts across
depth. (b) Mean decoder cosine similarity for adapted features vs. the overall pool.

Figure 9: Joint distribution of SAE features by variance gap and cosine similarity. Adapted
features (pink) are highlighted, with the retained spatial subset (purple) concentrated in the high-
frequency tail.
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Figure 10: Qualitative Auto-Interp examples. Top-activating VQA and VSR samples for three
adapted features with short GPT-4o-mini–generated descriptions.

15



(a) Object placement relations (‘on’, ‘on top of’, ‘on the side of’).

(b) Spatial relation queries (‘behind’, ‘across’, ‘on the other side’).

Figure 11: Neuron interpretability examples of object placement and spatial relations.
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Figure 12: Consistency of attribution results across related spatial features. In all three cases, the
same attention head (L13H1) is identified as the top contributor under both methods.
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Figure 13: Attention head visualizations across queries. Each row shows one image with attention
overlays from a single high-attribution head across multiple spatial and non-spatial custom queries.
The same heads consistently focus on semantically relevant regions.

Figure 14: Low-attribution heads. Bottom-ranked heads yield diffuse or irrelevant attention,
showing little relation to the spatial queries.

18


	Introduction
	Related Work
	Preliminaries
	Vision–Language Models
	Sparse Autoencoders (SAEs)

	Adapting Language Dictionaries to Vision-Language Space
	Identifying Adapted Features
	Signals
	Selection Procedure

	Case Study: Identifying Spatial Reasoning Features
	Auto-Interp and Manual Inspection
	Attribution Patching to Identify Spatial Heads
	Ablation Study
	Limitations
	Conclusion
	Appendix

