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ABSTRACT

Parameter Efficient Fine-Tuning (PEFT) methods have gained popularity and de-
mocratized the usage of Large Language Models (LLMs). Recent studies have
shown that a small subset of weights significantly impacts performance. Based
on this observation, we introduce a novel PEFT method, called Gaussian noise
Injected Fine Tuning of Salient Weights (GIFT-SW). Our method updates only
salient columns, while injecting Gaussian noise into non-salient ones. To identify
these columns, we developed a generalized sensitivity metric that extends and uni-
fies metrics from previous studies. Experiments with LLaMA models demonstrate
that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the
same computational budget. Moreover, GIFT-SW offers practical advantages to
recover performance of models subjected to mixed-precision quantization with
keeping salient weights in full precision.

1 INTRODUCTION

Modern LLMs demonstrate remarkable generalization capabilities on unseen tasks. However, fine-
tuning remains crucial to enhance these models performance or to restore the performance after
compression techniques like quantization (Dettmers et al., 2024; Moskvoretskii et al., 2024), prun-
ing (Frantar & Alistarh, 2023; Kim et al., 2023), or tensor decomposition have been applied. Given
the large scale of modern LLMs, fine-tuning all parameters can be computationally and memory-
intensive. To overcome this challenge, Parameter Efficient Fine-Tuning schemes have been devel-
oped, aimed to improve model performance while using limited computational and memory re-
sources.

To date, PEFT methods have not matched the accuracy of full fine-tuning (Nikdan et al., 2024),
highlighting the need for new approaches that can close this gap while still minimizing resource use.
Additionally, most PEFT methods involve adding extra parameters, which increases computational
demands.

To address those issues and enhance the performance of efficiently trained LLMs, we introduce a
novel PEFT method, GIFT-SW. This approach focuses on updating a small subset of salient weights
while injecting noise into the non-salient weights. The development of this method is grounded in
observations from previous studies and the related questions they raise, which we aim to answer:

Previous research has shown that there is a small subset of salient weights which can significantly
affect the effectiveness of post-training quantization (PTQ) (Dettmers et al., 2022; 2023; Kim et al.,
2023) and pruning techniques (Yin et al., 2023; Frantar & Alistarh, 2023; Sun et al., 2023). More-
over, Gurnee et al. (2024) identified a group of ”universal neurons” that are critical to a model’s
functionality, emphasizing the importance of selecting and updating these salient weights. Question
1: Does updating a small subset of salient weights is sufficient to adjust the model?

Recent studies have demonstrated that Perturbed Gradient Descent (PGD), with noise injections
applied both before and after the gradient step, can stabilize convergence and help prevent overfit-
ting (Poole et al., 2014; Zhu et al., 2018; Jin et al., 2021). Question 2: Does Injecting Noise helps
convergence?

PGD is commonly employed to enhance model robustness by approximating the quantization pro-
cess (Shvetsov et al., 2022; Shin et al., 2023; Défossez et al., 2021). This increased robustness
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can aid in maintaining the quality of the quantized model. Question 3: Does injecting noise helps
robustness?

Selecting salient weights is a significant challenge, particularly in quantization and pruning, and it
is central to our method. In our paper, we derive a general formulation for all previously established
saliency metrics and present experiments to compare their effectiveness.

The main contributions of our work can be summarized as follows:

• We introduce a novel PEFT method for pre-trained and quantized LLMs, called GIFT-SW.
It is designed to fine-tune weights in salient columns while injecting Gaussian noise into
non-salient weights, which are kept frozen during training.

• We generalize sensitivity metrics for identifying salient columns in pre-trained LLMs. We
compare various novel and existing instances of the proposed general form and identify a
new metric, which on average outperform previously studied in the literature metrics (Xiao
et al., 2023; Lee et al., 2024).

• Experiments demonstrate that GIFT-SW outperforms modern PEFT methods and full fine-
tuning baselines across most zero-shot tasks. GIFT-SW for LLaMA models achieve com-
parable accuracy to the corresponding state-of-the-art TÜLU2 models, despite fine-tuning
only 3% of the parameters and utilizing ten times less computational resources.

We provide the code with GIFT-SW integrated into the popular PEFT library Mangrulkar et al.
(2022), making it easy to use 1.

2 RELATED WORK

2.1 PARAMETER EFFICIENT FINE-TUNING OF LLM

One of the most popular method with high efficiency is LoRA (Hu et al., 2021), which trains the
low-rank adapters. Recent modifications to the method aim to improve the initialization of the
adapters (Liu et al., 2024) and enhance the low-rank representation of pre-trained weights by adding
sparse adapters (Nikdan et al., 2024). Another improvement of the learning capacity of LoRA is
given by DoRA (Liu et al., 2024), which fine-tunes magnitude and direction components of the pre-
trained weights. This method achieves considerable performance across various fine-tuning tasks.

2.2 SALIENT WEIGHTS IN LLMS

The identification of salient weights2 is one of the main problems in weight pruning. Recently, sev-
eral approaches have been proposed to identify such weights in LLMs, including SparseGPT (Fran-
tar & Alistarh, 2023), Wanda (Sun et al., 2023), and OWL (Yin et al., 2023).

Dettmers et al. (2022) demonstrated that a small subset of outliers in input activations has a substan-
tial impact on LLM performance, highlighting the relationship between the activation outliers and
the salient weights. Many subsequent Post-Training Quantization (PTQ) methods used similar or
identical pruning metrics to identify these salient weights (Dettmers et al., 2023; Xiao et al., 2023;
Lee et al., 2024).

In our work, we generalize the identification metrics for salient weights by considering metrics from
both the literature on pruning and quantization.

2.3 STRUCTURED AND NON-STRUCTURED SALIENT WEIGHTS SELECTION

Since salient weights represent only a small percentage of all weights, a simple approach to preserve
them is storing them in a sparse matrix. Dettmers et al. (2023) showed this method is computation-
ally efficient and enhances performance. Meanwhile, Xiao et al. (2023) found that activation outliers
are limited to a few weight channels, which SmoothQuant addresses by identifying outlier columns

1https://anonymous.4open.science/r/GIFT_SW-D66B/README.md
2In our work, we use the terms salient weights and weight outliers interchangeably.
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Figure 1: GIFT-SW procedure follows Equation 2. First, a subset of salient columns is selected.
During training, the non-salient weights are frozen and perturbed at each step with Gaussian noise,
based on the quantization error of the non-salient weights. Only the salient weights receive gradi-
ents and are updated during the optimization step. In GIFT-SW, any compression technique, such
as quantization, pruning, or tensor decomposition, can be applied to non-salient weights, since fine-
tuning is performed exclusively on salient weights without altering the structure of the non-salient
weights. In our experiments, we select only 128 columns of salient weights, unless specified other-
wise.

with a small calibration dataset. This idea is expanded in QUIK (Ashkboos et al., 2023), where out-
lier columns are kept at full precision while others are quantized using GPTQ (Frantar et al., 2022).
OWQ (Lee et al., 2024) follows a similar approach but utilizes an OBD-based metric (LeCun et al.,
1989).

Given the lack of literature on whether structured or unstructured salient weight selection yields
better results, and motivated by the computational efficiency noted in (Ashkboos et al., 2023), we
adopt structured column-wise salient weight selection in our work.

2.4 NOISE INJECTIONS

In this section, we briefly describe Gaussian Noise Injections (GNI) and its benefits. Then we discuss
studies which show close similarity between quantization noise and Gaussian Noise. Therefore, to
examine our third question, we sample noise relative to quantization levels, leaving other sampling
options for future work.

Gaussian Noise Injections (GNI). Perturbed Gradient Descent (PGD) is a family of methods that
involve adding or multiplying weights with samples from some random distribution, during an op-
timization procedure. Gaussian noise injection (GNI) after the gradient step helps to escape saddle
points efficiently in non-convex optimization (Jin et al., 2021). However, Gaussian noise injections
before the gradient step helps to escape from the spurious local optimum (Zhu et al., 2018).

In our work, we use GNI before evaluating the gradient. To prevent variance explosion, Orvieto et al.
(2023) recommend adding noise to only one layer per training iteration, demonstrating that GNI acts
as a regularization method. Liu et al. (2023) investigate fine-tuning pre-trained language models with
GNI, suggesting an initial learning of layer-wise variance parameters for noise distributions before
adding noise to all weights. Their results indicate this approach outperforms independent layer-wise
noise injections.

Quantization Noise Injections (QNI). Quantization aware training (QAT) is applied to mitigate
accuracy degradation after quantization. However, uniform quantization 3 Q is a non-differentiable

3For the reader not familiar with uniform quantization, we discuss it in more details in Section A.
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Table 1: Mean accuracy of LLaMA models fine-tuned with various instructive datasets and different
methods.

LLaMA2-7b LLaMA2-13b LLaMA3-8b
TÜLU-V2-mix OpenOrca TÜLU-V2-mix OpenOrca TÜLU-V2-mix OpenOrca

FT 71.97 71.88 75.09 75.21 76.13 77.02
LoRA 71.78 70.89 74.03 74.01 75.91 75.63
DoRA 72.03 70.97 73.97 73.96 75.89 75.72

GIFT-SW 73.33 72.33 75.93 76.02 76.37 76.78

operation. For simplicity, it can be expressed as a composition of scaling and rounding operations,
Q(W) = ∆

⌊
W
∆

⌋
. In terms of QAT operation Q can be efficiently approximated with quantization

noise ξ such that ξ = Q(W)−W Défossez et al. (2021); Shvetsov et al. (2022); Shin et al. (2023).
Thus, training models with QNI is exactly the same as employing PGD with GNI before evaluating
the gradient.

Under some assumptions the noise ξ induced by uniform quantization can often be modeled by
an additive noise that is uniformly distributed, uncorrelated with the input signal, and has a white
spectrum (Widrow et al., 1996). However in practice, the conditions are often not satisfied. There-
fore employing Gaussian distributionN (µ, σ2) for ξ typically yields improved outcomes (Défossez
et al., 2021; Shvetsov et al., 2022).

Although GNI is beneficial for model training there is no clear answer on how to choose noise pa-
rameters. Liu et al. (2023) determine noise parameters such that KL divergence between original and
perturbed weights is minimized. Shin et al. (2023) identify parameters of the Gaussian distribution
to resemble the weight distribution with a scale proportional to quantization step.

2.5 STRAIGHT THROUGH ESTIMATOR

The most popular QAT technique incorporating quantization operation into the traning process is
Straight Through Estimation (STE)4 (Bengio et al., 2013; Shang et al., 2023), which basically re-
parameterizes gradients. However, Défossez et al. (2021) demonstrated that STE has some disadvan-
tages compared with QNI5, as STE is biased and may cause weight oscillation between quantization
steps. Shin et al. (2023) demonstrated that pretraining models for the following quantization with
QNI instead of STE results in better performance. More technical details are provided in Section C.

3 METHOD

GIFT-SW consists of the following steps:

(1) Identify a fixed number of salient columns using a chosen sensitive metric, based on a small
calibration set. This number remains consistent across all layers.

(2) Split columns of the matrices into subsets of salient columns and regular ones.

(3) During training, add noise to the weights in non-salient columns and update weights only
in the salient columns.

Thus, the method depends on two main design choices: 1) how to choose salient columns and 2)
the parameters of noise injections. We cover the choice of metrics in Section 3.1. Noise injection
details are provided in Section 3.2.

3.1 GENERALIZING PARAMETER SENSITIVITY METRICS

Several approaches have been proposed recently to identify weights sensitive to quantiza-
tion (Dettmers et al., 2023) or pruning (Sun et al., 2023). We generalize them as metrics for sensitiv-
ity to perturbations, and by applying these metrics, we determine which columns are more suscepti-

4More details on STE can be found in Section C.
5Event though QNI and GNI are identical operations for consistency and clarity, in the case of quantization

we will refer to this procedure as Quantization Noise Injections (QNI)
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Table 2: Mean accuracy of quantized and then fine-tuned models. For fine-tuning we used TÜLU-
V2-mix.

Bits Method LLaMA2-7b LLaMA2-13b LLaMA3-8b

4 bit
STE 72.43 75.29 74.84
QUIK + LORA 63.99 71.08 74.27
GIFT-SW 72.53 74.50 75.46

3 bit
STE 69.82 74.37 70.24
QUIK + LORA 62.91 71.30 71.65
GIFT-SW 71.00 74.34 73.27

2 bit
STE 58.20 62.19 48.96
QUIK + LORA 41.44 47.14 53.80
GIFT-SW 61.09 67.61 58.89

ble to degradation. Therefore, we avoid adding noise to such columns and use them to fine-tune the
model.

The proposed sensitivity metric is written for a column j of weight matrix W as

sj = ∥Dj∥τ∥Xj∥γρ , (1)

where Dj is a measure of weights perturbation, sj denotes sensitivity of the column to perturbations,
X is the input feature, and γ takes on one of the following values 1/2, 1, 2. As discussed in Sec-
tion 2.4 we could apply GNI as a source of perturbations, then we would compute Dj = W:,j + ξ.
However, sampling noise ξ is not deterministic. To approximate an influence of the noise ξ we
utilize perturbations caused by quantization.6 That would lead to Dj = W:,j − Q(W:,j), where
Q(W:,j) corresponds to the weights subjected to uniform symmetric quantization (see Appendix
A).

The input feature X for each layer is computed using a number of random sentences from a cali-
bration dataset. After that, sensitivity values sj are estimated for individual columns. Columns with
the highest values are identified as the salient columns. Some details about the calibration dataset is
described in Section 4.1.

The metric given by Equation 1 is closely related to those studied in the recent literature on
quantization. In particular, the metric ∥X∥∞ is employed in QUIK (Ashkboos et al., 2023) and
SmoothQuant (Xiao et al., 2023). OWQ (Lee et al., 2024) adopts λj∥Dj∥22, where λj = ∥Xj∥22 is
the j-th diagonal element of the Hessian matrix H for the layer quantization error. It can be seen, that
the sensitivity metric used in OWQ is a modification for column quantization of the salience mea-
sure provided in OBD (LeCun et al., 1989) for network pruning. A metric proposed in Wanda (Sun
et al., 2023) is element-wise variant of the metric ∥Dj∥1∥Xj∥2, which can be easily obtained from
Equation 1 with pruning as a source of perturbations for Dj .

In contrast to Wanda, we use l∞ norm in our general Equation 1 due to the following observations,
examples contained in a calibration dataset induce different values of the input feature, a use of l2
norm leads to averaging of the values along input channels. Therefore, the appearance of the outlier
values in the input activation can be obscured by a large number of lower values. The same conclu-
sions can be also applied to the weight error. In the case of the l2 norm, the error for each channel
includes all deviations between the quantized and original weights. Therefore, rare considerable
errors can be mitigated by a large number of small deviations.

3.2 QUANTIZATION NOISE INJECTION

To enhance our fine-tuning procedure with QNI, we avoid perturbing sensitive weights. After identi-
fying sensitive or salient columns, we inject quantization noise only into non-salient columns across
all layers, as shown in Figure 1.

The scale parameters of the Gaussian noise are determined by the quantization step sizes, which are
computed for each layer prior to the training process.

6Optionally, one could use weight pruning as a source of perturbations or any other.
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For the weight matrix W of a given layer in the model, the process of noise injection can be de-
scribed as follows. During each forward pass in the training phase, we first sample elements of
noise matrix Ω from standard normal distribution N (0, 1). Subsequently, the matrix Ω is scaled
with the quantization step size ∆. Finally, we add scaled noise to weights of non-salient columns
W[:,¬salient]. The operation of the noise injection ℧ is given as

℧(W) =

{
W[:,salient],

W[:,¬salient] +
1
2diag(∆)Ω

, (2)

where diag(∆) is the diagonal matrix with elements of the vector ∆.

Only weights of the salient columns W[:,salient] are updated during training, whereas weights of other
columns W[:,¬salient] are frozen. We do not inject noise to salient weights since small perturbations
in them can cause high model degradation.

The quantization step size ∆ is determined only for weights in non-salient columns W[:,¬salient].
To closer match the initial distribution of the weights, quantization scale factors including in ∆ are
estimated for each row individually. For i-s row the scale factor ∆i is computed as:

∆i =
αi

2b−1 − 1
, (3)

where b is the bit-width and αi is the quantization parameter. As in quantization methods, smaller
bit-width b corresponds to higher quantization noise. The parameter αi is estimated by optimizing
weight error through linear search as discussed in Appendix A.

Based on Equations 2 and 3, the variance of the injected noise is determined by the distribution of
non-salient weights across rows. We exclude salient columns from this distribution, as the salient
weights may induce large quantization error and distort row-wise scale factors. This approach helps
us to minimize the noise variance, which, in turn, leads to a reduction in the deviation of the non-
salient weights during training.

Sampling noise in this manner enables the quantization pre-training discussed in Section 6.3.

4 EXPERIMENTS

In this section, we describe the experimental procedure used to test the performance of GIFT-SW
compared to others. Training details could be found in Appendx D

4.1 DATA

Following previous studies (Nikdan et al., 2024; Hu et al., 2021; Liu et al., 2024), we focus on the
instruction tuning task. For this purpose, we use the TULU-V2-Mix as the main source of data (Ivi-
son et al., 2023), as it encompasses a wide range of instructions from different sources. This dataset
has been filtered, contains a substantial amount of data without being too large, and models tuned
to this set show superior performance. Additionally, we utilize the OpenOrca dataset (Mukherjee
et al., 2023) to demonstrate that our method does not depend on a specific set of instructions.

The sensitivity metrics to find salient columns are estimated based on 512 random sentences from
the Pile validation dataset (Xiao et al., 2023).

4.2 BASELINES

We consider several baselines for both full precision and quantized experiments. All baselines are
applied to LLaMA2-7b, LLaMA2-13b and LLaMA3-8b.

Full precision version includes the choice of baselines, following recent studies Liu et al. (2024);
Nikdan et al. (2024). We employ:

• LoRA is a widely used adapter-based method (Hu et al., 2021)
• DoRA is modification of LoRA outperforming all current PEFT methods (Liu et al., 2024)

6
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Figure 2: Mean performance of different fine-tuning approaches for LLaMA models with scaling
data budget. GIFT-SW shows superior performance with nearly all data budgets, also being as stable
as full fine-tuning.

• FT is full fine-tuning of all parameters

We do not include PEFT methods connected with prompt tuning, as they show worse performance
compared to adapter-based methods (Xu et al., 2023).

Quantized version is presented by baselines of only weight quantization at {4, 3, 2} bit-widths:

• STE is quantization-aware fine-tuning of all parameters of a pre-trained model (Bengio
et al., 2013). During fine-tuning all parameters are trained, but 128 salient columns are
updated in full-precision without quantization.

• QUIK + LoRA is an application of LoRA to the QUIK quantized model. Only low-rank
adapters are trained, while the quantized weights and the salient weights are frozen.

QUIK is a mixed-precision quantization method, that leverages GPTQ for quantization non-salient
columns, while keeping the salient weight in full-precision (Frantar et al., 2022; Ashkboos et al.,
2023). Due to the techniques, QUIK achieves the highest performance among PTQ methods, such
as GTPQ (Frantar et al., 2022), AWQ (Lin et al., 2023), SmoothQuant (Xiao et al., 2023).

4.3 EVALUATION AND DATASETS

We perform a comprehensive evaluation measuring zero-shot performance on HellaSwag (Zellers
et al., 2019), BoolQ (Clark et al., 2019), WinoGrande (Sakaguchi et al., 2021), PiQA (Tata & Patel,
2003), ARC-easy, and ARC-challenge (Clark et al., 2018) using the LM Eval Harness (Gao et al.,
2023). The choice of baselines is similar to those in previous studies (Egiazarian et al., 2024; Frantar
et al., 2022; van Baalen et al., 2024).

We demonstrate average accuracy across all the datasets, detailed per-dataset comparison can be
found in Section E.

4.4 COMPUTE BUDGET

In all experiments, the number of salient columns in the models is fixed at 128. Furthermore, we
fix our training budget at 500 training iterations, unless specified otherwise. According to a recent
study (Komatsuzaki, 2019), it is more effective to train for one epoch with a larger dataset rather
than multiple epochs with less data. Therefore, all 500 iterations are performed within one epoch
with no instruction repetitions.

7
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Table 3: Comparison of Performance and Compute for LLaMA2 Models using our fine-tuning
method versus original TÜLU2 models. Note: Compute values are represented as Trainable Param-
eters / Iterations.

LLaMA2-7b LLaMA2-13b
Performance Compute† Performance Compute†

TÜLU2 73.49 6.7B / 5K 75.51 13B / 5K
TÜLU2-DPO 73.8 6.7B / 5K 75.53 13B / 11K

GIFT-SW 73.33 174M / 500 75.93 272M / 500

Table 4: Performance of LLaMA2 and TÜLU2 models after QUIK quantization with salient
columns selected via various metrics. Weight perturbation is given by Dj = W:,j −Q(W:,j).

Bits Model ∥Dj∥22∥Xj∥22 ∥Dj∥∞∥Xj∥∞ ∥Xj∥∞ ∥Dj∥∞∥Xj∥1/2∞ ∥Dj∥∞∥Xj∥2∞

4 bit

LLaMA2-7b 69.86 69.85 69.68 69.55 69.52
TÜLU2-7b 72.94 73.17 72.77 72.22 72.78
LLaMA2-13b 72.92 72.99 72.83 72.83 72.56
TÜLU2-13b 75.12 74.86 75.19 75.47 75.17

3 bit

LLaMA2-7b 67.50 68.31 67.47 68.09 67.86
TÜLU2-7b 70.91 71.30 70.85 71.14 70.88
LLaMA2-13b 71.92 71.59 72.10 71.77 71.45
TÜLU2-13b 74.33 74.07 74.07 74.09 74.31

2 bit

LLaMA2-7b 45.86 46.78 45.99 46.81 46.83
TÜLU2-7b 54.84 46.85 46.78 48.56 48.20
LLaMA2-13b 57.07 57.36 51.83 57.30 56.73
TÜLU2-13b 59.62 59.62 59.43 60.67 59.39

‘

5 RESULTS

In this section, we present the results of our computational experiments and answer the questions
posed in Section 1. In short, our results are as follows:

Q1: The results confirm that fine-tuning a subset of salient weights produces results comparable
to those obtained using low-rank adapters.

Q2: Noise injections lead to improved model performance.

Q3: We could not confirm that models trained with noise injections are more robust to further
degradation.

5.1 FULL PRECISION

The average performance across evaluation benchmarks for full precision models is presented in
Table 1. GIFT-SW generally shows superior metrics across most models and instruction sets. How-
ever, we observe slight underperformance in LLaMA3 on the OpenOrca subset, where full training
proves superior. This issue likely stems from the choice of learning rate and schedule, which can
impact the tuning of outliers.

5.2 QUANTIZED MODELS

We present the averaged performance of models quantized with different precision (4, 3, 2) in Ta-
ble 2. For 4 and 3 bits GIFT-SW achieves comparable quality with STE, however, latter one requires
significantly more compute. In the 2-bit setting, GIFT-SW shows a substantial quality improvement,
surpassing the second-ranked model by over 5 points.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Mean performance for quantized models with or without applying GIFT-SW before or after
quantization, results are demonstrated for LLaMA2-7b model.

Method 4 bit 3 bit 2 bit
Salient FT 72.82 71.06 59.82
Pre-GIFT-SW 73.15 70.24 47.08
Post-GIFT-SW 72.53 71.00 61.09

Table 6: Mean Performance of LLaMA models with and without Noise Injection for fine-tuning
weights in salient columns and full model fine-tuning

Model Salient Columns FT Full FT
w/ Noise w/o Noise w/ Noise w/o Noise

LLaMA2-7b 73.33 73.16 71.64 71.97
LLaMA2-13b 75.93 74.80 74.58 75.09
LLaMA3-8b 76.37 75.45 76.32 76.13

5.3 COMPARISON WITH TÜLU2

We compare GIFT-SW with TÜLU2 models (Ivison et al., 2023), which are LLaMA2 models full
fine-tuned using instructions TULU-V2-Mix, and then aligned with DPO (Rafailov et al., 2023).
These models are among the top-performing LLaMA2 modifications but demand significant com-
putational resources.

In Table 3, we show that by applying GIFT-SW with significantly lower computational budget (a
smaller number of parameters and iterations) we achieve comparable results for LLaMA2-7b and
outperform TÜLU2 for 13b.

5.4 SCALING PROPERTIES

We perform experiments to explore the performance of GIFT-SW and baselines with scaling data
using LLaMA2 and LLaMA3 models. To achieve better metrics, we set the learning rate for LoRA
and DoRA as in full-precision experiments (Section 5.1). The results reported in Figure 2 show
that while LoRA and DoRA exhibit unstable performance with scaling data, our method and full
fine-tuning are more stable. Moreover, our method consistently ranks first across nearly all data
budgets.

6 ABLATION

6.1 COMPARISON SENSITIVITY METRICS

We study sensitivity metrics with respect to different noise levels (various perturbation magnitudes),
which translate into varying quantization precision. In this experiment, the non-salient weights of
LLaMA2 and TÜLU2 with 7B and 13B parameters. Models are quantized with QUIK, the salient
weights are not updated. We select 128 columns of salient weights.

Mean results for zero-shot tasks in Table 4 show that for most precisions, the best performance is
achieved with salient columns identified by Equation 1 with γ = 1, ρ = ∞, τ = ∞ (second col-
umn). Columns identified by the squared l2 norm of the input feature (the OWQ metric) show better
performance only for TÜLU2 quantized to 3 and 2 bits. Choosing salient columns solely by the input
features (the QUIK metric) leads to underperformance, especially for 2 bit. Therefore, identifying
salient columns sensitive to quantization noise requires considering both the weight quantization
error and the maximum values of input activation.

Based on the results, we chose the best-performing sensitivity metric with γ = 1, ρ = ∞, τ =
∞. However, the results do not reveal a clear rule for selecting the optimal sensitivity metric, as
performance varies across different bit-widths and models with no discernible pattern. This remains
an area for future research.

9
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6.2 NOISE INJECTION IMPACT

To ablate the importance of QNI in the full-precision setting, we measure the mean performance
of LLaMA2 models with and without noise injections for both salient columns fine-tuning and full
fine-tuning. In the latter case, the noise is applied to the entire weight matrix.

The results in Table 6 show that QNI consistently enhances the performance of outlier fine-tuning.
Although QNI can reduce performance when applied to the entire network, it still benefits LLaMA3-
8b. Notably, outlier fine-tuning outperforms full fine-tuning, but only when QNI is used.

6.3 QUANTIZATION BEFORE AND AFTER TRAINING

From studies related to QAT, it is known that pre-training a model with noise injection enables to
improve its predictive capabilities after quantization (Défossez et al., 2021; Shvetsov et al., 2022).
Based on those observations, in this section we examine the performance of the quantized LLaMA2-
7b after fine-tuning full precision salient columns in several settings:

• Pre-GIFT-SW. Applying GIFT-SW prior to the quantization.

• Post-GIFT-SW. Applying GIFT-SW after the quantization.

• Salient FT. Fine-tuning salient columns after quantization with no noise injected

In the case of the pre-training, the bit-width for the model quantization corresponds to the noise level
injected during the training. For the post-training, the noise injection is always performed at 4 bit.

Table 5 presents the average scores achieved by the models across evaluation benchmark. In the
case of 4 bit quantization the Pre-GIFT-SW model considerable outperforms other models. But in
the case of 3 and 2 bits, fine-tuning salient columns after quantization enables to achieve quantized
models better generative capabilities.

It can be explained by significant deviation of the quantized weights from their original values that
is induced by the extremely low-bit quantization. As a result, the interrelations between the salient
weights and the quantized weights are disrupted, and the positive effect of pre-training disappears.
However, post-training of the salient weight enables to form them new relations with other weights,
so the model partially recovers its generative capabilities.

Also it can be observed that application of Post-GIFT-SW and Salient FT to model quantized in 3
bit gives the similar scores. But in the case of 2 bit quantization, the noise injection improves the
fine-tuning of the quantized model.

7 CONCLUSION

In this paper, we introduce GIFT-SW, a parameter-efficient fine-tuning method that trains only
weights in a small subset of salient columns while injecting quantization noise into the frozen
weights. GIFT-SW proves to be superior to previous fine-tuning strategies in both full precision and
quantized settings, requiring less compute budget. In data scaling experiments, GIFT-SW demon-
strates greater stability than previous PEFT methods and outperforms both PEFT and full fine-tuning
across nearly all data budgets. Our ablation studies show that QNI is beneficial but only with salient
weights. Although GIFT-SW outperforms previous methods, further research is needed to determine
how to maximize its performance in quantized settings.

We generalize the criterion for selecting salient columns from previous studies and empirically com-
pare various parameters. Our experiments show that while some criteria perform better than others,
none emerge as a clear dominant choice. This significant finding underscores the need for further
research to refine these criteria.

8 LIMITATIONS

We find the main limitations of our work as follows:
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1. We report results of GIFT-SW exclusively for LLaMA models. Currently, numerous open-
source pre-trained LLMs with high generative capabilities are available. However, LLaMA
models are the most commonly chosen for studying the efficiency of modern PEFT and
quantization methods. Despite the architectural similarities among most LLMs, future ex-
periments with different models are necessary.

2. For quantizing models, we use only the GPTQ method, which is widely used for mixed-
precision quantization of LLMs. This method improves the performance of quantized mod-
els by aggregating quantization error into columns stored in full precision. However, GIFT-
SW can be easily integrated with other methods, such as conventional RTN or QuantEase.

3. Experiments with GIFT-SW report results for salient columns selected using the sensitivity
metric (1) with γ = 1. Our proposed metric, based on our analysis, shows high sensitivity
of the salient columns to quantization in most LLaMA2 cases. However, other sensitivity
metrics may yield better performance for GIFT-SW and mixed-precision quantization in
different LLMs.

4. Noise parameters for fine-tuning the salient weights are determined using the QNI ap-
proach. However, other noise distributions may also enhance the fine-tuning process. Iden-
tifying the optimal noise distribution is beyond the scope of this paper.

5. In this study, we focus on developing the GIFT-SW algorithm for effective fine-tuning of
LLMs, but we do not provide computationally efficient implementations of CUDA kernels
for the algorithm. In the future, CUDA kernels for GIFT-SW can be developed based on
the code from QUIK Ashkboos et al. (2023) and OWQ Lee et al. (2024).

6. We train GIFT-SW with only a few fine-tuning instruction sets, selected for their size and
high benchmark results in previous studies. However, expanding the number of fine-tuning
sets could make the experiments more comprehensive.

7. We evaluate our method using six distinct benchmarks inherited from various previous
studies. In future research, it would be beneficial to include more benchmarks to gain
additional insights.

9 POTENTIAL RISKS

The GIFT-SW method poses risks similar to those of any PEFT method. For example, it omits
explicit safety training measures, so could be applied to fine-tune LLMs for generating harmful
content. Also it can be applied to tailor LLMs to tailor highly specific and potentially dangerous
outputs.
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A UNIFORM QUANTIZATION

While non-uniform quantization may lead to higher compression rates, in our work we focus on
uniform quantization since it widely used in efficient PTQ methods such as GPTQ, QUIK, OWQ
Frantar et al. (2022); Ashkboos et al. (2023); Lee et al. (2024). Quantization is a mapping that
converts a range of full-precision values into a discrete range of values allowing usage of integer
arithmetic and reduced memory consumption. For example, Fig. 3 depicts a mapping with the
quantization scale size ∆ = 1

4 of float values from the interval (0, 1) into integer values.

In our work we apply uniform symmetric quantization with the row-wise quantization step size ∆.
In this case, computations of quantization, dequantization and estimation of ∆ are performed for
the bit-width b as below

qmin = −2b−1, qmax = 2b−1 − 1 (4)
clamp(x; qmin, qmax) = max(qmin,min(x, qmax)) (5)

∆ = (∆1, . . . ,∆n)
T, ∆i =

αi

qmax
(6)

Wint
i,: = clamp

(⌊
Wi,:

∆i

⌋
; qmin, qmax

)
(7)

W ≈ Q(W) = diag(∆)Wint (8)

where ∆i is the scale factor for i row Wi,:, Wint denotes the matrix of the quantized weights,
diag(∆) is the diagonal matrix with elements of the vector ∆. For the given bit-width b, the
parameter αi is found for each row by performing linear grid search over the interval [0,max(Wi,:)],
where max(Wi,:) is the maximum element of i row . The search is conducted to minimize layer-
wise mean squared error between weights:

argmin∆∥W −Q(W)∥22, (9)

B DETAILS OF LLMS QUANTIZATION

For only weight quantization of LLaMA and TÜLU2 models models, we apply QUIK implementa-
tion of mixed-precision GPTQ method Ashkboos et al. (2023); Frantar et al. (2022). We isolate 128
salient columns in full-precision. Non-salient columns are subjected to uniform symmetric quan-
tization, as discussed in Appendix A. The salient columns are identified through sensitive metrics
described in Section 3.1. The Hessian matrix for the GPTQ method is computed on 128 random
samples of the Wikitext-2 dataset.
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Figure 3: Uniform quantization step function with real valued one dimensional w and integer valued
Q(w).

C STRAIGHT THROUGH ESTIMATOR

STE can be described in two steps:

• Obtain quantized weights Q(W) from the real-valued parameters W with some quantiza-
tion function Q, which is usually is non differentiable.

• Compute gradients at quantized weights Q(W) and update real valued weights Wt+1 ←
Wt − τ∇f(Q(W))

STE makes a particular choice of a quantization function to obtain the discrete weights from the
real-valued weights. This approximation can be justified in some settings (Lin et al., 2017) but in
general the reasons behind its effectiveness are unknown.

D TRAINING DETAILS

The training was performed with 4 GPUs (40 GB each) for 500 iterations. The batch size is 128
for 7b models and 64 for 13b models. For baseline methods, the learning rate was set to 3 × 10−5

for LLaMA2 models and to 1 × 10−5 for the LLaMA3 model. We experimented with different
learning rates and found these to be the most beneficial for baseline methods. We used a cosine
annealing scheduler with the warmup ratio of 0.03. The LoRA and DoRA alpha and dropout values
were as specified in the original papers, and the rank was set to 64 to match the number of trainable
parameters in our method. Thus, the number of trainable parameters is 160M for LLaMA2-7b,
250M for LLaMA2-13b, 167M for LLaMA3-8b.

For our method, the learning rate was set to 1 × 10−4 for salient columns of LLaMA2 models and
to 1 × 10−5 of the LLaMA3 model. We fixed the number of salient columns at 128, such that the
number of trainable parameters is 174M for LLaMA2-7b, 272M for LLaMA2-13b, and 176M for
LLaMA3-8b.

In the case of full fune-tuning with the noise injection, the learning rate was set to 3 × 10−5 and
1× 10−5 for LLaMA2 & 3 models, correspondingly.

E DETAILED BENCHMARK RESULTS

In this section we report detailed benchmark results for LLaMA 2 & 3 after training with different
methods. Tables 7, 8 present accuracy metrics which are achieved by the full-precision models after
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Table 7: LLaMA models performance fine-tuned with TÜLU-V2-mix subset
Model Method BoolQ HellaSwag WinoGrande ARC-e ARC-c PiQA

LLaMA2-7b

FP 78.65 76.91 69.93 77.99 48.63 79.71
LoRA 80.28 76.67 69.85 76.64 47.95 79.27
DoRA 81.93 76.27 70.09 76.05 48.89 78.94

GIFT-SW 82.63 76.68 70.80 80.01 49.91 79.92

LLaMA2-13b

FP 83.27 79.77 72.69 80.43 53.67 80.69
LoRA 81.10 79.57 72.77 78.91 51.28 80.52
DoRA 81.01 79.64 72.22 78.87 51.54 80.52

GIFT-SW 84.22 80.18 73.24 82.20 55.38 80.36

LLaMA3-8b

FP 83.64 79.56 74.35 82.41 55.72 81.12
LoRA 83.30 79.62 75.14 80.15 56.06 81.18
DoRA 83.61 79.53 75.45 80.09 55.63 81.01

GIFT-SW 83.88 80.02 75.22 80.56 57.00 81.56

Table 8: LLaMA models performance fine-tuned with OpenOrca
Model Method BoolQ HellaSwag WinoGrande ARC-e ARC-c PiQA

LLaMA2-7b

FT 80.03 77.02 69.69 76.64 48.72 79.16
LoRA 78.81 76.24 68.82 75.42 46.59 79.43
DoRA 78.78 76.30 68.92 75.67 46.93 79.22

Our Best 82.51 76.64 72.22 74.71 48.89 79.00

LLaMA2-13b

FT 82.66 80.30 73.01 79.97 54.78 80.52
LoRA 81.68 79.64 72.85 78.41 51.11 80.36
DoRA 81.65 79.64 72.93 78.28 51.19 80.09

Our Best 85.44 80.07 74.03 79.97 56.48 80.14

LLaMA3-8b

FT 84.37 80.11 75.93 81.82 57.85 82.05
LoRA 82.84 79.76 74.19 80.30 55.54 81.12
DoRA 82.63 79.71 75.22 80.30 55.46 81.01

Our Best 84.34 80.10 75.53 81.06 57.76 81.88

fine-tuning on the TÜLU-V2-mix and OpenOrca subsets. Corresponding mean values are listed in
Table 1. Tables present accuracy metrics which are achieved by quantized in 4, 3, 2 bits models
after fine-tuning on the TÜLU-V2-mix subset. Corresponding mean values are listed in Table 2.

F TÜLU-V2-MIX SUBSET

Figure 4 shows number of examples in datasets included in the TÜLU-V2-mix subset, which is used
for fine-tuning experiments presented in this paper.
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Bits Model Method
Benchmarks

BoolQ HellaSwag WinoGrande ARC-e ARC-c PiQA

4 bit

LLaMA2-7b
STE 80.21 76.27 70.01 79.63 48.55 79.92
QUIK + LORA 68.96 74.85 69.85 55.30 37.20 77.80
GIFT-SW 82.78 76.14 70.48 79.76 50.00 79.71

LLaMA2-13b
STE 84.77 79.16 72.69 80.76 53.67 80.69
QUIK + LORA 74.89 78.01 72.22 71.76 50.17 79.43
GIFT-SW 84.65 79.59 73.01 78.37 53.50 80.52

LLaMA3-8b
STE 81.59 78.55 73.88 79.76 54.27 81.01
QUIK + LORA 82.51 77.73 74.66 79.04 51.62 80.03
GIFT-SW 83.15 79.05 74.09 80.01 55.20 81.28

3 bit

LLaMA2-7b
STE 76.79 74.19 68.19 75.04 45.65 79.05
QUIK + LORA 63.88 72.00 66.93 61.24 38.74 74.64
GIFT-SW 80.46 74.20 68.90 75.88 47.35 79.22

LLaMA2-13b
STE 83.33 78.02 71.59 79.92 53.24 80.09
QUIK + LORA 82.02 76.64 70.95 71.51 48.21 78.45
GIFT-SW 85.44 78.20 71.90 79.12 51.54 79.82

LLaMA3-8b
STE 75.87 74.38 69.14 74.41 49.32 78.29
QUIK + LORA 78.72 74.54 70.72 77.31 50.60 78.02
GIFT-SW 80.31 75.98 71.51 79.63 52.99 79.22

2 bit

LLaMA2-7b
STE 68.47 58.90 60.62 57.66 32.17 71.38
QUIK + LORA 62.11 26.77 49.88 29.67 26.45 53.75
GIFT-SW 71.90 64.18 62.59 61.57 34.90 71.38

LLaMA2-13b
STE 73.09 63.74 61.40 64.14 36.09 74.70
QUIK + LORA 59.36 41.34 55.41 40.28 27.82 58.60
GIFT-SW 81.99 69.49 65.43 70.33 43.17 75.24

LLaMA3-8b
STE 60.46 43.82 54.46 44.23 27.65 63.16
QUIK + LORA 64.68 48.55 58.25 53.32 32.17 65.83
GIFT-SW 74.13 48.92 58.88 63.17 37.88 70.35

Table 9: Performance of quantized LLaMA models fine-tuned with TÜLU-V2-mix subset
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Figure 4: Number of examples in datasets included in TÜLU-V2-mix subset
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