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Abstract

In document-level event argument extraction,001
an argument is likely to appear multiple times002
in different expressions in the document. The003
redundancy of arguments underlying multiple004
sentences is beneficial but is often overlooked.005
In addition, in event argument extraction, the006
majority entities are regarded as class “others",007
i.e. universum class, which is composed of008
heterogeneous entities without typical common009
features. Classifiers trained by cross entropy010
loss could easily misclassify universum class011
because of their open decision boundary. In012
this paper, to make use of redundant informa-013
tion underlying a document, we build an entity014
coreference graph with graph2token module to015
produce comprehensive and coreference-aware016
representation for every entity, and then build017
an entity summary graph to merge the multiple018
extraction results. To better classify universum019
class, we propose a new loss function to build020
classifiers with closed boundaries. Experimen-021
tal results show that our model outperforms the022
previous state-of-the-art models by 3.35% in023
F1-score.024

1 Introduction025

Event argument extraction (EAE) is a crucial sub-026

task of event extraction (EE), aiming to identify027

the arguments of a given event and recognize the028

specific roles they play. Previous works are mostly029

focused on sentence level EE (Liao and Grishman,030

2010; Nguyen et al., 2016; Liu et al., 2018; Yang031

et al., 2019b; Du and Cardie, 2020b; Wei et al.,032

2021; Wang et al., 2021; Lyu et al., 2021). How-033

ever, events are often described in the form of doc-034

uments in real world. Document-level event extrac-035

tion has received considerations in recent years.036

Research on document-level event extraction037

has been focused on tackling challenges such as038

arguments-scattering and multiple-events (Zheng039

et al., 2019; Du and Cardie, 2020a; Du et al., 2021;040

Lou et al., 2021; Li et al., 2021; Huang and Peng,041

Figure 1: An example of redundant information in the
document-level event argument extraction.

2021; Xu et al., 2021; Yang et al., 2021; Ahmad 042

et al., 2021). The benefit of redundant information 043

in a document is largely neglected. We believe 044

that the redundant event information in a document 045

can be used to improve event extraction, as illus- 046

trated in the example in Figure 1. The upper part 047

of Figure 1 shows six simplified sentences selected 048

form a document in the MUC-4 dataset. All enti- 049

ties marked in blue are the same entity that appears 050

with different expressions in different sentences. 051

For ease of description, we call it entity S. We can 052

observe from Figure 1 that: 1) The argument infor- 053

mation in the document is redundant since entity 054

S appears in the article multiple times as an argu- 055

ment. We can successfully extract the argument 056

by correctly recognizing any of these occurrences. 057

This property can be potentially used to improve 058

the robustness of the model. 2) The difficulty of 059

extracting the entity S as an argument in its dif- 060

ferent occurrences is different. Extracting entity S 061
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Figure 2: A simplified illustration of closed boundary
loss. Blue dots represent target samples, orange dots
represent universum samples. The red dotted line repre-
sents cross entropy loss, the purple solid line represents
proposed closed boundary loss.

in sentence 1 and sentence 3 is much easier than062

extracting it from sentence 2. Hence, by utilizing063

the redundant information of the document, we can064

extract arguments from relatively simple positions065

and reduce the difficulty of the task. 3) An en-066

tity may appear multiple times in the document,067

directly averaging them as the entity’s feature rep-068

resentation (Xu et al., 2021) may introduce noise,069

such as the feature of entity S in s4, s5, s6. On the070

other hand, the redundant argument information071

results in redundant extraction results, as shown072

in the bottom table in Figure 1. The three enti-073

ties extracted as perpetrator individual need to be074

merged into one. However, the extracted physical075

target "houses" and "vehicles" are different entities076

and should not be merged. Therefore, the use of077

redundant information underlying a document is078

not straightforward, a sophisticated algorithm for079

merging multiple extraction results is needed.080

Extraction of arguments can be solved as an081

entity classification problem by treating entities082

as argument candidates (Zheng et al., 2019; Xu083

et al., 2021; Yang et al., 2021). In document-level084

event argument extraction, only a subset of the085

entities in a document are arguments, while the086

majority entities are regarded as class “others”or087

“neither”(neither of the target classes). This kind of088

data was first studied by Vapnik (2006) under the089

name Universum. The universum data are usually090

very diverse and do not have typical common fea-091

tures. In addition, universum data is much more092

than the target class data, exhibiting severe class im-093

balance problem. Figure 2 demonstrates a simpli-094

fied distribution of data samples in document-level095

event argument extraction. The blue dots represent096

argument entities, the orange dots represent a large097

number of universum entities. Since the samples in 098

universum class do not have typical common fea- 099

tures, they tend to scatter in the feature space. This 100

characteristic of the universum data is largely over- 101

looked in the information extraction community. 102

Universum data is simply considered as another 103

class “others”, without any special consideration in 104

the classifier design. Cross entropy loss is usually 105

employed in classifier training (Zheng et al., 2019; 106

Huang and Peng, 2021; Xu et al., 2021; Yang et al., 107

2021). However, classifiers trained by cross en- 108

tropy loss have open decision boundary, and hence 109

some universum samples, such as the orange dot 110

on the upper right of the figure, could be easily mis- 111

classified. We think a classifier with closed deci- 112

sion boundary could better deal with the universum 113

class in document-level event argument extraction, 114

as illustrated by the purple line in Figure 2. 115

The contribution of this work is three-fold. 116

Firstly, it is the pioneering work to leverage re- 117

dundant information in documents for event extrac- 118

tion. We propose the entity coreference graph with 119

graph2token module and entity summary graph to 120

leverage the redundant information. Experimental 121

results show that redundant information helps im- 122

prove recall significantly. Secondly, we analyse the 123

issue of universum data in document-level event 124

argument extraction and the problem of classifiers 125

trained by cross entropy loss, and propose a closed 126

boundary loss to address the problems. Finally, 127

our model consistently outperforms latest baseline 128

models in F1-score and achieves the state-of-the-art 129

performance. Compared to three baseline models, 130

our proposed model improve the absolute F1-score 131

by 3.35%, 5.27%, and 6.45%, respectively. 132

2 Related Work 133

2.1 Event Argument Extraction 134

Most previous event argument extraction models 135

make predictions at sentence-level (Nguyen et al., 136

2016; Liu et al., 2018; Yang et al., 2019b; Du 137

and Cardie, 2020b; Wei et al., 2021; Wang et al., 138

2021; Dutta et al., 2021). Considering that real 139

world events are often distributed across sentences, 140

document-level event extraction has attracted more 141

attentions recently. Zheng et al. (2019) propose 142

the Doc2EDAG model to overcome the argument 143

scattering problem. Du and Cardie (2020a) first 144

argue the importance of document-level extrac- 145

tion and adopt sequence model on document-level 146

event extraction. Lou et al. (2021) investigate a 147
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novel bidirectional decoder to overcome the long-148

range forgetting problem. Li et al. (2021) formu-149

late document-level event extraction model as con-150

ditional generation based on templates. Huang151

and Peng (2021) attach importance to event coref-152

erence and entity coreference in document-level153

event extraction tasks. Xu et al. (2021) build a154

heterogeneous graph with the Tracker module to155

deal with problems of event scattering and multi-156

ple events. Yang et al. (2021) adopt parallel pre-157

diction networks to extract events parallelly from158

document-level representations. However, none of159

these works pay attention to the characteristic of160

information redundancy in the document, which161

we believe is an unique and beneficial property162

for document-level event argument extraction. In163

addition, to our knowledge, closed boundary clas-164

sification has never been adopted in event extrac-165

tion. Classification-based event augment extraction166

works (Huang and Peng, 2021; Xu et al., 2021;167

Yang et al., 2021) all employ cross entropy loss for168

classifier training, without considering the charac-169

teristics of universum class: scattered distribution170

in the feature space due to heterogeneity and diver-171

sity of the samples in this class.172

2.2 Closed Boundary Loss173

We found that a classifier trained by cross entropy174

could easily misclassify entities in the class “oth-175

ers", i.e. universum class. We found the root cause176

of the problem is the open decision boundary of177

the classifier. To address this problem, we propose178

a novel closed boundary loss for classifier training.179

Research works in universum usually employ ad-180

ditional unlabeled universum data to provide prior181

knowledge for the task, such as universum support182

vector machine (SVM) (Weston et al., 2006; Qi183

et al., 2012; Richhariya and Tanveer, 2020), and184

semi-supervised learning (Liu et al., 2015; Xiao185

et al., 2021). However, the SVM-based methods186

above are developed for structured data and are187

hardly to integrate with deep neural network-based188

representation learning to form an end-to-end train-189

ing procedure for natural language processing tasks.190

One possible solution is to use a deep neural net-191

work to learn representations first, and then feed192

the representations learned to the universum SVM193

classifiers. But the disadvantage of this two-step194

procedure is that the classification result cannot be195

back-propagated to representation learning. It is196

desired that the closed boundary classifier could be197

integrated with deep neural network-based repre- 198

sentation learning to form end-to-end training for 199

optimal performance. 200

Closed boundary classification methods are also 201

developed in anomaly detection and open set recog- 202

nition, such as deep one-class learning (Ruff et al., 203

2018; Defard et al., 2021), auto-encoder based 204

anomaly detection (Ionescu et al., 2019), Open- 205

Max layer for open set recognition (Bendale and 206

Boult, 2016). However, these methods cannot use 207

the information in outlier samples due to task set- 208

ting. 209

Closed boundary classifier works best in feature 210

space with compact class distribution. In the liter- 211

ature, some loss functions have been proposed to 212

generate such feature space such as Deep SVDD 213

(Ruff et al., 2018), contrastive loss (Hadsell et al., 214

2006) and ii-loss (Hassen and Chan, 2020). How- 215

ever, Deep SVDD only minimizes the intra-class 216

distance and cannot maximize the inter-class dis- 217

tance. Contrastive loss and ii-loss need to be com- 218

bined with cross entropy loss to classify samples. 219

But cross entropy loss generates open decision 220

boundaries for the classifier. 221

In this paper, we propose a new loss function 222

which could train a classifier with closed decision 223

boundary. In addition, it can be directly integrated 224

with representation learning layers in a neural net- 225

work to form an end-to-end training procedure 226

to produce a feature space with minimum intra- 227

class difference and maximum inter-class differ- 228

ence, which in turn leads to improved performance. 229

3 Method 230

As shown in the Figure 3, our model consists of 231

four main components: context encoding module 232

(Sec 3.1), entity coreference graph (Sec 3.2), closed 233

boundary loss (Sec. 3.3), and entity summary graph 234

(Sec. 3.4), which are illustrated in this section. 235

3.1 Context Encoding 236

Given the input document, we apply a Bi-LSTM 237

to obtain token representations of the document: 238

D = {d0,d1, . . . ,dn−1} ∈ Rn×l where n is the 239

document length, and l is the the hidden state di- 240

mension. We construct entity representation and 241

sentence representation from token representations: 242

ei =
(
e
(i)
memory; e

(i)
rule

)
(1) 243

si =
(
s
(i)
memory; s

(i)
rule

)
(2) 244
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Figure 3: The overall model structure. Blue dots represent entity nodes, green dots represent sentence nodes.

245

e
(i)
memory =

(
D
[
ent

(i)
start[l :]

]
;D

[
ent

(i)
end[: l]

])
246

e
(i)
rule =

(
D
[
ent

(i)
start [: l]

]
;D

[
ent

(i)
end[l :]

])
247

s
(i)
memory =

(
D
[
sent

(i)
start [l :]

]
;D

[
sent

(i)
end [: l]

])
248

s
(i)
rule =

(
D
[
sent

(i)
start [: l]

]
;D

[
sent

(i)
end [l :]

])
249

where D is the output of the Bi-LSTM encoding250

layer, ent(i)start , ent(i)end , sent(i)start and sent
(i)
end are251

the start and end position of i-th entity and i-th252

sentence, respectively, and [;] denotes the concate-253

nation operation. e(i)memory and s
(i)
memory mainly con-254

tain the information inside the entity and sentence.255

e
(i)
rule and s

(i)
rule mainly contain the context informa-256

tion outside the entity and sentence. We separate257

the memory representation and rule representation258

because they correspond to memory-based and rule-259

based learning process of human.260

3.2 Entity Coreference Graph261

Leveraging redundant information of document is262

not straightforward to classify every entity in the263

document. On the one hand, better entity repre-264

sentation is needed. Therefore, we construct en-265

tity coreference graph with graph2token module266

to produce comprehensive and coreference-aware267

representation for every entity.268

The entity coreference graph is inspired by the269

observation of coreference’s role in document un-270

Figure 4: An example of coreference in document and
its impact on entity understanding and document-level
event argument extraction

derstanding. Firstly, for the repeatedly referred en- 271

tity (coreference entity), the understanding to this 272

entity is constantly enriched or enhanced by each 273

reference. For the example illustrated in Figure 4, 274

"the massacre" and "this action" are two different 275

mentions of the same entity. The understanding of 276

this entity is enriched by combining the location of 277

the massacre mentioned in the first sentence and the 278

commander of the massacre mentioned in the sec- 279

ond sentence. Secondly, for other entities locating 280

in the context of the coreference entity, their mean- 281

ings are clearer by recognizing the connotation of 282

coreference entity. For example, "the colonel" can- 283

not be recognized as an argument unless the model 284

understands that "this action" refers to "the mas- 285

sacre". Research works in event extraction (Xu 286

et al., 2021; Luan et al., 2019; Qian et al., 2019) 287

take the first observation into consideration but ne- 288

glect the second one. Specifically, previous works 289

in event extraction use graph structure to merge 290

information in different mentions of the same en- 291

tity. However, the adoption of merely such a graph 292
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structure cannot feed back the fused information to293

the context of coreference entities. In this sense, for294

the representation of "the colonel", its context in-295

formation still excludes "the massacre". Therefore,296

we adopt a graph2token module to feed back the297

comprehensive entity information obtained through298

graph structure to tokens, and then rebuild entity299

representations that are both comprehensive and300

coreference-aware.301

Graph Construction. There are two types of302

nodes in the entity graph: entity nodes and sen-303

tence nodes. Entities are recognized from docu-304

ment following Fisher and Vlachos (2019). En-305

tity nodes and sentence nodes are denoted as E =306

{e0, e1, . . . , ep}, and S = {s0, s1, . . . , sq}, respec-307

tively.308

There are two types of edges in the entity graph:309

1) entity-entity edge is created according to the310

coreference relationship. We use SpanBERT (Joshi311

et al., 2020) to implement coreference resolution312

on documents during preprocessing. 2) entity-313

sentence edge is the connection between the entity314

node and the sentence node where it is located.315

Graph Propagation. After the graph is con-316

structed, Graph Attention Network (Veličković317

et al., 2017) is applied to propagate informa-318

tion between connected nodes. Assuming that319

graph nodes are denoted by H = {E,S} =320

{h0,h1, . . . ,hp+q} ∈ R(p+q)×2l, the information321

that a node receives from its neighbors is formu-322

lated as:323

h′
i = RELU

(∑
j∈Ni

αijWhj

)
(3)324

αij =
exp(L(Weij [Whi;Whj ]))∑

k∈Ni
exp(L(Wei [Whi;Whk]))

(4)325

where h′
i is the neighbor information of i-th node,326

hj is the representation of j-th node, W, Wei are327

weight matrixes, Ni denotes the set of neighbors328

of node i, and L(·) is the LeakyReLU function.329

The representation of i-th node hi and its neigh-330

bor information h′
i is fused by the gated mecha-331

nism:332

βi = σ
(
f
(
hi;h

′
i

))
(5)333

where σ(·) is the sigmoid function, f(·) denotes334

the linear transformation. The fused representation335

of i-th node h′′
i is obtained as:336

h′′
i = βi ⊙ hi + (1− βi)⊙ h′

i (6)337

where ⊙ stands for element-wise multiplication.338

Through propagating and fusing information of339

coreference entities and sentence, a comprehensive 340

representation of entity is obtained. 341

Graph2token. To address the second insight we 342

put forward in this section, we adopt graph2token 343

module to feed back the information behind coref- 344

erence entities to tokens. 345

We concatenate the token representation di with 346

the entity representation h′′
j in which it is located, 347

and feed it to a LSTM layer to generate coreference- 348

aware token representation d′
i: 349

d′
i = LSTM(di;h

′′
j ) (7) 350

Then, we build coreference-aware entity represen- 351

tations from updated token representations. 352

e
(i)
rule

′ =
(
D′

[
ent

(i)
start [: l]

]
;D′

[
ent

(i)
end[l :]

])
353

where D′ =
{
d′
0,d

′
1, . . . ,d

′
n−1

}
. Finally, a com- 354

prehensive and coreference-aware entity represen- 355

tation E′ = {e0′, e1′, . . . , ep′} is obtained by con- 356

catenation: 357

ei′ =
(
h′′
i ; e

(i)
rule

′
)

(8) 358

3.3 Closed Boundary Loss 359

We have analyzed that classifiers trained by cross 360

entropy loss have open decision boundaries and 361

could easily misclassify the universum class. To 362

address this problem, we propose a novel loss func- 363

tion that could be used to train classifiers with 364

closed decision boundaries. 365

Comprehensive and coreference-aware entity 366

representations E′ = {e0′, e1′, . . . , ep′} are ob- 367

tained in the last section. We treat entities as argu- 368

ment candidates and classify entities by classifiers 369

trained by our proposed closed boundary loss: 370

LCB = R2 +
1

n

n∑
i=1

max
(
0, ∥ei′ − c∥2 −R2

)
371

+
1

m

m∑
i=1

max
(
0, (1 + µ)R2 − ∥ei′ − c∥2

)
(9) 372

The intention of the closed boundary loss is to in- 373

clude samples of each target class using a hyper- 374

sphere characterized by center c and radius R in 375

the feature space, and locate universum samples 376

outside the hypersphere. Due to the heterogeneous 377

nature of universum samples, we allow them to 378

scatter outside the hypersphere and do not require 379

them to be aggregated like cross entropy loss. 380
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The goal of the first term R2 is to minimize381

the volume of the hypersphere while the second382

term aims to enclose target class samples by the383

hypersphere, where the center c is initialized as384

the mean of target samples in the feature space. If385

the Euclidean distance between the sample h′′
i and386

the center c exceeds the radius, it will lead to a387

penalty in the loss function. The third term aims to388

make universum samples to be located outside the389

hypersphere. Parameter µ is introduced to adjust390

the gap between the closed boundary hypersphere391

and universum samples.392

Unlike contrastive loss and ii-loss that cannot be393

directly used for classifying samples in the test set394

and need to be combined with cross entropy loss,395

our proposed closed boundary loss can be easily396

adopted for classification by following calculation:397

g(ei′) =

{
1 ∥ei′ − c∥2 −R2 < 0

0 ∥ei′ − c∥2 −R2 > 0
398

3.4 Entity Summary Graph399

To make full use of the redundant argument infor-400

mation, we classify every entity in the document.401

For the same argument, we may obtain multiple402

preliminary extraction results. The advantage is the403

robustness because the correct argument is more404

likely to be extracted from from relatively simple405

positions. The challenge is how to merge the multi-406

ple extraction results. To address the challenge, we407

propose an entity summary graph.408

Text Matching Module. We notice that most re-409

dundant expressions of the same entity are either410

character-level spelling similar or word-level se-411

mantics similar. In some cases, special domain412

knowledge is needed to determine if two expres-413

sions are actually the same. For example, “Army414

of National Liberation” and "ELN" are refereed to415

the same entity. Therefore, we adopt text matching416

model with both character embedding and word417

embedding to evaluate the spelling similarity and418

semantics similarity of extracted arguments. We419

also construct text matching dataset from ground420

truth labels of training set of our event extraction421

dataset to make the model learn necessary domain422

knowledge.423

We build the text matching module (TMM)424

by adopting the structure of RE2 (Yang et al.,425

2019a) and adding character embedding to the RE2426

model to enhance model’s capability of recogniz-427

ing spelling similarity. We denote the initially428

predicted arguments as A = {a0,a1, . . . ,ak−1}. 429

Then, we feed these entities into text matching 430

module to produce the matching score for each pair 431

of arguments. 432

Mij = TMM (ai,aj) (10) 433

where M is the matching score matrix, which con- 434

tains text matching score of every pair of entities 435

from A. M = [Mij ], i, j = 1, 2, . . . , k. 436

Entity Summary Graph. The graph node is com- 437

posed of preliminary predicted entities A. The i-th 438

node and j-th node is connected if Mij > s, where 439

s is a boundary score. The weight of each edge is 440

the text matching score Mij of two entity nodes at 441

the ends of the edge. 442

The constructed entity summary graph is mostly 443

disconnected because there usually exists multiple 444

argument clusters in a document. The argument 445

cluster refers to a set of different expressions of the 446

same argument, such as ["the armed forces", "mil- 447

itary"]. Thus, an entity summary graph consists 448

of several connected subgraphs as shown in fig- 449

ure 3. Each subgraph corresponds to an argument 450

cluster. We denote the entity summary graph G 451

and its subgraphs as G =
{

G(1)
sub,G(2)

sub, . . . ,G(u)
sub

}
. 452

The final predicted arguments are summarized by 453

selecting an entity node with the largest sum of 454

weights (LSW) from each subgraph. 455

A′ =
{
a′0,a

′
1, . . . ,a

′
v−1

}
, a′i = LSW

(
G(i)
sub

)
456

4 Experiments 457

4.1 Dataset 458

Our model is evaluated on the MUC-4 dataset 459

(McLean, 1992). The dataset is composed of 1,700 460

documents, each containing an average of 400 to- 461

kens and 7 paragraphs. We use 1300 documents 462

for training, 200 documents for testing, and 200 463

documents as development set following (Du and 464

Cardie, 2020a). Five argument roles are extracted 465

in the dataset: perpetrator individual, perpetrator 466

organization, target, victim, and weapon. 467

4.2 Baselines and Evaluation Metric 468

In this work, we propose a document-level EAE 469

model leveraging Redundant Information and 470

Closed Boundary Loss (RICB). We compare our 471

model with the following baseline models: DY- 472

GIE++ (Wadden et al., 2019) incorporates local 473

6



PerpInd PerpOrg Target Victim Weapon
GTT (Du et al., 2021) 65.48/39.86/49.55 66.04/42.68/51.85 55.05/44.12/48.98 76.32/61.05/67.84 61.82/56.67/59.13
NST (Du and Cardie,

2020a) 48.39/32.61/38.96 60.00/43.90/50.70 54.96/52.94/53.93 62.50/63.16/62.83 61.67/61.67/61.67

DYGIE++ (Wadden et al.,
2019) 59.49/34.06/43.32 56.00/34.15/42.42 53.49/50.74/52.08 60.00/66.32/63.00 57.14/53.33/55.17

RICB 50.76/49.62/50.18 50.00/63.75/56.04 65.63/63.64/64.62 64.86/50.52/56.80 63.49/65.57/64.51

Table 1: Performance comparison with baseline models for each argument role on MUC-4 dataset. Results for each
column are displayed in the order of precision, recall, and F1 score.

Models P R F1

GTT (Du et al.,
2021)

64.19 47.36 54.50

NST (Du and
Cardie, 2020a)

56.82 48.92 52.58

DYGIE++
(Wadden et al.,

2019)
57.04 46.77 51.40

RICB 57.68 58.03 57.85

Table 2: Averaged EAE result on MUC-4 dataset. Preci-
sion, recall and F1-score are used for evaluation.

and global context to build a multi-task frame-474

work for named entity recognition, relation extrac-475

tion, and event extraction. NST (Du and Cardie,476

2020a) aggregates sentence representation and477

paragraph representation via gate mechanism and478

treats document-level EAE as a sequence tagging479

problem. GTT (Du et al., 2021) proposes a gener-480

ative transformer based framework for document-481

level EAE.482

We evaluate the performance of our model by483

CEAF-TF metric following (Du et al., 2021). The484

metric find the best alignment of predicted argu-485

ments and gold arguments. It penalize the system486

that do not merge multiple extraction results by487

setting a constraint that a gold argument can be488

aligned with at most one predicted argument. Pre-489

cision (P), recall (R) and F1-score (F1) are used to490

evaluate the model’s performance.491

4.3 Overall Results492

The per-role EAE results on MUC-4 dataset of493

our RICB model and baseline models are summa-494

rized in Table 1, and the micro-averaged perfor-495

mance is shown in Table 2. Table 2 shows that our496

model consistently outperforms latest baselines in497

F1-score and achieves the state-of-the-art (SOTA)498

performance. Specifically, the proposed model im-499

prove the absolute F1-score by 3.35%, 5.27%, and500

6.45% compared to baseline models. Noticeably,501

our model achieves an over 9% improvement in502

recall. In terms of the per-role extraction perfor- 503

mance of our model, it achieves the highest F1- 504

score in four of five argument roles: perpetrator 505

individual, perpetrator organization, target, and 506

weapon. Specifically, the absolute F1-score is im- 507

proved by 0.63%, 4.19%, 10.69%, and 2.84% in 508

these argument roles. 509

4.4 Effect of Graph2token Module 510

Graph structure is used in EAE to produce com- 511

prehensive representation for coreference entities 512

(Luan et al., 2019; Qian et al., 2019; Xu et al., 513

2021). In this work, we further adopt a graph2token 514

module to feed back the comprehensive represen- 515

tation of coreference entities to their context to- 516

kens. The updated token representations can gen- 517

erate additional coreference-aware representations 518

for entities near the coreference entity. For ab- 519

lation study, we conduct experiment on without 520

applying graph2token module, and compare per- 521

role extraction results between with and without 522

graph2token module in Table 3. We find that the 523

experiment without graph2token module results in 524

performance drop on every argument role. In ad- 525

dition, the recall is decreased by 0.38%, 4.92%, 526

6.06%, and 0.99% in four argument roles. This 527

indicates that the model can recognize more ar- 528

guments by providing argument candidates with 529

additional coreference-aware representations. 530

4.5 Effect of Closed Boundary Loss 531

We find that classifier trained by cross entropy loss 532

could easily misclassify entities in the universum 533

class. We propose a closed boundary loss to ad- 534

dress this issue. For ablation study, we conduct 535

experiments of applying cross entropy loss for argu- 536

ment classification, and compare the performance 537

with our model. The comparison of two loss func- 538

tions is summarized in Table 3, which shows that 539

in all argument roles, closed boundary loss consis- 540

tently outperforms cross entropy in F1 score. We 541

further notice that the precision of the model is 542

improved in all argument roles at 0.76%, 1.43%, 543
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PerpInd PerpOrg Target Victim Weapon
Without graph2token 50.39/49.24/49.80 50.02/58.83/54.07 63.87/57.58/60.56 62.54/49.53/55.28 58.72/69.47/63.64

Cross entropy loss 50.00/50.34/50.17 48.57/63.75/55.14 62.04/64.39/63.19 49.55/58.95/53.85 55.13/70.49/61.87
String matching 48.80/45.86/47.28 45.30/66.25/53.81 65.71/63.44/64.56 59.49/49.47/54.02 58.57/67.21/62.60

RICB 50.76/49.62/50.18 50.00/63.75/56.04 65.63/63.64/64.62 64.86/50.52/56.80 63.49/65.57/64.51

Table 3: Ablation studies on graph2token module, closed boundary loss, and entity summary graph, respectively.
The results in each column are displayed in the order of precision, recall, and F1 score.

3.59%, 15.31%, and 8.36% by using closed bound-544

ary loss. The improvement in precision indicates545

that the use of closed boundary result in a smaller546

number of universum samples that are misclassified547

as target samples.548

4.6 Effect of Entity Summary Graph549

To fully leverage the redundant argument informa-550

tion, we classify every entity in the document. For551

the same argument, we may obtain multiple prelim-552

inary extraction results. We propose the entity sum-553

mary graph to merge the results. For ablation study,554

we conduct experiments on merging multiple ex-555

traction results based on string matching following556

Zheng et al. (2019); Xu et al. (2021). We compare557

the string matching performance with our proposed558

entity summary graph in Table 3. It shows that559

entity summary graph outperforms string matching560

method significantly in F1-score. Furthermore, the561

precision of model is improved in four of five ar-562

gument roles by 1.96%, 4.70%, 5.37%, and 4.92%563

by using entity summary graph, and this verifies the564

effect of our proposed entity summary graph, i.e.565

merging multiple extraction results and reducing566

false positives accordingly.567

4.7 Further Analysis568

Firstly, it is effective to leverage redundant informa-569

tion of document for document-level EAE, which570

is not only reflected in the F1 score, but also in571

the significant improvement in recall. The micro-572

averaged recalls of baseline models are distributed573

between 46% to 49%, but our model reaches 58%.574

As we analyzed in the introduction, leveraging re-575

dundant argument information of document allows576

the model to extract the argument from any of its577

occurrences and relatively simple positions. There-578

fore, the difficulty of recognizing event arguments579

is reduced and the recall is improved accordingly.580

Secondly, leveraging redundant information of581

document is not simply classifying every entity582

in the document. On the one hand, better entity583

representations need to be produced, on the other584

hand, multiple extraction results need to be merged.585

Therefore, we add graph2token module to entity586

coreference graph to generate comprehensive and 587

coreference-aware entity representation, which im- 588

proves the recall significantly. We also propose 589

entity summary graph to merge multiple extraction 590

results, which successfully improve the precision. 591

Finally, we propose a novel closed boundary 592

loss to better deal with the universum class in our 593

task. Its effectiveness is verified in ablation stud- 594

ies. We highlight two other potential benefits of 595

closed boundary loss here. Firstly, since it gener- 596

ates closed decision boundary for classifiers, it may 597

also be valid for dealing with unseen samples in the 598

test set. However, this property is not evaluated in 599

this work. In addition, our dataset is highly imbal- 600

anced because only a small number of entities are 601

arguments. Weighted cross entropy loss is cumber- 602

some to adjust the appropriate weights, however, 603

the closed boundary loss does not need to adjust 604

weights and works well with imbalanced dataset. 605

5 Conclusion and Future Works 606

In this work, we emphasize that the redundant in- 607

formation of document is beneficial but is often 608

overlooked in document-level EAE. In addition, 609

we find that classifiers trained by cross entropy 610

loss are problematic in classifying the universum 611

class. Specifically, we generate comprehensive and 612

coreference-aware representation for every entity 613

through entity coreference graph with graph2token 614

module. In addition we propose an entity sum- 615

mary graph to merge the multiple extraction results 616

of a same argument. Furthermore, we propose a 617

novel closed boundary loss to deal with the uni- 618

versum class in classification. As a limitation, our 619

proposed closed boundary loss is used for binary 620

classification because we extract arguments in a 621

role-by-role manner to make full use of the prop- 622

erty of each argument role. In the future, we will 623

extend it for multiclass classification and apply it 624

to other tasks in natural language processing that 625

face the problem of classifying universum class. 626

Experimental results show that our RICB model 627

achieves the SOTA performance and outperforms 628

prior approaches on MUC-4 dataset. 629
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A Appendix 837

A.1 Dataset Information 838

Some supplementary information about the dataset 839

is illustrated in this section. We use the MUC-4 840

dataset to evaluate the performance of our model. 841

The dataset is intended for research purpose, which 842

is consistent with our purpose of use. Beside the 843

statistic information we provided in the main part, 844

we illustrate the documentation of the dataset in this 845

section. MUC-4 dataset is made of English news 846

articles on the subject of terrorist attacks. Specifi- 847

cally, five arguments are extracted for the dataset: 848

perpetrator individual, perpetrator organization, tar- 849

get, victim, and weapon. 850
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A.2 Implementation Details851

Spacy 3.0.3 is used in data preprocessing. Experi-852

ments are conducted on NVIDIA GTX 1080Ti, and853

the training time is about four hours. Experimental854

results of our RICB model are from the average of855

two experiments of different random seeds, and ex-856

perimental results in ablation studies are from a sin-857

gle run. The hyper-parameters are given in the table858

below.

Hyper-parameter Value
Embedding size 300

Hidden size 150
Bidirectional True

Layers of encoder 2
Layers of graph2token module 1

Layers of graph 1
Heads of graph 2

Optimizer Adam
Learning rate 2e−4

Batch size 4
Dropout 0.3

Training epoch 130

859
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