

000 NEURAL TANGENT KERNEL PERSPECTIVE ON 001 002 PARAMETER-SPACE SYMMETRIES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Parameter-space symmetries are transformations that modify model parameters
011 without altering the outputs. These transformations can be leveraged to accelerate
012 optimization and enhance generalization. Remarkably, applying a single transfor-
013 mation either before or during training often suffices to realize these benefits. While
014 the effectiveness of this approach is very promising, its underlying mechanisms
015 remain poorly understood. In this paper, we offer an explanation within the Neural
016 Tangent Kernel (NTK) framework, by analyzing how such transformations affect
017 the kernel’s properties. In particular, we show that maximizing the alignment
018 between the loss gradient and the data kernel is equivalent to maximizing the
019 alignment between the NTK and the data. Since kernel alignment is known to
020 correlate with optimization rate in the NTK limit, this insight elucidates how loss
021 gradient optimization facilitates faster training. To establish the validity of this
022 approach, we prove that parameter-space symmetries preserve the NTK limit.
023

024 1 INTRODUCTION

025 *Parameter-space symmetries* are transformations that modify a neural network’s parameters while
026 preserving its outputs. Formally, let F be a hypothesis function parameterized by $\theta \in \mathbb{R}^N$, mapping
027 an input space $X \subseteq \mathbb{R}^{d_x}$ to an output space $Y \subseteq \mathbb{R}^{d_y}$, i.e.,

$$028 F(\theta) : X \rightarrow Y. \quad (1)$$

029 A parameter-space symmetry is a transformation $\theta \mapsto g(\theta) = \theta'$, such that:

$$030 F(\theta) = F(\theta'). \quad (2)$$

031 Parameter-space symmetries are common in neural networks, and are useful both in applications
032 and in the analyses of neural network performance. Continuous symmetries, for example, have
033 been identified in many network architectures, including networks with homogeneous activations
034 Badrinarayanan et al. (2015), ReLU networks Neyshabur et al. (2015), radial rescaling activations
035 Ganev et al. (2021), and components such as softmax and batch normalization Kunin et al. (2020).

036 Parameter permutation symmetries have been linked to the structure of minima in optimization
037 landscapes Simsek et al. (2021); Entezari et al. (2021); Hecht-Nielsen (1990); Chen et al. (1993).
038 Quiver representation theory provides a unified framework for analyzing symmetries in neural
039 networks with pointwise Armenta & Jodoin (2021) and rescaling activations Ganev & Walters
040 (2022). Additionally, Zhao et al. (2022b) identify a class of nonlinear, data-dependent symmetries.
041 Parameter-space symmetries have also proven useful in the analysis of mode connectivity Ainsworth
042 et al. (2022).

043 An important application of parameter-space symmetries is their potential to accelerate the opti-
044 mization of neural networks Kunin et al. (2020); Van Laarhoven (2017); Grigsby et al. (2022). One
045 approach, known as *neural teleportation*, achieves this effect by inserting teleportation steps during
046 gradient descent, where the norm of the empirical loss gradient is maximized over the training data
047 via symmetry transformations Armenta et al. (2023); Zhao et al. (2022a). Although this approach
048 reduces the number of gradient descent steps needed to minimize the loss, it is not as efficient if
049 many teleportation steps are needed, as maximizing the gradient norm is computationally expensive.
050 However, Zhao et al. (2023) have demonstrated that even a single gradient loss norm maximization
051 transformation prior to training can meaningfully improve the optimization rate.
052

While the theoretical foundations of how neural teleportation can improve optimization have been studied Zhao et al. (2022a; 2023), the mechanisms by which a single symmetry transformation can accelerate long-term optimization remain poorly understood.

One principal approach to studying such complex questions in neural networks is to examine them in the large-width limit. In this regime, known as the *neural tangent kernel* (NTK) limit, networks behave linearly with respect to their parameters, and their training dynamics are greatly simplified Jacot et al. (2018); Lee et al. (2019); Li et al. (2019); Yang (2019b; 2020); Yang & Littwin (2021); Shem-Ur & Oz (2024); Chizat et al. (2019); Liu et al. (2020). Despite its simplicity, this first-order approximation captures many of the core properties of realistic finite networks, making it a powerful tool for analyzing their behavior Li et al. (2019); Yang & Hu (2020); Littwin et al. (2021).

The primary objective of this paper is to elucidate the effects of a single parameter-space symmetry transformation through the lens of the neural tangent kernel limit.

Main Contributions

- We extend the results of Liu et al. (2020) on the role of the Hessian spectral norm in the linearization of wide neural networks, by explicitly analyzing its effect on the linearization in the function space (Section 3.4).
- We prove that the NTK limit convergence rate is preserved under parameter-space symmetry transformations (Section 4).
- We introduce a new definition of NTK alignment, and show that it serves as an effective indicator of the optimization rate in the NTK regime (Section 5, Appendix G).
- We show that maximizing the norm of the loss gradient once, an established technique for improving optimization, is equivalent to maximizing the kernel alignment (Section 5).
- We present a method to extend any hypothesis function such that any linear invertible transformation, not necessarily a symmetry of the original function, can be realized as a symmetry (Appendix D).

2 BACKGROUND

2.1 AN EXAMPLE OF PARAMETER-SPACE SYMMETRIES IN FULLY CONNECTED NEURAL NETWORKS

To illustrate the concept of parameter-space symmetries, we consider the fundamental example of fully connected neural networks with a homogeneous activation function.

Fully connected neural networks are characterized by $L + 1 \in \mathbb{N}$ parameter vectors, the biases, denoted by $\theta^{(1)}, \dots, \theta^{(L+1)}$, $L + 1$ parameter matrices, the weights, denoted by $\theta^{(1,0)}, \dots, \theta^{(L+1,L)}$, and an activation function $\phi: \mathbb{R} \rightarrow \mathbb{R}$. Given an input $x \in X$, the network's layers are recursively defined as follows:

$$\begin{aligned} F^{(1)} &= \theta^{(1,0)}x + \theta^{(1)}, \\ \forall l = 1, \dots, L : F^{(l+1)} &= \theta^{(l+1,l)}\phi(F^{(l)}) + \theta^{(l+1)}, \end{aligned} \tag{3}$$

where the network's output is given by the final layer:

$$F(\theta)(x) = F^{(L+1)}(\theta)(x). \tag{4}$$

The depth of the network is defined as the number of hidden layers, $L \in \mathbb{N}$, while the width of each hidden layer $l = 1, \dots, L$ is the size of the layer $n_l \in \mathbb{N}$. The widths of the output and input layers are denoted by $n_{L+1} \in \mathbb{N}$ and $n_0 \in \mathbb{N}$, respectively.

Assuming a homogeneous activation function ϕ of degree d , i.e., for all $r, c \in \mathbb{R}$, $\phi(cr) = c^d\phi(r)$, then for any inner layer $l = 1, \dots, L$ and neuron index $i_l = 1, \dots, n_l$, the following transformation constitutes a symmetry, as defined in Equation 2, for any $c_{i_l} \neq 0$:

$$\theta_{\cdot, i_l}^{(l+1, l)} \mapsto \frac{1}{c_{i_l}^d} \theta_{\cdot, i_l}^{(l+1, l)}, \quad \theta_{i_l, \cdot}^{(l, l-1)} \mapsto c_{i_l} \theta_{i_l, \cdot}^{(l, l-1)}, \quad \theta_{i_l}^{(l)} \mapsto c_{i_l} \theta_{i_l}^{(l)}. \tag{5}$$

Moreover, any combination of such transformations constitutes a symmetry as well. This result extends to activation functions that are homogeneous over a subspace of coefficients, with c_{i_l} restricted accordingly. For instance, in the case of ReLU activation, any $c_{i_l} > 0$ is permissible.

108
109 2.2 THE NEURAL TANGENT KERNEL LIMIT110 In this section, we review the main analytical tool used in this work, the Neural Tangent Kernel limit.
111 To simplify notation and reduce clutter, we omit explicit summation in the equations. In Appendix B,
112 we expand all summations explicitly, and present all indices for clarity.113
114 2.2.1 DEFINITION115 Analyzing neural networks is notoriously challenging due to their highly non-linear architectures,
116 and vast parameter spaces. Questions such as the one posed in the introduction, namely, how a single
117 parameter-space symmetry transformation can improve optimization, are exceedingly difficult to
118 address analytically.119 A principal approach to tackling such questions is to study neural networks in the large-width limit.
120 In this regime, wide networks trained via gradient descent-based algorithms, evolve as though they
121 were linear in their parameters Jacot et al. (2018); Lee et al. (2019); Li et al. (2019). Specifically, the
122 network function can be approximated by its first-order Taylor expansion around the initialization
123 Lee et al. (2019); Yang (2019a); Hanin & Nica (2019); Seleznova & Kutyniok (2022a;b); Lee et al.
124 (2022); Huang & Yau (2020):

125
126
$$F(\theta) = F(\theta_0) + \nabla F(\theta_0)^T (\theta - \theta_0) + O\left(\frac{1}{\sqrt{n}}\right). \quad (6)$$

127

128 Here, F denotes the network function, θ the vector of parameters, ∇F the Jacobian with respect to θ ,
129 and θ_0 the initialization. The $O(1/\sqrt{n})$ term is in the stochastic big- O sense, where n denotes the
130 network's width, i.e., the size of the smallest hidden layer.131 Formally, let F^{lin} denote the linear approximation of F around θ_0 , as given in Equation 6. Suppose
132 both F and F^{lin} are trained using the same gradient descent-based algorithm, under the setup outlined
133 in Yang & Littwin (2021). Then, for any fixed training step $s \in \mathbb{N}$, and input $x \in X$, the difference
134 between the outputs of F and F^{lin} is asymptotically bounded by $O(1/\sqrt{n})$:

135
136
$$\|F(\theta(s))(x) - F^{\text{lin}}(s)(x)\| = O\left(\frac{1}{\sqrt{n}}\right), \quad (7)$$

137

138 where $\theta(s)$ is θ at step s , and $F^{\text{lin}}(s)$ is F^{lin} for the s -th learning step.139 This result holds across a broad class of wide neural network architectures, and gradient-based
140 optimization methods Yang (2019b; 2020); Yang & Littwin (2021); Chizat et al. (2019); Shem-Ur &
141 Oz (2024); Liu et al. (2020).142
143 2.2.2 PROPERTIES144 A fundamental result of the neural tangent kernel limit is that the network's evolution during training
145 becomes decoupled from its parameters θ . Instead, it is governed by a fixed kernel, defined at
146 initialization. This kernel is a two-point matrix function of size $n_{L+1} \times n_{L+1}$:

147
148
$$\forall x, a \in X : \Theta(x, a) = \eta \nabla F(\theta_0)(x)^T \nabla F(\theta_0)(a), \quad (8)$$

149 where $\eta > 0$ is the learning rate, and the inner product is taken over all network parameters.150 This behavior is well illustrated in the setting of deterministic gradient descent; Let $X' \subseteq X$ be a
151 finite set of inputs, with corresponding outputs $y(X')$, where the network is trained by minimizing
152 the empirical loss \mathcal{L} , derived from a loss function \mathcal{C} , such as:

153
154
$$\Delta\theta = -\eta \nabla \mathcal{L}(\theta), \quad (9)$$

155 with the loss defined as:

156
157
$$\mathcal{L}(\theta) = \frac{1}{|X'|} \sum_{x \in X'} \mathcal{C}(F(\theta)(x), y(x)). \quad (10)$$

158 In the NTK regime, the output evolution follows a semi-linear equation of motion that is decoupled
159 from θ , once the kernel and initial state are chosen:

160
161
$$\begin{aligned} \forall x \in X : \Delta F(\theta)(x) &= F(\theta + \Delta\theta)(x) - F(\theta)(x) = \\ &= -\frac{1}{|X'|} \Theta(x, X') \mathcal{C}'(F(\theta)(X'), y(X')) + O\left(\frac{1}{\sqrt{n}}\right), \end{aligned} \quad (11)$$

162 where \mathcal{C}' denotes the derivative of the loss with respect to the network output. This derivative is a
 163 vector indexed by $i = 1, \dots, n_{L+1}$ and $x \in X'$, which we also denote by f :

$$164 \quad f_i(\theta)(x) = \mathcal{C}'_i(F(\theta)(x), y(x)) . \quad (12)$$

166 Likewise, $\Theta(x, X')$ is a matrix indexed by i and (j, x') for $i, j = 1, \dots, n_{L+1}$ and $x' \in X'$. The
 167 product in Equation 11 is standard matrix-vector multiplication. Detailed indexing conventions are
 168 provided in Appendix B.

169 A particularly simple case arises with the mean squared error loss, $\mathcal{C}(y, F) = \frac{1}{2}(F - y)^2$. Here, the
 170 loss derivative is just the prediction error:

$$172 \quad f = \mathcal{C}'(F, y) = F - y , \quad (13)$$

173 and the dynamics reduce to:

$$175 \quad \Delta f = -\frac{1}{|X'|} \Theta(\cdot, X') f(X') + O\left(\frac{1}{\sqrt{n}}\right) . \quad (14)$$

178 Despite being a simplification, this first-order approximation captures many of the key properties
 179 of finite-width neural networks, which makes it a valuable approach to understanding finite neural
 180 networks Li et al. (2019); Yang & Hu (2020); Littwin et al. (2021).

182 3 PRELIMINARIES

184 3.1 OVERVIEW

186 The aim of this paper is to explain the result of Zhao et al. (2023), where it was shown that choosing
 187 a parameter-space symmetry that maximizes the norm of the gradient loss improves the long-term
 188 optimization rate, from the NTK limit perspective. Our logical structure is as follows.

190 In Section 3.2 we present the paper’s assumptions, after which Sections 3.3 and 3.4 introduce
 191 the mathematical framework used throughout the paper.

193 To justify studying the effect of parameter-space symmetries through the lens of the NTK
 194 limit, we show in Section 4 that the NTK-limit convergence rate is preserved under parameter-space
 195 symmetry transformations. This validates the use of the NTK limit in the subsequent sections.

197 In Sections 5.1 and 5.2 we then demonstrate that our alignment definition serves as a reliable
 198 indicator of the optimization rate. This is followed by Section 5.3, where we show that the
 199 gradient-loss norm is proportional to our alignment measure. Together with our result from Section
 200 4, this provides an NTK-based explanation for why the procedure described in Zhao et al. (2023)
 201 improves optimization. Maximizing the gradient-loss norm increases alignment, which correlates
 202 with faster optimization. Since the NTK limit captures many of the properties of finite-width neural
 203 networks Li et al. (2019); Yang & Hu (2020); Littwin et al. (2021), this result remains relevant for
 204 realistic neural networks.

205 In the Appendix, we justify and elaborate on our assumptions and notation (A, B, C); extend
 206 the notion of parameter-space symmetry to general learning systems, even those that do not
 207 originally possess such symmetries (D); provide the proofs of our results (E.1, G.1); discuss nonlinear
 208 symmetries in depth (E.2); and give details of our numerical procedures (F, G.2).

209 3.2 ASSUMPTIONS AND NOTATION

211 We begin by summarizing the assumptions and notation used in our analysis.

213 Our results apply to the class of hypothesis functions defined in Equation 1, trained with deterministic
 214 gradient descent as described in Equation 9. We assume that both the hypothesis function and the loss
 215 function are twice differentiable and that the loss is Lipschitz continuous as well. We also assume that
 these functions admit a parameter-space symmetry, satisfying the properties outlined in Section 3.3.

216 When discussing linearization rate, we do so in the context of a sequence of hypothesis functions
 217 $\{F_n\}_{n=0}^{\infty}$. We assume that all functions in this sequence are trained with the same algorithm, using
 218 the same loss and training data. While a function may admit more than one symmetry, we associate
 219 each function with a single symmetry, and assume that all of these symmetries across the sequence
 220 share the same C bound specified in Equation 18.

221 Throughout this work, we primarily interpret n as the width of a neural network. However, n may
 222 represent any measure of system scale. Thus, our analysis is not limited to wide neural networks, but
 223 also applies to more general sequences of function models.

224 To simplify notations, we often omit the explicit index n and simply refer to the networks sequence
 225 as a function, as we already did in Section 1. We also omit explicit dependencies on $x \in X'$ and θ in
 226 the functions throughout the paper.

227 A detailed list of assumptions, together with discussions of their possible generalizations, is provided
 228 in Appendix A.

229

230 3.3 OUR SYMMETRY TRANSFORMATIONS

231 We assume symmetry transformations of the form given in Equation 2, such that they are well-defined,
 232 and twice differentiable in a neighborhood of the parameter θ where the symmetry is applied.

233 We mainly discuss linear symmetry transformations, such as scaling and permutation symmetries,
 234 since these constitute the vast majority of the transformations discussed in the literature Zhao et al.
 235 (2025). However, in Appendix E.2 we also address non-linear transformations.

236 We define the *transformation Jacobian*, such that for any two parameter indices $\alpha, \beta = 1, \dots, N$:

$$237 \quad \Gamma_{\alpha\beta}^{-1} = \frac{\partial g_{\beta}(\theta)}{\partial \theta_{\alpha}}. \quad (15)$$

238 We may assume the transformation is invertible without loss of generality, as we can restrict ourselves
 239 to a minimal set of effective parameters that locally describe the network. On this local manifold, g
 240 becomes invertible, ensuring that Γ^{-1} is invertible as well and that Γ is well defined.

241 Since the hypothesis function remains invariant by definition, the transformation of the hypothesis
 242 function's derivatives under symmetry follows from the chain rule (see Appendix H.1):

$$243 \quad \nabla \mapsto \Gamma \nabla. \quad (16)$$

244

245 To ensure finite-size learning steps, we impose a bound on the rescaling of the transformed gradient
 246 norm by some constant $0 < C$, for any $x \in X$:

$$247 \quad \|\Gamma \nabla F\| \leq C \|\nabla F\|. \quad (17)$$

248 In fact, this condition must hold for all $x \in X$, not just the training subset X' . Otherwise, the
 249 related kernel could diverge outside the training data, causing the learning process to fail. Hence, any
 250 practical implementation of such symmetry transformations must at least implicitly require that:

251

$$252 \quad \|\Gamma\| \leq C, \quad (18)$$

253 within the vector space spanned by the network's gradient inside a fixed-radius ball around the
 254 initialization.

255

256 We analyze the effect of this variable on our main results in Appendix C, and show that choosing
 257 $C \neq 1$ is dynamically equivalent to rescaling the learning rate as $\eta \mapsto C\eta$. Since gradient descent
 258 remains stable only when the largest eigenvalue of the normalized NTK matrix is bounded, we
 259 cannot choose a value of C that effectively corresponds to a learning rate exceeding the stability
 260 threshold. In fact, the ideal learning rate is of the same order of magnitude as this threshold Cohen
 261 et al. (2021); Arora et al. (2022); Damian et al. (2022); Chemnitz & Engel (2025). This implies that,
 262 for any practical symmetry implementation, the effect of C is equivalent to selecting a well-optimized
 263 learning rate, for which the NTK limit is known to hold in practice Li et al. (2019); Yang & Hu
 264 (2020); Littwin et al. (2021). For the same reason, when the learning rate is well chosen from the
 265 outset, C must be close to 1.

270 In Appendix D, we show that any invertible matrix Γ can be interpreted as a linear symmetry of
 271 a hypothesis function, by extending the function with an additional set of hyperparameters. This
 272 suggests that analyzing neural network symmetries through their associated transformation matrices
 273 is both natural and powerful.
 274

275 3.4 UNDERLYING CAUSE OF THE NEURAL TANGENT KERNEL LIMIT 276

277 Most works proving of the NTK limit heavily rely on the assumption that parameters are initialized
 278 independently and identically. While this assumption simplifies analysis, it offers limited intuition for
 279 why the limit holds. Moreover, it is unsuitable for our purposes, since symmetry transformations may
 280 completely violate it. Nevertheless, several works go beyond proving the NTK limit, aiming instead
 281 to uncover its underlying cause Liu et al. (2020); Chizat et al. (2019); Dyer & Gur-Ari (2019); Liu
 282 et al. (2022); Shem-Ur & Oz (2024).

283 A notable example is Liu et al. (2020), which argues that the decay of the Hessian’s spectral norm
 284 as $n \rightarrow \infty$, is the driving mechanism behind linearization. Their main result shows that for wide
 285 neural networks, the Hessian norm converges to zero. More precisely, for any $x \in X'$ and $n \in \mathbb{N}$
 286 (suppressing x and n from the notation to avoid clutter):
 287

$$288 \|\eta \nabla^{\times 2} F\| = \|H\| = \sup_{\|v\|=1} v^T H v = O\left(\frac{1}{\sqrt{n}}\right), \quad (19)$$

290 within any arbitrarily large but fixed radius $0 < R$ around initialization, in the NTK parametrization,
 291 (which is dynamically equivalent to the standard parametrization).
 292

293 While they show that the Hessian norm governs changes in the kernel during training, they do not
 294 explicitly establish linearization in the sense of Equation 7, nor do they account for the role of the
 295 gradient scale. To address these gaps, we introduce the following lemma:
 296

297 **Lemma 3.1** (Hessian Norm Governs Linearization Rate). Given the setup in Section 3.2, if there
 298 exists a parametrization such that:
 299

$$300 \|H\| = O(m_n), \quad (20)$$

301 where $m_n \rightarrow 0$ characterizes the Hessian decay rate, and the gradient is appropriately normalized at
 302 initialization, i.e.,
 303

$$304 \|\sqrt{\eta_n} \nabla F_n\| = O(1), \quad \|\eta_n \nabla F_n\| = O(1), \quad (21)$$

305 then the system linearizes as in Equation 7, where we replace $\frac{1}{\sqrt{n}}$, by the general Hessian de-
 306 cay/linearization rate $O(m_n)$.
 307

308 We explain the meaning of the NTK parametrization, and why under standard initialization we can
 309 always treat the system as if Equation 7 holds, in Appendix A.6. The proof of Lemma 3.1 is given in
 310 Appendix E.1.
 311

312 Since all these conditions are satisfied for wide neural networks with $m_n = \frac{1}{\sqrt{n}}$, it follows that,
 313 provided parameter-space symmetries do not disrupt them, such symmetries preserve the NTK limit.
 314

315 4 NEURAL TANGENT KERNEL LIMIT PRESERVATION UNDER 316 PARAMETER-SPACE SYMMETRY

317 To study neural teleportation within the NTK limit, we must first verify that parameter-space symmetry
 318 transformations preserve the linearization property of the NTK limit. This step is essential to ensure
 319 the applicability of the NTK framework to our analysis.

320 **Theorem 4.1** (NTK Limit Preservation). Given the setup of Lemma 3.1, after applying a parameter-
 321 space symmetry at an arbitrary training step $s' \in \mathbb{N}$ as described in Section 3.2, $\theta(s') \mapsto g(\theta(s'))$,
 322 the neural tangent kernel limit, as defined in Equation 7 with m_n replacing $\frac{1}{\sqrt{n}}$, remains valid albeit
 323 with a different kernel. **Meaning, for every $s \in \mathbb{N}$ and $x \in X$, the asymptotic bound remains:**

$$324 \|F(\theta(s))(x) - F^{lin}(s)(x)\| = O(m_n). \quad (22)$$

Figure 1: Root mean squared error (RMSE) between the outputs of neural networks and their linearized counterparts as a function of network width. The networks were trained on FashionMNIST Xiao et al. (2017) for image classification. Results are averaged over three independent trials; error bars denote standard deviation. **Left:** Standard two-layer MLP, evaluated at batch 2455. **Right:** Transformed two-layer MLP, evaluated at batch 2406. Different batch indices reflect the distinct convergence speeds induced by the transformation (see App. F for details).

Proof. Having established the right tool for the job, the proof unfolds naturally. The key idea is to track how the Hessian and gradient norm transform under parameter-space symmetries. From Equation 16, we have:

$$H \mapsto \Gamma^T H \Gamma, \quad \nabla F \mapsto \Gamma \nabla F, \quad (23)$$

since the effect of symmetry transformations on the network’s derivatives follows directly from the chain rule. This observation allows us to control the transformed gradient and Hessian norms.

Before the transformation, the gradient and Hessian norms are asymptotically bounded by Equations 21 and 20. Because the gradient norm rescaling is bounded by Equation 17, Equation 21 remains valid after the transformation. Furthermore, the Hessian spectral norm transforms as:

$$\|H\| \mapsto \|\Gamma^T H \Gamma\| = \sup_{\|v\|=1} v^T (\Gamma^T H \Gamma) v \leq C^2 \sup_{\|v\|=1} v^T H v = O\left(\frac{1}{\sqrt{n}}\right). \quad (24)$$

By Lemma 3.1, this yields the desired linearization bound. \square

This result is unexpected, as parameter symmetry transformations can completely unravel the traditional i.i.d. assumption required for the NTK limit. Yet, since the network’s outputs remain unchanged, the resulting constraints on how its derivatives transform are sufficient to ensure that the NTK limit holds.

In Appendix E.2, we extend the theorem’s analysis beyond the linear case and show that the inner product of the second-derivative tensor with the gradient norm can also contribute to deviations from linearization. Since effective learning requires networks neither to deviate too far from the NTK limit nor to remain too close to it Jacot et al. (2022), we suggest that this term may serve as a design principle for constructing new nonlinear symmetries that could either mitigate or promote linearization.

We empirically validate the preservation of the NTK limit under parameter-space transformations in Figure 1, demonstrating that this regime remains applicable in practice. Further details on the experimental setup and results are provided in Appendix F.

Finally, the kernel itself transforms under symmetry as follows:

$$\Theta = \eta \nabla F(\theta_0)^T \nabla F(\theta_0) \mapsto \eta \nabla F(\theta_0)^T \Gamma^T \Gamma \nabla F(\theta_0). \quad (25)$$

378
379
380
381
382
383
384
385
386
387
388
389
390

391
392 Figure 2: Relationship between modified alignment and early optimization speed. Each dot represents
393 one of the 1,000 independently initialized MLPs. The x -axis shows the modified alignment measured
394 at $t = 0$; the y -axis shows the epoch at which the training loss drops to one half of its initial value.
395 The dashed line is the least-squares fit, with Pearson correlation $r = -0.76$, demonstrating that larger
396 initial alignment values consistently lead to faster loss reduction.
397

398 5 OPTIMIZATION ACCELERATION

400 5.1 OPTIMIZATION RELATION TO KERNEL ALIGNMENT

402 As discussed in the introduction, one of the primary applications of parameter-space symmetries is to
403 accelerate optimization. This is achieved by maximizing the norm of the empirical loss gradient as
404 defined in Equation 10, via symmetry transformations:

$$405 \max \|\nabla \mathcal{L}(\theta_0)\|^2, \quad (26)$$

407 Zhao et al. (2023) demonstrated that such a transformation can be effectively applied once prior to
408 learning, offering a computationally inexpensive way to accelerate optimization. While effective,
409 the mechanisms by which this method enhances optimization throughout training remain poorly
410 understood. We argue that since symmetry transformations preserve the NTK limit, this phenomenon
411 can be analyzed through the lens of the NTK limit, by examining how such transformations affect the
412 kernel.

413 A key indicator of a kernel’s capacity to learn, is its alignment with the data, traditionally defined
414 as the normalized inner product between the kernel matrix and the data vector Cortes et al. (2012);
415 Baratin et al. (2021); Arora et al. (2019); Wang et al. (2022); Kopitkov & Indelman (2020); Khalafi
416 et al. (2023):

$$417 A_o = \frac{y(X')^T \Theta(X', X') y(X')}{\|y(X')\|_2^2 \|\Theta(X', X')\|}. \quad (27)$$

420 We propose that the reason gradient norm maximization accelerates learning in the NTK regime, is
421 that it is equivalent to maximizing the kernel alignment.

423 5.2 OUR MODIFIED ALIGNMENT

425 To better capture the effect described above, we slightly modify the standard definition of alignment.
426 First, instead of aligning with the data directly, we follow Kopitkov & Indelman (2020); Khalafi
427 et al. (2023) in considering alignment with the gradient of the loss function with respect to the model
428 output:

$$429 f = \mathcal{C}'(F, y), \quad (28)$$

431 as f represents the target signal that the NTK is actually learning, as seen in the NTK equation of
432 motion (Equations 11,14).

432 Second, we remove the kernel norm from the denominator, following Khalafi et al. (2023), for two
 433 reasons: (i) up to a certain scale, larger kernels improve optimization Lewkowycz et al. (2020);
 434 Hayou et al. (2022); and (ii) in practical applications of symmetry transformations, kernel scaling
 435 must remain bounded, as discussed in Appendix A.6.

436 With these modifications, we redefine alignment as:

$$438 \quad A = \frac{f(X')^T \Theta(X', X') f(X')}{\|f(X')\|_2^2}. \quad (29)$$

441 We establish the effectiveness of this definition in Proposition G.1, by showing that a large initial
 442 kernel alignment is a necessary condition for achieving rapid optimization.

444 Another theoretical justification for the relevance of our alignment definition can be naturally derived
 445 from the work of Khalafi et al. (2023). In their analysis, the kernel norm is already omitted from
 446 the denominator, for reasons similar to those discussed above. A significant part of their effort is
 447 dedicated to addressing the complications that arise from using y instead of f . However, by directly
 448 assuming alignment with f , as we do, these complications are immediately avoided. The same
 449 reasoning extends naturally to any related analyses in the literature.

450 Additionally, we demonstrate empirically that our modified alignment reflects the optimization rate.
 451 Specifically, we train 1,000 independently initialized, fully connected ReLU MLPs with two hidden
 452 layers (1,024 neurons in each layer) and using the NTK parameterization. For each network, we
 453 compute the modified alignment at initialization and record the first epoch at which the training
 454 loss halves. As illustrated in Figure 2, the two quantities are strongly anticorrelated ($r = -0.76$),
 455 meaning that larger initial alignment values consistently translate into faster optimization. Full
 456 experimental details are provided in Appendix G.2.

457 5.3 ALIGNMENT AND NORMED LOSS GRADIENT EQUIVALENCE

459 With our new definition for alignment as an indicator for optimization rate, we can now show its
 460 equivalence to the gradient of the normed loss.

461 **Proposition 5.1** (Alignment and Normed Loss Gradient Equivalence). Under the setup detailed in
 462 Section 3.2, the gradient of the loss function norm (Equation 26), and the kernel alignment (Equation
 463 29), are proportional:

$$464 \quad \|\nabla \mathcal{L}\|_2^2 = \frac{\|f(X')\|^2}{\eta |X'|^2} A \propto A. \quad (30)$$

467 **Proof.** This follows directly from Equations 8, 10, and 29, applying the chain rule within our
 468 analytical framework:

$$469 \quad \|\nabla \mathcal{L}\|_2^2 = \left\| \nabla \frac{1}{|X'|} \sum_{x \in X'} \mathcal{C}(F(x), y(x)) \right\|_2^2 =$$

$$470 \quad \left\| \frac{1}{|X'|} \sum_{x \in X'} \nabla F(x) f(x) \right\|_2^2 = \frac{1}{\eta |X'|^2} f(X')^T \Theta(X', X') f(X') = \frac{\|f(X')\|^2}{\eta |X'|^2} A. \quad (31)$$

474 \square

476 This concludes our explanation of why maximizing the normed loss gradient improves optimization
 477 from the NTK perspective, as it is equivalent to maximizing kernel alignment, which is correlated
 478 with the optimization rate.

479
 480
 481
 482
 483
 484
 485

486

6 CONCLUSION

488 In this work, we explored the effects of applying parameter-space symmetries in neural network
 489 optimization through the lens of the NTK limit. We established that such transformations preserve
 490 the NTK limit, thereby validating the use of this framework for our analysis. Leveraging this result,
 491 we showed that even a single application of parameter-space symmetry can meaningfully improve
 492 the optimization rate in the NTK regime.

493 Our findings suggest potential directions for the development of new optimization algorithms. In
 494 particular, they highlight more direct approaches to maximizing kernel alignment through parameter-
 495 space symmetries, or other related methods. By clarifying why parameter-space symmetrizes
 496 work, our work may help inspire new algorithms that achieve similar benefits without requiring the
 497 costly optimization often associated with parameter-space symmetries. Furthermore, our results
 498 for nonlinear symmetries may guide the design of new, useful classes of symmetries tailored for
 499 optimization.

500 Looking forward, we aim to extend this line of work to study how parameter-space symmetries
 501 affect generalization, through the NTK framework. By combining insights on both optimization and
 502 generalization, we hope to develop approaches that simultaneously accelerate training and improve
 503 the generalization capacity of neural networks.

504 A primary limitation of our work is that our analysis is restricted to the NTK limit, which remains
 505 an approximation of finite neural networks. Addressing this limitation in future work, we plan to
 506 investigate the effects of parameter-space symmetries on higher-order approximations and conduct
 507 more extensive empirical studies. Nevertheless, as the NTK framework captures many of the most
 508 relevant properties of neural networks, we believe that our findings hold meaningful value, and could
 509 facilitate practical advancements in the field.

510 Our work is also significant to the general understanding of the NTK limit, beyond the context
 511 of parameter-space symmetries. We provide a clear example of wide neural networks that do not
 512 satisfy what is considered a key condition of the NTK limit, namely, weak parameter correlations at
 513 initialization, yet still exhibit linearization.

515

REFERENCES

517 Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
 518 modulo permutation symmetries. *arXiv preprint arXiv:2209.04836*, 2022.

519 Marco Armenta and Pierre-Marc Jodoin. The representation theory of neural networks. *Mathematics*,
 520 9(24):3216, 2021.

522 Marco Armenta, Thierry Judge, Nathan Painchaud, Youssef Skandarani, Carl Lemaire, Gabriel
 523 Gibeau Sanchez, Philippe Spino, and Pierre-Marc Jodoin. Neural teleportation. *Mathematics*, 11
 524 (2):480, 2023.

525 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
 526 optimization and generalization for overparameterized two-layer neural networks. In *International
 527 Conference on Machine Learning*, pp. 322–332. PMLR, 2019.

528 Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on the edge
 529 of stability in deep learning. In *International Conference on Machine Learning*, pp. 948–1024.
 530 PMLR, 2022.

532 Vijay Badrinarayanan, Bamdev Mishra, and Roberto Cipolla. Symmetry-invariant optimization in
 533 deep networks. *arXiv preprint arXiv:1511.01754*, 2015.

534 Aristide Baratin, Thomas George, César Laurent, R Devon Hjelm, Guillaume Lajoie, Pascal Vincent,
 535 and Simon Lacoste-Julien. Implicit regularization via neural feature alignment. In *International
 536 Conference on Artificial Intelligence and Statistics*, pp. 2269–2277. PMLR, 2021.

538 Dennis Chemnitz and Maximilian Engel. Characterizing dynamical stability of stochastic gradient
 539 descent in overparameterized learning. *Journal of Machine Learning Research*, 26(134):1–46,
 2025.

540 An Mei Chen, Haw-minn Lu, and Robert Hecht-Nielsen. On the geometry of feedforward neural
 541 network error surfaces. *Neural computation*, 5(6):910–927, 1993.
 542

543 Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
 544 *Advances in neural information processing systems*, 32, 2019.
 545

546 Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
 547 neural networks typically occurs at the edge of stability. *arXiv preprint arXiv:2103.00065*, 2021.
 548

549 Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning kernels based on
 550 centered alignment. *The Journal of Machine Learning Research*, 13:795–828, 2012.
 551

552 Alex Damian, Eshaan Nichani, and Jason D Lee. Self-stabilization: The implicit bias of gradient
 553 descent at the edge of stability. *arXiv preprint arXiv:2209.15594*, 2022.
 554

555 Ethan Dyer and Guy Gur-Ari. Asymptotics of wide networks from feynman diagrams. *arXiv preprint
 556 arXiv:1909.11304*, 2019.
 557

558 Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
 559 invariance in linear mode connectivity of neural networks. *arXiv preprint arXiv:2110.06296*, 2021.
 560

561 Iordan Ganev and Robin Walters. Quiver neural networks. *arXiv preprint arXiv:2207.12773*, 2022.
 562

563 Iordan Ganev, Twan van Laarhoven, and Robin Walters. Universal approximation and model
 564 compression for radial neural networks. *arXiv preprint arXiv:2107.02550*, 2021.
 565

566 J Elisenda Grigsby, Kathryn Lindsey, Robert Meyerhoff, and Chenxi Wu. Functional dimension of
 567 feedforward relu neural networks. *arXiv preprint arXiv:2209.04036*, 2022.
 568

569 Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. *arXiv
 570 preprint arXiv:1909.05989*, 2019.
 571

572 Soufiane Hayou, Arnaud Doucet, and Judith Rousseau. The curse of depth in kernel regime. In *I
 573 (Still) Can't Believe It's Not Better! Workshop at NeurIPS 2021*, pp. 41–47. PMLR, 2022.
 574

575 Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In *Advanced
 576 Neural Computers*, pp. 129–135. Elsevier, 1990.
 577

578 Jiaoyang Huang and Horng-Tzer Yau. Dynamics of deep neural networks and neural tangent hierarchy.
 579 In *International conference on machine learning*, pp. 4542–4551. PMLR, 2020.
 580

581 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 582 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.
 583

584 Arthur Jacot, Franck Gabriel, Francois Ged, and Clement Hongler. Freeze and chaos: Ntk views on
 585 dnn normalization, checkerboard and boundary artifacts. In *Mathematical and Scientific Machine
 586 Learning*, pp. 257–270. PMLR, 2022.
 587

588 Shervin Khalafi, Saurabh Sihag, and Alejandro Ribeiro. Neural tangent kernels motivate graph neural
 589 networks with cross-covariance graphs. *arXiv preprint arXiv:2310.10791*, 2023.
 590

591 Miltiadis Kofinas, Boris Knyazev, Yan Zhang, Yunlu Chen, Gertjan J Burghouts, Efstratios Gavves,
 592 Cees GM Snoek, and David W Zhang. Graph neural networks for learning equivariant representa-
 593 tions of neural networks. *arXiv preprint arXiv:2403.12143*, 2024.
 594

595 Dmitry Kopitkov and Vadim Indelman. Neural spectrum alignment: Empirical study. In *Artificial
 596 Neural Networks and Machine Learning–ICANN 2020: 29th International Conference on Artificial
 597 Neural Networks, Bratislava, Slovakia, September 15–18, 2020, Proceedings, Part II 29*, pp.
 598 168–179. Springer, 2020.
 599

600 Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka.
 601 Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. *arXiv
 602 preprint arXiv:2012.04728*, 2020.
 603

594 Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
 595 Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
 596 under gradient descent. *Advances in neural information processing systems*, 32, 2019.

597 Jongmin Lee, Joo Young Choi, Ernest K Ryu, and Albert No. Neural tangent kernel analysis of deep
 598 narrow neural networks. In *International Conference on Machine Learning*, pp. 12282–12351.
 599 PMLR, 2022.

600 Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
 601 learning rate phase of deep learning: the catapult mechanism. *arXiv preprint arXiv:2003.02218*,
 602 2020.

603 Sanjeev Li, Arora, Simon S Du, Zhiyuan Hu, Wei, Russ R Salakhutdinov, and Ruosong Wang. On
 604 exact computation with an infinitely wide neural net. *Advances in neural information processing
 605 systems*, 32, 2019.

606 Derek Lim, Haggai Maron, Marc T Law, Jonathan Lorraine, and James Lucas. Graph metanetworks
 607 for processing diverse neural architectures. *arXiv preprint arXiv:2312.04501*, 2023.

608 Etai Littwin, Tomer Galanti, and Lior Wolf. On random kernels of residual architectures. In
 609 *Uncertainty in Artificial Intelligence*, pp. 897–907. PMLR, 2021.

610 Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
 611 and why the tangent kernel is constant. *Advances in Neural Information Processing Systems*, 33:
 612 15954–15964, 2020.

613 Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Transition to linearity of wide neural networks is an
 614 emerging property of assembling weak models. *arXiv preprint arXiv:2203.05104*, 2022.

615 Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized optimization
 616 in deep neural networks. *Advances in neural information processing systems*, 28, 2015.

617 Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
 618 and Samuel S. Schoenholz. Neural tangents: Fast and easy infinite neural networks in python.
 619 *arXiv preprint arXiv:1912.02803*, 2019.

620 Maria Seleznova and Gitta Kutyniok. Analyzing finite neural networks: Can we trust neural tangent
 621 kernel theory? In *Mathematical and Scientific Machine Learning*, pp. 868–895. PMLR, 2022a.

622 Maria Seleznova and Gitta Kutyniok. Neural tangent kernel beyond the infinite-width limit: Effects
 623 of depth and initialization. In *International Conference on Machine Learning*, pp. 19522–19560.
 624 PMLR, 2022b.

625 Ori Shem-Ur and Yaron Oz. Weak correlations as the underlying principle for linearization of
 626 gradient-based learning systems. *arXiv preprint arXiv:2401.04013*, 2024.

627 Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clément Hongler, Wulfram Gerstner,
 628 and Johanni Brea. Geometry of the loss landscape in overparameterized neural networks: Symme-
 629 tries and invariances. In *International Conference on Machine Learning*, pp. 9722–9732. PMLR,
 630 2021.

631 Twan Van Laarhoven. L2 regularization versus batch and weight normalization. *arXiv preprint
 632 arXiv:1706.05350*, 2017.

633 Haonan Wang, Wei Huang, Ziwei Wu, Hanghang Tong, Andrew J Margenot, and Jingrui He. Deep
 634 active learning by leveraging training dynamics. *Advances in Neural Information Processing
 635 Systems*, 35:25171–25184, 2022.

636 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
 637 machine learning algorithms, 2017. URL <https://arxiv.org/abs/1708.07747>.

638 Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
 639 gradient independence, and neural tangent kernel derivation. *arXiv preprint arXiv:1902.04760*,
 640 2019a.

648 Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes.
649 *Advances in Neural Information Processing Systems*, 32, 2019b.
650

651 Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. *arXiv preprint*
652 *arXiv:2006.14548*, 2020.

653 Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. *arXiv preprint*
654 *arXiv:2011.14522*, 2020.

655 Greg Yang and Eta Littwin. Tensor programs iib: Architectural universality of neural tangent kernel
656 training dynamics. In *International Conference on Machine Learning*, pp. 11762–11772. PMLR,
657 2021.

659 Bo Zhao, Nima Dehmamy, Robin Walters, and Rose Yu. Symmetry teleportation for accelerated
660 optimization. *Advances in neural information processing systems*, 35:16679–16690, 2022a.

661 Bo Zhao, Iordan Ganey, Robin Walters, Rose Yu, and Nima Dehmamy. Symmetries, flat minima, and
662 the conserved quantities of gradient flow. *arXiv preprint arXiv:2210.17216*, 2022b.

664 Bo Zhao, Robert M Gower, Robin Walters, and Rose Yu. Improving convergence and generalization
665 using parameter symmetries. *arXiv preprint arXiv:2305.13404*, 2023.

667 Bo Zhao, Robin Walters, and Rose Yu. Symmetry in neural network parameter spaces. *arXiv preprint*
668 *arXiv:2506.13018*, 2025.

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A ASSUMPTIONS AND GENERALIZATIONS
703704
705 In this part of the appendix, we elaborate on Section 3.2, detailing and justifying our assumptions,
706 and discuss their generalizations.
707708 A.1 HYPOTHESIS FUNCTIONS
709710 Our results apply to the function class described in Equation 1, such that they are twice differentiable
711 everywhere. This assumption can be relaxed to cover ReLU-like networks, where functions are twice
712 differentiable only almost everywhere, by employing a generalization of the mean value theorem,
713 which we refer to as the Barycentric Mean Value Corollary (Corollary H.2), as discussed in Appendix
714 E.1. This generalization allows us to include almost any practical loss function and neural network
715 architecture.716 When analyzing linearization rate, we consider a sequence of hypothesis functions $\{F_n\}_{n=1}^\infty$ from
717 this class. Each F_n depends on a corresponding parameter vector $\theta^n \in \mathbb{R}^{N_n}$, and each network
718 inherits its own symmetry while being trained under the same algorithm.719 The primary interpretation of n will be the network width. However n can represent any parameter
720 that governs the scale of the system. For notational simplicity, we will often omit the explicit index n
721 and refer to the network as a single function rather than a sequence.
722723 This framework is extremely general and encompasses essentially all relevant neural network archi-
724 tectures and beyond.
725726 A.2 SYMMETRY TRANSFORMATION
727728 Our symmetries, as defined in Equation 2, are assumed to be twice differentiable and well-defined
729 around the parameter values at which they are applied. Our main result, Theorem 4.1, is primarily
730 applicable to linear symmetries. While this may seem restrictive, linear symmetries are the main
731 class of transformations currently studied in the literature Zhao et al. (2025). Moreover, in Appendix
732 E.2, we extend our discussion to the generalization of this assumption.
733734 When analyzing how these symmetries affect the linearization rate, we further assume they satisfy
735 the bound described in Equation 18 uniformly for every $n \in \mathbb{N}$. This condition must hold for any
736 practical neural network transformation; otherwise, the first-order term of gradient descent would
737 diverge, as we further discuss in Appendix C. Works such as Zhao et al. (2023) implicitly adopt this
738 assumption by restricting the maximization search for the optimal transformation to a limited number
739 of steps.
740741 Additionally, we assume that the transformation Jacobian defined in Equation 15 is invertible. Other-
742 wise, we can instead define a new effective set of parameters by projecting the original parameters
743 onto a subspace where the transformation becomes invertible. The analysis then proceeds in the same
744 way.
745746 A.3 HESSIAN SPECTRAL NORM BOUND
747748 For Theorem 4.1, we assume that the spectral norm of the Hessian before transformation is bounded as
749 specified in Equation 20. This follows from the arguments presented in Liu et al. (2020), as discussed
750 in the introduction, where it was shown that the scale of the Hessian norm governs linearization, and
751 that for wide neural networks the Hessian norm vanishes as $O(1/\sqrt{n})$.
752753 While Liu et al. (2020) demonstrated this behavior for a wide variety of networks, there remains a
754 significant class of networks not explicitly covered. Nevertheless, because their proof relies on the
755 semi-linear structure of wide networks, it is highly plausible that the linearization property extends
756 to any network describable by the tensor program formalism Yang (2019b; 2020); Yang & Littwin
757 (2021). Since this formalism captures practically any wide neural network, we believe this assumption
758 to be almost certainly valid, although a full formal proof remains outstanding.
759

756 A.4 GRADIENT DESCENT
757

758 We operate within the framework of deterministic gradient descent, as defined in Equation 9. While
759 this seems very restrictive, all of our results naturally extend to stochastic gradient descent, and
760 gradient descent with momentum. The analysis remains essentially the same, except that the results
761 hold in expectation over the inputs. This transition is standard in NTK analyses.

762 A.5 LOSS FUNCTION
763

764 We assume that the loss function takes the form given in Equation 10, and that it is convex, twice
765 differentiable, and Lipschitz continuous. These are standard assumptions commonly imposed on loss
766 functions.
767

768 A.6 GRADIENT NORMALIZATION AND NTK PARAMETRIZATION
769

770 For Lemma 3.1, and Theorem 4.1, we assume that the gradient norm is properly normalized according
771 to Equation 21.
772

773 The left-hand side of this equation represents the necessary condition for the kernel not to diverge.
774 Hence, it must hold under practical applications of gradient descent with reasonable assumptions,
775 and it is automatically satisfied for any system that admits the NTK limit. The right-hand side, by
776 contrast, depends on the choice of parametrization.

777 Different parametrizations of the learning dynamics can be obtained by rescaling the parameters and
778 then compensating by multiplying them externally by the same constant. Such transformations do
779 not affect the training dynamics (provided the learning rate is scaled appropriately), but they allow us
780 to view the system from different perspectives. To illustrate this idea, we consider the example of
781 fully connected neural networks as introduced in Jacot et al. (2018).

782 Under the *standard parametrization*, defined in Equation 3, the initialization of parameters for all
783 layers $l = 0, \dots, L$ is given by:

$$784 \theta^{(l+1,l)} \sim \frac{1}{\sqrt{n_l}}, \quad \theta^{(l)} \sim 1, \quad (32)$$

785 and the learning rate scales as:
786

$$787 \eta \sim \frac{1}{n}. \quad (33)$$

788 In contrast, the *NTK parametrization* is defined as:
789

$$790 \begin{aligned} F^{(1)} &= \frac{1}{\sqrt{n_1}} \theta^{(1,0)} x + \theta^{(1)}, \\ 791 \forall l = 1, \dots, L : F^{(l+1)} &= \frac{1}{\sqrt{n_l}} \theta^{(l+1,l)} \phi(F^{(l)}) + \theta^{(l+1)}, \end{aligned} \quad (34)$$

792 with initialization for parameters at all layers $l = 0, \dots, L$:
793

$$794 \theta^{(l+1,l)} \sim 1, \quad \theta^{(l)} \sim 1, \quad (35)$$

795 and a learning rate scaling typically given by:
796

$$797 \eta \sim 1. \quad (36)$$

798 Both parametrizations yield equivalent networks with respect to relevant quantities such as the kernel
799 and the training dynamics. This reparametrization trick can always be applied to learning algorithms
800 (though in some cases multiple learning rates may be required, which is only a technical complication)
801 Chizat et al. (2019). It is in the NTK parametrization, where $\eta \sim 1$ and the gradient norm is $O(1)$,
802 that the result of Liu et al. (2020), on which we rely, was established.
803

804 B NEURAL TANGENT KERNEL LIMIT NOTATIONS
805

806 In this appendix we clarify, and expanding upon the primary notations introduced in Section 2.2.
807

In the context of deterministic gradient descent, defined in Equation 9, replacing a function input with the set X' , signifies that we substitute the function with a vector, by combining the input from X' with the output index of the original function.

Considering for example the derivative of the relative loss function from Equation 11. For any $i, j = 1, \dots, d_Y$ and $x, a \in X'$, we can express the derivative of the loss as:

$$\mathcal{C}'(F(\theta)(X'), y(X'))_{(i,x)} = \mathcal{C}'(F(\theta)(x), y(x))_i. \quad (37)$$

Similarly, for the kernel with one fixed input as in Equation 11:

$$\Theta(x, X')_{i,(j,a)} = \Theta(x, a)_{ij}. \quad (38)$$

And for the kernel with no fixed inputs, as in Equations 27 and 29:

$$\Theta(X', X')_{(i,x),(j,a)} = \Theta(x, a)_{ij}. \quad (39)$$

Neglecting terms of order $O(\frac{1}{n})$, we can now explicitly expand Equations 6, 8, 9, 11, detailing all indices, variables, and summations. For any $i, j = 1, \dots, n_{L+1}$ and $x, y \in X$, we have:

$$F_i(\theta)(x) = F_i(\theta_0)(x) + \sum_{\alpha=1}^N \nabla_{\alpha} F_i(\theta_0)(x) (\theta - \theta_0)_{\alpha}, \quad (40)$$

$$\Theta_{ij}(x, y) = \eta \sum_{\alpha=1}^N \nabla_{\alpha} F_i(\theta_0)(x) \nabla_{\alpha} F_j(\theta_0)(y), \quad (41)$$

$$\forall \alpha = 1, \dots, N : \quad \Delta \theta_{\alpha} = -\eta \nabla_{\alpha} \mathcal{L}(\theta), \quad (42)$$

$$\Delta F_i(\theta)(x) = -\frac{1}{|X'|} \sum_{x' \in X'} \sum_{k=1}^{n_L} \Theta_{ik}(x, x') \mathcal{C}'(F_k(\theta)(x'), y_k(x')). \quad (43)$$

Here, θ_{α} denotes the α -th component of the parameter vector, with $\alpha = 1, \dots, N$, where N is the total number of parameters. The operator $\nabla_{\alpha} = \nabla_{\theta_{\alpha}}$ denotes differentiation with respect to the α -th parameter. The Jacobian of the network at initialization is denoted as:

$$\nabla_{\alpha} F_i(\theta_0)(x) = \nabla_{\alpha} F_i(\theta)(x)|_{\theta=\theta_0}. \quad (44)$$

C SYMMETRY BOUND EFFECT

In this section we justify the uniform bound in Equation 18 and explain how choosing $C \neq 1$ could affect the linearization rate. Our basic argument is that its influence on the dynamics is no greater than that of rescaling the learning rate by a factor of C . Since excessively large learning rates lead to instability, and because the NTK limit remains relevant even at the largest stable (and often optimal) learning rates, the effect of C cannot invalidate our results.

The main concern is that C appears to scale the Hessian norm as C^4 . This arises from the chain-rule factor of C^2 in Equation 24. Since we now consider convergence not only as a function of n but also of C , we must note that the radius of the ball on which H is fixed shrinks by a factor of C . Thus, the effective scale of H increases by another factor of C^2 which gives us the C^4 factor. This is also reflected by the fact that the gradient of F is scaled by C due to the symmetry. To verify this formally, one can repeat the analysis in the proof of Lemma 3.1 in Appendix E step by step, but now keeping track of the dependence on C . At first glance this may appear problematic, as even if we still have $O(m_n)$ convergence, the fourth-power scaling seems large enough that moderately large values of C could disrupt linearization. However, this is not the case.

We can see this directly from the gradient descent update equation. Applying the linear symmetry transformation $\theta \mapsto \Gamma^{-1}\theta$, where $\|\Gamma\| = C$, Equation 9 becomes

$$\Delta \theta = -\eta \Gamma \nabla \mathcal{L}(\theta) = - (C\eta) \frac{\Gamma}{C} \nabla \mathcal{L}(\theta). \quad (45)$$

864 Since all effects on the training dynamics arise from the gradient as the function itself is unchanged,
 865 we see that using a symmetry of norm C is equivalent to using a symmetry of norm 1 together with a
 866 rescaled learning rate.

867 Because large but practical learning rates do not break the NTK limit, we conclude that for any
 868 realistic implementation of the NTK dynamics, varying C cannot degrade the NTK regime any more
 869 than choosing an appropriately large (but still stable) learning rate. This is fully compatible with our
 870 results.

872 D GENERALIZED SYMMETRIES

874 D.1 HYPOTHESIS FUNCTION EXTENSION

876 Here we demonstrate that any reversible matrix transformation Γ , as defined in Equation 15, can be
 877 regarded as a symmetry for any hypothesis function, as noted in Section 3.3.

879 To formalize this, consider a hypothesis function from the class described in Equation 1. We define
 880 its *extension* as:

$$881 \tilde{F}(\tilde{\Gamma}, \theta) = F(\tilde{\Gamma}\theta), \quad (46)$$

882 where $\tilde{\Gamma}$ is a reversible matrix.

884 Setting $\tilde{\Gamma} = I$ recovers the original hypothesis function. Importantly, the new hyperparameter $\tilde{\Gamma}$ is
 885 not updated during learning; rather, it defines a transformation that induces a symmetry.

886 Starting from an initial choice $\tilde{\Gamma} = I$, any subsequent reversible matrix Γ defines a symmetry,
 887 provided we simultaneously transform the parameters as:

$$889 \tilde{\Gamma} = \Gamma, \quad \theta \mapsto \Gamma^{-1}\theta. \quad (47)$$

890 Verifying that this defines a symmetry is straightforward:

$$892 \tilde{F}(I, \theta) \mapsto \tilde{F}(\Gamma, \Gamma^{-1}\theta) = F(\Gamma\Gamma^{-1}\theta) = F(\theta) = \tilde{F}(I, \theta). \quad (48)$$

894 Generalizing to arbitrary initializations of Γ is similarly simple but unnecessary for our purposes.
 895 Since we only apply the transformation once during the learning process, it suffices to assume $\Gamma = I$
 896 initially.

897 If we wish to restrict ourselves to vector transformations, we can replace the matrix Γ with a vector c
 898 and define the extension and corresponding symmetry using the Hadamard (element-wise) product:

$$899 \tilde{F}(c, \theta) = F(c \odot \theta), \quad \theta \mapsto c^{-1} \odot \theta. \quad (49)$$

901 D.2 EXAMPLE - FULLY CONNECTED NEURAL NETWORKS

903 In the case of fully connected neural networks, as with most architectures, the parameter vector θ is
 904 structured into a sequence of matrices and vectors (as shown in Equations 3 and 4). Consequently, to
 905 preserve the structure of the Hadamard product under the transformation, the hyperparameter vector
 906 c must likewise be organized into a corresponding sequence:

- 908 • Hyperparameter matrices: $c^{(1,0)} \in \mathbb{R}^{n_0 \times n_1}, \dots, c^{(L+1,L)} \in \mathbb{R}^{n_{L+1} \times n_L}$,
- 909 • Hyperparameter vectors: $c^{(0)} \in \mathbb{R}^{n_0}, \dots, c^{(L+1)} \in \mathbb{R}^{n_{L+1}}$.

911 To extend the network, we simply replace each parameter θ_α with $c_\alpha \odot \theta_\alpha$. Thus, Equation 3 becomes:

$$913 F^{(1)} = c^{(1,0)} \odot \theta^{(1,0)} x + c^{(1)} \odot \theta^{(1)}, \\ 914 F^{(l+1)} = c^{(l+1,l)} \odot \theta^{(l+1,l)} \phi(F^{(l)}) + c^{(l+1)} \odot \theta^{(l+1)}, \quad (50)$$

915 where \odot denotes the element-wise product between matrices or vectors.

916 For the linear symmetries described for fully connected networks in Section 2.1, it can be verified that
 917 all derivatives of the network after applying the real symmetry, and those of the extended network

918 after applying the generalized symmetry, coincide. This means, that in case where the network is
 919 analytical, the generalized network and the original network are functionally the same.
 920

921 This supports the idea that generalized symmetries capture and extend the notion of symmetry for
 922 any transformation Jacobian Γ , including cases that would not naturally arise from the structure
 923 of the function itself. This perspective connects to recent architectural approaches such as graph
 924 metanetworks Lim et al. (2023) and equivariant representations of neural networks Kofinas et al.
 925 (2024).

926 E WIDE NEURAL NETWORKS LINEARIZATION

929 In this section we prove Lemma 3.1 and discuss the generalization of Theorem 4.1 for nonlinear
 930 symmetries.

931 E.1 LEMMA 3.1 PROOF

933 We begin by proving the lemma.

935 We proceed by induction. Assume that for some step $s - 1 \in \mathbb{N}^0$ there exists a sufficiently large
 936 $0 < R$ (fixed in n) such that, for any $x \in X'$, the following conditions hold:

937 1. Lazy training:

$$938 \quad \|\theta - \theta_0\| = O(1). \quad (51)$$

940 2. Gradient stability:

$$941 \quad \|\nabla \mathcal{L}(\theta(s-1)) - \nabla \mathcal{L}(\theta_0)\| = O(m_n) = \|\nabla F(\theta(s-1)) - \nabla F(\theta_0)\|. \quad (52)$$

943 3. Bounded outputs:

$$944 \quad O(F(\theta(s-1))) = O(1) = \mathcal{C}'(F(\theta(s-1)), y) = f(\theta(s-1)). \quad (53)$$

946 4. Linearization:

$$947 \quad \|F(\theta(s-1)) - F_{\text{lin}}(s-1)\| = O(m_n). \quad (54)$$

950 By showing that these conditions also hold for the s -th step, and noting that the base case is trivial,
 951 we complete the proof by induction, as condition 4 corresponds to the statement of the lemma. For
 952 simplicity, we denote $\theta(s) = \theta$.

953 **Lazy training:**

955 We first show that θ remains within a fixed-radius neighborhood of initialization.

956 From Equation 52, and the NTK parametrization (together with Equation 21), and since the loss is
 957 Lipschitz continuous, we have:

$$958 \quad \eta = O(1), \quad \mathcal{L}(\theta_0) = O(1). \quad (55)$$

960 Hence,

$$961 \quad \eta \nabla \mathcal{L}(\theta(s-1)) = O(1) + O(m_n) = O(1). \quad (56)$$

962 After one gradient descent step (Equation 9):

$$963 \quad \theta = \theta(s-1) - \eta \nabla \mathcal{L}(\theta(s-1)) = O(1). \quad (57)$$

965 Thus, there exists a neighborhood $R(s)$ (fixed in n), such that θ remains inside this region for almost
 966 every $n \in \mathbb{N}$.

967 **Gradient stability:**

969 We now show that gradient changes inside the R -neighborhood are bounded by the Hessian norm.

970 For any θ in this neighborhood and unit vector $v \in \mathbb{R}^N$, we define:

$$971 \quad D(\delta) = v^T \sqrt{\eta} \nabla \mathcal{L}(\theta + \delta(\theta_0 - \theta)), \quad \delta \in (0, 1). \quad (58)$$

972 By the mean value theorem, there exists $\delta' \in (0, 1)$ such that:
 973

$$974 \quad v^T \nabla \mathcal{L}(\theta) - v^T \nabla \mathcal{L}(\theta_0) = \frac{v^T}{\eta} H(\theta + \delta'(\theta_0 - \theta)). \quad (59)$$

976 Since $\|\theta - \theta_0\| \leq R$, the intermediate point lies within the R -neighborhood, so the Hessian norm is
 977 bounded by $O(m_n)$. And as $\|v\| = 1$ and $\eta = O(1)$ (Equation 21), it follows that:
 978

$$979 \quad v^T \sqrt{\eta} (\nabla \mathcal{L}(\theta) - \nabla \mathcal{L}(\theta_0)) = O(m_n). \quad (60)$$

980 Since this holds for any v , we conclude:
 981

$$982 \quad \|\nabla \mathcal{L}(\theta) - \nabla \mathcal{L}(\theta_0)\| = O(m_n). \quad (61)$$

983 From Equation 10, the loss gradient relates to that of the function:
 984

$$985 \quad \nabla \mathcal{L}(\theta) = \frac{1}{|X'|} \sum_{x \in X'} \nabla F(\theta) \mathcal{C}'(F(\theta)(x), y(x)). \quad (62)$$

986 Since this must hold for all $X' \subseteq X$, and the loss is Lipschitz, it follows that:
 987

$$988 \quad \|\nabla F(\theta)\| = O(m_n), \quad (63)$$

989 as $F = O(1)$ by Equation 54.
 990

992 Linearization.

993 Similarly to before, for any unit vector $v \in \mathbb{R}^{d_y}$ and θ in the neighborhood, we define:
 994

$$995 \quad d(\delta) = v^T (F(\theta + \delta(\theta_0 - \theta)) + \delta \nabla F(\theta_0)^T (\theta - \theta_0)). \quad (64)$$

996 By the mean value theorem, there exists θ' in the neighborhood such that:
 997

$$998 \quad v^T (F(\theta) - F(\theta_0) - \eta \nabla F(\theta_0)^T (\theta_0 - \theta)) = v^T (\nabla F(\theta') - \nabla F(\theta_0))^T (\theta - \theta_0). \quad (65)$$

999 Using gradient stability, this gives:
 1000

$$1001 \quad \|F(\theta) - F(\theta_0) - \nabla F(\theta_0)^T (\theta_0 - \theta)\| = O(m_n). \quad (66)$$

1003 Now, considering the network update under gradient descent (Equation 9), and applying the induction
 1004 assumptions, we obtain that up to an order of $O(m_n)$:

$$1005 \quad F(\theta(s)) = F(\theta(s-1) - \eta \nabla \mathcal{L}(s-1)) \simeq F(\theta_0) - \eta \nabla F(\theta_0)^T \nabla \mathcal{L}(s-1) =$$

$$1006 \quad F(\theta_0) - \frac{\eta}{|X'|} \nabla F(\theta_0)^T \nabla F(\theta(s-1)) (X') f(s-1) (X') \simeq$$

$$1008 \quad F(\theta_0) - \frac{\eta}{|X'|} \Theta_0 (X') f_{lin}(s-1) (X') = F_{lin}(s). \quad (67)$$

1009 Thus, Equation 54 holds for the s -th step as well.
 1010

1011 Finally, Equation 53 follows since the NTK learning update is $O(1)$ by definition, the difference
 1012 between F and F_{lin} is less than $O(1)$, and the loss is Lipschitz.
 1013

Completing the proof of the Lemma.
 1014

If the network F is not differentiable at a finite number of points, we can instead invoke a generalization
 1015 of the mean value theorem, namely the Barycentric Mean Value Corollary, proven in Appendix
 1016 H.2. This theorem asserts that, instead of evaluating the derivative at a single intermediate point, the
 1017 difference can be expressed as a barycentric (convex) combination of multiple intermediate points.
 1018 The proof follows similarly under this extension.
 1019

1020 E.2 THEOREM 4.1 NONLINEAR CASE

1021 In Section 4, we proved that parameter-space symmetries do not alter the conditions of Lemma 3.1 in
 1023 the case of linear symmetries. Here we extend this discussion to nonlinear symmetries.
 1024

We define the second-derivative tensor of the network as:
 1025

$$T_{\alpha\beta\gamma} = \partial_\alpha \partial_\beta g_\gamma, \quad (68)$$

1026 which captures the deviation of the symmetry from linearity.
 1027

1028 For nonlinear symmetries, the Hessian transforms as:

$$1029 H_{\alpha\beta} = \partial_\alpha \partial_\beta \mathcal{L} \mapsto \Gamma_{\alpha\mu} \partial_\mu \Gamma_{\beta\nu} \partial_\nu \mathcal{L} = (\Gamma_{\alpha\mu} \Gamma_{\beta\nu}) \partial_\mu \partial_\nu \mathcal{L} + \Gamma_{\alpha\mu} (\partial_\mu \Gamma_{\beta\nu}) \partial_\nu \mathcal{L}, \quad (69)$$

1030 where we use Einstein notation. The first term is simply $\Gamma^T H \Gamma$, which has already been analyzed.
 1031 The second term requires further examination.

1032 We connect this second term to T as follows. Starting from:

$$1034 \Gamma_{\alpha\beta}^{-1} \Gamma_{\beta\nu} = \delta_{\alpha\nu}, \quad (70)$$

1035 differentiating with respect to θ_μ gives:

$$1036 \partial_\mu \Gamma_{\alpha\beta}^{-1} \Gamma_{\beta\nu} + \Gamma_{\alpha\beta}^{-1} \partial_\mu \Gamma_{\beta\nu} = 0. \quad (71)$$

1037 Multiplying on the left by $\Gamma_{\gamma\alpha}$ yields:

$$1038 \partial_\mu \Gamma_{\beta\nu} = -\Gamma_{\beta\rho} (\partial_\mu \Gamma_{\rho\sigma}^{-1}) \Gamma_{\sigma\nu}. \quad (72)$$

1039 Combining with Equation 15 we obtain:

$$1040 \partial_\mu \Gamma_{\rho\sigma}^{-1} = \partial_\mu \partial_\rho g_\sigma = T_{\mu\rho\sigma}. \quad (73)$$

1041 Thus:

$$1042 \partial_\mu \Gamma_{\beta\nu} = -\Gamma_{\beta\rho} T_{\mu\rho\sigma} \Gamma_{\sigma\nu}. \quad (74)$$

1043 Hence, the deviation from linearization introduced by this term is proportional to:

$$1044 \|T \cdot \nabla \mathcal{L}\|, \quad (75)$$

1045 since the norm of Γ is bounded by a constant C , independent of n .

1046 Therefore, for the neural tangent kernel limit to be preserved under nonlinear symmetries, this
 1047 additional norm must also remain small. This provides a practical guideline for designing nonlinear
 1048 symmetries: effective learning requires avoiding excessive deviation from NTK dynamics, which in
 1049 turn necessitates controlling the growth of this nonlinear term. Conversely, if the objective is to move
 1050 away from the NTK regime, since being too close to it can also hinder learning, this term may be
 1051 deliberately exploited to induce such deviation.

1052 F EXPERIMENTAL VERIFICATION OF THE NTK LIMIT PRESERVATION

1053 In this appendix, we demonstrate that the studied transformations preserve the NTK limit. We
 1054 implemented our experiments in Python using JAX, leveraging the Neural Tangents library Novak
 1055 et al. (2019) with a customized Stax library. All experiments use fully-connected feedforward
 1056 networks (MLPs) with the *NTK parametrization*, trained on the FashionMNIST dataset Xiao et al.
 1057 (2017). All computations were performed on a single NVIDIA GTX 4090 GPU.

1058 To verify the NTK limit for standard and transformed networks, we tracked the root mean squared
 1059 error (RMSE) between the outputs of a neural network and its linearized counterpart. This metric
 1060 is known to decrease as the network width increases, following a power law of $\frac{1}{\sqrt{n}}$, where n is the
 1061 width of the hidden layer.

1062 We used networks with two hidden layers of equal width n , ranging between $n = 100$ and $n = 1500$
 1063 with varying steps. The standard network was initialized using the NTK parametrization, and for
 1064 simplicity, biases were omitted. The transformed network was obtained by using the generalized
 1065 symmetry, as described in Section D, with scaling hyperparameters $c^{(l+1,l)}$. The generalized sym-
 1066 metry transformation consists of scaling each parameter at initialization, and compensating for that
 1067 through the architectural change (see below). Specifically, each initialized weight was divided by the
 1068 corresponding hyperparameter $c^{(l+1,l)}$, which remained fixed throughout training. These hyperparam-
 1069 eters were obtained through an optimization process with the objective of maximizing the empirical
 1070 loss gradient norm $\|\nabla L(f(x), y)\|$. Starting with uniform values (all ones), the method employs
 1071 Adam optimizer with learning rate $\eta = 0.01$ to iteratively update these hyperparameters. To maintain
 1072

Figure 3: Test accuracy of networks, averaged across all hidden sizes, over training iterations (batches). The specific batch at which each network reached 65% test accuracy is highlighted. The faster convergence speed for the transformed network is caused by the hyperparameters $c^{(l+1,l)}$ being optimized and larger than one on average. Results are averaged over three independent trials.

stability, the optimization includes regularization that penalizes large deviations from initial values via a term $\lambda(\|c - 1\|^2)$, where $\lambda = 0.1$ was used. Additional constraints include gradient clipping to prevent large updates and explicit bounds ($0 \leq c_i \leq c_{\max} = 10$) on hyperparameter values. This approach results in small deviations from initial values of hyperparameters that are under 5%.

The modification in the transformed network’s architecture consisted of applying a Hadamard product between the hyperparameters and corresponding weights in the forward pass, which realizes the generalized symmetry. Finally, both networks (standard and transformed) were linearized by taking the first-order Taylor approximation and trained using stochastic gradient descent (SGD) with momentum 0.9 for 200 epochs, with a learning rate of 1.

The results are presented in Figure 1. Each data point represents the average over three independent trials, with error bars indicating the standard deviation across these trials. To account for differences in convergence speed, snapshots were taken at different batch numbers for each plot. Specifically, when the hyperparameters are larger than one, the optimization process accelerates, requiring an earlier evaluation point for a fair comparison. Pairs of networks (standard and transformed) in each trial share the same initialization up to a symmetry transformation, which induces a correlation between their outputs and partially aligns the fluctuations around the fitted scaling law.

To ensure comparability between both plots (snapshots), we selected a batch where the average accuracy across all hidden sizes reached 65% (see Figure 3). This threshold was chosen heuristically, representing a point in training where accuracy and loss fluctuations become reasonably small.

G MODIFIED ALIGNMENT AND TRAINING DYNAMICS

In this section we show, both numerically and analytically, that our new definition of neural tangent alignment in Equation 29 is a reliable indicator of the linearization rate.

G.1 THEORETICAL JUSTIFICATION

We begin with the theoretical perspective, showing that if the initial alignment is small, then the training rate must also be small.

We work with the setup described in Section 2.2, in the strictly linear limit, where the training dynamics are:

$$f(s+1) = (I - \Theta(X', X')) f(s), \quad (76)$$

1134 and, assuming mean squared error (MSE) loss for simplicity (we discuss generalization below), so
 1135 the loss is:

$$1136 \quad 1137 \quad \mathcal{L}(s) = \frac{1}{2|X'|} \|f(s)\|_2^2. \quad (77)$$

1138 We make the following argument:

1140 **Proposition G.1** (Small Kernel Alignment Leads to Learning Rate). Given the setup above, with the
 1141 kernel alignment defined as in Equation 29, then for every $s \in \mathbb{N}$,

$$1142 \quad 1143 \quad \frac{\mathcal{L}(s)}{\mathcal{L}(0)} \geq (1 - A)^{2s} \geq 1 - 2sA, \quad (78)$$

1144 and the exponential learning rate is bounded by:

$$1145 \quad 1146 \quad 2 \ln \left(\frac{1}{1 - A} \right) \simeq 2A + O(A^2). \quad (79)$$

1147 **Proof.** Since $\Theta(X', X')$ is symmetric positive semi-definite (PSD), diagonalize it as:

$$1148 \quad 1149 \quad \Theta = U \Lambda U^T, \quad \Lambda = \text{diag}(\lambda_1, \dots, \lambda_m), \quad \lambda_i \geq 0. \quad (80)$$

1150 Writing $f(0) = Uv$ with $v \in \mathbb{R}^m$, the linear dynamics in equation 76 imply

$$1151 \quad 1152 \quad f(s) = (I - \Theta)^s f(0) = U (I - \Lambda)^s v. \quad (81)$$

1153 Therefore,

$$1154 \quad 1155 \quad \frac{\|f(s)\|_2^2}{\|f(0)\|_2^2} = \sum_{i=1}^m w_i (1 - \lambda_i)^{2s} \quad \text{with} \quad w_i := \frac{v_i^2}{\sum_{j=1}^m v_j^2}, \quad w_i \geq 0, \quad \sum_{i=1}^m w_i = 1. \quad (82)$$

1156 For fixed $s \geq 1$, the function $g(\lambda) := (1 - \lambda)^{2s}$ satisfies

$$1157 \quad 1158 \quad g''(\lambda) = (2s)(2s - 1)(1 - \lambda)^{2s-2} \geq 0, \quad (83)$$

1159 hence g is convex on $[0, \infty)$. By Jensen's inequality applied to Equation 82,

$$1160 \quad 1161 \quad \sum_{i=1}^m w_i g(\lambda_i) \geq g \left(\sum_{i=1}^m w_i \lambda_i \right) = \left(1 - \sum_{i=1}^m w_i \lambda_i \right)^{2s}. \quad (84)$$

1162 Observe that

$$1163 \quad 1164 \quad \sum_{i=1}^m w_i \lambda_i = \frac{f(0)^T \Theta f(0)}{\|f(0)\|_2^2} = A. \quad (85)$$

1165 Combining Equations 82, 84, and 85 gives

$$1166 \quad 1167 \quad \frac{\|f(s)\|_2^2}{\|f(0)\|_2^2} \geq (1 - A)^{2s}. \quad (86)$$

1168 Multiplying both sides by $1/(2|X'|)$ yields from Equation 78:

$$1169 \quad 1170 \quad \frac{\mathcal{L}(s)}{\mathcal{L}(0)} \geq (1 - A)^{2s} \geq 1 - 2sA, \quad (87)$$

1171 Where the second The inequality then follows from Bernoulli's inequality.

1172 Finally:

$$1173 \quad 1174 \quad \frac{\mathcal{L}(s)}{\mathcal{L}(0)} \geq e^{\ln((1 - A)^{2s})} = e^{-\left(2 \ln\left(\frac{1}{1 - A}\right)\right)s}, \quad (88)$$

1175 showing that the exponential rate is bounded by $2 \ln\left(\frac{1}{1 - A}\right)$. \square

This result extends beyond mean squared error without changing the alignment definition. For a general differentiable convex loss \mathcal{C} , the vector $f(s)$ is, by definition, the derivative of the loss with respect to the network outputs on X' (see Equation 12). In the strictly linear NTK regime (Equation 11), a discrete update in function space reads:

$$F(\theta(s+1))(X') - F(\theta(s))(X') = -\Theta(X', X')f(s).$$

By convexity of \mathcal{C} , the standard first-order upper bound gives:

$$\mathcal{L}(s+1) - \mathcal{L}(s) \leq \langle f(s), F(\theta(s+1))(X') - F(\theta(s))(X') \rangle = -f(s)^T \Theta(X', X')f(s). \quad (89)$$

Thus, the same kernel alignment quadratic form $f(s)^T \Theta f(s)$ governs the one-step improvement for any convex loss. Evaluated at initialization, this yields the initial decrease bound in terms of $A = \frac{f(0)^T \Theta f(0)}{\|f(0)\|_2^2}$ exactly as in Proposition G.1. Moreover, the Jensen/convexity argument used in the proposition applies unchanged to the NTK-driven evolution of $f(s)$, implying that the error-signal derivatives cannot contract faster than $(1 - A)^s$ along the dynamics. Inserting this into Equation 89 shows that a small alignment A entails a small training rate for general convex losses as well. Importantly, no special quadratic structure of the loss is required, only convexity and linear NTK dynamics.

G.2 EMPIRICAL DEMONSTRATION

In this appendix we show that our modified alignment (Equation 29), when measured at initialization, indicates the network’s subsequent optimization speed numerically. The experiment was implemented in Python using JAX and the neural tangents library, and executed on a single NVIDIA RTX 4090 GPU. It uses fully-connected feed-forward networks (MLPs) with two hidden layers of width $n = 1024$, ReLU activation functions, and the NTK parametrization. We omitted biases for simplicity. A subset of FASHION-MNIST is used, consisting of $N_{\text{train}} = 5000$ training and $N_{\text{test}} = 1000$ test images.

The initial alignment is obtained on the first 1,000 training samples by computing their empirical NTK and combining it with the corresponding untrained logits (based on the Equation 29). This procedure is repeated for 1,000 independent random initializations.

Each network is then trained for 100 epochs with stochastic gradient descent (learning rate 1, momentum 0.9, batch size 128), recording train and test metrics after every epoch.

To reflect the optimization speed at the early phases of training, we record the first epoch at which the training loss falls below one half of its initial value. Figure 2 plots the loss-halving epoch against the modified alignment measured at initialization.

The Pearson correlation is $r \approx -0.76$, supporting the claim that the modified alignment is a good metric for the optimization rate.

H ADDITIONAL DERIVATIONS AND PROOFS

Here we present some of the mathematical calculations and details used throughout the paper.

H.1 SECTION 3.3

First, we prove that the transformation Jacobian defined in Equation 15 indeed governs how the derivatives of the network transform under the symmetry, as illustrated in Equation 16.

This is shown by observing that for any two parameter indices $\alpha, \beta = 1, \dots, N$, according to the chain rule, the gradient with respect to the transformed parameters ∇' where $\theta' = g(\theta)$ is related to the original parameters θ , after the symmetry transformation as follows:

$$(\nabla' F(\theta'))_\alpha = \frac{\partial F(\theta')}{\partial \theta'_{\alpha'}} = \sum_{\beta=1}^N \frac{\partial \theta_\beta}{\partial \theta'_{\alpha'}} \frac{\partial F(\theta')}{\partial \theta_\beta} = \sum_{\beta=1}^N \frac{\partial \theta_\beta}{\partial g_\alpha(\theta)} \frac{\partial F(g(\theta))}{\partial \theta_\beta}. \quad (90)$$

This calculation is valid because the symmetry is assumed to be well-defined and differentiable in a neighborhood of θ . We can then use the fact that in this neighborhood, by definition:

$$F(g(\theta)) = F(\theta), \quad (91)$$

1242 which yields the desired result.
 1243

1244 The same derivation applies to higher-order derivatives as well.
 1245

1246 H.2 SECTION E.1

1247 Corollary H.1 (Barycentric Mean Value).

1248 Let $a < b$ and let $f : [a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b) except at finitely
 1249 many points. Then there exist

$$1251 \quad c_1, \dots, c_N \in (a, b) \quad \text{and} \quad \lambda_1, \dots, \lambda_N > 0, \quad \sum_{j=1}^N \lambda_j = 1, \quad (92)$$

1254 such that

$$1255 \quad \frac{f(b) - f(a)}{b - a} = \sum_{j=1}^N \lambda_j f'(c_j). \quad (93)$$

1259 *Proof.*

1260 Denote by $\{d_1, \dots, d_k\} \subset (a, b)$ the (finite) set of points where f fails to be differentiable and set
 1261

$$1262 \quad d_0 := a, \quad d_{k+1} := b. \quad (94)$$

1263 Because f is continuous on $[a, b]$ and differentiable on each open sub-interval
 1264

$$1265 \quad I_j = (d_{j-1}, d_j) \quad (j = 1, \dots, k+1), \quad (95)$$

1266 the classical Mean Value Theorem applies to f on every $[d_{j-1}, d_j]$:
 1267

$$1268 \quad \exists c_j \in (d_{j-1}, d_j) \quad \text{s.t.} \quad f'(c_j) = \frac{f(d_j) - f(d_{j-1})}{d_j - d_{j-1}} \quad (j = 1, \dots, k+1). \quad (96)$$

1271 Define positive weights:
 1272

$$1273 \quad \lambda_j := \frac{d_j - d_{j-1}}{b - a}, \quad j = 1, \dots, k+1. \quad (97)$$

1275 They satisfy $\sum_{j=1}^{k+1} \lambda_j = 1$ and $\lambda_j > 0$ because $d_j > d_{j-1}$.
 1276

1277 Now compute:

$$1278 \quad \sum_{j=1}^{k+1} \lambda_j f'(c_j) = \frac{1}{b - a} \sum_{j=1}^{k+1} (d_j - d_{j-1}) \frac{f(d_j) - f(d_{j-1})}{d_j - d_{j-1}} = \frac{1}{b - a} \sum_{j=1}^{k+1} [f(d_j) - f(d_{j-1})]. \quad (98)$$

1282 The sum telescopes:
 1283

$$1284 \quad \sum_{j=1}^{k+1} [f(d_j) - f(d_{j-1})] = f(d_{k+1}) - f(d_0) = f(b) - f(a). \quad (99)$$

1287 Hence:

$$1288 \quad \sum_{j=1}^{k+1} \lambda_j f'(c_j) = \frac{f(b) - f(a)}{b - a}. \quad (100)$$

1291 Setting $N := k + 1$ completes the proof. □
 1292