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Abstract

Vision-Language Models (VLMs) demonstrate strong performance on a wide range
of tasks by fine-tuning pretrained language backbones to process projected visual
tokens alongside text. Yet despite these empirical gains, it remains unclear how
language backbone representations adapt during multimodal training and when
vision-specific capabilities emerge. In this work, we present the first mechanistic
analysis of VLMs adaptation with stage-wise model diffing, a technique that
isolates representational changes introduced during multimodal fine-tuning to
reveal how a language model learns to "see". Concretely, we fine-tune sparse
autoencoders trained on LLaMA-3.1-8B over multimodal activations from LLaVA-
More (based on LLaMA-3.1-8B) using 50k VQAv2 pairs. We first isolate vision-
preferring features that appear or reorient during multimodal fine-tuning. We then
test for spatial selectivity using a controlled shift to spatial prompts to identify the
attention heads that causally activate these units. Our findings show that stage-
wise model diffing reveals when and how spatially grounded multimodal features
arise. It also provides a clearer view of modality fusion by showing how visual
grounding reshapes features that were previously text-only. This methodology
enhances the interpretability of multimodal training and provides a foundation for
understanding and refining how pretrained language backbones acquire vision-
grounded capabilities.

1 Introduction

Large vision—language models (VLMs) have achieved strong performance on multimodal tasks,
including visual question answering (VQA), image captioning, object detection, and visual grounding
[28 27, (1} |20 [11]]. These gains are typically realized by fine-tuning pretrained language models to
process visual inputs through projected token sequences, allowing for seamless fusion of image
and text representations [49}(19,|51} 13} |12]]. Yet we lack a mechanistic account of how language
representations adapt during multimodal training and when vision-specific capabilities emerge [23|,
45,146,142, 5]

In this work, we introduce a methodology for analyzing multimodal adaptation in VLMs through
stage-wise model diffing [6]. This mechanistic interpretability technique isolates representational
changes introduced during fine-tuning by comparing sparse autoencoder (SAE) dictionaries across
training stages, models, or datasets. By tracking how individual features rotate, emerge, or are
repurposed, stage-wise diffing has been shown to uncover subtle shifts such as sleeper-agent features
[21] |6]]. We extend this approach to the multimodal setting, presenting the first application of
stage-wise model diffing to study how pretrained language features evolve under visual grounding.

Concretely, we fine-tune LLaMA-Scope SAEs on activations extracted from the LLaVA-More model
[20] on 50k samples from the VQAv2 dataset [|17]. This warm-start preserves the original feature basis
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while adapting to multimodal activations. We isolate features that gain visual preference and undergo
strong geometric rotation, serving as anchors for studying spatial representations in the backbone. To
identify which adapted features encode spatial reasoning, we apply a controlled dataset shift from
general VQA to spatial queries. Features that are preferentially recruited under spatial prompts form
a selective subset, which we validate through automatic and manual interpretation. These features
consistently activate on questions about object placement, relative position, and orientation.

Finally, we use attribution patching to trace the causal pathways by which these spatial features are
activated. Our results reveal a sparse set of mid-to-deep layer heads that consistently drive spatial
representations, often localizing to semantically meaningful regions and reappearing across related
prompts. These findings support the hypothesis that a small number of specialized attention heads
coordinate visual grounding within the model.

Our contributions are as follows:

* We propose stage-wise model diffing as a method for dissecting multimodal adaptation in
large language models, and show that it isolates the emergence of vision-specific features
within the backbone.

» We identify sparse SAE features that encode spatial relationships and are selectively activated
by spatial prompts.

* We causally attribute these features to a small subset of attention heads using scalable
patching methods.

By focusing on feature-level change, our approach complements high-level alignment analyses and
probing-based methods, providing a deeper mechanistic view of how models “learn to see”. More
broadly, this work offers a framework for auditing and refining multimodal training regimes, with
implications for safety-critical domains and targeted fine-tuning in specialized applications.

2 Related Work

Model Diffing and Representation Dynamics Model diffing techniques aim to isolate how internal
representations change across models or training stages. Early work focused on coarse similarity
measures, such as visualizing function-space geometry [|37, 14], stitching intermediate layers across
models [26] 3], or defining new similarity metrics 25| [4]. Later studies examined alignment at the
level of individual neurons, showing convergent units across independently trained networks [29} 36].

Sparse autoencoders (SAEs) provided a feature-level lens, and Kissane et al. [24] showed that SAEs
largely transfer between base and fine-tuned models—implying most features are preserved and only
a minority are altered. This motivates methods that can isolate and interpret precisely those changes.
Stage-wise model diffing [|6] offers such fine-grained resolution, revealing sleeper-agent features and
distinguishing between base and chat-tuned models [33].

Extensions to multimodal models highlight similar representational shifts: Khayatan et al. [23]
proposed concept-shift vectors for steering, while Venhoff et al. [45]] found vision-language alignment
converges in middle-to-late layers. These remain semantic-level analyses, whereas our work applies
stage-wise diffing with SAEs directly to the backbone, providing the first mechanistic account of
how multimodal fine-tuning rotates features and induces spatially grounded representations within
pretrained language models.

Multimodal Mechanistic Interpretability. Compared to the rapidly growing literature on mecha-
nistic interpretability of textual LLMs, relatively few studies have examined the internal mechanisms
of multimodal large language models (MLLMSs). Existing work falls into two main categories.

First, tool-based or causal analyses aim to explain model behavior at a high level. Stan et al. [42]
introduced an interpretability toolkit for VLMs based on attention patterns, relevancy maps, and
causal interventions. Basu et al. [5] applied intervention methods to trace how information is stored
and transferred, while Palit et al. [39] used causal mediation analysis to study how BLIP integrates
visual evidence. Second, probing-based studies focus on the representations themselves. Tong et
al. [44], Gandelsman et al. [15]], and Chen et al. [8]] analyzed CLIP, identifying both strengths and
limitations. Schwettmann et al. [41] reported multimodal neurons responsive to joint visual-textual
concepts, and Jiang et al. [22]] examined how VLMs differentiate hallucinated from real objects.
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More recent methods attempt to map visual embeddings into linguistic space, such as Neo et al. [35]
who projected visual features onto language vocabulary, or Venhoff et al. [46]] who studied the late
emergence of visual signals in LLM backbones.

In contrast, these studies primarily analyze patterns, interventions, or probing correlations, but do not
directly track how multimodal fine-tuning restructures the backbone’s internal features. Our work
addresses this gap by providing a mechanistic perspective.

3 Preliminaries

3.1 Vision-Language Models

A vision—language model (VLM) consists of three components: a visual encoder fy/, a pretrained
language model fr), and a trainable projector P. The visual encoder (e.g., a ViT [40]) extracts

image patch embeddings V' = fy(x) = [v1,...,vn, |, which the projector maps into the token
space as V' = P(V). These projected image tokens are concatenated with tokenized text embeddings
T = [t1,...,tNn,] to form the multimodal sequence X = [01,...,0ny,t1,- .., tNy]. Alignment

between modalities is achieved through visual instruction tuning, where image—text pairs fine-tune
the backbone to follow multimodal instructions.

The language model processes X through a stack of transformer layers, each consisting of multi-head
self-attention (MHA) and a feed-forward network. For each head h, attention is computed as

Atn(Q, K, V) = Softmax(QIZ}T + M)v, )

where M is the causal mask that prevents attending to future tokens. The outputs of all heads are
concatenated and projected back into the hidden dimension, and the final hidden states are mapped
through the unembedding matrix to yield next-token probabilities. For our experiments, we adopt
LLaVA-More [9]], which extends LLaVA framework [32| 31]] by integrating recent language models
and diverse visual backbones; specifically, we use the variant combining the CLIP ViT-Large-Patch14—
336 encoder with a LLaMA-3.1-8B language model backbone [[18].

3.2 Sparse Autoencoders (SAEs)

Sparse Autoencoders (SAEs) learn a dictionary of features that approximate hidden states as sparse
linear combinations of interpretable directions. mitigating superposition where many features overlap
in the same dimensions [7, |10|]. Formally, a vanilla SAE encodes an input vector z € R? into a
sparse hidden representation

f(l‘) = ReLU(Wencx + benc)a Wene € RFXD7 s bene € RF; (2)
which are then decoded back into the input space:
& = Waee f(%) + baeer Waee € RP*F 5 bgec € R, 3)
Sparsity is encouraged via an L penalty on the hidden activations, yielding the objective
L=lz—222+ 1) i=1"|fi(2)h. 4)

Here, decoder columns (W, ). ; define the direction of each feature in input space, while encoder

B

rows (Wenc)s,: act as detectors that determine when a feature is present.

Top-K Sparse Autoencoders. Top-K SAEs [16] enforce sparsity by keeping only the K most
active hidden units per input and setting the rest to zero. The surviving activations are then decoded
as in the vanilla SAE. This hard selection yields a sharper sparsity—fidelity tradeoff, reduces feature
co-adaptation, and improves interpretability by ensuring that only a few features contribute to each
reconstruction.

We build on the LLAMA-SCOPE suite of SAEs trained on LLaMA-3.1-8B [20], which refine the
Top-K design with norm-aware selection [43]], JumpReLU post-processing to stabilize the number of
active features, and K -annealing during training. Since our VLM (LLaVA-More) shares the same
backbone, we warm-start from these pretrained SAEs rather than retraining from scratch, enabling us
to directly leverage millions of monosemantic features across layers.
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4 Adapting Language Dictionaries to Vision-Language Space

To study how multimodal fine-tuning reshapes internal representations, we adapt sparse autoencoders
(SAEs) of Llama 3.1 8B backbone to the hidden states of LLAVA-MORE (Llama 3.1 8B backbone)
[9]. We use 50k image—question pairs from the VQAvV2 dataset [17]], a widely used benchmark for
visual question answering that pairs natural images with open-ended queries. Each SAE is attached
to the output of a transformer block and trained on cached activations from these samples. Images
are represented by 575 consecutive visual tokens, and questions by variable-length text sequences;
this separation allows token-type—specific masking.

We initialize SAEs from the pretrained 1lama_scope_lxr_8x release [20]], re-instantiated as a
top-k model (k=50), to preserve a meaningful basis while enabling sparse, interpretable codes. This
warm-start ensures continuity with the pretrained language feature space. As a control, we also train
SAEs from random initialization under identical conditions. Training uses Adam with a layer-scaled
learning rate, and cached activations are processed in padded mini-batches. To disentangle modality-
specific contributions, we consider four regimes: (i) full sequence, (ii) image-only, using only the
visual-token span, (iii) text-only, using only the non-visual span, and (iv) random initialization. In
all cases, the SAE receives the full hidden state sequence, but masking controls which token spans
contribute to the training signal.

We evaluate reconstruction quality using the fraction of variance unexplained (FVU) and report
sparsity to verify that codes remain selective. Evaluation is performed on a held-out split. Figure
shows FVU as a function of tokens seen across layers and masking regimes. Text-only SAEs
converge rapidly, while image-only and full-token regimes converge slowly and plateau at higher error,
reflecting the mismatch between projector embeddings and the LLM basis. Random initialization
performs worst, underscoring the importance of starting from a pretrained language dictionary.
These findings establish text-only SAEs as a reliable reconstruction baseline, which we later use for
stage-wise diffing.

—e— Full
Random
+— Image
0.8 Text
064 Metric Full Random  Image Text
% Mean 0.032 0.050 0.037  0.005
§ Std 0.028 0.041 0.027  0.009
o4 Min 0.013  0.020 0.017  0.000
Max 0.123 0.198 0.123  0.037
02 Tokens (M) 31.6 31.6 28.4 3.2

0.0

0 Trai;?ng Steps ZIO 2‘5 Sb
Figure 1: SAE adaptation on LLAVA-MORE. Left: Mean fraction of variance unexplained (FVU)
across layers on the validation set. Right: Summary statistics of FVU values on the validation set,
with decimal alignment; the lowest mean is highlighted in bold.

Implications for stage-wise model diffing. Stage-wise diffing assumes that fine-tuning induces
localized (feature-level) changes rather than wholesale rotations. Prior work reports that image-
token representations in early layers exhibit higher reconstruction error than text tokens, indicating
a distributional gap between projector outputs and the LLM basis [47]. Consistent with this, our
decoder—cosine analysis (Appx.Fig[6) shows that rext-only SAEs remain highly aligned to the base
LLM dictionary across layers, whereas image-only and full sequence SAEs undergo large rotations in
shallow layers and only align in later layers. We also note that text-only SAEs begin with slightly
higher error in the very first layers but adapt extremely quickly, converging to near-zero reconstruction,
while image and full-sequence SAEs plateau at higher erro—underscoring the instability of projector-
driven spans (see Appx.Fig[7). We therefore avoid stage-wise diffing on image-only or full-sequence
SAEs in early layers, and focus on text-only SAEs and on later layers where alignment is stable and
feature-level identifiability is more plausible.



167

168
169
170

171

172
173

174
175
176
177

178
179

180

181
182
183
184

185

186
187
188
189
190
191
192
193

5 Identifying Adapted Features

Our goal is to find SAE features that (i) exhibit a modality preference for vision input and (ii) reorient
geometrically after multimodal adaptation. Such features are the best targets for stage-wise diffing
and later causal probes.

5.1 Signals

Modality preference (variance gap). View each SAE feature f as a latent direction whose activation
on hidden state « is hy(x). We quantify f’s preference for vision states using the variance gap:

Af = Evision[hi] - EleXt[h?]'

Evision[:] is taken from VQA runs of the VLM (image + question), while Eey[-] comes from the
base LLM on the same prompts, where images are replaced with captions, and the model receives
only textual input. A large A, indicates that f shows stronger activation on image-conditioned
representations, suggesting visual specialization.

Geometric reorientation (decoder cosine). To test if f has been repurposed by multimodal fine-
tuning, we compare its decoder direction before and after adaptation. Let WLLM be the base SAE

decoder vector and W} the corresponding vector in the VLM-adapted SAE. We compute

¢y = COS(WI;LC‘I\;I:, WVLM)

dec, f

High c; means the semantic direction of f stayed aligned with the original language dictionary; low
cy indicates a substantial rotation, consistent with a reallocation of f to encode new multimodal
structure. We use decoder vectors rather than encoder parameters because decoder directions more
directly index the feature’s semantics.

5.2 Selection Procedure

We identify adapted features using a rwo-stage filter. All features from every layer are pooled together,
and thresholds are computed over this global set. Stage one retains the top pg,, = 20% of features
by variance gap Ay, ensuring a preference for vision-conditioned activations. Stage two further
narrows this pool to the bottom peos = 20% by cosine similarity ¢, isolating those that underwent the
strongest decoder rotations. This procedure produces a single globally defined adapted set comprising
under 5% of all features. The joint distribution of variance gap and cosine similarity is shown in
Fig.[2] with selected adapted features highlighted. Additional summaries, such as counts of adapted
features per layer and their mean cosine similarities, are provided in Appx. Fig.|8aland Appx. Fig.

Distribution of SAE features by variance gap and cosine similarity (N=1.05M)

1.0
Total features: 1,048,576
Adapted features: 41,944
Adapted percentage: 4.00%
Adapted spatial features = 111
0.8
g
=
& 0.6
=1
£
)]
o
£ o4
=}
&}
0.2
0.0 T T T
1076 10~* 1072 10° 10?2 104

Variance Gap (Vision - Text
Figure 2: Joint distribution of variance gap vs. decoder cosine for all SAE features (gray). Points

highlighted in pink are retained by our two-stage filter yielding the globally defined adapted set.
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6 Case Study: Identifying Spatial Reasoning Features

We aim to isolate SAE features that encode spatial grounding by comparing firing patterns under a
controlled dataset shift from general VQA to spatial queries.

Datasets. We consider two evaluation sets derived from VQAv2. The baseline is the full validation
split, denoted Dy,se. To induce a targeted shift, we construct a spatial subset Dg;, by filtering questions
that contain spatial cues (e.g., left/right/above/behind). This contrast tests whether some SAE features
are selectively recruited under spatial reasoning.

Firing frequencies. Let h;(x;) > 0 denote the activation of feature f on token ¢ of input x. For a
dataset D, the firing frequency of f is

(D) = —— 33" 1{hs(m) > 0},
(D)

zeD t

where n(D) is the total number of tokens.

Distribution shift. Figure [3p compares the empirical distributions of feature firing frequencies
under Dy, and Dy, The spatial subset exhibits a heavier right tail, suggesting selective recruitment
under spatial queries.

For each feature f, we compute the frequency gap Aps = p¢(Dsp) — Pf(Dpase), and the odds
ratio ORy comparing firing counts across the two splits. Features with large Apy and ORy > 1 are
flagged as spatial candidates.

Selection and outcome. From the spatial candidates, we retain only those that also lie in the
adapted set A from Sec. [5] ensuring they both reorient under multimodal fine-tuning and respond to
spatial distribution shifts (with scatter plot shown in Appx.Fig[9). To remove prompt-lexical artifacts,
we further probe with a neutral instructions such as “Describe the positions of all objects in the image.”
and Features that remain active and image-token—dominant are preserved, while prompt-specific
units are discarded. Figure [3] visualizes the result: across all adapted features, it compares firing
frequencies on Dy, and Dy, highlighting the subset that survives this full pipeline. The plot shows
that adapted features span a wide dynamic range, with the retained spatial set concentrated in the
high-frequency tail under Dg,.

Total adapted features: 45418
Spatial adapted features: 101

—+— VOA frequencics
Spatial dataset frequencies
0.25 % Spalial adapled [ealures

14 VQA (1,048,576)
Spatial (1,048,576)

Frequency
=

Density

0.10

0.05 49 o
0.4 it ik

1077 10-° 10-° 104 103 102 1071 100
Feature firing frequency (log scale)
(a) Overall distribution shift in feature firing fre- (b) Adapted features under both splits, with spatially selec-
quencies when moving from generic VQA to tive survivors highlighted.
spatial queries.

Figure 3: Identifying spatial reasoning features. Evidence of a distribution shift from Dbase to Dsp,
with adapted features highlighted after the full selection pipeline.
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7 Auto-Interp and Manual Inspection

To further characterize the adapted features, we developed an automated interpretation pipeline. For
each feature, we collect its top-activating samples from two sources: general VQA questions from
VQAV2 (not limited to spatial reasoning) and the Visual Spatial Reasoning (VSR) dataset, which
is inherently spatial. This pairing highlights whether the same feature meaning—such as object
orientation or relative position—emerges consistently across both settings (Fig. [ and [I0).

The combined VQA-VSR samples are passed to the gpt-4o0-mini API in JSON mode, which
assigns a confidence score and generates a short description with common patterns and cue counts.
Outputs are stored with the selection metrics from Sec. [5]and lightly checked by hand. The retained
set thus reflects both automatic labeling and human verification.

Is the plane facing the camera’ 2 1s the knife blade facing the pizza? ‘Which direction is the train facing? Is the man facing the camera?

4

=

Are the sinks facing up or down?

VQA

s the zebra facing away from the Where are the benche:

Layer 16 Feature 176

VSR

at is facing away from
the motorcycle.

description: "This feature captures object orientation, firing when items are described as facing toward, away, relative to a viewer or another object.", conf: 0.95

Figure 4: Qualitative Auto-Interp example. Layer 16, Feature 176 (conf. 0.95). Top VQA (general)
and VSR (spatial) samples both highlight the same concept of object orientation—firing when items
are described as facing toward, away, or relative to another object.

8 Attribution Patching to Identify Spatial Heads

Method. Attribution patching is a scalable alternative to activation patching [50], which
measures causal effects by replacing activations with counterfactual values. While activation patching
requires a separate forward pass per intervention, attribution patching uses a gradient-based linear
approximation to estimate the effect of all interventions with only two forward passes and one
backward pass. This makes it practical to probe attribution scores across all layers and attention
heads in large multimodal models.

We adapt attribution patching to identify which attention heads drive spatially selective SAE features.
For a target feature f at layer L, we define a scalar objective by projecting the layer- L activations onto
the SAE decoder vector. Gradients of this objective with respect to upstream query/key activations
indicate how strongly each attention head contributes to f.

We compare two runs:

* Clean run: the original image—text input.
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e Corrupt run: the same input, but with layer-0 visual token embeddings replaced by a
mean embedding computed over many VQA samples. This corruption preserves plausible
distributional statistics while deliberately suppressing spatial information.

We then compute two attribution variants, differing in whether the perturbation direction is taken
from the corrupted or the clean representation:

Method A:  (corr — clean) - Vjean,
Method B:  (clean — corr) - Vo

Method A measures how strongly the clean gradients indicate that ablating spatial detail affects the
feature, whereas Method B measures how strongly the corrupted gradients indicate that retaining
spatial detail matters. In both cases, we obtain per-layer and per-head attribution scores, averaged
over the top-k VQA samples that most strongly activate f.

Results. Across the spatially selective features we examined, attribution patching with both meth-
ods reveals consistent trends. Layer-wise attribution curves typically peak in mid-to-deep layers,
consistent with the emergence of spatial features in Sec.[6} At the head level, both methods generally
highlight a small subset of heads with notably high scores, and the top heads identified are often
consistent across the two attribution methods. This suggests that spatial information is mediated by a
specialized group of heads rather than being spread uniformly across the model.

To illustrate the effect of attribution patching on individual features, Appx [TTHI2] provide detailed
examples. In each case, attribution scores isolate a handful of mid- to deep-layer heads, and qualitative
maps confirm that high-scoring heads focus on regions consistent with the queried relation (e.g.,

“on top of,” “behind”), whereas low-scoring heads fail to do so. Interestingly, when we look across

multiple related spatial features together, we find that some of the same heads recur across related
spatial relations. Figure [5]illustrates this pattern. In the top row, L13H1 attends to semantically
relevant regions across queries. As a control, the middle row shows that bottom-ranked heads on
the same samples fail to localize meaningfully. The bottom row further confirms that irrelevant
queries do not trigger spurious activation. More generally, these same heads also attend to meaningful
regions such as salient objects or attributes under custom prompts (Appx. Fig. [I3)), underscoring that
attribution patching identifies a small set of heads that reliably carry spatial-semantic signal.

/

Attention Head Scores

Qs What s on top of the toflet seat? Q: What is on the side of the left rock wallz __Q: What is on top of the cake? Q: What s on top of the armoire?  Q: What is on top of the fireplacs 7\

Qs 1s the cat snuggling with a teddy bear? Q: Do windows let enough light there? Q: 15 this food sweet? Q: Is this a birthday cake? Q: Ara thitrg sy ViSRS """‘"S

Figure 5: Attribution patching across related spatial features. Top: recurring top-scoring head
(L13H1) localizes to relevant regions in queries about “on top of” relations. Middle: bottom-ranked
heads on the same samples fail to capture spatial structure. Bottom: unrelated queries confirm that
the top head does not spuriously activate.

l

/,
Unrelevant Samples \\ / Bottom Heads \ Top VQA Samples
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9 Ablation Study

We test whether adapted SAE features and attention heads are causally involved in spatial reasoning
by ablating them during inference and comparing performance on Visual Spatial Reasoning (VSR)
and a general Yes/No subset of VQAv2. For both datasets, we use Yes/No prompts and evaluate with
accuracy and mean P(correct). Baseline and ablation runs always use identical cached indices for
fairness.

Feature ablation. For a target feature f at layer L, we project out its decoder direction v (unit
norm) from the residual stream at text positions, leaving image tokens unchanged:

y<—y—(y o).

We compare performance with and without ablation, and also run controls on randomly chosen
features or on relation-mismatched subsets. This allows us to test whether the feature is specifically
used for spatial reasoning.

Attention head ablation. We test causality at the head level by replacing the activations of selected
attention heads with mean values computed from a small calibration set. This “mean-patching”
removes head-specific signals while leaving the rest of the model intact, allowing us to measure their
contribution to VSR performance.

Interpretation. Ablations provide additional evidence that spatial features and heads carry causal
weight. Removing a recurring spatial feature (e.g., L26F807) on relation-matched VSR items
consistently reduces accuracy (approximately 10-20 percentage points) and lowers mean P(correct)
by a few points. Similar trends are observed when ablating the corresponding attention heads,
suggesting that both feature- and head-level pathways mediate spatial information. In contrast,
random or mismatched ablations show little effect, supporting the specificity of the result.

10 Limitations

Our analyses indicate spatial selectivity, but more detailed ablation and steering studies are needed to
fully validate causality. Moreover, our experiments are limited to a single model (LLaVA-More with
a LLaMA-3.1-8B backbone); applying the method to other backbones and larger corpora will be key
to assessing generality.

11 Conclusion

We set out to understand how a pretrained language backbone learns to “see” under multimodal
fine-tuning. By extending stage-wise model diffing to the vision—language setting, we isolated vision-
preferring features that undergo strong rotations during training, showed that a subset reliably encodes
spatial relations, and traced their causal drivers to a small number of mid-to-deep attention heads.
These results show that multimodal adaptation is structured and interpretable: it can be localized,
probed, and explained at the feature level. Beyond spatial reasoning, our methodology offers a general
framework for uncovering how new capabilities emerge in large models, with practical implications
for auditing, safety, and domain-specific fine-tuning. We view this work as an early step toward a
mechanistic science of multimodal training, where models can be interpreted both in terms of their
outputs and the internal features that support them.
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Decoder Similarity Trends Across Layers
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Figure 6: Decoder cosine similarity vs. layer (LLM SAE vs. VLM SAE). Text-only stays highly
aligned across layers; image-only and full-sequence rotate in shallow layers and align later; random

remains near zero. Higher cosine indicates closer alignment of SAE decoder directions.

FVU Comparison: 4 Training Methods Across Layers (Val Data)
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Figure 7: Per-layer FVU across regimes. Each panel shows the convergence of SAEs trained with
different masking regimes for a specific layer. Text-only SAEs begin with slightly higher error in
the shallowest layers but adapt almost immediately to near-zero reconstruction. Image-only and
full-sequence SAEs converge more slowly and plateau at higher error, while random initialization
performs worst throughout. This confirms that projector-driven spans remain off-distribution in early
layers and only align with the LLM basis in later layers.
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Cosine Similarity: Overall vs Adapted Features
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(b) Decoder cosine by layer. Adapted features remain
less aligned to the base dictionary than the overall
pool.

Figure 8: Per-layer statistics of adapted features. (a) Distribution of adapted feature counts across
depth. (b) Mean decoder cosine similarity for adapted features vs. the overall pool.

(a) Adapted features per layer. Most concentrate in
mid layers, tapering in deeper blocks.
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Figure 9: Joint distribution of SAE features by variance gap and cosine similarity. Adapted
features (pink) are highlighted, with the retained spatial subset (purple) concentrated in the high-
frequency tail.
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Figure 10: Qualitative Auto-Interp examples. Top-activating VQA and VSR samples for three
adapted features with short GPT-40-mini—generated descriptions.



Head and Layer Scores Layer 28 Feature 7649: this neuron fires on questions related to the locations of objects relative to the surface of other objects.

-

utention Head Atcbation (eiiod 4

Target Samples

Random Samples

(a) Object placement relations (‘on’, ‘on top of”, ‘on the side of”).

Head and Layer Scores T.ayer 29 Feature 20178: this neuron responds to questions about spatial relations, especially thase using terms like ‘hehind,' *across,' or 'on the other side.

‘Target Samples

Random Samples

(b) Spatial relation queries (‘behind’, ‘across’, ‘on the other side’).

Figure 11: Neuron interpretability examples of object placement and spatial relations.
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Layer 27 Feature 12845: this ncuron activates for questions about object placement, involving relations like ‘on’, on top of”, or ‘on the side of”
another objcct or surface.
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Figure 12: Consistency of attribution results across related spatial features. In all three cases, the
same attention head (L13H1) is identified as the top contributor under both methods.

17



Sample 14489 | Layer 13 | Head 1

Original Image
Sample 14489 Q: What is on top of the paper bag? Q: where is the cup? Q: what is next to the paper bag? Q: what is under the donuts?

Sample 36553 | Layer 13 | Head 1

e

Original Image
Sample 36553 Q: What is on the side of the left rock wall>  Q: What is above the ship? Q: What is to the right of the ship? Q: What color is the ship?

Sample 4157 | Layer 13 | Head 1

Original Image
Sample 4157 Q: What is behind the hydrant? Q: what color is the hydrant? Q: what is to the left of the hydrant? Q: what is below the hydrant?

Figure 13: Attention head visualizations across queries. Each row shows one image with attention
overlays from a single high-attribution head across multiple spatial and non-spatial custom queries.
The same heads consistently focus on semantically relevant regions.
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Figure 14: Low-attribution heads. Bottom-ranked heads yield diffuse or irrelevant attention,
showing little relation to the spatial queries.
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