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Abstract
Neural algorithmic reasoning aims to capture
computations with neural networks by training
models to imitate the execution of classic algo-
rithms. While common architectures are expres-
sive enough to contain the correct model in the
weights space, current neural reasoners struggle to
generalize well on out-of-distribution data. On the
other hand, classic computations are not affected
by distributional shifts as they can be described as
transitions between discrete computational states.
In this work, we propose to force neural reasoners
to maintain the execution trajectory as a combina-
tion of finite predefined states. To achieve this, we
separate discrete and continuous data flows and
describe the interaction between them. Trained
with supervision on the algorithm’s state transi-
tions, such models are able to perfectly align with
the original algorithm. To show this, we evaluate
our approach on multiple algorithmic problems
and achieve perfect test scores both in single-task
and multitask setups. Moreover, the proposed
architectural choice allows us to prove the correct-
ness of the learned algorithms for any test data.

1. Introduction
Learning to capture algorithmic dependencies in data and to
perform algorithmic-like computations with neural networks
is a core problem in machine learning, long studied using
various approaches (Roni Khardon, 1994; Graves et al.,
2014; Zaremba & Sutskever, 2014; Reed & De Freitas, 2015;
Kaiser & Sutskever, 2015; Veličković et al., 2020b).

Neural algorithmic reasoning (Veličković & Blundell, 2021)
is a research area focusing on building models capable of
executing classic algorithms. Relying on strong theoretical
guarantees of algorithms to work correctly on any input of
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any size and distribution, this setting provides unlimited
challenges for out-of-distribution generalization of neural
networks. Prior work explored this setup using the CLRS-30
benchmark (Veličković et al., 2022), which covers classic
algorithms from the Introduction to Algorithms textbook
(Cormen et al., 2009) and uses graphs as a universal tool
to encode data of various types. Importantly, CLRS-30
also provides the decomposition of classic algorithms into
subroutines and simple transitions between consecutive exe-
cution steps, called hints, which can be used during training
in various forms.

The core idea of the CLRS-30 benchmark is to understand
how neural reasoners generalize well beyond the training
distribution, namely on larger graphs. Classic algorithms
possess strong generalization due to the guarantee that cor-
rect execution steps never encounter ‘out-of-distribution’
states, as all state transitions are predefined by the algorithm.
In contrast, when encountering inputs from distributions that
significantly differ from the training data, neural networks
are usually not capable of robustly maintaining internal cal-
culations in the desired domain. Consequently, due to the
complexity and diversity of all possible data that neural rea-
soners can be tested on, the generalization performance of
such models can vary depending on particular test distribu-
tions (Mahdavi et al., 2023).

Given that, it is becoming important to interpret internal
computations of neural reasoners to find errors or to prove
the correctness of the learned algorithms (Georgiev et al.,
2021).

Interpretation methods have been actively developing re-
cently due to various real-world applications of neural net-
works and the need to debug and maintain systems based
on them. Especially, the Transformer architecture (Vaswani
et al., 2017) demonstrates state-of-the-art performance in
natural language processing and other modalities, represent-
ing a field for the development of interpretability methods
(Elhage et al., 2021; Weiss et al., 2021; Zhou et al., 2024;
Lindner et al., 2024). Based on active research on a compu-
tational model behind the transformer architecture, recent
works propose a way to learn models that are fully inter-
pretable by design (Friedman et al., 2023).

We found the ability to design models that are interpretable
in a simple and formalized way to be crucial for neural
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algorithmic reasoning as it is naturally related to the goal of
learning to perform computations with neural networks.

In this paper, we propose to force neural reasoners to follow
the execution trajectory as a combination of finite predefined
states, which is important for both generalization ability and
interpretability of neural reasoners. To achieve that, we
start with an attention-based neural network and describe
three building blocks to enhance its generalization abilities:
feature discretization, hard attention and separating discrete
and continuous data flows. In short, all mentioned blocks
are connected:

• State discretization does not allow the model to use
complex and redundant dependencies in data;

• Hard attention is needed to ensure that attention
weights will not be annealed for larger graphs. Also,
hard attention limits the set of possible messages that
each node can receive;

• Separating discrete and continuous flows is needed to
ensure that state discretization does not lose informa-
tion about continuous data.

Then, we build fully discrete neural reasoners for different
algorithmic tasks and demonstrate their ability to perfectly
mimic ground-truth algorithm execution. As a result, we
achieve perfect test scores on multiple algorithmic tasks
with guarantees of correctness on any test data. Moreover,
we demonstrate that a single network is capable of executing
all covered algorithms in a multitask manner with perfect
generalization too.

In summary, we consider the proposed blocks as a crucial
component for robust and interpretable neural reasoners and
demonstrate that discretized models, trained with hint su-
pervision, perfectly capture the dynamics of the underlying
algorithms and do not suffer from distributional shifts.

2. Background
2.1. Algorithmic Reasoning

Performing algorithmic-like computations usually requires
the execution of sequential steps and the number of such
steps depends on the input size. To imitate such computa-
tions, neural networks are expected to be based on some
form of recurrent unit, which can be applied to a particular
problem instance several times (Zaremba & Sutskever, 2014;
Kaiser & Sutskever, 2015; Vinyals et al., 2015; Veličković
et al., 2020b).

The CLRS Algorithmic Reasoning Benchmark (CLRS-30)
(Veličković et al., 2022) defines a general paradigm of algo-
rithmic modeling based on Graph Neural Networks (GNNs),
as graphs can naturally represent different input types and

manipulations over such inputs. Also, GNNs are proven to
be well-suited for neural execution (Xu et al., 2020; Dudzik
& Veličković, 2022).

The CLRS-30 benchmark covers different algorithms over
various domains (arrays, strings, graphs) and formulates
them as algorithms over graphs. Also, CLRS-30 proposes
to utilize the decomposition of the algorithmic trajectory
execution into simple logical steps, called hints. Using
this decomposition is expected to better align the model
to desired computations and prevent it from utilizing hid-
den non-generalizable dependencies of a particular train
set. Prior work demonstrates a wide variety of additional
inductive biases for models towards generalizing computa-
tions, including different forms of hint usage (Veličković
et al., 2022; Bevilacqua et al., 2023), biases from standard
data structures (Jain et al., 2023; Jürß et al., 2024), knowl-
edge transfer and multitasking (Xhonneux et al., 2021; Ibarz
et al., 2022; Numeroso et al., 2023), etc. Also, recent studies
demonstrate several benefits of learning neural reasoners
end-to-end without any hints at all (Mahdavi et al., 2023;
Rodionov & Prokhorenkova, 2023).

The recently proposed SALSA-CLRS benchmark (Minder
et al., 2023) enables a more thorough OOD evaluation com-
pared to CLRS-30 with increased test sizes (up to 100-fold
train-to-test scaling, compared to 4-fold for CLRS-30) and
diverse test distributions. Despite significant gains in the per-
formance of neural reasoners in recent work, current models
still struggle to generalize to out-of-distribution (OOD) test
data (Mahdavi et al., 2023; Georgiev et al., 2023; Minder
et al., 2023). While de Luca & Fountoulakis (2024) prove
by construction the ability of the transformer-based neu-
ral reasoners to perfectly simulate graph algorithms (with
minor limitations occurring from the finite precision), it is
still unclear if generalizable and interpretable models can be
obtained via learning. Importantly, the issues of OOD gener-
alization are induced not only by the challenges of capturing
the algorithmic dependencies in the data but also by the need
to carefully operate with continuous inputs. For example,
investigating the simplest scenario of learning to emulate
the addition of real numbers, Klindt (2023) demonstrates
the failure of some models to exactly imitate the desired
computations due to the nature of gradient-based optimiza-
tion. This limitation can significantly affect the performance
of neural reasoners on adversarial examples and larger input
instances when small errors can be accumulated.

2.2. Transformer Interpretability and Computation
Model

Transformer (Vaswani et al., 2017) is a neural network ar-
chitecture for processing sequential data. The input to the
transformer is a sequence of tokens from a discrete vocabu-
lary. The input layer maps each token to a high-dimensional
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embedding and aggregates it with the positional encoding.
The key components of each layer are attention blocks and
MLP with residual connections. Providing a detailed de-
scription of mechanisms learned by transformer models (El-
hage et al., 2021) is of great interest due to their widespread
applications.

RASP (Weiss et al., 2021) is a programming language pro-
posed as a high-level formalization of the computational
model behind transformers. The main primitives of RASP
are elementwise sequence functions, select and aggregate
operations, which conceptually relate to computations per-
formed by different blocks of the model. Later, Lindner et al.
(2024) presented Tracr, a compiler for converting RASP pro-
grams to the weights of the transformer model, which can
be useful for evaluating interpretability methods.

While RASP might have limited expressibility, it supports ar-
bitrarily complex continuous functions that in theory can be
represented by the transformer architecture, but are difficult
to learn. Also, RASP is designed to formalize computa-
tions over sequences of fixed length. Motivated by that,
Zhou et al. (2024) proposed RASP-L, a restricted version of
RASP, which aims to formalize the computations that are
easy to learn with transformers in a size-generalized way.
The authors also conjecture that the length-generalization of
transformers on algorithmic problems is related to the ‘sim-
plicity’ of solving these problems in the RASP-L language.

Another recent work (Friedman et al., 2023) describes Trans-
former Programs: constrained transformers that can be
trained using gradient-based optimization and then automat-
ically converted into a discrete, human-readable program.
Built on RASP, transformer programs are not designed to
be size-invariant.

3. Discrete Neural Algorithmic Reasoning
3.1. Encode-Process-Decode Paradigm

Our work follows the encode-process-decode paradigm
(Hamrick et al., 2018), which is usually employed for step-
by-step neural execution.

All input data is represented as a graph G with an adjacency
matrix A and node and edge features that are first mapped
with a simple linear encoder to high-dimensional vectors
of size h. Let us denote node features at a time step t
(1 ≤ t ≤ T ) as Xt = (xt

1, . . . , x
t
n) and edge features as

Et = (et1, . . . , e
t
m). Then, the processor, usually a single-

layer GNN, recurrently updates these features, producing
node and edge features for the next step:

Xt+1, Et+1 = Processor(Xt, Et, A).

The processor network can operate on the original graph
defined by the task (for graph problems) or on the fully

connected graph. For the latter option, the information about
the original graph can be encoded into the edge features.

The number of processor steps T can be defined automat-
ically by the processor or externally (e.g., as the number
of steps of the original algorithm). After the last step, the
node and edge features are mapped with another linear layer,
called the decoder, to the output predictions of the model.

If the model is trained with hint supervision, the changes
of node and edge features at each step are expected to be
related to the original algorithm execution. In this sense,
the processor network is aimed to mimic the algorithm’s
execution in the latent space.

3.2. Discrete Neural Algorithmic Reasoners

In this section, we describe the constraints for the processor
that allow us to achieve a fully interpretable neural reasoner.
We start with Transformer Convolution (Shi et al., 2020)
with a single attention head.

As mentioned above, at each computation step t (1 ≤ t ≤
T ), the processor takes the high-dimensional embedding
vectors for node and edge features as inputs and then outputs
the representations for the next execution step.

Each node feature vector xi is projected into query (Qi),
key (Ki), and value (Vi) vectors via learnable parameter
matrices WQ, WK , and WV , respectively. Edge features
eij are projected into key (Kij) vector with a matrix WE

K .
Then, for each directed edge from a node j to a node i in
the graph G, we compute the attention coefficient

αij =
⟨Qj ,Ki +Kij⟩√

h
,

where ⟨a, b⟩ denotes the dot product. Then, each node i
normalizes all attention coefficients across its neighbors
using the softmax function with temperature τ and receives
the aggregated message:

α̂ij =
exp(αij/τ)∑

k∈N(i) exp(αik/τ)
, Mi =

∑
k∈N (i)

α̂ikVk, (1)

whereN (i) denotes the set of all incoming neighbors of the
node i and Mi is the message sent to the i-th node.

For undirected graphs, we consider two separate edges in
each direction. Also, for each node, we consider a self-loop
connecting the node to itself. For multi-head attention, each
head l separately computes the messages M l

i which are then
concatenated.

Similar to Transformer Programs, we enforce attention to
be hard attention. We found this property important not
only for interpretability but also for size generalization, as
hard attention allows us to overcome the annealing of the
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attention weights for arbitrarily large graphs and strictly
limits the set of messages that each vertex can receive.

After the message computation, node and edge features
are updated depending on the current values and recieved
messages using feed-forward MLP blocks:

x̂t+1
i = FFNnodes([x

t
i,M

t
i ]),

êt+1
ij = FFNedges([e

t
ij , α̂jiVi, α̂ijVj ]).

We also enforce all node and edge features to be from a fixed
finite set, which we call states. We ensure this property by
adding discrete bottlenecks at the end of the processor block:

xt+1
i = Discretizenodes(x̂

t+1
i ),

et+1
ij = Discretizeedges(ê

t+1
ij ).

We implement discretization by projecting the features to the
vectors of size k (states logits) which we then use to produce
a one-hot vector corresponding to a discrete state. During
training with hints, we use teacher forcing and directly use
ground truth states as inputs for the next processor step. For
no-hint learning, we apply Gumbel-Softmax (Jang et al.,
2017) with annealing temperature to states logits. During
inference, we simply use the argmax function over the states
logits dimension.

3.3. Continuous Inputs

Clearly, most algorithmic problems operate with continuous
or unbounded inputs (e.g., weights on edges). Usually, all
input data is encoded into node and edge features and the
processor operates over the resulting vectors. The proposed
discretization of such vectors would lead to the loss of in-
formation necessary for performing correct execution steps.
One possible option to operate with such inputs (we will call
them scalars, meaning both continuous and size-dependent
integer inputs, such as node indexes) is Neural Execution
Engines (Yan et al., 2020), which enables operating with
bit-wise representations of integer and (in theory) real num-
bers. Such representations are bounded by design, but fully
discrete and interpretable.

We propose another option: to maintain scalar inputs (denote
them by S) separately from the node and edge features and
use them only as edge priorities sij in the attention block.
If scalars are related to the nodes, we assign them to edges
depending on the scalar of the sender or receiver node. Now,
we can consider the hard attention block as a selector which
for each node selects the best edge based on an ordered
pair of ‘states priority’ (attention weights described above,
which depend only on states of the corresponding nodes and
edges) and sij . We note that this selector is related to the
theoretical primitive select best from RASP. We implement
this simply by augmenting the key vectors Kij of each edge

Discrete states

Discrete states

Scalars

Scalars

Message Passing

Feed Forward

Figure 1. An illustration of the proposed separation between dis-
crete and continuous data flows. Scalars can only affect the at-
tention weights (Green) and can be modified with actions via
ScalarUpdate (Blue).

with the indicator whether the given edge has the “best”
(min or max) scalar among the other edges to node j. Thus,
scalars affect only the attention weights, not the messages
or the node states.

For multiple different scalar inputs (e.g., weighted edges
and node indexes), we use multi-head attention, where each
head operates with separate scalars.

Thus, the interface of the proposed processor can be de-
scribed as

Xt+1, Et+1 = Processor(Xt, Et, A, S),

where Xt, Xt+1 and Et, Et+1 are from fixed sets. State
sets are independent of the execution step t and the input
graph (including scalar inputs S).

3.4. Manipulations over Continuous Inputs

The proposed selector offers a read-only interface to scalar
inputs, which is not expressive enough for most algorithms.
However, we note that the algorithms can be described as
discrete manipulations over input data. For example, the
Dijkstra algorithm (Dijkstra, 1959) takes edge weights as
inputs and uses them to find the shortest path distances.
Computed distances can affect the subsequent execution
steps. We note that such distances can be described as the
sum of the weights of the edges that form the shortest path
to the given node. In other words, the produced scalars
depend only on input scalars and discrete execution states.

To avoid the challenges of learning continuous updates with
high precision (Klindt, 2023), we propose to learn discrete
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manipulations with scalars. The updated scalars can then be
used with the described selector in the next steps.

In our experiments, we use a scalar updater capable of incre-
menting, moving, and adding scalars depending on discrete
node/edge states:1

st+1
i = inc(xt

i) + keep(xt
i) · sti +

∑
j∈N (i)

push(etji) · stji,

st+1
ij = inc(etij) + keep(etij) · stij + push(xt

i) · sti,

where si are node-related scalars, sij are edge-related
scalars, and inc, keep, push are 0-1 functions representing
whether a scalar in each node/edge should be incremented,
kept, or pushed to any of its neighbors. We implement these
functions as simple linear projections of node/edge features
with subsequent discretization.

Finally, our proposed method (see Figure 1) can be de-
scribed as:

Xt+1, Et+1 = Processor(Xt, Et, A, St),

St+1 = ScalarUpdate(Xt+1, Et+1, A, St).

The proposed neural reasoners are fully discrete and can
be interpreted by design. Moreover, the proposed selector
block guarantees the predictable behavior of the message
passing for any graph size, as it compares discrete state
importance and uses continuous scalars only to break ties
between equally important states.

4. Experiments
In this section, we perform experiments to evaluate how the
proposed discretization affects the performance of neural
reasoners on diverse algorithmic reasoning tasks. Our main
questions are:

1. Can the proposed discrete neural reasoners capture the
desired algorithmic dynamics with hint supervision?

2. How does discretization affect OOD and size-
generalization performance of neural reasoners?

3. Is the proposed model capable of multi-task learning?

Additionally, we are interested whether discrete neural rea-
soners can be learned without hints and how they tend to
utilize the given number of node and edge states to solve
the problem. We discuss no-hint experiments separately in
Section 6.

Finally, we investigate whether the training size can be
reduced without compromising generalization performance;
see Appendix B for details.

1We additionally investigate if the operation set can be ex-
tended, see Appendix D.

4.1. Datasets

We perform our experiments on the problems from the re-
cently proposed SALSA-CLRS benchmark (Minder et al.,
2023), namely BFS, DFS, Prim, Dijkstra, Maximum Inde-
pendent Set (MIS), and Eccentricity. We believe that the
proposed method is not limited by the covered problems, but
we leave the implementation of the required data flows (e.g.,
edge-based reasoning (Ibarz et al., 2022), graph-level hints,
interactions between different scalars) for future work.

The train dataset of SALSA-CLRS consists of random
graphs with at most 16 nodes sampled from the Erdös-Rényi
(ER) distribution with parameter p chosen to be as low as
possible such that graphs remain connected with high prob-
ability. The test set consists of sparse graphs of sizes from
16 to 1600 nodes.

We slightly modify the hints from the benchmark without
conceptual changes (e.g., we have modified the hints for
the DFS problem to remove graph-level hints and node
discovery/finish times). Discrete states are fully described
by the non-scalar hints and scalars are exactly the hints of
the scalar type (we refer to Veličković et al. (2022) for the
details on hint design).

4.2. Baselines and Evaluation

We compare the performance of our proposed discrete
model with two baseline sparse models, GIN (Xu et al.,
2019) and Pointer Graph Network (Veličković et al., 2020a).
We report both node-level and graph-level metrics for the
baselines and our model. Also, we compare our model
with Triplet-GMPNN (Ibarz et al., 2022) and two recent
approaches, namely Hint-ReLIC (Bevilacqua et al., 2023)
and G-ForgetNet (Bohde et al., 2024), which demonstrate
state-of-the-art performance in hint-based neural algorith-
mic reasoning. However, as these methods are evaluated on
the CLRS-30 benchmark and their code is not yet publicly
available, we can only compare them on the corresponding
tasks (BFS, DFS, Dijkstra, Prim) and CLRS-30 test data,
namely ER graphs with p = 0.5 of size 64. Note that this
test data is denser than that of SALSA-CLRS, meaning
shorter roll-outs for the given tasks. Also, only node-level
metrics have been reported for these methods.

4.3. Model Details

For our experiments, we use the model described in Sec-
tion 3. We use one attention head for each scalar value. The
number of processor steps is defined externally as the length
of the ground truth algorithm trajectory, which is consistent
with prior work. We use one architecture (except the task-
dependet encoders/decoders), including the ScalarUpdate
module for all the problems.
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We recall that neural reasoners can operate either on the base
graph (which is defined by the problem) or on more dense
graphs with the original graph encoded into edge features.
SALSA-CLRS proposes to enhance the size-generalization
abilities of neural reasoners with increased test sizes (up to
100-fold train-to-test scaling), so we use the base graph for
message-passing, similar to the SALSA-CLRS baselines.
We also add a virtual node that communicates with all nodes
of the graph.

4.4. Training Details and Hyperparameters

We train each model using the Adam optimizer, learning rate
η = 0.001, using teacher forcing, batch size of 32 graphs
with 1000 optimization steps, and evaluate the resulting
model. We anneal softmax temperatures in the discrete
bottlenecks (attention weights, ScalarUpdate operations)
geometrically from 3.0 to 0.01, decreasing the temperature
at each training step. We report all hyperparameters in the
source code.2

During training, we minimize the standard hints and output
losses: scalar hints are optimized with MSE loss, and other
types of hints are optimized with cross-entropy and cate-
gorized cross-entropy losses (Veličković et al., 2022; Ibarz
et al., 2022). Note that we do not supervise any additional
details in model behavior, e.g., selecting the most important
neighbor in the attention block, the exact operations with
scalars, etc.

For multitask experiments, we follow the setup proposed
by Ibarz et al. (2022) and train a single processor with
task-dependent encoders/decoders to imitate all covered
algorithms simultaneously. We make 10000 optimization
steps on the accumulated gradients across each task and
keep all hyperparameters the same as in the single task.

Our models are trained on a single A100 GPU, requiring
less than 1 hour for single-task and 5-6 hours for multitask
training.

4.5. Results

We found learning with teacher forcing suitable for discrete
neural reasoners, as discretization blocks allow us to per-
form the exact transitions between the states. Trained with
step-wise hint supervision, discrete neural reasoners are able
to perfectly align with the original algorithm and generalize
on larger test data without any performance loss. We report
the evaluation results in Tables 1 and 2. Also, our multitask
experiments show that the proposed discrete models are
capable of multitask learning and demonstrate the perfect
generalization scores in a multitask manner too.

Recall that we have three key components of our contribu-

2https://github.com/yandex-research/dnar

Table 1. Node \ graph level test scores for the proposed discrete
reasoner and the baselines on SALSA-CLRS test data. Scores
are averaged across 5 different seeds, standard deviation is omit-
ted. For the eccentricity problem, only the graph-level metric is
applicable.

TASK SIZE GIN PGN DNAR (OURS)

BFS 16 98.8 \ 92.5 100. \ 100. 100. \ 100.
80 95.3 \ 59.4 99.8 \ 88.1 100. \ 100.

160 95.1 \ 37.8 99.6 \ 66.3 100. \ 100.
800 86.9 \ 0.9 98.7 \ 0.2 100. \ 100.

1600 86.5 \ 0.0 98.5 \ 0.0 100. \ 100.

DFS 16 41.5 \ 0.0 82.0 \ 19.9 100. \ 100.
80 30.4 \ 0.0 38.4 \ 0.0 100. \ 100.

160 20.0 \ 0.0 26.9 \ 0.0 100. \ 100.
800 19.5 \ 0.0 24.9 \ 0.0 100. \ 100.

1600 17.8 \ 0.0 23.1 \ 0.0 100. \ 100.

SP 16 95.2 \ 49.8 99.3 \ 89.5 100. \ 100.
80 62.4 \ 0.0 94.2 \ 3.3 100. \ 100.

160 53.3 \ 0.0 92.0 \ 0.0 100. \ 100.
800 40.4 \ 0.0 87.1 \ 0.0 100. \ 100.

1600 36.9 \ 0.0 84.5 \ 0.0 100. \ 100.

PRIM 16 89.6 \ 29.7 96.4 \ 69.9 100. \ 100.
80 51.6 \ 0.0 79.7 \ 0.0 100. \ 100.

160 49.5 \ 0.0 75.6 \ 0.0 100. \ 100.
800 45.0 \ 0.0 69.5 \ 0.0 100. \ 100.

1600 43.2 \ 0.0 66.8 \ 0.0 100. \ 100.

MIS 16 79.9 \ 3.3 99.8 \ 98.6 100. \ 100.
80 79.9 \ 20.0 99.4 \ 88.9 100. \ 100.

160 78.2 \ 0.0 99.4 \ 76.2 100. \ 100.
800 83.4 \ 0.0 98.8 \ 18.0 100. \ 100.

1600 79.2 \ 0.0 98.9 \ 5.2 100. \ 100.

ECC. 16 25.3 100. 100.
80 23.8 100. 100.

160 26.1 100. 100.
800 17.1 100. 100.

1600 16.0 83.0 100.

tion: feature discretization, hard attention, and separating
discrete and continuous data flows. To evaluate the impor-
tance of each component for generalization capabilities of
the proposed models, we conduct an ablation study, the
details can be found in Appendix A. In short, we demon-
strate that removing each of these components yields the
model without provable guarantees of perfect generalization.
However, these components differ in terms of the impact
on the performance. In particular, using regular attention
instead of hard attention yields perfect test scores for given
datasets, but it is possible to construct adversarial examples
with large neighborhood sizes where performance drops.
On the other hand, removing discretization from the scalar
updater significantly affects the performance even on the
small test graphs.
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Table 2. Node-level test scores for the proposed discrete reasoner
and the baselines on CLRS-30 test data. Test graphs are of size 64.
Scores are averaged across 5 different seeds.

TASK HINT-RELIC G-FORGETNET DNAR (OURS)

BFS 99.00 ± 0.2 99.96 ± 0.0 100. ± 0.0
DFS 100. ± 0.0 74.31 ± 5.0 100. ± 0.0
SP 97.74 ± 0.5 99.14 ± 0.1 100. ± 0.0
PRIM 87.97 ± 2.9 95.19 ± 0.3 100. ± 0.0

5. Interpetability and Testing
In addition to the empirical evaluation of the trained models
on diverse test data, the discrete and size-independent de-
sign of the proposed models allows us to interpret and test
them manually. The main idea is to show that the model
will perform the exact discrete state transitions (including
discrete operations with scalars) as the original algorithm.

First, we note that due to the hard attention, each node
receives exactly one message. Also, the message depends
only on the discrete states of the corresponding nodes and
edges. Thereby, as each node and edge states after a single
processor step depend only on the current states and received
message, all the possible options can be directly enumerated
and tested if all states change to the correct ones.

The only remaining part to fully interpret the whole model
is the attention block. We note that our implementation of
the select best selector (Section 3.3) does not necessarily
produce the top-1 choice over the ordered pairs of ‘states
priority’ and scalars sij as it simply augments key vectors
with indicators if the given edge has the best scalar among
others. For example, it may happen that for some state, the
maximum attention weight is achieved for an edge without
the indicator. However, given the finite number of discrete
states, we can manually check if the mentioned “best” in-
dicator increases the attention weight between every pair
of states. Combined with hard attention, this would imply
that the attention block attends depending on the predefined
states and uses scalar priorities only to break ties. The par-
ticular example with more detailed explanation for the BFS
problem can be found in Appendix C.

Given that, we can unit-test all possible state transitions and
attention blocks. With full coverage of such tests, we can
guarantee the correct execution of the desired algorithm for
any test data. We tested our trained models from Section
4 manually verifying state transitions. As a result, we con-
firm that the attention block indeed operates as select best
selector, as the model actually uses these indicators to in-
crease the attention weights. Thus, we can guarantee that for
any graph size, the model will mirror the desired algorithm,
which is correct for any test size.

6. Towards No-Hint Discrete Reasoners
In this section, we discuss the challenges of training discrete
reasoners without hints, which can be useful when tackling
new algorithmic problems.

Training deep discretized models is known to be challenging:
without hyperparameter search, discrete models are only
slightly improved over the untrained models. Therefore, we
focus only on the BFS algorithm, as it is well-aligned with
the message-passing framework, has short roll-outs, and
can be solved with small states count (note that for no-hint
models node/edge states count is a hyperparameter due to
the absence of the ground truth states trajectory).

We recall that the output of the BFS problem is the explo-
ration tree pointing from each node to its parent. Each node
chooses as a parent the neighbor from the previous distance
layer with the smallest index.

We perform hyperparameter search over the training sizes
(using ER graphs with p = 0.5 and n ∈ [4, 16]), discrete
node states count (from 2 to 6 states), softmax temperature
annealing schedules ([3, 0.01], [3, 0.1], [3, 1]). For each hy-
perparameter choice, we train 5 models with different seeds.
We validate the resulting models on the graphs of size 16.
The best resulting model is obtained with the training size 5
and 4 node states. The trained models never achieved the
perfect validation scores, see Table 3 for the results.

Table 3. BFS node/graph level scores of the best no hint model
for different graph sizes.

5 16 64

best no hint model 99 / 86 94 / 34 79 / 0

Then, we select the best-performing models and try to
analyze the mistakes of the resulting models and reverse-
engineer how they utilize the given states. First, we look at
the node states after the last step of the processor and note
that the states correspond to the distances from the starting
node. More formally, we note that the model with four
states uses the first state for the starting node, the second
state for its neighbors, the third state for nodes at distance
two from the starting node, and the last state for all other
nodes and such states-based classification of distance has
accuracy > 98% when tested on 1000 random graphs with
16 nodes. Then, we note that for the nodes that are from the
first four distance layers from the starting node, the pointers
are predicted with 100% accuracy and these pointers are
computed layer-by-layer as in the ground truth algorithm
(we refer to Appendix E for illustrations). The mistakes of
the model are on the distance≥ 4 from the starting node (we
did not reverse-engineer the specific logic of computations
on larger distances).
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We found this behavior well-aligned to the BFS algorithm
and indicating the possibility of achieving the perfect vali-
dation score with enough states count. However, this algo-
rithm does not generalize since it fails at distances larger
than those encountered during training.

On the other hand, one can demonstrate that for a small
enough state count (for BFS, it is two node states and two
edge states) and diverse enough validation data, the perfect
validation performance implies that the learned solution will
generalize to any graph size.

Therefore, we highlight the need to achieve perfect vali-
dation performance with models that use as few states as
possible, which corresponds to the minimum description
length (MDL) theory (Myung, 2000; Rissanen, 2006) and
is related to the notion of Kolmogorov complexity (Kol-
mogorov, 1963).

Finally, we note that for sequential problems, such as DFS,
obtaining a good no-hint model can be even more challeng-
ing and can require additional effort. One possible way
to overcome this limitation is to implement a curriculum
learning setup, which we leave for future work.

7. Limitations and Future Work
Limitations In this work, we propose a method to learn
robust neural reasoners that demonstrate perfect general-
ization performance and are interpretable by design. In
this section, we describe some limitations of our work and
important directions for future research.

First, several proposed design choices strictly reduce the
expressive power of the model. For example, due to the
hard attention, the proposed model is unable to compute
the mean value from all the neighbors in a single message-
passing step, which is trivial for attention-based models
(note that this can be computed in several message-passing
steps). Thus, the model in its current form is unable to
express transitions between hints for some algorithms from
the CLRS-30 in a single processor step.

However, we believe that the expressivity of the proposed
model can be enhanced with additional architectural mod-
ifications (e.g., edge-based reasoning (Ibarz et al., 2022),
global states, interactions between different scalars) that can
be combined with the proposed discretization ideas. Addi-
tionally, there are several potential ways to balance between
expressive power of the model and strong generalization
guarantees, e.g. removing hard attention, removing feature
discretization (while keeping the discretization inside the
ScalarUpdate module).

Second, while we report the perfect scores for the covered
tasks, we cannot guarantee that the training will converge
to the correct model for any initialization/training data dis-

tributions. However, we empirically found the proposed
method to be quite robust to various architecture/training
hyperparameter choices.

Future work Our method is based on the particular archi-
tectural choice and actively utilizes the attention mechanism.
However, the graph deep learning field is rich in various
architectures exploiting different inductive biases and com-
putation flows. The proposed separation between discrete
states and continuous inputs may apply to other models,
however, any particular construction can require additional
efforts.

Also, we provide only one example of the ScalarUpdate
block. We believe that utilizing a general architecture (e.g.,
some form of discrete Neural Turing Machine (Graves et al.,
2014; Gulcehre et al., 2016)) capable of executing a wider
range of manipulation is of interest for future work.

With the development of neural reasoners and their ability
to execute classic algorithms on abstract data, it is becom-
ing more important to investigate how such models can be
applicable in real-world scenarios according to the Neural
Algorithmic Reasoning blueprint (Veličković & Blundell,
2021) and transfer their knowledge to high-dimensional
noisy data with intrinsic algorithmic dependencies. While
there are several examples of NAR-based models tackling
real-world problems (Beurer-Kellner et al., 2022; Numeroso
et al., 2023), there are no established benchmarks for exten-
sive evaluation and comparison of different approaches.

Lastly, we leave for future work a deeper investigation of
learning interpretable neural reasoners without hints, which
we consider essential from both theoretical perspective and
practical applications, e.g., combinatorial optimization.

8. Conclusion
In this paper, we force neural reasoners to maintain the
execution trajectory as a combination of finite predefined
states. To achieve that, we separate discrete and continu-
ous data flows and describe the interaction between them.
The obtained discrete reasoners are interpretable by design.
Moreover, trained with hint supervision, such models per-
fectly capture the dynamic of the underlying algorithms and
do not suffer from distributional shifts. We consider dis-
cretization of hidden representations as a crucial component
for robust neural reasoners.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Dudzik, A. J. and Veličković, P. Graph neural networks are
dynamic programmers. Advances in Neural Information
Processing Systems, 35:20635–20647, 2022.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L.,
Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. A mathematical framework
for transformer circuits. Transformer Circuits Thread,
2021.

Friedman, D., Wettig, A., and Chen, D. Learning trans-
former programs. Advances in Neural Information Pro-
cessing Systems, 2023.

Georgiev, D., Barbiero, P., Kazhdan, D., Velivckovi’c, P.,
and Lio’, P. Algorithmic concept-based explainable rea-
soning. In AAAI Conference on Artificial Intelligence,
2021.

Georgiev, D., Lio, P., Bachurski, J., Chen, J., and Shi, T.
Beyond erdos-renyi: Generalization in algorithmic rea-
soning on graphs. In NeurIPS 2023 Workshop: New
Frontiers in Graph Learning, 2023.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Gulcehre, C., Chandar, S., Cho, K., and Bengio, Y. Dy-
namic neural turing machine with soft and hard address-
ing schemes. arXiv preprint arXiv:1607.00036, 2016.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Ibarz, B., Kurin, V., Papamakarios, G., Nikiforou, K., Ben-
nani, M., Csordás, R., Dudzik, A. J., Bošnjak, M., Vitvit-
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Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. In
International Conference on Learning Representations,
2020b.
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A. Ablation Study
Recall that we have three key components of our contribution: feature discretization, hard attention, and separating discrete
and continuous data flows. In this section, we study the importance of these components for generalization capabilities of
the proposed models.

Discrete bottlenecks First, we evaluate the model without all discrete bottlenecks: the result is a simple Transformer
Convolution processor, which performs comparable to other baseline models, see Table 4.

Table 4. Node \ graph level test scores for our base model without all discrete bottlenecks. Scores are averaged across 5 different seeds,
standard deviation is omitted.

SIZE 16 80 160 800 1600

BFS 99.9 \ 99.3 99.7 \ 88.2 99.5 \ 57.9 98.4 \ 0.0 97.2 \ 0.0
DFS 79.2 \ 6.8 41.1 \ 0.0 28.1 \ 0.0 24.7 \ 0.0 21.9 \ 0.0
SP 99.3 \ 88.7 94.1 \ 12.4 90.3 \ 0.0 86.9 \ 0.0 82.4 \ 0.0
PRIM 95.1 \ 72.7 82.6 \ 0.0 79.7 \ 0.0 68.1 \ 0.0 66.0 \ 0.0
MIS 99.8 \ 98.6 99.6 \ 86.1 99.2 \ 69.0 97.1 \ 11.9 96.3 \ 0.0
ECC 79.2 41.1 28.1 24.7 21.9

Hard attention To highlight the importance of the hard attention for strong size generalization, we train the proposed
model but with the regular attention mechanism on the BFS task. The resulting model also demonstrates the perfect scores
for the given test data. However, the standard test data (the Erdös-Renyi graphs with low edge probability) does not contain
nodes with a large number of neighbors, while such nodes can be problematic due to the annealing of the attention weights.
Thus, we additionally test the resulting model on the complete bipartite graphs K2,n−2 for different n. For each n, we
assign the starting node from the smaller component and test if the second node in this component correctly selects its parent
in the BFS tree, see Figure 2.

Figure 2. Complete bipartite graphs K2,n−2 used to evaluate the effect of the attention weights annealing. The black node is the starting
node. The highlighted edge (Green) is the ground truth pointer from the bottom node to its parent from the BFS tree.

Our experiments demonstrate that the model without hard attention fails to predict the correct pointer for larger graphs due
to the attention weight annealing, see Table 5. We note that the models from Section 4 are provably correct on any test data.

Table 5. Attention weights for the ground truth pointer (green pointer from Figure 2) for different graph sizes; (+\-) denotes if the correct
pointer was predicted.

SIZE 16 80 160 800 1600

ATTENTION WEIGHT 0.97 (+) 0.86 (+) 0.76 (+) 0.38 (-) 0.24 (-)

Scalar updater As demonstrated in Klindt (2023), simple neural networks trained to sum two real numbers fail to learn
the structure of the task and struggle to extrapolate beyond the training data distributions. In this section, we study how
these limitations affect the overall performance of neural reasoners to highlight the importance of the proposed discrete
manipulations with scalars.

First, we recall that usually all input data is encoded into node and edge features and the processor operates over the
resulting vectors. Then, hints of type scalar are directly predicted from the node/edge features. To evaluate the effect of
non-discrete ScalarUpdate modules, we simply replace the proposed discrete ScalarUpdate module with a single-layer
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transformer convolution network, which inputs scalars and node/edge states and outputs the scalars for the next step, keeping
the remaining architecture the same as in the main experiments. We train the resulting model on Dijkstra and MST problems.

Additionally, we evaluate the non-discrete ScalarUpdate module in a more straightforward setup. Similarly to Klindt
(2023), we train a 2-layer MLP to add two real numbers and use the resulting model as a ScalarUpdate module for the
Dijkstra algorithm. We manually use the learned addition module when the node distances are updated (e.g., the distance of
the node u is updated with the sum of the distance of v and the edge (v, u) cost), and use the ground truth scalars for other
scalar updates. Our experiments demonstrate that the resulting model outperforms the baselines on the test size of 16 nodes,
but does not generalize well on larger graphs, see the evaluation results in Table 6.

Table 6. Node \ graph level test scores for the proposed model with ScalarUpdate replaced by a regular attention-based network trained
to predict hints of type scalar. ‘Addition only’ means that ScalarUpdate is replaced by a 2-layer MLP trained to predict the sum of two
numbers (other values are taken from the ground truth).

SIZE 16 80 160 800 1600

DIJKSTRA 99.3 \ 94.6 60.7 \ 0.0 42.8 \ 0.0 19.0 \ 0.0 11.8 \ 0.0
MST 99.8 \ 98.1 98.2 \ 54.1 97.2 \ 28.1 95.5 \ 0.0 91.73 \ 0.0
DIJKSTRA (ADDITION ONLY) 99.8 \ 96.6 95.3 \ 71.0 86.5 \ 46.3 41.6 \ 3.1 22.2 \ 0.0

We note that all the resulting models demonstrate perfect scores when evaluated with teacher-forced ground truth scalars.
Thus, all state transitions are learned correctly and imperfect test scores are fully described by the errors in manipulations
with continuous values.

To summarize, small errors in manipulations with scalars (even restricted on the simplest addition sub-task) strictly affect
the overall performance of the model, highlighting the importance of the proposed discrete manipulations with scalars.

B. Minimal Training Sizes
In this section, we highlight an important property of the proposed models: the correct state transitions can be learned even
from a trivially small size.

For example, for the BFS problem, it is enough to use graphs with only 3 nodes to observe that a not visited node becomes
visited or not depending on the received message. However, the subtask of selecting the parent from the multiple visited
neighbors requires at least 4 nodes (where the minimum sufficient example is the complete bipartite graph K(2, 2)).

To demonstrate that, we conducted additional experiments to empirically find the smallest training size for perfect fitting
of each covered algorithm. For this experiment we used training with hints: we train our models for each problem on
ER(n, 0.5) graphs for different n and test the resulting models on the graphs with 160 nodes. Results are presented in
Table 7. Note that the empirical bound is around 4-5 nodes.

Table 7. Node-level test scores for the proposed discrete reasoner on test graphs with 160 nodes, across different training sizes.)

Algorithm 3 Nodes 4 Nodes 5 Nodes

BFS 41 100 100
DFS 38 100 100
Dijkstra 13 26 100
MST 11 14 100
MIS 79 100 100
Ecc. 45 100 100

C. Interpetability and Testing Details
In this section, we provide additional details on interpretability and testing of the proposed discrete reasoners.

As an example, consider the BFS algorithm. First, recall the pseudocode of the algorithm:
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Starting node← visited
All other nodes← not visited
for step in range(T) do

for node U in a graph do
if U is visited on previous steps then
continue

end if
if U has a neighbor P that visited on previous steps then
U ← visited on this step
U select the smallest-indexed such neighbor P as parent:
Edge (U,P )← pointer
Self-loop (U,U)← not pointer

end if
end for

end for
return a BFS tree described by pointers

Now let us describe how we can verify that the trained DNAR model will perfectly imitate this algorithm for any test data.

First, we note that for each node U , the node state on the step t+ 1 (denoted by Ut+1) is the function of Ut and Vt, where V
is the node that sends the message to U on step t:

Ut+1 = StateUpdate(Ut,message from Vt)

How does the node U select a node that will send a message to it? For any node V connected to U , the node U computes
attention scores depending on discrete states of V of each node and a discrete indicator if each node has the smallest (or
largest) scalar among all neighbors of U with the same discrete state as V . Then, the node U selects the node V with the
largest attention score.

In our (slightly simplified) case, the attention scores only depend on the tuples (Ustate, Vstate,
indicator if u has the smallest index) and there are only 8 such tuples. We can directly compute these atten-
tion scores and verify the required invariants, e.g.,

Attention(not visited, visited, smallest) > Attention(not visited, ∗any other∗),

which would imply that the not visited node will receive the message from the smallest-indexed visited neighbor if such
exists independently of the graph size and distribution. If there is no such neighbor, the node U will receive the message
from another not visited node (or from itself).

After verifying the correctness of the message flows, we need to ensure that the state updates are computed correctly, e.g.,

visited = StateUpdate(not visited,message from visited),

visited = StateUpdate(visited, ∗any∗),
not visited = StateUpdate(not visited,message from not visited).

The main idea is that due to the finite states count and discrete manipulations with scalars, there are only finite amounts of
such checks that can cover all possible state transitions and all of them should be evaluated only once.

D. Extended ScalarUpdate Module
In this section, we investigate if the proposed ScalarUpdate module can be successfully extended to support more complex
manipulations with scalars.

First, we note that simple manipulations with scalars cover a significant part of the classic algorithms. In this work, we use
the minimum set of the required functions, but it can be directly extended by other functions. Importantly, as ScalarUpdate
can be viewed as a separate module, we can separately check if it is possible to train it with any given set of predefined
manipulations for any problem only with supervision on the results.
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Let us formalize the problem: each input of the ScalarUpdate module can be described as an object with a discrete state si
(from a fixed predefined set) and several scalar values (we consider two scalars xi and yi). Note that we omit the separation
between nodes and edges and consider objects with several scalar values. For each discrete state si, there exists a ground
truth update of scalars, e.g., f(s, x, y) = x+ cos(y). The output of the scalar updater can be viewed as a sum:

ScalarUpdate(s, x, y) =
∑

g∈OPS
g(x, y) · activateg(s),

where OPS is a predefined set of operations and activateg is a 0-1 function representing if a specific operation should be
applied. Note that activateg depends only on a discrete state of the input.

For our additional experiment, we train several different ScalarUpdate modules with the extended set of operations:

• g0(x, y) = 1;

• g1(x, y) = x;

• g2(x, y) = cos(x);

• g3(x, y) = x · y;

• g4(x, y) = atan2(x, y)

to learn the following set of the ground truth updates simultaneously:

• f0(x, y) = x;

• f1(x, y) = cos(x);

• f2(x, y) = cos(x) + x · y;

• f3(x, y) = atan2(x, y);

• f4(x, y) = 1 + x+ atan2(x, y).

In particular, we consider a set of 16 discrete states (numbered from 0 to 15 and sampled uniformly) and the ground truth
scalar update is derived from these states by taking the remainder of the division by 5 (updates count).

The learnable parameters of the ScalarUpdate are states’ embeddings and linear projections for each indicator. We train
ScalarUpdate to minimize the MSE loss between the ground truth and predicted outputs with 5000 optimization steps.
Additionally, we train a non-discrete scalar updater (2-layer MLP), similar to our ablation experiments. We refer to the
source code for the experiment details.

Inspired by Klindt (2023), we generate training scalars X and Y from Uniform[0.5, 1.0] and generate test set by sampling
scalars from the Uniform[0., 0.5] distribution.

We report the evaluation results in Table 8. The proposed discrete ScalarUpdate module successfully learned the correct
operations for updates f1, ..., f4 for all seeds and 3 times out of 5 for f0 (note that the model was trained to predict different
manipulations for different states simultaneously). For unsuccessful runs, when f0 was not learned correctly, the learned
operation for f0 was g3 for some states (i.e., x · y instead of x), which can be explained by optimization challenges as the
distribution of y is close to 1.

Our experiment demonstrates that the proposed ScalarUpdate module can be extended to support a wider range of manipu-
lations with scalars. We note that this complicates the optimization problem of selecting the correct operations/operands
from the operations results (e.g., such decomposition might not be unique).
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Table 8. MSE for train/test distributions for the discrete and non-discrete ScalarUpdate modules and different operations.

f0 f1 f2 f3 f4

discrete 0.01 / 0.1 0. / 0. 0 / 0 0 / 0 0 / 0
non-discrete 5.7e-6 / 0.03 5.1e-6 / 0.001 1.1e-5 / 0.007 1.0e-5 / 0.08 2.0e-5 / 0.03

E. State Usage for No-Hint Models
In this section, we provide several illustrations of the node states and the dynamics of the pointer prediction updates for the
BFS algorithm (Figures 3-5). Our analysis suggests that no-hint models with K states tend to use states as distances from
the starting node, with the distances ≥ K merged into the same state. Also, pointer predictions for the first K BFS layers
are correct and computed layer-by-layer as in the ground truth algorithm. The mistakes of the model are at the later layers
and some pointers at the later layers are computed before that in the ground truth algorithm (Figure 5c). For simplicity of
illustrations, we use the model with 3 discrete states.

(a) Node states after the last processor step (b) Predicted pointers (self-loops are omitted)

Figure 3. Node states and the predicted pointers after the last processor step of the DNAR model (with 3 states), trained without hints.
Different colors represent different states. The green node is the starting node.

(a) Node states after the last processor step (b) Predicted pointers (self-loops are omitted)

Figure 4. Node states and the predicted pointers after the last processor step of the DNAR model (with 3 states), trained without hints.
Different colors represent different states. The green node is the starting node.
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(a) Node states after the last processor step (b) Predicted pointers after the first processor step (self-loops are
omitted)

(c) Predicted pointers after the second processor step (self-loops are
omitted)

Figure 5. Node states and the dynamics of the pointer prediction updates of the DNAR model (with 3 states), trained without hints.
Different colors represent different states. The green node is the starting node.
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