
Published as a conference paper at ICLR 2026

ERTACACHE: ERROR RECTIFICATION AND
TIMESTEPS ADJUSTMENT FOR EFFICIENT DIFFUSION

Xurui Peng1∗, Chenqian Yan1∗, Hong Liu1∗,
Rui Ma1, Fangmin Chen1, Xing Wang1, Zhihua Wu1, Songwei Liu1†‡, Mingbao Lin2†
1ByteDance Inc. 2Rakuten Asia

ABSTRACT

Diffusion models suffer from substantial computational overhead due to their in-
herently iterative inference process. While feature caching offers a promising ac-
celeration strategy by reusing intermediate outputs across timesteps, naı̈ve reuse
often incurs noticeable quality degradation. In this work, we formally analyze
the cumulative error introduced by caching and decompose it into two principal
components: feature shift error, caused by inaccuracies in cached outputs, and
step amplification error, which arises from error propagation under fixed timestep
schedules. To address these issues, we propose ERTACache, a principled caching
framework that jointly rectifies both error types. Our method employs an offline
residual profiling stage to identify reusable steps, dynamically adjusts integration
intervals via a trajectory-aware correction coefficient, and analytically approxi-
mates cache-induced errors through a closed-form residual linearization model.
Together, these components enable accurate and efficient sampling under aggres-
sive cache reuse. Extensive experiments across standard image and video gen-
eration benchmarks show that ERTACache achieves up to 2× inference speedup
while consistently preserving or even improving visual quality. Notably, on the
state-of-the-art Wan2.1 video diffusion model, ERTACache delivers 2× acceler-
ation with minimal VBench degradation, effectively maintaining baseline fidelity
while significantly improving efficiency.

1 INTRODUCTION

Diffusion models Ho et al. (2020); Song et al. (2020); Rombach et al. (2022); Labs (2024) have
demonstrated remarkable capabilities, driving groundbreaking progress across diverse domains such
as image Esser et al. (2024), video Wan et al. (2025), 3D content Kong et al. (2024); Huang et al.
(2024a), and audio generation Schneider et al. (2023), largely owing to the scalability of transformer-
based architectures Vaswani et al. (2017). To further improve generation quality, researchers have
continually scaled up Diffusion Transformers (DiTs) Peebles & Xie (2023). However, this comes
at the cost of significantly increased inference time and memory consumption—issues that are par-
ticularly pronounced in video generation, where synthesizing a 6-second 480p clip on an NVIDIA
L20 GPU can take 2-5 minutes, posing serious limitations for practical deployment. To address
these deficiencies, a variety of acceleration techniques have been proposed, including reduced-step
samplers Lu et al. (2022); Liu et al. (2022), model distillation Zhou et al. (2024), quantization strate-
gies Li et al. (2024), and cache-based acceleration Liu et al. (2025b;a).

Among various acceleration strategies, cache-based feature reuse has emerged as a particularly prac-
tical solution. By reusing intermediate model outputs across timesteps, this approach well reduces
redundant computations during inference, yielding substantial speedups without requiring additional
training overhead. Moreover, it generalizes readily to diverse video diffusion models, making it
appealing for real-world deployment. However, existing cache-based methods still face key limita-
tions. Approaches that cache internal transformer states Kahatapitiya et al. (2024); Ji et al. (2025)
often incur high GPU memory costs. Meanwhile, methods like TeaCache Liu et al. (2025b), which

∗Equal Contribution.
†Corresponding Authors.
‡Porject Leader.

1

Published as a conference paper at ICLR 2026

𝑥4

𝑣4

𝑥3

ǁ𝑟

(a) Offline Policy Calibration (b) Timestep Adjustment

Δ𝑡𝑐
Δ𝑡𝑐

Δ𝑡𝑐
Δ𝑡𝑐 Δ𝑡𝑐

Δ𝑡1
Δ𝑡𝑐

Δ𝑡𝑐
Δ𝑡3

(c) Inference with Error Rectification

𝑥3𝑥𝑇−1 𝑥1

𝑆 = [3, 1]

𝑥0

𝑥𝑇−1

𝑥2

Error Rectification

𝑣3 = 𝑥3+ ǁ𝑟 + 𝜀3

𝑥0

𝑣0

Before

After

Δ𝑡3

𝑣2

𝑥1

𝑣1 = 𝑥1+ ǁ𝑟 + 𝜀1

SolverFull Computation Skip Computation

Δ𝑡𝑐

Δ𝑡c
ǁ𝑟 Δ𝑡1 Δ𝑡c

Cache set:Indicator: ℓ1𝑟𝑒𝑙 𝑥𝑖, 𝑡 < 𝜆

Figure 1: Framework of our proposed ERTACache.

choose to dynamically predict cache strategies based on input-dependent heuristics, can exhibit dis-
crepancies between predicted reuse quality and actual reconstruction error, limiting reliability.

In this work, we begin with a systematic analysis of dynamic cache-based acceleration. Our empiri-
cal findings reveal that despite the input-dependent nature of diffusion trajectories, cache reuse pat-
terns and associated errors exhibit strong consistency across prompts. This suggests that a generic,
offline-optimized caching strategy may be sufficient to approximate optimal behavior in most sce-
narios. Furthermore, we dive into insights by decomposing the sources of cache-induced degradation
and identifying two dominant error modes: (i) feature shift error, introduced by inaccuracies in the
reused model outputs; and (ii) step amplification error, which arises from the temporal compounding
of small errors due to fixed timestep schedules.

Motivated by the above insights, we formally introduce ERTACache, a principled framework for
error-aware caching in diffusion models. Figure 1 gives an overview of our ERTACache framework.
Our proposed ERTACache adopts a dual-dimensional correction strategy: (1) we first perform of-
fline policy calibration by searching for a globally effective cache schedule using residual error
profiling; (2) we then introduce a trajectory-aware timestep adjustment mechanism to mitigate in-
tegration drift caused by reused features; (3) finally, we propose an explicit error rectification that
analytically approximates and rectifies the additive error introduced by cached outputs, enabling
accurate reconstruction with negligible overhead.

Together, these components enable ERTACache to deliver high-quality generations while substan-
tially reducing compute. Notably, our proposed ERTACache achieves over 50% GPU computa-
tion reduction on video diffusion models, with visual fidelity nearly indistinguishable from full-
computation baselines.

Our main contributions can be summarized as follows:

• We provide a formal decomposition of cache-induced errors in diffusion models, identify-
ing two key sources: feature shift and step amplification.

• We propose ERTACache, a caching framework that integrates offline-optimized caching
policies, timestep corrections, and closed-form residual rectification.

• Extensive experiments demonstrate that ERTACache consistently achieves over 2× in-
ference speedup on state-of-the-art video diffusion models such as Open-Sora 1.2,
CogVideoX, and Wan2.1, with significantly better visual fidelity compared to prior caching
methods.

2

Published as a conference paper at ICLR 2026

2 RELATED WORK

Diffusion-based Generation Early diffusion models such as DDPM Ho et al. (2020) produce
high-resolution images through a 1000-step Markov denoising chain, but their sheer number of iter-
ations incurs prohibitive latency. DDIM Song et al. (2020) later shortened this chain to 50-100
implicit steps, yet even these “fast” samplers remain slow for time-critical applications. More
recent systems—e.g., Stable Diffusion 3 Esser et al. (2024) with architectural streamlining and
Flux-dev1.0 Labs (2024) with simplified Transformer blocks—lower the cost per step, but cannot
escape the fundamental requirement of many denoising passes to preserve fidelity. Video genera-
tion magnifies the problem: adding a temporal dimension and higher spatial resolutions multiplies
compute.

CogVideoX Yang et al. (2024), despite block-causal attention and a 3D-VAE compressor, still needs
113s (50 steps) to render a 480p six-frame clip on a single H800 GPU. OpenSora 1.2 Zheng et al.
(2024) accelerates per-frame inference via a dual-branch design and dynamic sparse attention, while
HunyuanVideo Kong et al. (2024) achieves a 1.75× speed-up with sliding-window attention and
DraftAttention Shen et al. (2025a). WAN-2.1 Wan et al. (2025), which prioritizes temporal coher-
ence, pushes latency even higher—200s for an 81-frame 480p clip on an A800 GPU—underscoring
the gap to real-time use. The root cause is intrinsic: every denoising step forwards a large UNet Ron-
neberger et al. (2015) or Transformer whose parameter count scales roughly quadratically with input
size. Consequently, despite impressive image and video quality, diffusion models remain hamstrung
by extreme inference times, especially in the video domain.

Cache-based Acceleration Because iterative denoising dominates runtime, feature caching has
emerged as a promising accelerator. The idea is to exploit feature similarity across successive steps
by storing and reusing intermediate activations. TeaCache Liu et al. (2025b) predicts layer outputs
from inputs to decide what to cache, although its learned policy often collapses to a fixed sched-
ule. Finer-grained schemes such as AdaCache Kahatapitiya et al. (2024), BAC Ji et al. (2025), and
DiTFastAttn Yuan et al. (2024) cache blocks or attention maps, but their granularity causes memory
to grow quadratically, leading to out-of-memory failures on long videos. Token-level approaches—
including FastCache Liu et al. (2025a), TokenCache Lou et al. (2024), and Duca Zou et al. (2024)—
are orthogonal to our method and complementary in principle. LazyDiT Shen et al. (2025b) imposes
extra training losses to regularize cached features, incurring additional training overhead, whereas
our strategy achieves quality retention via direct error compensation with no retraining. ICC Chen
et al. (2025) adjusts cached features through low-rank calibration; in contrast, we explicitly model
the residual error, ensuring both accuracy and memory efficiency during generation.

3 METHODOLOGY

3.1 PRELIMINARIES

Diffusion Process Diffusion models generate data by gradually perturbing a real sample x0 ∼
pdata into pure Gaussian noise xT ∼ N (0, I) and then inverting that transformation. Recent work—
most notably Stable Diffusion 3 (SD3) Esser et al. (2024) and the Flow-Matching paradigm Lipman
et al. (2022)—has positioned flow-based objectives as the dominant framework for both image and
video synthesis. Under flow matching, the forward process is a simple linear interpolation:

xt = (1− t)x0 + t · xT , t ∈ [0, 1]. (1)

whose trajectory has a constant true velocity field:

ut =
dxt

dt
= xT − x0. (2)

A neural estimator vθ(xt, t) is trained to predict this velocity by minimizing the mean-squared error:

LFM(θ) = Et,x0,xT

[
∥vθ(xt, t)− ut∥22

]
. (3)

During synthesis, one deterministically integrates the learned ODE from noise back to data. Dis-
cretizing the time axis for i = T − 1, ..., 0 yields:

xi−1 = xi +∆ti · vθ(xi, t), (4)

3

Published as a conference paper at ICLR 2026

where ∆ti denotes the interval between two consecutive time steps. As i → 0, the sample x0

converges to the data distribution pdata.

Residual Cache Inference latency is dominated by repeated evaluations of the denoising network
across many time steps. Residual caching tackles this bottleneck by exploiting the strong feature
locality between successive steps: instead of storing full activations, we cache only the residual that
the network adds to its input, preserving maximal information with minimal memory. Following
prior work Chen et al. (2024); Liu et al. (2025b), we record at step i+ 1:

r̃ = vθ(xi+1, t)− xi+1. (5)

If step i is skipped, the model output is reconstructed on-the-fly as following:
ṽi = xi + r̃, (6)

thereby avoiding a full forward pass while retaining high-fidelity features for the subsequent update.

3.2 ANALYZING ERROR ACCUMULATION FROM FEATURE CACHING

To understand the trade-offs in the cache-based acceleration scheme, we analyze how approximating
model outputs with cached features introduces and accumulates error during the diffusion trajectory.

Let ṽi denote the cached model output at step i, approximating the true velocity vi ≡ vθ(xi, t). This
approximation introduces an additive error term εi:

ṽi = vi + εi. (7)

Replacing vi+1 with ṽi+1 in Eq. (4) yields the cached latent:
x̃i = xi+1 +∆ti+1 · ṽi+1. (8)

Then, the deviation from the true trajectory after a single step is derived in the following:
δi = x̃i − xi = ∆ti+1 · εi+1. (9)

If the caching operation is performed for m continuous steps right after the i-th step (m ≥ 1) using
Euler method, meaning that cached vectors replace actual computations during the i to i+m interval,
then we have:

x̃i−m = x̃i−m+1 +∆ti−m+1 · ṽi−m+1, (10)
and the trajectory deviation δt−m compounds:

δi−m = x̃i−m − xi−m

= x̃i−m+1 − xi−m+1

+∆ti−m+1 · ṽi−m+1 −∆ti−m+1 · vi−m+1

= δi−m+1 +∆ti−m+1 · εt−m+1

= · · ·

=
m−1∑
k=0

∆ti−k︸ ︷︷ ︸
Step Amplification

Error

· εi−k︸︷︷︸
Feature Shift

Error

.

(11)

This reveals two critical sources of error in cache-based acceleration: 1) Feature Shift Error:
The discrepancy between cached features and ground-truth computations causes deviation in ODE
trajectories. 2) Step Amplification Error: The pre-existing feature shift gets compounded through
temporal integration, with error magnification.

3.3 ERTACACHE

Recent work such as TeaCache Liu et al. (2025b) has explored the potential of cache-based accel-
eration in diffusion sampling by predicting timestep-specific reuse strategies via online heuristics.
Although effective to a certain extent, these methods still rely heavily on threshold tuning and of-
ten fail to generalize across different prompts or sampling trajectories. Motivated by our analysis
that reveals consistent error patterns across diverse inputs (see Figure 2a), we propose a principled
framework that combines offline policy calibration, adaptive timestep adjustment, and explicit error
rectification to achieve more principled and reliable caching for diffusion models.

4

Published as a conference paper at ICLR 2026

0 5 10 15 20 25
Steps

0.00

0.05

0.10

0.15

0.20

0.25

O
pe

n-
So

ra
 1

.2

Ground-truth L1 Distance
TeaCache Predict L1 Distance

(a) Ground-truth vs. TeaCache’s ℓ1 distance across
timesteps

Noise
Target (sin(x))
Original trajectory
w/o TACache trajectory
w/ TACache trajectory

(b) ODE trajectories with/without timestep ad-
justment

Figure 2: (a) The ground-truth ℓ1 distance (blue) between real cached and computed features shows
minor variation across timesteps. In contrast, Tea-Cache’s predicted ℓ1 distance (orange) remains
consistent across prompts but diverges significantly from ground-truth in later steps, indicating
growing prediction error over time. (b) ODE trajectories with and without timestep adjustment.

Offline Policy Calibration via Residual Error Profiling While previous approaches Liu et al.
(2025b) predict caching decision on-the-fly, we instead formulate caching as an offline optimization
problem. Let r(xi, t) denote the residual computed during standard inference. When caching is
introduced, the residual to be reused is represented as r̃. Our strategy proceeds in three stages:

• Ground-Truth Residual Logging. We run full inference on a small calibration set and
record ground-truth residuals rgt(xi, t) for all steps.

• Threshold-Based Policy Search. For a range of candidate thresholds λ, we evaluate
whether the cached residual r̃cali is sufficiently close to the freshly computed one using
the relative ℓ1 error:

ℓ1rel(xi, t) =
∥r̃cali − rcali(xi, t)∥1
∥rgt(xi, t)∥1

. (12)

If ℓ1rel(xi, t) < λ, the cache is reused; otherwise, the model recomputes and updates
the cache. Sweeping across values of λ, we derive a reusable cached timestep set S =
{s0, s1, . . . , sc}.

• Inference-Time Cache Application. During the inference stage, the model initializes with
vT−1 and caches the residual r̃ = vT−1 − xT−1. Then, for each step t, if t ∈ S, it reuses
r̃; otherwise, it computes vt from scratch and refreshes the cache r̃.

The choice of λ involves a trade-off: lower values preserve finer details through frequent cache
updates, whereas higher values prioritize generation speed at the potential cost of visual fidelity.
Optimal threshold selection should balance these competing objectives.

Trajectory-Aware Timestep Adjustment A naı̈ve reuse of cached features assumes strict adher-
ence to the original ODE trajectory. However, as visualized in Figure 2b, this leads to noticeable
trajectory drift, especially when fixed timestep intervals are maintained. To counteract this devia-
tion, we introduce a trajectory-aware timestep adjustment mechanism, where a correction coefficient
ϕt ∈ [0, 1] dynamically modifies the timestep size.

• Initially, ∆tc = 1/T for uniform sampling.

• For each step i, we apply:

∆ti =

{
∆tc, if i /∈ S,

∆tc · ϕi, if i ∈ S,
(13)

with ϕi = clip
(
1− ∥ṽi−vi∥1

∥vi−vi+1∥1
, 0, 1

)
.

5

Published as a conference paper at ICLR 2026

• After each update, the residual timestep budget is adjusted by following:

∆tc =

1−
i∑

j=0

∆tj

1− i/T
. (14)

This adaptive policy helps align the actual trajectory with the intended sampling path, even under
aggressive reuse. The simplified update workflow is depicted in Figure 1(b).

Explicit Error Rectification via Residual Linearization To further mitigate error accumulation,
we introduce an explicit error modeling component. Since the additive error εi = ṽi− vi is difficult
to predict directly due to prompt-specific structure, we approximate it using a lightweight linearized
model:

εi = σ(Ki · ṽi +Bi), (15)
where σ is sigmoid, and n = Nt ·Nc ·Nh ·Nw, where Nt, Nc, Nh denote dimension of time, height
and width for latents.

The mean squared error loss is defined as:

L(Ki) =
1

n

n∑
j=1

[εij − σ(Kij ṽij +Bij)]
2. (16)

Using a first-order Taylor approximation of the sigmoid:

σ(Kiṽi +Bi) ≈
1

4
(Kiṽi +Bi) +

1

2
. (17)

Substituting into the loss function and computing the partial derivatives w.r.t. Bi and Ki, we obtain:

∂L

∂Bi
= − 1

2n

n∑
j=1

[εij −
1

4
(Kij ṽij +Bij)−

1

2
] = 0. (18)

∂L

∂Ki
= − 1

2n

n∑
j=1

ṽij [εij −
1

4
(Kij ṽij +Bij)−

1

2
] = 0. (19)

Let: 
ε̄i =

1
n

∑n
j=1 εij ,

v̄i =
1
n

∑n
j=1 ṽij ,

Svivi =
∑n

j=1(ṽij − v̄i)
2,

Sviεi =
∑n

j=1(ṽi − v̄i)(εij − ε̄i).

(20)

An approximate closed-form solution can be derived as follows (see Appendix for detailed deriva-
tion):

Ki ≈ 4 · Sviεi

Svivi

, Bi ≈ 4(ε̄i −
1

2
)− 4Kiv̄i. (21)

These values can be precomputed from a small extracted dataset and reused during inference to
provide error-corrected cached outputs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Base Models and Compared Methods To substantiate the generality and efficacy of our pro-
posed ERTACache, we integrate it into state-of-the-art diffusion backbones spanning both video and
image generation. Concretely, we evaluate Open-Sora 1.2 Zheng et al. (2024), CogVideoX Yang
et al. (2024), Wan2.1 Wan et al. (2025), and Flux-dev 1.0 Labs (2024). We benchmark these mod-
els against leading training-free acceleration techniques—namely, PAB Zhao et al., ∆-DiT Chen
et al. (2024), FasterCache Lv et al. (2024), ProfilingDiT Ma et al. (2025), and TeaCache Liu et al.
(2025b)—to isolate and quantify the incremental gains conferred by our approach.

6

Published as a conference paper at ICLR 2026

Method
Efficiency Visual Quality

Speedup↑ Latency (s)↓ VBench ↑ LPIPS↓ SSIM ↑ PSNR ↑
Open-Sora 1.2 (51 frames, 480P)

Open-Sora 1.2 (T = 30) 1× 44.56 79.22% - - -
∆-DiT Chen et al. (2024) 1.03× - 78.21% 0.5692 0.4811 11.91
T-GATE Liu et al. (2025c) 1.19× - 77.61% 0.3495 0.6760 15.50
PAB-slow Zhao et al. 1.33× 33.40 77.64% 0.1471 0.8405 24.50
PAB-fast Zhao et al. 1.40× 31.85 76.95% 0.1743 0.8220 23.58
TeaCache-slow Liu et al. (2025b) 1.55× 28.78 79.28% 0.1316 0.8415 23.62
TeaCache-fast Liu et al. (2025b) 2.25× 19.84 78.48% 0.2511 0.7477 19.10
ERTACache-slow (λ=0.1) 1.55× 28.75 79.36% 0.1006 0.8706 25.45
ERTACache-fast (λ=0.18) 2.47× 18.04 78.64% 0.1659 0.8170 22.34

CogVideoX (48 frames, 480P)

CogVideoX (T = 50) 1× 78.48 80.18% - - -
∆-DiT (Nc = 4, N = 2) 1.08× 72.72 79.61% 0.3319 0.6612 17.93
∆-DiT (Nc = 8, N = 2) 1.15× 68.19 79.31% 0.3822 0.6277 16.69
∆-DiT (Nc = 12, N = 2) 1.26× 62.50 79.09% 0.4053 0.6126 16.15
PAB Zhao et al. 1.35× 57.98 79.76% 0.0860 0.8978 28.04
FasterCache Lv et al. (2024) 1.62× 48.44 79.83% 0.0766 0.9066 28.93
TeaCache Liu et al. (2025b) 2.92× 26.88 79.00% 0.2057 0.7614 20.97
ERTACache-slow (λ=0.08) 1.62× 48.44 79.30% 0.0368 0.9394 32.77
ERTACache-fast (λ=0.3) 2.93× 26.78 78.79% 0.1012 0.8702 26.44

Wan2.1-1.3B (81 frames, 480P)

Wan2.1-1.3B (T = 50) 1× 199 81.30% - - -
TeaCache Liu et al. (2025b) 2.00× 99.5 76.04% 0.2913 0.5685 16.17
ProfilingDiT Ma et al. (2025) 2.01× 99 76.15% 0.1256 0.7899 22.02
ERTACache (λ=0.08) 2.17× 91.7 80.73% 0.1095 0.8200 23.77

Table 1: Quantitative comparison in video generation models. ↑: higher is better; ↓: lower is better.

Method
Efficiency Visual Quality

Speedup↑ Latency (s)↓ CLIP ↑ LPIPS↓ SSIM ↑ PSNR ↑
Flux-dev 1.0 (T = 30) 1× 26.14 - - - -
TeaCache Liu et al. (2025b) 1.84× 14.21 0.9065 0.4427 0.7445 16.4771
ERTACache (λ = 0.6) 1.86× 14.01 0.9534 0.3029 0.8962 20.5146

Table 2: Quantitative comparison in Flux-dev 1.0. ↑: higher is better; ↓: lower is better.

Evaluation Metrics We assess both video and image generation accelerators along two orthogonal
axes: computational efficiency and perceptual fidelity.

• Efficiency. Inference latency—measured end-to-end from prompt ingestion to final
frame—is reported in speedup compared to the base models.

• Visual Quality. We adopt a multi-faceted protocol that combines a human-centric
benchmark with established similarity metrics, including: VBench Huang et al. (2024b),
LPIPS Zhang et al. (2018), PSNR, SSIM and CLIP Hessel et al. (2021).

Together, these metrics yield a holistic view of how aggressively an acceleration method trades
computational speed for generative fidelity.

Implementation Details For the primary quantitative analysis on the VBench default prompts, we
synthesize five videos per prompt with distinct random seeds on NVIDIA A800 40 GB GPUs. To
guarantee reproducibility, prompt extension is disabled and all other hyper-parameters are set to the
official defaults released by each baseline. This protocol mirrors the evaluation pipelinesof recent
studies Liu et al. (2025b); Zhao et al., ensuring a rigorously fair comparison of generation quality.
To accelerate ablation studies, we further adopt a lightweight configuration in which Wan2.1-1.3B
generates a single video per prompt with seed 0.

7

Published as a conference paper at ICLR 2026

CogvideoX-2B

Wan2.1-1.3B

OpenSora 1.2

Flux-dev 1.0

2.92x, PSNR = 20.97

TeaCache ERTA (Ours)Original

2.00x, PSNR = 16.17 2.17x, PSNR = 23.77

2.25x, PSNR = 19.10 2.47x, PSNR = 22.34

1.84x, PSNR = 16.17 1.86x, PSNR = 20.51

1.00x 2.93x, PSNR = 26.44

1.00x

1.00x

1.00x

Figure 3: Comparison of visual quality and computational efficiency against competing approaches,
illustrated by the first and last frames of generated video sequences.

4.2 MAIN RESULTS

Quantitative Comparison Table 1 and Table 2 present a quantitative evaluation on VBench, com-
paring efficiency and visual quality across baseline models. We assess two variants of ERTACache:
a slow version (lower λ) for higher quality, and a fast version (higher λ) for greater speedup. Both
variants consistently achieve strong acceleration and superior visual fidelity across diverse video and
image synthesis models. On Open-Sora 1.2 Zheng et al. (2024), ERTACache-slow and ERTACache-
fast yield speedups of 1.55× and 2.47×, respectively, while outperforming ∆-DiT, PAB, and Tea-
Cache on all quality metrics. For CogVideoX, ERTACache achieves significant improvements in
LPIPS (0.1012↓), SSIM (0.8702↑), and PSNR (26.44↑) compared to TeaCache (0.2057, 0.7614,
20.97), with a comparable 2.93× speedup. With Wan2.1, we attain the best visual quality and a
competitive 2.17× speedup. ERTACache also demonstrates strong performance on the Flux-dev
1.0 image synthesis model, achieving the highest visual quality with a 1.86× speedup, matching
TeaCache.

Visualization The core strength of ERTACache lies in its ability to maintain high perceptual fi-
delity while ensuring strong temporal coherence. In Figure 3, ERTACache preserves fine-grained vi-
sual details and frame-to-frame consistency, outperforming TeaCache Liu et al. (2025b) and match-
ing the non-cache reference. In video generation tasks using CogVideoX, Wan2.1-1.3B, and Opera-
Sora, ERTACache achieves noticeably better temporal consistency, particularly between the first and
last frames. When applied to the Flux-dev 1.0 image model, it enhances visual richness and detail.
These results highlight ERTACache as a uniquely effective solution that balances visual quality and
computational efficiency for consistent video generation.

4.3 ABLATION STUDY

We perform ablation studies on Wan2.1 and Flux-dev 1.0 to evaluate the individual impact of the
offline-searched policy, timestep adjustment, and error rectification, as shown in Table 3. These
results validate the effectiveness and efficiency of each component in our framework. We assess
the sensitivity of ERTACache to varying data volumes, validating its robustness with a minimal
computational overhead of less than 0.5%. Further details regarding this analysis are provided in the
Appendix.

Advantages of Offline Policy Compared to Uniform Cache, the proposed Offline Policy effec-
tively mitigates information loss, leading to consistent improvements across all evaluated metrics on
both video and image synthesis models. It is noteworthy that the Offline Policy yields a statistically

8

Published as a conference paper at ICLR 2026

Wan2.1-1.3B VBench↑ LPIPS↓ SSIM↑ PSNR↑

Uniform Cache 79.35% 0.5041 0.4058 13.7640
Offline Policy 80.59% 0.1477 0.7738 22.0920

+Time Adjustment 80.89% 0.1267 0.7988 22.9413
+Error Rectification 80.73% 0.1095 0.8200 23.7680

Flux-dev 1.0 CLIP↑ LPIPS↓ SSIM↑ PSNR↑

Uniform Cache 0.9066 0.4424 0.7105 15.9428
Offline Policy 0.9433 0.3469 0.8693 19.4069

+Time Adjustment 0.9510 0.3268 0.8921 20.3586
+Error Rectification 0.9534 0.3029 0.8962 20.5146

Table 3: Ablation study on Wan2.1-1.3B and Flux-dev 1.0.

“A person is doing laundry”

“A Lufthansa airline flight flying in the sky”

Original Uniform Cache +Offline Policy +Time Adjustment +Error Rectification

Wan2.1-1.3B

Flux-dev 1.0

Figure 4: Visualization effects of each strategy in ERTACache.

significant improvement of 1.24% in the composite VBench metric on the Wan2.1-1.3B, indicating
substantial enhancements in temporal consistency, motion authenticity, and visual aesthetics.

Advantages of Timestep Adjustment The Time Adjustment mechanism enhances structural co-
herence, yielding significant improvements in evaluation metrics. For instance, on the Flux-dev 1.0,
integrating this adjustment with the Offline Policy improves PSNR and SSIM by 0.9517 and 0.0228,
respectively, compared to using the Offline Policy alone.

Advantages of Error Rectification Error Rectification further improves perceptual fidelity by
effectively correcting generation artifacts. As demonstrated in Figure 4, this module significantly
enhances output quality through systematic error mitigation. Cumulatively, the full pipeline demon-
strated notable gains in CLIP, LPIPS and PSNR versus baseline. This hierarchical progression
demonstrates complementary component effects: offline policy enables foundational recovery, time
adjustment optimizes temporal consistency, and error rectification maximizes preservation of detail,
collectively resolving key efficiency-quality tradeoffs.

5 CONCLUSION

In this work, we present ERTACache, a principled and efficient caching framework for acceler-
ating diffusion model inference. By decomposing cache-induced degradation into feature shift and
step amplification errors, we develop a dual-path correction strategy that combines offline-calibrated
reuse scheduling, trajectory-aware timestep adjustment, and closed-form residual rectification. Un-
like prior heuristics-based methods, ERTACache provides a theoretically grounded yet lightweight
solution that significantly reduces redundant computations while maintaining high-fidelity outputs.
Empirical results across multiple benchmarks validate its effectiveness and generality, highlighting
its potential as a practical solution for efficient generative sampling.

9

Published as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used, including VBench, were sourced in compliance with
relevant usage guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or
discriminatory outcomes in our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the research process.

7 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
code and datasets have been made publicly available in an anonymous repository to facilitate repli-
cation and verification. The experimental setup, including training steps, model configurations, and
hardware details, is described in detail in the paper. We have also provided a full description of the
evaluation metrics, hyperparameter settings, and any preprocessing steps applied to the data, to as-
sist others in reproducing our experiments. We believe these measures will enable other researchers
to reproduce our work and further advance the field.

REFERENCES

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. Delta-dit: A training-free acceleration method tailored for diffusion
transformers. arXiv preprint arXiv:2406.01125, 2024.

Zhiyuan Chen, Keyi Li, Yifan Jia, Le Ye, and Yufei Ma. Accelerating diffusion transformer via
increment-calibrated caching with channel-aware singular value decomposition. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 18011–18020, 2025.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tianyu Huang, Yihan Zeng, Zhilu Zhang, Wan Xu, Hang Xu, Songcen Xu, Rynson WH Lau, and
Wangmeng Zuo. Dreamcontrol: Control-based text-to-3d generation with 3d self-prior. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5364–
5373, 2024a.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. pp. 21807–21818, 2024b.

Kangye Ji, Yuan Meng, Hanyun Cui, Ye Li, Shengjia Hua, Lei Chen, and Zhi Wang. Block-wise
adaptive caching for accelerating diffusion policy. arXiv preprint arXiv:2506.13456, 2025.

Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S
Ryoo, and Tian Xie. Adaptive caching for faster video generation with diffusion transformers.
arXiv preprint arXiv:2411.02397, 2024.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

10

https://github.com/black-forest-labs/flux

Published as a conference paper at ICLR 2026

Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
diffusion models. arXiv preprint arXiv:2411.05007, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Dong Liu, Jiayi Zhang, Yifan Li, Yanxuan Yu, Ben Lengerich, and Ying Nian Wu. Fastcache:
Fast caching for diffusion transformer through learnable linear approximation. arXiv preprint
arXiv:2505.20353, 2025a.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 7353–
7363, 2025b.

Haozhe Liu, Wentian Zhang, Jinheng Xie, Francesco Faccio, Mengmeng Xu, Tao Xiang,
Mike Zheng Shou, Juan Manuel Perez-Rua, and Jürgen Schmidhuber. Faster diffusion via tem-
poral attention decomposition. Transactions on Machine Learning Research, 2025, 2025c.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. arXiv preprint arXiv:2202.09778, 2022.

Jinming Lou, Wenyang Luo, Yufan Liu, Bing Li, Xinmiao Ding, Weiming Hu, Jiajiong Cao, Yuming
Li, and Chenguang Ma. Token caching for diffusion transformer acceleration. arXiv preprint
arXiv:2409.18523, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K
Wong. Fastercache: Training-free video diffusion model acceleration with high quality. arXiv
preprint arXiv:2410.19355, 2024.

Xuran Ma, Yexin Liu, Yaofu Liu, Xianfeng Wu, Mingzhe Zheng, Zihao Wang, Ser-Nam Lim, and
Harry Yang. Model reveals what to cache: Profiling-based feature reuse for video diffusion
models. arXiv preprint arXiv:2504.03140, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Flavio Schneider, Ojasv Kamal, Zhijing Jin, and Bernhard Schölkopf. Mo\ˆ usai: Text-to-music
generation with long-context latent diffusion. arXiv preprint arXiv:2301.11757, 2023.

Xuan Shen, Chenxia Han, Yufa Zhou, Yanyue Xie, Yifan Gong, Quanyi Wang, Yiwei Wang, Yanzhi
Wang, Pu Zhao, and Jiuxiang Gu. Draftattention: Fast video diffusion via low-resolution attention
guidance. arXiv preprint arXiv:2505.14708, 2025a.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li, Yifan Gong, Kai Zhang, Hao Tan, Jason
Kuen, Henghui Ding, et al. Lazydit: Lazy learning for the acceleration of diffusion transformers.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 20409–20417,
2025b.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

11

Published as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Zhihang Yuan, Hanling Zhang, Lu Pu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer models.
Advances in Neural Information Processing Systems, 37:1196–1219, 2024.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. pp. 586–595, 2018.

Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
attention broadcast, 2024b. URL https://arxiv. org/abs/2408.12588.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024.

Zhenyu Zhou, Defang Chen, Can Wang, Chun Chen, and Siwei Lyu. Simple and fast distillation of
diffusion models. Advances in Neural Information Processing Systems, 37:40831–40860, 2024.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching. arXiv preprint arXiv:2412.18911,
2024.

12

Published as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHM

In this section, we elaborate on the inference algorithm of ERTACache, encompassing the implemen-
tation of cache inference using Timestep Adjustment and Error Rectification methods (Algorithm 1),
as well as the acquisition of a static cache list through Offline Policy Calibration (Algorithm 2).

Algorithm 1 ERTACache Inference with Timestep Adjustment and Error Rectification

1: Input: Transformer model M , total step T , cached timesteps set S, Fixed parameter K, B
2: Output: Final output x0

// Trajectory-Aware Timestep Adjustment
3: Initialize ∆tc = 1/T
4: for i = T − 1, ..., 0 do
5: if i ∈ S then
6: ∆ti = ∆tc · ϕi

7: ϕi = clip
(
1− ∥ṽi−vi∥1

∥vi−vi+1∥1
, 0, 1

)
8: ∆tc =

1−
i∑

j=1
∆tj

1−i/T

9: else
10: ∆ti = ∆tc
11: end if
12: end for

// ERTACache Inference
13: Sample xT−1 ∼ N (0, I), i← T − 1, t ∈ [0, 1]
14: for i = T − 1, ..., 0 do
15: if i < T − 1 then
16: if i ∈ S then
17: xi = xi+1 +∆ti+1 · (vi+1 − σ(Ki+1vi+1 +Bi+1))
18: else
19: xi = xi+1 +∆ti+1 · vi+1

20: end if
21: end if
22: if i ∈ S then
23: ṽi = xi + r̃
24: else
25: vi ← compute output of the M
26: r̃ = vi − xi

27: end if
28: end for

Figure 5: Illustration of different metrics using different number of prompts with timestep adjust-
ment.

13

Published as a conference paper at ICLR 2026

Algorithm 2 Offline Policy Calibration via Residual Error Profiling

1: Input: Transformer model M , batched calibrate prompts set Pc, total step T , threshold λ
2: Output: Cached timesteps set S
3: Sample xT−1 ∼ N (0, I), i← T − 1, t ∈ [0, 1]

// Ground-Truth Residual Logging
4: for i = T − 1, ..., 0 do
5: vi ← compute output of the M for Pc

6: rgt(xi, t) = vi − xi

7: end for
// Threshold-Based Policy Search

8: for i = T − 1, ..., 0 do
9: vi ← compute output of the M

10: rcali(xi, t) = vi − xi

11: if i == T − 1 or i == 0 then
12: r̃cali = vi − xi

13: else
14: ℓ1rel(xi, t) =

∥r̃cali−rcali(xi,t)∥1

∥rgt(xi,t)∥1

15: if ℓ1rel < λ then
16: put i to cached timesteps set S
17: ṽi = xi + r̃cali

18: else
19: r̃cali = vi − xi

20: end if
21: end if
22: end for

Model Method Memory Usage (MiB) Latency (s)

FLUX-dev 1.0

Baseline 26988 26.14
TeaCache Liu et al. (2025b) 27056 14.21
ERTACache Offline Policy (+Time Adjustment) 27020 13.41
ERTACache Offline Policy (+Error Rectification) 27022 14.01

OpenSora 1.2

Baseline 21558 44.56
TeaCache Liu et al. (2025b) 21558 19.84
ERTACache Offline Policy (+Time Adjustment) 21346 17.79
ERTACache Offline Policy (+Error Rectification) 21346 18.04

Table 4: Memory Usage and Latency on a single NVIDIA A800 40GB GPU.

A.2 ANALYSIS OF ERROR RECTIFICATION IMPACT

Sensitivity Analysis In the Error Rectification process, we found that averaging the cache
errors collected at each step under different prompts can improve efficiency and optimize model
performance compared with determining the K value through model training. We explore the
impact of the number of prompts on the final results to evaluate the generality and accuracy
of the averaging method. As shown in the Figure 5, the obtained different K values all exhibit
stable trends in various metrics (PSNR, SSIM, CLIP Score) on the same medium-sized test
dataset (data volume = 1000, based on MS COCO 2014 evaluation dataset) under different
numbers of prompts (num = 20, 30, 1000). The experimental results demonstrate that the averaging
method has strong stability and generality, and it can generalize to correction tasks in other scenarios
with a very small batch of real errors, thus possessing the advantages of low cost and high efficiency.

Extra Computational Cost This study compares memory usage among three methods: No cache
added, TeaCache Liu et al. (2025b), and our proposed ERTACache. The experimental results demon-
strate that ERTACache exhibits a slight advantage in terms of memory usage (see Table 4). The core
reason lies in the fact that ERTACache adopts an offline method to pre-determine a fixed cache list,

14

Published as a conference paper at ICLR 2026

CogvideoX-2B

OpenSora 1.2

Wan2.1-1.3B

Figure 6: Illustration of cache error using different model, displaying 3 different channels of the first
frame

thus eliminating the need for additional computation of modulated inputs and prediction of whether
caching is required at the beginning of each step, thereby avoiding extra runtime computational
overhead. Additionally, evaluating the Error Rectification parameter K reveals negligible impacts
on both memory usage (FLUX-dev 1.0: +0.007%; OpenSora 1.2: +0%) and latency (FLUX-dev
1.0: +0.45%; OpenSora 1.2: +0.14%) across text-to-image and text-to-video scenarios.

A.3 ERROR RECTIFICATION DERIVATION

The general formula for the accumulates error during the diffusion trajectory is:

δi−m =

m−1∑
k=0

∆ti−kεi−k, (22)

where εi is an unknown cache error at i-th step. In past experiments, it has been found that each step
of εi contains structural information based on different prompts (see Figure 6) , which has become a
difficulty in the general error formula. Therefore, an attempt is made to combine the model cached
output to make a generalized prediction for εi. For different prompts, it is assumed that there is a
fixed high - dimensional tensor Ki, Bi and an activation function σ, such that:

εi = ṽθ(xi, t)− µθ(xi, t) ≈ σ(Ki ∗ ṽθ(xi, t) +Bi), (23)

σ(x) =
1

1 + e−x
, (24)

where ṽθ(xi, t) is the model cached output at i-th step, and µθ(xi, t) is the original model output at i-
th step, σ(x) is selected as the Sigmoid function. This method is equivalent to defining a single-layer
convolutional network mapping structure, which can better accommodate the structural information
brought by different prompts and make εi universal.

Let the approximate model Ai = σ(Kiṽi + Bi). We utilize the mean squared error as the loss
function to minimize the error between predicted outputs Ai and ground-truth values εi, where
n = Nt ×Nc ×Nh ×Nw:

L(Ki) =

Nt∑
t=1

Nc∑
c=1

Nh∑
h=1

Nw∑
w=1

(εi,t,c,h,w −Ai,t,c,h,w)
2 =

1

n

n∑
j=1

[εij − σ(Kij ṽij +Bij)]
2. (25)

15

Published as a conference paper at ICLR 2026

Derivative with respect to Ki and Bi

∂L

∂Bi
=

2

n

n∑
j=1

[εij − σ(Kij ṽij +Bij)] · σ(Kij ṽij +Bij)[1− σ(Kij ṽij +Bij)] · (−1) = 0. (26)

∂L

∂Ki
=

2

n

n∑
j=1

[εij − σ(Kiṽij +Bij)] · σ(Kij ṽij +Bij)[1− σ(Kij ṽij +Bij)] · (−ṽij) = 0. (27)

Since the Sigmoid function is a nonlinear equation and the system of equations contains the coupling
terms of K and B at the same time, the above system of equations cannot directly find an analytical
solution. The Taylor expansion method is used for approximate linear processing:

σ(x) =
1

1 + e−x

=
1

2
+

1

4
x− 1

48
x3 + · · ·+O(x8).

Then we have:
Ai ≈

1

4
(Kiṽi +Bi) +

1

2
. (28)

Substituting into the loss function, we derive:

Li ≈
1

n

n∑
j=1

[
εij −

1

4
(Kij ṽij +Bij)−

1

2

]2
. (29)

Derivative with respect to Ki and Bi

∂L

∂Bi
= − 1

2n

n∑
j=1

[
εij −

1

4
(Kij ṽij +Bij)−

1

2

]
= 0. (30)

∂L

∂Ki
= − 1

2n

n∑
j=1

ṽij

[
εij −

1

4
(Kij ṽij +Bij)−

1

2

]
= 0. (31)

LINEAR SYSTEM OF EQUATIONS AND SOLUTION

After arrangement, a linear system of equations is obtained:{∑n
j=1

(
εij − 1

4Kij ṽij − 1
4Bij − 1

2

)
= 0,∑n

j=1 ṽij
(
εij − 1

4Kij ṽij − 1
4Bij − 1

2

)
= 0.

(32)

It is further simplified to:{
n
(
1
4Bi +

1
2

)
+ 1

4Ki

∑n
j=1 ṽij =

∑n
j=1 εij ,

1
4Bi

∑n
j=1 ṽij +

1
4Ki

∑n
j=1 ṽ

2
ij +

1
2

∑n
j=1 ṽij =

∑n
j=1 ṽijεij .

(33)

Let: 
ε̄i =

1
n

∑n
j=1 εij ,

v̄i =
1
n

∑n
j=1 ṽij ,

Svivi =
∑n

j=1(ṽij − v̄i)
2 =

∑n
j=1 ṽ

2
ij − nv̄2i ,

Sviεi =
∑n

j=1(ṽij − v̄i)(εij − ε̄i) =
∑n

j=1 ṽijεij − nv̄iε̄i.

(34)

The approximate closed-form solution can be obtained:

Ki ≈ 4 · Sviεi

Svivi

, Bi ≈ 4

(
ε̄i −

1

2

)
− 4Kiv̄i. (35)

16

Published as a conference paper at ICLR 2026

A.4 LLM USAGE

We only used the large language model for text polishing, solely to refine linguistic expression
(e.g., sentence structure, fluency, terminological consistency) while strictly preserving the original
scientific content and conclusions. No other research steps involved any large language models.

17

	Introduction
	Related Work
	Methodology
	Preliminaries
	Analyzing Error Accumulation from Feature Caching
	ERTACache

	Experiments
	Experimental Setup
	Main Results
	Ablation Study

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Algorithm
	Analysis of Error Rectification impact
	Error Rectification Derivation
	LLM Usage

