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ABSTRACT

Diffusion large language models (dLLMs) have recently emerged as a compelling
alternative to autoregressive LLMs, offering bidirectional attention and parallel
sequence generation. These properties allow dLLMs to exploit global contextual
information and naturally support the integration of non-sequential constraints,
making them particularly suitable for format-constrained tasks such as generat-
ing parseable JSON or reasoning–answer templates. A straightforward approach
is to enforce such constraints with fixed anchors, but this often results in rigid
generation spans, leading to truncated reasoning or redundant content. To over-
come this limitation, we propose a training-free method, Dynamic Infilling An-
chors (DIA). DIA dynamically adjusts generation length by estimating appro-
priate end-anchor positions before content generation, followed by iterative in-
filling between anchors. This flexible mechanism ensures structural correctness
and semantic coherence while avoiding the inefficiencies of fixed-span methods.
Experiments on reasoning-oriented benchmarks demonstrate that DIA substan-
tially improves both format compliance and answer accuracy, achieving signifi-
cant gains on GSM8K and MATH under zero-shot settings. These results high-
light the promise of dLLMs for reliable, structure-aware generation and establish
DIA as a practical pathway toward robust format-constrained text generation.

1 INTRODUCTION

In recent years, diffusion large language models (dLLMs)(Nie et al., 2025; Ye et al., 2025; Labs
et al., 2025; Song et al., 2025; Deepmind, 2024) have attracted increasing attention due to their
distinctive computational mechanisms and promising potential. Unlike traditional autoregressive
language models (AR LLMs), which rely on left-to-right sequential decoding, dLLMs are not re-
stricted to unidirectional dependencies during generation. Instead, they employ a bidirectional at-
tention mechanism, enabling the model to update token representations at each step by leveraging
complete contextual information simultaneously. This mechanism allows all positions in a sequence
to be predicted in parallel rather than generated step by step, thereby substantially enhancing both
modeling flexibility and computational efficiency. Beyond efficiency gains, this parallelism also
strengthens the contextual modeling capacity of dLLMs, enabling them to capture global dependen-
cies more comprehensively.

Within this property, we identify not only the potential to enhance contextual modeling and gen-
eration efficiency, but also the possibility of directly incorporating non-sequential constraints into
the generation process. The exposure of a fully masked sequence in dLLMs allows us to impose
global constraints on the target output by directly editing the masked sequence. For instance, one
may preemptively replace selected mask tokens with predetermined conclusions or mandatory con-
tent, thereby guiding the model toward iterative optimization under the specified requirements. This
observation motivates us to explore the application of dLLMs to the problem of format-constrained
generation. The term refers to scenarios in which the model’s output must strictly adhere to pre-
defined structures and requirements. For example, producing parseable JSON representations. To
evaluate this capability, we adopt a representative thinking–answering task as the testing scenario,
where existing dLLMs fail to achieve satisfactory outcomes.

To address these challenges, a straightforward approach is to enforce structural constraints by insert-
ing anchors (e.g. < think >, < /think >, < answer >, < /answer >) directly into the masked
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sequence. However, while this approach appears intuitive, it also introduces new challenges. Once
anchor positions are fixed in advance, the generative space between them becomes rigid, forcing
the model to allocate tokens within predetermined boundaries. Such rigidity can lead to suboptimal
allocation of generative space and ultimately impair output quality. In practice, when the fixed span
between anchors is too short, the reasoning process is often truncated before completion. On the
other hand, when the span is too long, the model tends to produce redundant or repetitive content,
thereby reducing both efficiency and reliability.

To obtain an appropriate generation length between anchors, thereby ensuring format correctness
while maintaining generation quality, we propose a more flexible training-free strategy termed Dy-
namic Infilling Anchors (DIA). Our approach is inspired by previous studies on dLLMs(Li et al.,
2025), which demonstrates that the model can estimate the position of the end token with only one
or a few prediction steps, thereby determining a suitable generation length. We extend this capa-
bility to predict the proper positions of anchors before content generation. Specifically, our method
consists of two stages: (1) generation length adjustment by estimating position of the end anchor,
and (2) iterative generation between fixed anchors.

The first stage of our method involves adjusting the generation space by estimating the position of
the end anchor. Following the user prompt, the model initializes a relatively short, fully masked
sequence, which serves as a starting point for the task output length and is dynamically extended
later. For a think-answer task, this masked sequence is evenly divided into two blocks, with the
corresponding begin anchors inserted at the start of each block. We then determine the anchor
positions sequentially, one block at a time. Within each block, the model performs a single prediction
step on the sequence, which is prefilled with the begin anchor. If the prediction fails to produce an
end anchor or yields one with insufficient confidence, it suggests that the current generation length
is inadequate. Therefore, we extend the block by appending additional masked tokens to ensure
adequate space for content generation and repeat the prediction step. This extension continues until
the model successfully produces a valid end anchor or the block length reaches its upper limit.
The design of Stage I fully leverages the model’s awareness of the generation space; it guarantees
sufficient allocation for each phase while minimizing redundant space and unnecessary computation.

The second stage performs iterative generation after anchors are fixed. In the previous stage, we
obtained a reasonable generation length and fixed the position of the end anchor. Based on this setup,
we now generate the intermediate content between the anchors. This step effectively compensates
for the limitations of single-step prediction and helps the model establish clear semantic boundaries
across different segments, thereby promoting coherent content generation.

We validate the effectiveness of DIA on reasoning-oriented benchmarks. Experimental results on
GSM8K(Cobbe et al., 2021) (0-shot) and MATH(Hendrycks et al., 2021) (0-shot) show that our
method improves format correctness from 58.83% and 29.10% to 72.63% and 76.82%, respectively.
Moreover, by better controlling the generation space, our method also improves answer accuracy
from 14.86% and 19.52% to 46.78% and 20.08%, respectively. These results demonstrate that DIA
substantially enhances both the reliability and quality of format-constrained generation with dLLMs.
In summary, our contributions are three-fold:

1. We introduce a novel dLLM-based strategy for format-constrained generation.
2. We design a dynamic adjustment mechanism that flexibly allocates generative space, miti-

gating the rigidity of fixed-anchor methods.
3. We will release code and resources to foster reproducibility and further research in this

emerging area.

2 RELATED WORKS

Diffusion Large Language Models The evolution of diffusion paradigms in language modeling
can be traced back to masked language models(Devlin et al., 2019), which randomly mask a subset
of tokens in the input and predict the missing content, laying the groundwork for denoising-based
generation. Building on this idea, early studies introduced continuous-space diffusion language
models(Jo & Hwang, 2025), mapping text into continuous latent representations and generating se-
quences through diffusion and reverse denoising. However, such methods suffered from ambiguity
in representation and instability in decoding discrete text. To address this limitation, discrete-space
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diffusion language models(Austin et al., 2023) were proposed, directly modeling diffusion and de-
noising at the token level, thereby aligning the process more naturally with the discrete nature of lan-
guage. Along this trajectory, BlockDiffusion(Arriola et al., 2025) incorporated block-wise modeling
to mitigate the computational inefficiencies of diffusion-based text generation. For large-scale pre-
training, a practical strategy for diffusion large language models (dLLMs) is to initialize them from
pretrained autoregressive models(Gong et al., 2025a; Ye et al., 2025) and further align them with
instructions to enhance task adaptability(Yang et al., 2025b; You et al., 2025; Song et al., 2025). To
strengthen advanced capabilities, researchers have also explored reinforcement learning(Wang et al.,
2025; Zhao et al., 2025; Gong et al., 2025b) as a post-training method. Meanwhile, dLLMs are being
extended to multimodal scenarios through cross-modal alignment, enabling broader applications in
understanding and generating modalities such as images and speech.

Format-Constraints Format-constrained generation is critical for deploying language models, as
it directly affects the parseability and reliability of code generation, structured outputs, and rea-
soning templates. Existing studies often constrain the input side (prompt design(Ye et al., 2024)
and example-based guidance(Min et al., 2022)), yet they are unstable under long-chain or high-
complexity reasoning; output-side repair (post-processing and re-ranking(Gao et al., 2025; Zhuang
et al., 2025)) improves format compliance but struggles to preserve semantic and structural consis-
tency simultaneously. Fine-tuning or reinforcement learning on task-specific data(Song et al., 2025;
Xiong et al., 2023; Cui et al., 2024; Yang et al., 2023) can enhance robustness, but the approach
is costly and generalizes poorly across tasks. Constrained decoding(Mündler et al., 2025; Banerjee
et al., 2025) with grammars or finite-state machines enforces strict compliance at the expense of
efficiency and flexibility.

Large Language Models The evolution of LLMs(Yang et al., 2025a; Grattafiori et al., 2024;
DeepSeek-AI et al., 2025; Anthropic, 2025; Deepmind, 2025; xAI, 2025; OpenAI, 2025) has been
fundamentally driven by insights from scaling laws (Kaplan et al., 2020), which reveal power-law
relationships among model size, data, and compute, thereby guiding systematic capability improve-
ments. Building on this foundation, researchers have observed the emergent phenomenon of in-
context learning (ICL)(Min et al., 2022), whereby LLMs can rapidly adapt to new tasks from
demonstrations without explicit parameter updates, showcasing remarkable transfer and general-
ization abilities. To further enhance practical usability and alignment with human preferences, post-
training techniques such as fine-tuning(Ouyang et al., 2022) and reinforcement learning(Schulman
et al., 2017; Rafailov et al., 2024; Shao et al., 2024) have been extensively applied, playing a cen-
tral role in task adaptation and alignment. In parallel, the rise of multimodal models has spurred
advances in cross-modal alignment(Li et al., 2023; Liu et al., 2023), enabling LLMs to operate ef-
fectively across text, vision, and speech, and thereby extending their versatility. Collectively, these
lines of research have driven sustained progress in LLM capability, alignment, and applicability.

3 METHOD

3.1 PRELIMINARY

Inference of dLLMs. In the generation stage of a diffusion language model (dLLM), the response
sequence to be refined is initialized by concatenating the input prompt with a fully masked sequence
of a specified length:

xt = Concat(prompt, {[MASK]}0:max len−1), (1)

where max len denotes the fixed response length. The generation process follows a discrete-time
masked diffusion procedure, which can be formulated as a Markov chain. Thus, each prediction step
depends only on the previous state, and in every iteration only the masked positions are updated in
parallel:

P0|t =

0∏
s=t

n−1∏
i=0

Ps|s+1(x
i
s | xs+1), (2)
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Ps|s+1(x
i
s | xs+1) =



1 if xi
s+1 ̸= [M ], then xi

s = xi
s+1,

1−max(q(xi
s)) if

(
xi
s+1 = [M ], max(q(xi

s)) < C
)
,

then xi
s = [M ],

max(q(xi
s)) if

(
xi
s+1 = [M ], max(q(xi

s)) ≥ C
)

or s = 0, then xi
s ̸= [M ].

(3)

Where [M ] denotes the [MASK] token, q(xi
s) represents the output logits at position i in step s,

and C is the minimum confidence threshold.

3.2 DYNAMIC INFILLING ANCHOR

To overcome the limited flexibility of straightforward infilling methods in diffusion language mod-
els, we propose DIA, a training-free, two-stage approach. DIA selects an appropriate end-anchor
position through a single-step prediction, thereby ensuring both format correctness and generation
quality. The overview of our method is illustrated in Figure 1.

Figure 1: Dynamic Infilling Anchors (DIA). (a) Fixed-position infilling baseline. (b) Overview
about our methods: DIA. (c) Details of expansion and anchor infilling steps with truncation and
remasking.

3.2.1 GENERATION LENGTH ADJUSTMENT BY ESTIMATING POSITION OF THE END ANCHOR

DLLMs implicitly acquire a prior distribution over response termination positions from large-scale
training corpora(Li et al., 2025). Specifically, for different input queries, the confidence of pre-
dicting the eos token at various positions within the answer sequence is not uniform, but instead
exhibits a trend correlated with the appropriate response length. Building on this insight, we extend
this capability to format-constrained tasks. For a typical reasoning-answer task, when the model
receives the start anchor of a reasoning or answering section, it should be able to anticipate at what
sequence length a corresponding “end-of-reasoning” or “end-of-answering” anchor is likely to oc-
cur. Intuitively, if the allocated generation space is sufficient to accommodate the reasoning or
answering process, the one-step prediction will contain an end anchor (or partial end anchor) with
high confidence exceeding a given threshold. Conversely, if the generation space is insufficient, the
corresponding anchor will either fail to appear or appear only with substantially reduced confidence.

Building on this assumption, we design the generation-space estimation procedure of DIA. Given
an input sequence X , which consists of the user query Q and a fully masked sequenceXL of a
specified length L, DIA divides the sequence into two blocks (C = {C1, C2}) of equal size (in terms
of masked tokens), corresponding to the reasoning and answering stages. For each block, DIA first
pre-fills the start anchor at the beginning of the decodable region. After inserting the start anchor, the
block undergoes a one-step prediction. The prediction results and their associated confidence scores
are used to determine whether the allocated generation length is appropriate. Since the model is
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unlikely to produce a complete anchor token sequence in a single prediction, partial anchors are also
incorporated into the decision mechanism. If the prediction either fails to produce an end anchor
(or a partial end anchor) or yields an end anchor with confidence below the threshold c, the length
of current block is expanded by a fixed length ∆, and the ’predict–decide’ cycle is repeated until
the generation space is sufficient to support the model in completing the reasoning or answering
process. When multiple positions in the sequence satisfy the confidence threshold simultaneously,
we retain the position closest to the left boundary to prevent the generation of duplicate end anchors
within the sequence. To avert unbounded expansion, a maximum block length M is imposed. We
truncate the redundant tokens following the selected end-anchor position and subsequently complete
the partial end anchor to form a full one.

3.2.2 ITERATIVE DENOISING WITH INFILLING

In Stage I, we establish the block boundaries by determining the positions of the anchors. Based
on these fixed semantic boundaries, the model then iteratively generates the intermediate content
within the block. The fixed anchors serve as guidance, ensuring clear separation between segments
and thereby promoting coherent content generation.

We process the blocks sequentially through two stages. Specifically, once the length of the thinking
block is determined, its content is generated; the additional information obtained from this reasoning
step is then used to determine the length of the answering block, which is subsequently generated in
an iterative manner. This design maximizes the benefit of the reasoning process by leveraging the in-
formation gained in the first stage to enhance the quality of the final answer. Further implementation
details are provided in Algorithm 1.

Algorithm 1 DIA

Require: Input sequence X = {Q,XL}, begin-anchor set B = {b1, . . . , b|B|}, end-anchor set
E = {e1, . . . , e|E|}, confidence threshold c, expand size ∆, max length M

Ensure: Completed sequence X = {Q,C1, . . . , C|B|}
1: Divide XL into |B| blocks C = {C1, . . . , C|B|}, each of max length M
2: for i← 1 to |B| do
3: Insert begin anchor bi at the head of block Ci

4: end for
Stage 1: Generation length adjustment by estimating position of the end anchor

5: for each block Ci do
6: while True do
7: Y ← Infer(Q,C1...Ci) perform one diffusion-based inference
8: Scan tokens of Ci from head
9: if a subsequence y ⊆ Y matches some part of ei ∈ E with Conf(y) > c then

10: Truncate Ci at this position
11: break
12: else if no partial match found and |Ci|+∆ ≤M then
13: Expand Ci by ∆ tokens controlled by expand size
14: else if |Ci|+∆ > M then
15: Stop expansion for Ci

16: break
17: end if
18: end while
19: Infill selected ei ∈ E at the tail of Ci

Stage 2: Iterative Denoising with Infilling
20: Generate all remaining masked positions in Ci using Infer(Q,C1...Ci)
21: end for
22: return X = {Q,C1, . . . , C|B|}

5
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4 EXPERIMENTS

4.1 BENCHMARKS

To systematically evaluate the effectiveness of our method, we adopt two reasoning-sensitive math-
ematical benchmarks: GSM8K 0-shot and MATH 0-shot. GSM8K(Cobbe et al., 2021) is a widely
used dataset of grade-school math word problems, covering basic arithmetic and commonsense rea-
soning tasks, and thus serves as a reliable measure of a model’s performance in everyday numerical
reasoning scenarios. In contrast, MATH(Hendrycks et al., 2021) is a more challenging benchmark
that spans competition-level problems from elementary to advanced mathematics, encompassing
diverse problem types and difficulty levels, thereby providing a rigorous assessment of a model’s
capabilities in complex reasoning and knowledge generalization.

4.2 BASELINES

We select Dream-7B-Base-v0 and Dream-7B-Instruct-v0 as our baseline models. The Dream-7B
series is initialized from the Qwen model family and has achieved superior performance compared
to other open-source diffusion models on multiple benchmark tasks. To ensure fairness, all exper-
iments are conducted with corresponding modifications to the official codebase, without applying
any additional acceleration or optimization techniques.

4.3 IMPLEMENTATION DETAILS

Our method is implemented within the PyTorch framework. For a fair comparison, all models are
evaluated under the same GPU configuration when tested on identical tasks. Additional implemen-
tation details are provided in Appendix B.

4.4 MAIN RESULTS

We conduct a comprehensive evaluation on the two benchmarks. Table 1 reports the comparison
between our method and the baselines. Specifically, Dream-7B-Base-v0 and Dream-7B-Instruct-
v0 generate responses by relying solely on additional format-constrained prompts. In contrast, the
infilling approach inserts the corresponding anchors at designated positions within the response
sequence of Dream-7B-Base-v0, thereby guiding the model to produce answers.

We introduce two metrics, Format Score Sformat and Accuracy Acc.,for evaluation. Accuracy mea-
sures whether the generated response is correct, while Format Score assesses whether the response
adheres to the predefined format requirements.

Table 1: Comparison of Methods on Format Adherence and Benchmark Performance. DIA achieves
the highest format scores across both GSM8K and MATH, substantially outperforming baseline and
infilling approaches. These results highlight the robustness and effectiveness of DIA in enforcing
strict structural constraints while maintaining competitive answer accuracy.

0-shot GSM8K 0-shot MATH-500

Sformat Acc. Sformat Acc.

Dream-7B-Base (Ye et al., 2025) 0 68.99 0 25.14
Dream-7B-Instruct (Ye et al., 2025) 0 15.01 0 25.28
Infilling Baseline 58.83 14.86 29.10 19.52
Dynamic Infilling Anchor (Ours) 72.63 46.78 76.82 20.08

Compared to the performance degradation introduced by the infilling approach, DIA achieves supe-
rior results in both format adherence and answer quality. On GSM8K, DIA not only raises the for-
mat score from 58.83% to 72.63% but also substantially improves accuracy from 14.86% to 46.78%,
highlighting its ability to simultaneously enforce structural fidelity and enhance reasoning correct-
ness. On the more challenging MATH benchmark, DIA boosts the format score from 29.10% to
76.82%, demonstrating remarkable robustness in preserving structural anchors even under complex
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problem settings, while maintaining comparable answer accuracy to baseline methods. The results
clearly demonstrate that DIA addresses the shortcomings of baseline models and methods under
format-constrained tasks, ensuring accurate preservation of the required format. Moreover, unlike
the infilling approach, DIA’s flexible design of generation length allows each stage to maintain high
answer quality, thereby achieving a better balance between performance and format correctness
across diverse benchmarks.

Figure 2: DIA delivers reliable anchor preservation and stable performance across different bench-
marks. Even as task complexity increases on the more challenging MATH, DIA consistently main-
tains high anchor retention, underscoring its robustness under stricter reasoning and formatting re-
quirements.

Figure 2 presents a detailed comparison of anchor retention ratios across different methods. Overall,
DIA demonstrates outstanding stability on both GSM8K and MATH, consistently achieving nearly
100% retention across all four anchors, including both begin anchor (< think > and < answer >)
and end anchor (< /think > and < /answer >). This robust performance shows that the proposed
two-stage generation strategy not only preserves anchors under varying conditions but also enforces
strict compliance with the predefined format throughout the entire sequence. Such stability is par-
ticularly important in reasoning-oriented tasks, where structural deviations can lead to incomplete,
unparseable, or misleading outputs.

In contrast, the Base and SFT models suffer from significant structural degradation. For example, on
GSM8K, their retention rates for < /think > collapse to only 4.4% and 29.5%, respectively, and
on MATH, the rates for < /think > and < /answer > drop to single digits. These results reveal
a consistent failure of conventional methods to maintain boundary integrity, especially in longer or
more complex reasoning chains, where models tend to lose track of global structure and generate
unbalanced outputs. Such issues undermine the reliability of the generated content and illustrate why
relying solely on prompt-based constraints or fine-tuning strategies is insufficient for strict format
adherence.

Although the Infilling baseline achieves higher anchor retention than Base and SFT—nearly match-
ing DIA on GSM8K for < think > and < answer >, its performance on begin anchors remains
unstable. Crucially, this preservation does not translate into gains in overall format correctness or
answer accuracy. For instance, while Infilling retains anchors on GSM8K, its downstream results
remain far below DIA in both structural and semantic evaluations. This mismatch highlights that
simply inserting anchors is not enough; without a dynamic mechanism for allocating and regulat-
ing generation space, models either over-generate redundant tokens or fail to stop at the correct
boundaries.

Taken together, these results provide a fine-grained validation of Table 1. They show that DIA not
only outperforms existing approaches in aggregate metrics but also secures overwhelming superior-
ity in preserving critical anchors across diverse datasets. By ensuring that every anchor is faithfully

7
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retained, DIA substantially enhances the reliability of format-constrained generation, laying a foun-
dation for robust application of dLLMs in reasoning, structured reporting, and other scenarios where
strict adherence to format is essential.

4.5 ANALYSIS EXPERIMENTS

4.5.1 BEHAVIOR OUTSIDE ANCHOR CONTEXTS

Figure 3: Top-5 statistics of out-of-anchor content generated by baseline models across different
benchmarks. The baseline models fail to establish effective semantic boundaries aligned with anchor
positions, leading to unconstrained content generation.

To more comprehensively evaluate model performance under format-constrained tasks, we con-
ducted a statistical analysis of the responses generated by Dream-7B-Base-v0 and Dream-7B-
Instruct-v0 on two benchmarks. Our analysis focuses on the content appearing beyond the <
/answer > anchor boundary, as this indicates whether the models can effectively leverage the
semantic boundaries established by anchors to properly constrain their generation. Specifically, we
examined all responses across the two benchmarks and extracted the Top-5 most frequent continua-
tions occurring after the < /answer > boundary for both models, with the results shown in Figure
3. This analysis provides a fine-grained perspective on boundary robustness, complementing aggre-
gate metrics by revealing how models behave when the intended termination point has already been
reached.

As shown in Figure 3, Dream-7B-Base-v0 produces dispersed and low-frequency redundancy be-
yond the < /answer > anchor, with all Top-5 patterns below 6%, whereas Dream-7B-Instruct-v0
exhibits more concentrated redundancy, with Top-5 patterns reaching up to 17.3% and dominated by
repeated < think > tokens. The contrast highlights that the Base model tends toward uncontrolled
drifting, while the Instruct variant systematically re-enters the reasoning phase, reflecting a struc-
tural weakness in anchor boundary enforcement. Overall, the Base model lacks effective boundary
control, while the Instruct model suffers from patterned continuations, and both fail to reliably ter-
minate at the anchor—underscoring the necessity of DIA in eliminating out-of-anchor redundancy
and ensuring format adherence. Importantly, such failures not only compromise readability but also
propagate errors to downstream applications that rely on strictly bounded outputs.

4.5.2 EXPAND TIMES

To establish a reasonable upper bound for the maximum block length, we analyzed the number of
extensions in the reasoning part of all format-correct responses. The details are presented in Figure
4. The results show that the chosen maximum length threshold effectively ensures the allocation of
appropriate generation space. Specifically, the observed extension counts fall within the range of
(30, 85), which is substantially smaller than the number of extensions permitted by the maximum
threshold. In other words, although a large upper bound is allowed, the vast majority of responses
naturally converge to a much smaller range of expansions, confirming that the setting of the maxi-
mum block length is both sufficient and not overly restrictive.

8
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Figure 4: Statistics of effectively expanded sam-
ples. The maximum length threshold ensures that
the vast majority of cases receive an appropriate
number of expansions, thereby safeguarding an-
swer quality.

Moreover, the proportion of format-correct re-
sponses within this range consistently exceeds
90%, further validating both the effectiveness
of our method and the appropriateness of the
current threshold setting. Importantly, this
trend is observed across both GSM8K and
MATH, where over 94% of samples fall into
the effective expansion range, indicating that
DIA adapts reliably to tasks of different scales
and difficulties. Such stability suggests that
the block-length constraint not only prevents
degenerate over-expansion but also preserves
high-quality structural adherence across bench-
marks.

5 DISCUSSIONS

While Dynamic Infilling Anchors (DIA) have
shown strong effectiveness in improving format-constrained generation, several limitations remain.
First, the current method relies on manually specified anchors, assuming that task boundaries and
semantic roles (e.g., reasoning vs. answering) are fixed. In more complex tasks such as open-domain
dialogue or multi-stage reasoning, anchors may not follow stable positions, and their semantics may
shift with context. Extending DIA to automatically infer or adapt anchor definitions remains an
open challenge. Second, DIA introduces inference overhead from iterative space adjustments. Al-
though modest in our experiments, scaling to longer outputs or interactive systems may require more
efficient mechanisms for anchor prediction and length control. Finally, our evaluation is limited to
reasoning datasets like GSM8K and MATH; whether DIA generalizes to long-form writing, program
synthesis, or multimodal tasks is still uncertain.

Despite these limitations, the anchor-based perspective also suggests new opportunities. Anchors
need not be restricted to reasoning and answering boundaries; they could represent higher-level
structures such as proof steps, code blocks, or multimodal transitions. In tasks where anchor seman-
tics evolve dynamically, DIA could be extended with adaptive or hierarchical anchor systems that
refine themselves during generation. Combining DIA with lightweight training or alignment meth-
ods may also help models acquire richer anchor semantics, reducing manual specification while
improving robustness across domains. These possibilities suggest that anchors are not only a con-
trol mechanism for current benchmarks but also a lens for rethinking how diffusion language models
manage structure and meaning in more complex generative scenarios.

6 CONCLUSION

In this work, we introduced Dynamic Infilling Anchors (DIA), a training-free method for enhancing
format-constrained generation in diffusion language models (dLLMs). By adopting a two-stage
decoding strategy—length expansion guided by end-anchor prediction, followed by explicit anchor
completion and content generation—DIA achieves a strong balance between structural fidelity and
semantic quality. Experiments on reasoning benchmarks such as GSM8K and MATH show that DIA
substantially improves format adherence while maintaining competitive answer accuracy, validating
its effectiveness in tasks requiring both precision and reliability.

Beyond these empirical results, our study underscores the broader potential of dLLMs for structured
text generation without additional training. Leveraging their intrinsic awareness of generation space,
DIA demonstrates that such models can be steered to meet strict output constraints, opening oppor-
tunities in code generation, structured proofs, and machine-readable reporting. At the same time,
DIA points to several avenues for future research, including automated anchor design, extensions to
hierarchical or nested constraints, and integration with lightweight training or alignment techniques.
By bridging structural control and semantic quality, DIA lays the groundwork for deploying dLLMs
as dependable reasoning assistants and as general-purpose models in real-world applications where
consistency, interpretability, and reliability are paramount.
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ETHICS STATEMENT

This research does not involve human participants, personally identifiable information, or sensi-
tive user data. All experiments are carried out on publicly available datasets, namely GSM8K and
MATH, which are widely adopted benchmarks for assessing the reasoning ability of large language
models. These datasets consist of synthetic or anonymized problem–solution pairs and do not con-
tain private or proprietary information, thereby avoiding risks associated with data collection or
misuse.

As with any work involving large language models, we acknowledge potential ethical concerns. A
risk of misuse remains: models augmented with improved format-adherence mechanisms could be
applied in contexts where reasoning outputs are consumed without adequate verification, potentially
leading to the dissemination of incorrect or misleading content. We emphasize that our proposed
method should only be deployed in scenarios where outputs are subject to human oversight or rigor-
ous automated validation. While our method focuses on structural control rather than altering model
parameters, it inherits the biases and limitations of the underlying pretrained models. Although Dy-
namic Infilling Anchors (DIA) does not amplify such issues, users of this technique should remain
mindful of the broader ethical challenges associated with large-scale language models.

We stress the importance of responsible deployment. The intention of this work is to advance re-
search on reliable, format-constrained generation and to provide the community with a training-free
mechanism that improves structural fidelity without additional fine-tuning or data collection. We do
not endorse its use in high-stakes domains such as medical diagnosis, legal reasoning, or automated
decision-making without extensive domain-specific evaluation and safeguards. By situating our con-
tributions within established ethical guidelines in AI research, we aim to ensure that the benefits of
this work are realized while minimizing risks of harm.

REPRODUCIBILITY STATEMENT

We have taken comprehensive steps to maximize the reproducibility of our results and to facili-
tate independent verification by other researchers. To this end, we adhere to several principles of
transparent and replicable research practice.

The appendix provides extensive details about our experimental setup, including hardware config-
uration (GPU model, number of devices, and memory constraints), software environment (Python
and PyTorch versions, dependencies, and library compatibility), parameter choices (generation hy-
perparameters, block sizes, anchor thresholds, and sampling strategies), and evaluation protocols
(dataset splits, metrics, and scoring procedures). These details are presented to eliminate ambiguity
and enable replication.

The implementation of Dynamic Infilling Anchors (DIA) is based on the official Dream-7B code-
base with minimal modifications, all of which are clearly documented. We describe both algorithmic
adjustments, such as the two-stage anchor-based procedure for length expansion and truncation, and
essential engineering decisions including input preprocessing and memory optimization strategies.
Such documentation lowers the barrier for others to replicate our findings without requiring exten-
sive reverse engineering.

We also commit to releasing all necessary artifacts for reproduction. This includes the source code,
scripts for data preprocessing and evaluation, and configuration files for running experiments. The
release will be accompanied by instructions for environment setup and guidelines for reproducing
results on GSM8K and MATH. Seed values and randomization settings will be provided to ensure
consistent outputs across trials.

In line with community standards, long-term accessibility is emphasized. All released materials
will be archived in a permanent public repository with version control, ensuring that they remain
accessible as dependencies evolve. By combining detailed documentation, transparent reporting,
and open resources, we aim to make our work fully reproducible and to encourage further extensions
and critical evaluation by the research community.
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A NOTATION SUMMARY

Table 2: Notation Summary

Symbol Description
X = {Q,XL} Input sequence consisting of query Q and all-masked sequence XL

Q Input query provided to the diffusion-based LLM
XL Fully masked sequence to be partitioned into blocks
B = {b1, . . . , b|B|} Set of begin anchors inserted at block heads
C = {C1, . . . , C|B|} Set of blocks obtained from XL

E = {e1, . . . , e|E|} Set of end anchors to be infilled at block tails
Ci The i-th block after begin anchor insertion and expansion
|Ci| Current length of block Ci during expansion
y Predicted subsequence scanned within block Ci

c Confidence threshold for partial end-anchor detection
∆ Expand size: number of tokens added per expansion step
M Maximum allowed length of a block Ci

Infer(X) Diffusion-based inference function applied to sequence X
Conf(y) Confidence score assigned to subsequence y

B EXPERIMENTAL SETTINGS

Table 3: Experimental Settings

Category Setting
Model Dream-7B-Base / Dream-7B-Instruct
Datasets(Max new tokens) GSM8K(256), MATH-500(512)
Evaluation Metrics Format Score, Answer Score, Anchor Retention Rate
Confidence Threshold c 0.065,0.05
Expand Size ∆ 4,4
Max Block Length M 512,512
Diffusion Steps 512,512
Batch Size 1,3
Total Samples GSM8K: 1319, MATH-500: 5000
Hardware NVIDIA vGPU-32G, vGPU-48G
Framework PyTorch 2.5.1, Python 3.10.16

C CASE STUDY

C.1 BASE MODEL

"query": "Brandon’s iPhone is four times as old as Ben’s iPhone.
Ben’s iPhone is two times older than Suzy’s iPhone. If Suzy’s
iPhone is 1 year old, how old is Brandon’s iPhone?", "method":
"Base", "output": "<think> Suzy’s iPhone is 1 year old. Ben’s
iPhone is two times older than Suzy’s iPhone, so Ben’s iPhone is 2
years old. Brandon’s iPhone is four times as old as Ben’s iPhone,
so Brandon’s iPhone is 4 years old. So the answer is 4 years
old.</think><answer> 4 </answer>\n\n", "flaw": "Content out of
anchor"
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"query": "Well’s mother sells watermelons, peppers, and oranges
at the local store. A watermelon costs three times what each
pepper costs. An orange costs 5 less than what a watermelon cost.
Dillon is sent to the store to buy 4 watermelons, 20 peppers, and
10 oranges. What’s the total amount of money he will spend if
each pepper costs 15$?", "method": "Base", "output":
"<<think>First, I need to find the cost of a watermelon. Since a
watermelon costs three times what each pepper costs, and each
pepper costs 15$, I can multiply 15 by 3 to get the cost of a
watermelon. 15 * 3 = 45. So a watermelon costs 45$.\n\nNext, I
need to find the cost of an orange. Since an orange costs 5 less
than what a watermelon costs, and a watermelon costs 45$, I can
subtract 5 from 45 to get the cost of an orange. 45 - 5 = 40. So
an orange costs 40$.\n\nNow, I need to find the total amount of
money Dillon will spend. He is buying 4 watermelons, 20 peppers,
and 10 oranges. I can calculate the total cost by multiplying the
cost of each item by the number of items and adding them
together.\n\nFor the watermelons: 4 * 45 = 180\nFor the peppers:
20 * 15 = 300\nFor the oranges: 10 * 40 = 400", "flaw": "Missing
anchors"

C.2 INSTRUCT MODEL

"query": "Peter plans to go to the movies this week. He always
gets a ticket for $7 and popcorn for $7. If he has 42 dollars for
the week, how many times can he go to the movies?", "method":
"Instruct", "output": "<think><answer>3 times</answer>", "flaw":
"Missing anchors. Incomplete response."

"query": "Peter plans to go to the movies this week. He always
gets a ticket for $7 and popcorn for $7. If he has 42 dollars for
the week, how many times can he go to the movies?", "method":
"Instruct", "output": "" <think>$21</think>"", "flaw": "Missing
anchors. Incomplete response."

C.3 INFILLING METHOD

"query": "Peter plans to go to the movies this week. He always
gets a ticket for $7 and popcorn for $7. If he has 42 dollars for
the week, how many times can he go to the movies?", "method":
"Infilling method", "output": "" <think>...</think>
<answer>....</answer> <think>.</think> <answer>....</answer>
<think>....</think> <answer>....</answer> <think>....</think>
<answer>....</answer> <think>....</think> <answer>....</answer>
<think>....</think> <answer>....</answer> <think>....</think>
<answer>....</answer> <think>....</think> <answer>....</answer>
<think>....</think> <answer>....</answer>
<think>....</think><answer>....</answer> <think>....</think>
<answer>....</answer> <think>....</think> <answer>....</answer>
<think>....</think> <answer>....</answer> <think>....</think>
<answer>....</answer> <think>....</think> <answer>....</answer>
<think>....</think> <answer>....</answer>
<think>....</think><think>....</think> <answer>....</answer>
<think>....</think> <answer>....</answer>"", "flaw": "Broken
response."

"query": "Kyle bought last year’s best-selling book for $19.50.
This is with a 25% discount from the original price. What was the
original price of the book?", "method": "Infilling method",
"output": "" <think>25</think> <answer>25</answer> \nThe
question:\n"", "flaw": "Content out of anchor. Incomplete
response."
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C.4 DIA

"query": "Charlie wants to sell beeswax candles. For every pound
of beeswax, he can make 10 tapered candles. One pound of beeswax
and the wicks cost $10.00 in supplies. If he sells each candle
for $2.00 each, what is his net profit if he makes and sells 20
candles?", "method": "DIA", "output": ""<think>First, I need to
figure out how much candles Charlie can make with 20 candles.
Since he can make 10 candles from one pound of beeswax, he can
make 20 candles from 2 pounds of beeswax. The pound of beeswax
costs $10, so 2 pounds will cost $20. The total of supplies is
$20. Now, I need to calculate out how much money he will make
from selling 20 candles. Since he sells each candle for $2, he
will make 20 x $2 = $40. Now, I need to subtract the cost of
supplies from the amount he will make from selling the candles.
So, $40 - $20 = $20. Therefore, Charlie will profit a net of
$20.00 and makes and sells 20 candles0</think><answer>
20</answer>"", "flaw": "None."

"query": "John drives for 3 hours at a speed of 60 mph and then
turns around because he realizes he forgot something very
important at home. He tries to get home in 4 hours but spends the
first 2 hours in standstill traffic. He spends the next half-hour
driving at a speed of 30mph, before being able to drive the
remaining time of the 4 hours going at 80 mph. How far is he from
home at the end of those 4 hours?", "method": "DIA", "output":
""<think>First, I need to calculate the distance John traveled
away. He drove for 3 hours at 60 mph, so the distance is 60 * 3 =
180 miles. Then, he turned around and tried to get home in 4
hours. He, spent the first 2 hours in standstill traffic, so he
didn’t cover any distance during that time. He, then spent the
next half-hour driving at 30 mph, so the covered distance is 30 *
0.5 = 15 miles. He, spent the remaining 2 hours driving at 80
mph, so the covered distance is 80 * 2 = 160 miles. The, the
total distance he covered while coming back is 15 + 160 = 175
miles. Since, he traveled 180 miles away from home and then
covered 175 miles back,,, he is distance from home at 180 - 175 =
5 miles. the end of those 4 hours, he, he, 55555555555555
miles5</think><answer>5 miles</answer>"", "flaw": "Generation
length prediction not completely accurate."

D DLLM PROMPT TEMPLATE

Table 4: Example of Prompt Design

Field Content
Instruction You are a helpful assistant that helps the user to solve the question.
Output Format You need to think first and then answer the question briefly by following

the format:< think > ... < /think >< answer > ... < /answer >.
Input Here are the questions: {QUESTION}

E USAGE OF LLMS

In accordance with the ICLR guidelines, we disclose the use of large language models (LLMs) in
the preparation of this paper. LLMs were employed exclusively as a writing assistance tool for
language polishing, grammar refinement, and improving readability. They were not involved in
research ideation, experimental design, data analysis. All technical ideas, theoretical developments,
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proofs, and experimental results presented in this paper are entirely the work of the authors. The
authors take full responsibility for the accuracy and integrity of the final submission.
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