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Abstract

Developing efficient and expressive representations of 3D
scenes is a pivotal problem within 3D computer vision.
The state-of-the-art approach is based on utilizing 3D point
clouds, which is inefficient in data utilization. In this pa-
per, we propose a neuro-symbolic approach leveraging the
Universal Scene Description (USD) language. The approach
is based on representing 3D scenes using a combination of
known objects (symbolic) and 3D point clouds (neural) for
the background. We also propose a framework called neuro-
symbolic conversion (NSC) for automatically converting 3D
scenes into the proposed neuro-symbolic representation. The
NSC framework first locates candidate objects in the 3D
point cloud representation. Next, the objects are substituted
with their compact symbolic representation while consider-
ing translations and rotations. The correctness of the substi-
tution is verified by rendering the neuro-symbolic represen-
tation and comparing the visual similarity with the original
point cloud representation (or RGB-D view). The experimen-
tal results demonstrate that our framework is highly accurate
in object identification and objection substitution. The neuro-
symbolic representations are expected to be useful for down-
stream tasks such as entity identification, activity recognition,
and object tracking.

1 Introduction

3D computer vision is vital in machine learning research,
significantly contributing to spatial perception and automa-
tion, especially in manufacturing, healthcare, and defense.
Recent advancements in 3D computer vision include en-
hanced semantic segmentation (Barbosa and Osério 2023),
robust object pose estimation techniques (Zhu et al. 2022),
and the integration of 3D vision into autonomous sys-
tems (Singh and Bankiti 2023). Traditional explicit 3D
representations, like point clouds, meshes, and voxels, en-
counter challenges in efficiently handling complex and de-
formable shapes, facing issues in accurately capturing de-
tails and managing incomplete or noisy data. Point clouds,
utilized for 3D data capture, confront challenges, notably
in quantization, leading to precision loss, and their unstruc-
tured nature creates compatibility issues with traditional ma-
chine learning techniques. Furthermore, innovative methods
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Figure 1: (left) Neural representation of background using
3D point cloud. (right) Symbolic representation of a known
object in universal scene description (USD) language. (mid-
dle) Neuro-symbolic representation of a 3D scene.

like voxel-based CNNs (Liu et al. 2019) and graph-based
approaches (Mirande et al. 2022) introduce complexities
and high computational overhead when transforming point
clouds into structured formats.

Symbolic representations of data offer computational ef-
ficiency and storage benefits, making them an attractive
choice for low-dimensional data. However, their limitations
become apparent in high-dimensional scenarios where sym-
bolic approaches may lack expressiveness to effectively cap-
ture intricate patterns, presenting challenges in preserving
the rich information associated with complex datasets. USD,
embraced in production houses like DreamWorks (Blevins
and Murray 2018), becomes an industry standard due to its
versatility and user-friendly features.

In this paper, we propose a neuro-symbolic approach
for representing 3D scenes using USD. The approach in-
tegrates known objects (symbolic) with 3D point clouds
(neural), resulting in compact and efficient neuro-symbolic
representations of intricate 3D scenes, as illustrated in Fig-
ure 1. We also propose a framework called neuro-symbolic
conversion (NSC) for converting RGB-D images (or 3D
point clouds) into the proposed neuro-symbolic representa-
tion using USD. The USD format can render back the orig-
inal RGB-D image. This bidirectional conversion adeptly
represents complex 3D scenes. It demonstrates practical ap-
plications by seamlessly substituting objects from a library
into the USD format. This framework has the potential for
efficient scene manipulation and object recognition. To the
best of our knowledge, our neuro-symbolic framework rep-
resents a pioneering exploration of USD, offering more ef-
ficient and adaptable object representations. Our main con-
tributions can be summarized as follows:



* A neuro-symbolic representation of 3D scenes in USD
format. The format supports bidirectional conversions
between RGB-D images and neuro-symbolic 3D scenes.

¢ Introducing an effective approach called neuro-symbolic
conversion (NSC) for identifying and matching objects
within a 3D scene using a predefined object library.

* The experimental results show that NSC can identify ob-
jects with 100% accuracy and substitute each object with
more than 90% similarity on average.

The organization of this paper is as follows. The remain-
der of this section reviews some closely related works. Sec-
tion 2 formulates the problem, and Section 3 describes the
proposed 3D scene to USD object conversion and reproduc-
tion method. Section 4 presents the experimental results, and
the last section concludes the paper.

Previous Works. Efficiently representing 3D data is cru-
cial with the growing use of 3D technologies in applica-
tions such as virtual reality, mobile mapping, historical ar-
tifact scanning, and 3D visualization (Sugimoto et al. 2017;
Wandersman 2023). The work (Nguyen et al. 2023) investi-
gates virtual reality technology for robot environment mod-
eling and presents a method to translate USD-based scene
graphs into Knowledge Graphs (KGs). The resulting KG,
augmented with dynamic data from a physics simulator,
acts as background knowledge for robotic decision-making,
demonstrated in a box unpacking scenario. Despite these ad-
vances, exploring deep learning with symbolic representa-
tions, like USD, remains relatively uncharted. This research
avenue holds the promise of seamlessly combining the ad-
vantages of compact 3D scene representation in efficient
USD data structure, offering potential benefits for machine
learning models to operate more efficiently.

Learning in a 3D environment is an active research area.
The unidirectional transformer-based approach (Hong et al.
2023) presents a Large Reconstruction Model, capable of
rapidly predicting 3D object models from single input im-
ages, trained on an extensive multi-view dataset for en-
hanced generalizability and performance across various test-
ing scenarios. Neuralangelo (Li et al. 2023) combines multi-
resolution 3D hash grids with neural rendering, utilizing nu-
merical gradients and a coarse-to-fine optimization strategy
to achieve superior 3D surface reconstruction from multi-
view images. Our research focuses on utilizing USD rep-
resentations of 3D objects to enhance downstream machine
learning applications within the 3D environment.

2 Neuro-Symbolic Representations of 3D
Scenes using USD

Conversion from a neural representation to a neuro-symbolic
representation requires substituting parts of neural represen-
tations with symbolic representations. This substitution re-
quires identifying objects of interest from the neural repre-
sentation and extracting essential information related to the
objects in question. The information extracted from the neu-
ral images can then be used to reconstruct a symbolic repre-
sentation of each object and can then be replaced, construct-
ing a neuro-symbolic representation. These neuro-symbolic

representations stored in USD formats can be used to store,
interpret, analyze, and view neuro-symbolic data.

2.1 Problem Formulation

Finding the solution to this complex problem can be formu-
lated using the following optimization function:

mngSIM(I, Jo) (1)

Here, the terms I and Jy are the neural image and neuro-
symbolic images with different parameters 6, respectively.
The neuro-symbolic images are generated based on the de-
tection of an object of interest from the neural image, and
then parameters (6) of the symbolic objects are optimized by
maximizing the Structural Similarity Index (SSIM) score.

3 Overview of Proposed Methodology

In this section, we provide the details of the neuro-symbolic
conversion (NSC) framework. The flow of the framework is
shown in Figure 2 and illustrated with an example in Fig-
ure 3. The input to the framework is an RGB-D image. The
output is a neuro-symbolic representation in USD. The first
step of the framework is to construct a 3D point cloud (neu-
ral) representation of the scene. The next step is to identify
and substitute portions of the image with objects of inter-
est (symbolic) from a library. The substitution is performed
such that a perception-based metric is minimized.
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Figure 2: Overall architecture of proposed NSC frame-
work explaining proposed neural and neuro-symbolic bidi-
rectional conversion procedure.

3.1 Bidirectional Conversion

The process of seamlessly converting images to and from
USD involves harnessing the high-performance capabilities
of the USD software platform. In the forward process, RGB
and depth images are rendered from existing USD files. This
bidirectional conversion process ensures a holistic trans-
formation between neural representations and symbolic de-
scriptions. According to the USD 1.0 specification, a USD
can contain different primitive objects. These primitive ob-
jects are the nodes that store the mesh and other objects (e.g.,
lights, cameras, etc.) of a scene. These USD files can then be
rendered using a USD rendering engine. We utilize “PointIn-
stancer” to store the neural point cloud data and primitive
types to store symbolic library objects in NSC.

Conversely, in the reverse process, USD files are gener-
ated from RGB-depth images. For instance, RGB and depth
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Figure 3: Semantic segmentation guides the extraction of object point clouds, analyzed for primitive object properties
(Params;). These properties drive the placement of primitives in the scene, facilitating USD reconstruction.

frames captured from DARPA Airsim are utilized in our spe-
cific implementation to form the basis for USD scene gener-
ation. This intricate conversion process is performed using
USD-core and Kaolin libraries.

3.2 TImage to Object-wise USD Scene Generation

This step involves semantic segmentation, point-cloud gen-
eration, object selection and identification, reconstruction,
and USD export. Consider the capture of RGB color im-
ages, denoted as Irgp, and depth images, denoted as Ipepin,
from the Airsim environment. To semantically segment the
color images, a proposed open-set semantic segmenter is
applied, producing semantic segmentation maps denoted as
Mgemantic- Concurrently, the depth images are utilized to gen-
erate point-cloud information represented as Pcjoyg-

The semantic segmentation maps Mgemanic are then intri-
cately projected onto the point-cloud data Pgjeug. This pro-
jection serves the purpose of symbolically identifying dis-
tinct objects within the 3D environment. Mathematically,
this projection operation can be expressed as.

OSymbolic = ProjeCt(MSemamic» PCloud) )

Here, Osymbolic 1S the set of symbolically identified objects
from the scene. Subsequently, individual objects are se-
lected from the symbolic identification Ogymboiic and un-
dergo direct USD export or reconstruction from the point-
cloud information to form 3D meshes. Let M; denote the
mesh of the i" object, and O; represent the ‘" selected
object. The reconstruction operation can be represented as:
M; = Reconstruct(O;, Peioud)-

3.3 Image to Object-Wise Property Extraction

The object property extraction from images involves project-
ing a semantic segmentation map Msemantic to identify object
point clouds Fopjec: as shown in Figure 3. The object-wise
point clouds are then analyzed to extract parameters § =
{location, rotation, color, ...} characterizing each primi-
tive object. These parameters are utilized to place primitives
in the scene. Finally, a USD scene is reconstructed by op-
timizing the parameter set # using equation 1, combining
primitives and their extracted properties. The objective of
this step is to ensure the effective extraction and utilization
of object properties within the USD environment.

The proposed method NSC is outlined in Algorithm 1.
The goal is to find the best match between a test image
and library objects. Using GradCAM (Selvaraju et al. 2017),

Algorithm 1: Neuro-Symbolic Conversion

Require: Neural image [y, SymbolicObjectLibrary(SOL)
Ensure: Neuro-Symbolic representation of 3D image

1: function MATCHOBJECTS ({5, SOL)

2 for each object of interest O; in SOL do

3 GradCAM identifies point cloud of O;: Ppject

4: for each identified point do

5: Remove pixel: Iinodified <= Jrest \ Pobject

6 for each object 0 set do

7 Compute SSIM and MSE scores

8: Track scores for each variation
9: end for

10: Select best-matched variation O,
11: Replace removed pixel with O;
12: end for

13: end for

14: return /,gifieq + Ot

15: end function

the algorithm identifies the pixels in the test image cor-
responding to the objects of interest. Subsequently, it per-
forms pixel removal and replacement with various library
object variations, considering different orientations and col-
ors. The matching process involves computing SSIM and
Mean Squared Error (MSE) scores between the modified test
image and rendered images with library object variations.
The algorithm iterates through possible variations, keeping
track of scores for each. The best match for each object is
one that has maximum SSIM and minimum MSE scores.
The outcome is a neuro-symbolic image showcasing the
best-matched variations of the objects of interest. This ap-
proach enables efficient estimation of categorical and trans-
formational information for important objects in the scene.

4 Experimental Results

In this section, we validate NSC through two distinct 3D sce-
narios involving five different scenes featuring a red car and
a human as our objects of interest. The objective is to apply
NSC to identify point clouds representing these objects, sub-
sequently substituting them with corresponding symbolic li-
brary objects. The modified scenes are then compared with
the ground truth scenarios on SSIM and MSE metrics to
find the best match. Upon finding a highly matching object,
transformation information is extracted and stored in USD.
Ilustrated in Figure 4, NSC demonstrates notable effec-
tiveness in substituting objects within 3D scenes. The red
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Figure 4: Best matching scene selection based on the MSE.
Objects of interest are car (top) and human (bottom).

Table 1: Object (Obj.) property extraction.

Scene | Obj. | SSIM | Accur. |51;2‘ ]f:;l‘.

Car 0.98 100% | 0.003 0
Human | 0.92 100% | 0.012
Car 0.97 100% | 0.003
Human | 0.91 100% | 0.012
Car 0.97 100% | 0.004
Average 0.95 100% | 0.006 0

car, enclosed in a green box, exhibits the lowest normal-
ized MSE, indicating the highest match with the ground
truth neuro-image. MSE is normalized by the image size
(224 x 224) and multiplied by 100 for better representa-
tion. Figure 4 also showcases the top five USD represen-
tations out of 108 car object variants compared in this scene.
Table 1 reports property extractions for the corresponding
car object. A high SSIM value, along with very low errors
(Err.) in rotation (in radians) and relative depth (in meter)
as shown in Scene 1, instills confidence in the identified ob-
jects. The scene can be further annotated with the library
objects’ known attributes, facilitating numerous downstream
learning and analysis tasks efficiently. The Accur. (accu-
racy) column highlights that object identification is correct
for all instances (108 out of 108) in this example scenario.

A similar trend is observed in MSE and SSIM scores for
the human, albeit not as ideal as the car object. Humans are
correctly identified in all scenes (72 out of 72) and replaced
accurately. Our investigation reveals that the human object’s
location in the scene relative to the surroundings contributes
to poorer MSE and SSIM compared to the car object.

NSC iteratively estimates both categorical and transfor-
mational information for essential objects, facilitating the
update of object attributes within the USD library. The pre-
liminary results affirm the feasibility of NSC in intricate
neuro-symbolic Al tasks.
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5 Conclusion and Future Work

Our work demonstrates a substantial advancement in the
neuro-symbolic representation of 3D scenes. The bidirec-
tional image-to-USD conversion, object-wise property ex-
traction, and dynamic library matching highlight the effi-
ciency and adaptability of our approach. In future, we plan
to expand our method to enhance the symbolic reasoning of

machine learning models, with a specific focus on deeper
exploration of inter-symbolic relationships.
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