
Under review as a conference paper at ICLR 2023

CONTEXTUAL SUBSPACE APPROXIMATION
WITH NEURAL HOUSEHOLDER TRANSFORMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Choosing an appropriate action representation is an integral part of solving robotic
manipulation problems. Published approaches include latent action models which
compress the control space into a low dimensional manifold. These involve
training a conditional autoencoder, where the current observation and a low-
dimensional action are passed through a neural network decoder to compute high
dimensional actuation commands. Such models can have a large number of pa-
rameters, and can be difficult to interpret from a user perspective. In this work,
we propose that similar performance gains in robotics tasks can be achieved by
restructuring the neural network to map observations to a basis for a context-
dependent linear actuation subspace. This results in an action interface wherein a
user’s actions determine a linear combination of a state-conditioned actuation ba-
sis. We introduce the Neural Householder Transform (NHT) as a method for com-
puting this basis. Our results suggest that reinforcement learning agents trained
with NHT in kinematic manipulation and locomotion environments are more ro-
bust to hyperparameter choice and achieve higher final success rates compared to
agents trained with alternative action representations. NHT agents outperformed
agents trained with joint velocity/torque actions, agents trained with an SVD actu-
ation basis, and agents trained with a LASER action interface in the WAMWipe,
WAMGrasp, and HalfCheetah environments.

1 INTRODUCTION

In real-world applications of reinforcement learning, its imperative to choose appropriate represen-
tations when defining the Markov decision process. The consequences of poor design decisions
can have adverse effects in domains like robotics, where safety (Tosatto et al., 2021) and sample
efficiency (Li et al., 2021) are desirable properties. Typically these properties can be captured by
choice of action space. Choices of robot action types distinct from basic joint motor control, such
as Cartesian control or impedance control, have been shown to influence the efficiency of robotic
learning, depending on the task (Martı́n-Martı́n et al., 2019).

Researchers have typically focused on learning action representations that can capture a variety of
robotic motions. This interest has led to developing several different action representation frame-
works. One framework includes motor primitives in which entire trajectories are encoded as the
action (Paraschos et al., 2013; Schaal, 2006). Motor primitives have seen much success in robotics
leading to impressive real-world experimental results by constraining the action space (Tosatto et al.,
2021; Kober & Peters, 2009).

Another framework is the latent actions framework, in which actions-per-time-step are compressed
into a latent subspace. Typically these are conditional auto-encoders trained to predict the high-
dimensional actions given the state and latent action. These methods have been used successfully in
both learning systems (Allshire et al., 2021; Zhou et al., 2020; van der Pol et al., 2020) as well as
human-in-the-loop settings (Losey et al., 2021; 2020; Karamcheti et al., 2021; Jun Jeon et al., 2020).

It remains unclear whether robotics tasks must have deep, complex action models. There is little
work comparing latent action models across varying complexity tasks. For example, hand poses
- a complex high dimensional action space - can have up to 80% of configurations explained by
two principal components (Santello et al., 1998). This result has been exploited to develop low-
dimensional linear control algorithms, but they assume all actions exist in a global linear subspace

1

Under review as a conference paper at ICLR 2023

(Matrone et al., 2012; Odest & Jenkins, 2007; Artemiadis & Kyriakopoulos, 2010; Liang et al.,
2022).

In this work we propose an approach in which we use a neural network to produce a state-dependent
basis for a linear actuation subspace. We refer to this as contextual subspace approximation. Actu-
ation commands (e.g. joint velocities) are locally linear with respect to low dimensional inputs, but
globally non-linear as the actuation subspace changes as a function of context.

The motivation for contextual subspace approximation and the corresponding solutions can be
summarized as follows: 1) Contextual subspace approximation requires less data because a k-
dimensional subspace is completely determined by just k linearly independent samples. 2) From
the agent’s perspective, action maps change the transition dynamics of the environment, and using
simpler functions results in simpler dynamics. 3) Models for contextual subspace approximation
can be notably smaller by doing away with the encoder from the latent actions framework.

The model proposed here uses Householder transformations to obtain an orthonormal basis for the
desired actuation subspace. Householder transformations are often used in QR factorization to ef-
ficiently compute least square solutions to over-determined systems of linear equations. This prop-
erty has been exploited in several settings to define learnable orthonormal matrices in applications
of QR factorization for machine learning (Nirwan & Bertschinger, 2019; Dass & Mahapatra, 2021;
van den Berg et al., 2018). Additional work has studied applications of Householder reflections that
include normalizing flows (Tomczak & Welling, 2016; Mathiasen et al., 2020), network activation
functions (Singla et al., 2021), and decomposition of recurrent and dense layers in neural networks
(Mhammedi et al., 2017; Zhang et al., 2018; Obukhov et al., 2021). To the best of our knowledge,
our work is the first to study Householder matrices in the context of latent action models.

We identify our contributions as the following:

• We propose contextual subspace approximation as a novel alternative to end-to-end non-
linear latent action models for robotic control.

• We prove that the Neural Householder Transform is smooth with respect to changes in con-
text, and can output bases for the optimal actuation subspace associated with each context.

• Our experiments empirically suggest that in two simulated kinematic manipulation tasks
and one locomotion task, reinforcement learning agents trained with Neural Householder
Transforms learn more efficiently than agents trained to act in with 7dof, SVD, or LASER
action interfaces.

2 BACKGROUND AND PRELIMINARIES

In this section, we formalize our framework for learning action representations. We outline relevant
background knowledge to contextualize our work, including deep latent action models, and their
combination with Markov decision processes. We compare linear, locally-linear, and nonlinear
action mapping approaches by conducting experiments on reinforcement learning problems.

2.1 PROBLEM STATEMENT

We assume that the data we wish to model was observed in some context, and the resulting dataset is
a collection of context-datapoint pairs (datapoints and context are both represented by vectors). We
formulate the problem of contextual subspace approximation by supposing that, for every context
c, there exists an associated subspace that best approximates the data observed in the neighborhood
of c.

We use x = (c,u) to denote a tuple consisting of a datapoint u and the context c in which it was
observed. For convenience, we define the following functions to extract the data and context from a
tuple x, respectively: C(x) = c; U(x) = u. In addition, we denote the neighborhood of a context
point as N (c) = {c′ : ∥c− c′∥ < δ} for some δ ∈ R.

Definition 2.1 (Optimal Contextual Subspace). We define W ∗(c), the optimal k-dimensional sub-
space associated with context c, as the k-dimensional subspace that minimizes the expected projec-
tion error of data observed in the neighborhood of c:

2

Under review as a conference paper at ICLR 2023

W ∗(c)
.
= argmin

W
Ex|C(x)∈N (c)∥U(x)− projW (U(x)) ∥22 (1)

where W is a k-dimensional linear subspace of Rn, and projW (U(x)) is the orthogonal projection
of the data u onto W .

Our goal is to approximate a function Q∗(c) that maps context vectors to an orthonormal basis for
the associated optimal contextual subspace.

Q∗ : c 7→ Q̂ | col(Q̂) = W ∗(c) (2)

where Q̂ ∈ Rn×k is a n × k matrix of real numbers, and col(Q̂) is the column space of Q̂. We
assume access to a dataset of datapoint-context pairs.

2.2 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) is defined by the tuple ⟨S,A, T, p(s0), r(s,a, s′)⟩ where S is the
state space and A is the action space. The transition probability operator T (s,a, s′) : S× A× S →
[0, 1] denotes the probability of transitioning to state s′ ∈ S when taking an action a ∈ A from
a state s ∈ S. p(s0) is the initial state distribution, and r(s,a, s′) defines the reward function. In
this framework, the optimal policy search problem involves finding some π∗(s) that maximizes the
discounted return: π∗(s) = argmaxπ Vπ(s) = E[

∑T
i=t γ

tr(s,a, s′)].

Often in real-world problems, reinforcement learning agents must approximate π∗(s) as the state
representation is intractably large. As we do not assume access to the underlying state s, we will deal
with observations, which serve as our context c. We are interested in representing low-dimensional
contextual subspaces that approximate the high-dimensional actuations u of robotic agents.

This paper studies learning action interfaces that map actions a ∈ Rk to raw actuation commands,
u ∈ Rn. Throughout this work, the action space A will be Rk, where k is smaller than the dimen-
sionality of the raw actuation space (e.g. number of joints) of the robotic agent. In the MDP frame-
work, we can interpret action interfaces as being absorbed in the transition dynamics, T (s,a, s′).

2.3 LATENT POLICY FRAMEWORK

The latent actions framework assumes that the actuation commands produced by the optimal policy
π∗ exist on some lower dimensional manifold. In latent action models, latent actions z ∈ Rk are
mapped to this manifold. These models have typically been studied in settings where there exists
a dataset of transition tuples (c,u, c′, r). Here c′ is the context observed after the agent performs
actuation u in context c, and r is the corresponding reward. We follow this paradigm of learning
from offline demonstrations, and leave the study of learning latent action models online as future
work, noting that some researchers have previously studied this setting (Allshire et al., 2021).

Broadly, the class of models previously studied are conditional autoencoders. These models include
a neural encoder fθ(c,u) = z which predicts the latent action. If the model is a variational CAE,
then fθ(c,u) = (µ,σ), and z is sampled from the Gaussian parameterized by µ,σ using the
reparameterization trick (Kingma & Welling, 2014). These latent actions are then reconstructed with
a decoder gθ(z, c) = u, where c is assumed to contextualize how the latent action z should map to
the higher dimensional space. In some works, there is also a latent transition model Tθ(z, c) = c′,
which is trained to encourage the latent space to be predictive of transitions (Allshire et al., 2021;
van der Pol et al., 2020).

The most general loss function incorporating the above models is the following:

argmin
θ

Lrecon(c,u, gθ, fθ) + βLreg(c,u, fθ) + αLdyn(z, c, c
′, Tθ). (3)

The first term Lrecon is responsible for enforcing that the reconstructed latent actions approximate the
demonstration actuations. The second term, Lreg incorporates all the terms that enforce additional
requirements of the latent space. The typical choice are compression terms that pack the latent codes
into some desired distribution which can include the Kullback-Leibler divergence, maximum mean

3

Under review as a conference paper at ICLR 2023

discrepancy, or simply the L2-norm of z. The third term Ldyn is used to encourage the latent actions
to be predictive of transitions. The LASER algorithm is a representative example of this framework
(Allshire et al., 2021). LASER trains a latent dynamics model in conjunction with a variational
autoencoder.

3 CONTEXTUAL SUBSPACE APPROXIMATION

In this section, we describe our proposed alternative to the conditional autoencoder paradigm of la-
tent action models. The goal is to compute a useful map from low-dimensional task relevant actions
a ∈ Rk to high-dimensional actuation commands (e.g. motor torques in a robotic manipulator)
u ∈ Rn, where n > k. Our approach centers on optimizing a parameterized approximation of Q∗

(see Equation 2).

First, let us consider using a linear map from the latent space to the actuation space. Instead of a non-
linear function gθ : a, c 7→ u that jointly maps context vectors and actions to the actuation space, we
work with a non-linear function Qθ : c 7→ Q̂ that maps context vectors to a matrix. The matrix Q̂ :
a 7→ u itself is a linear map from low-dimensional actions to high dimensional actuation commands.

Figure 1: Training procedure for NHT. Qθ uses a
neural network and Householder transformations
to map a context vector to an n× k matrix Q̂ with
orthonormal columns. The data u associated with
contex c is projected onto the column space of Q̂.

As Q̂ serves a similar purpose to gθ (both map
actions to actuation commands), we could con-
sider Q̂ to be a linear decoder in the latent ac-
tion framework. Then optimization of the stan-
dard reconstruction loss is formulated as fol-
lows:

θ∗ = argmin
θ

Eπ∥u− Q̂a∥22 (4)

Where Q̂ = Qθ(c) is a function of the context
c. θ∗ represents the optimal parameter vector
for Qθ.

The problem now becomes how to select the ac-
tion a ∈ Rk to use in this optimization. One ap-
proach is to follow the conditional autoencoder
paradigm and predict a with an encoder neural
network. We opt instead to compute the opti-
mal action a∗, which we define as the action
that minimizes equation (4) for fixed u and Q̂
when θ is held constant:

a∗ = argmin
a

∥u− Q̂a∥22 (5)

Finding a∗ is a least squares problem, and the solution can be computed with the Moore-Penrose
left pseudoinverse Q̂+ = (Q̂⊤Q̂)−1Q̂⊤. The solution to (5) is given by a∗ = Q̂+u. Now our
optimization problem becomes:

θ∗ = argmin
θ

E||u − Q̂Q̂+u||22 (6)

Note that the matrix Q̂Q̂+ is an orthogonal projector onto span(Q̂). Therefore, when we cal-
culate û = Q̂Q̂+u, we are performing an orthogonal projection of u onto span(Q̂). That is,
û = projspan(Q̂)(u).

Now it is clear that the solution to Equation (6) is the best approximation attainable by Qθ to the
optimal actuation subspace W ∗(c) defined in Equation (1).

3.1 NEURAL HOUSEHOLDER TRANSFORM

It can be desirable for the matrix Q̂ produced by Qθ to have orthonormal columns. One reason is
that Q̂+ can be trivially computed as Q̂+ = Q̂⊤, which is computationally cheaper to perform. Our
experimental results also indicate that learning an Qθ that produces Q̂ with orthonormal columns

4

Under review as a conference paper at ICLR 2023

tends to be more robust to hyperparameter choices (see Appendix). For these reasons we compute
Q̂ by first computing an orthogonal matrix Q, and then extracting the first k columns:

Q̂ = Q

[
Ik
0

]
(7)

We can obtain n× n orthogonal matrices by computing Householder transformations. However, in
order to span an arbitrary k-dimensional subspace, we need to chain together k reflections:

Q = H(v1)H(v2) · · ·H(vk) (8)

where H : Rn → Rn×n computes the Householder matrix that reflects about the hyperplane or-
thogonal to vi:

H(vi) = I− 2viv
⊤
i , i ∈ {1, ..., k} (9)

where each vi has unit norm. Next, we describe how NHT uses a neural network to compute these
vi unit vectors.

3.1.1 EXPONENTIAL MAP ON UNIT SPHERE

We would like to leverage neural networks to learn a map from contexts c to the vi needed to com-
pute Q̂. We can readily obtain unit vi from the output of a typical neural network hθ by simple
normalization: vi = hθ(c)/∥hθ(c)∥. Unfortunately, this approach can result in unstable approx-
imations. As the norm of hθ(c) shrinks, arbitrarily small perturbations to the context can cause
disproportionate changes in vi.

As a more stable alternative, we make use of the exponential map from Riemannian geometry1

(Absil et al., 2008), which maps points in the tangent space of a manifold to the manifold itself
(in our case, the sphere). We seek unit vectors in Rn, which lie on the (n-1)-sphere. We can
therefore make use of the exponential map on S(n−1) at e1 (the first standard basis vector, e1 =
[1, 0, . . . , 0]⊤). The mapping

Expe1
: ξi 7→ vi (10)

maps2 tangent vectors ξi ∈ R(n−1) to unit vectors v ∈ Rn. We require k tangent vectors ξi that will
map to the vi vectors used to compute Q. We therefore configure the neural network hθ to output a
vector ξ̄ ∈ Rk(n−1). We treat the output of hθ as k stacked tangent vectors:

hθ : c 7→ ξ̄; ξ̄ =
[
ξ⊤1 , ξ

⊤
2 , . . . , ξ

⊤
k

]⊤
(11)

We then use the exponential map on each tangent vector, resulting in a vector v̄ ∈ Rnk of stacked
unit n-vectors:

ξ1
ξ2
...
ξk

 Exp7−−→

v1

v2

...
vk

 (12)

where v̄ =
[
v⊤
1 ,v

⊤
2 , . . . ,v

⊤
k

]⊤
. Each vi is then used to compute a Householder matrix (Eq. 9),

which are composed to obtain Q(v̄) (Eq. 8). Overall, NHT (Qθ : c 7→ Q̂) can be understood as the
composition of each of these computations:

c
hθ7−→ ξ̄

Exp7−−→ v̄
Q7−→ Q(v̄) 7→ Q̂(v̄)︸ ︷︷ ︸

NHT

(13)

where c is a context vector of arbitrary dimension, and Q(v̄) is an n × n orthogonal matrix, and
Q̂(v̄) is the matrix formed by the first k columns of Q(v̄).

1In the context of learning systems, exponential maps have been previously studied in the literature on
normalizing flows (Rezende et al., 2020).

2For the sphere, the exponential map at e1 is computed as vi = e1cos(∥ξi∥) + 1
∥ξi∥

[
0
ξi

]
sin(∥ξi∥).

5

Under review as a conference paper at ICLR 2023

3.2 EXISTENCE

If we hope to use NHT to approximate arbitrary subspaces, it is important to ensure that for every
k-dimensional subspace W of Rn, there exists a vector v̄ ∈ Rnk such that W = span

(
Q̂(v̄)

)
.

Remark. Let W ⊆ Rn be an arbitrary k-dimensional subspace. There is sequence of k House-
holder reflectors Q = H1H2 · · ·Hk such that the first k columns of Q are an orthonormal basis of
W .

Proof. Let M be an a n × k matrix whose column space is W . By (Trefethen & Bau, 1997)
Algorithm 10.1 we can construct a QR decomposition, M = QR where Q is the product of exactly
k Householder reflections. Now we are done because it is a basic property of QR decompositions
that the first k columns of Q are an orthonormal basis for the column space of M, which is W .

Thus, given the existence of an optimal contextual subspace W ∗(c), we can be sure that there exists
some v̄∗ such that Q̂(v̄∗) spans W ∗. It is left to the neural network hθ to approximate a set of
tangent vectors ξ̄ that map to v̄∗, given c.

3.3 SMOOTHNESS OF Qθ

We conjecture that low-dimensional action interfaces that change abruptly from state-to-state may
degrade learning in RL agents. Thus we are interested in whether or not Q̂ = Qθ(c) changes
smoothly with respect to changes in the context. Concretely, we would like to limit the change in
the high-dimensional actuation û corresponding to an identical low-dimensional action a given that
the change in the context is small. Let Q̂1 = Qθ(c1) and Q̂2 = Qθ(c2) for two nearby contexts,
c1 and c2. Suppose an agent takes the same low-dimensional action a in both contexts. Denote the
corresponding actuation commands as û1 = Q̂1a and û2 = Q̂2a, respectively. We would like to
limit the magnitude of the change in û (i.e. ∥û1 − û2∥) with respect to changes in context. That is,
we would like to find a constant Lu such that:

∥û1 − û2∥ ≤ Lu∥c1 − c2∥ (14)

where ∥ · ∥ refers to the vector 2-norm. We begin by assuming that the agent is limited to low-
dimensional actions with norm less than or equal to M . Then we have:

∥û1 − û2∥ = ∥Q̂1a− Q̂2a∥ (15)

= ∥(Q̂1 − Q̂2)a∥ (16)

≤ ∥(Q̂1 − Q̂2)∥ · ∥a∥ (17)

≤ M∥(Q̂1 − Q̂2)∥ (18)

where the norm in Eq. 18 is the matrix norm induced by the vector 2-norm. We now seek to limit
this norm by finding a scalar constant L such that

∥Q(c1)−Q(c2)∥ ≤ L∥c1 − c2∥ (19)

Given that such an L exists, it is called a Lipschitz constant, and Q is considered to be L-Lipschitz. It
turns out that there is a well understood procedure for training Lipschitz continuous neural networks
Gouk et al. (2018). Using this Lipschitz regularization, we can choose a constant Lh such that

∥ξ̄1 − ξ̄2∥ ≤ Lh∥c1 − c2∥ (20)

where ξ̄1 = h(c1) and ξ̄2 = h(c2). The exponential map on the sphere has a Lipschitz constant of
1, so we have the same result for the Lipschitz continuity of v̄ with respect to changes in context.
All that remains is to show that Q(v̄) is Lipschitz continuous.
Theorem 1. Let v̄1, v̄2 ∈ Rnk be constructed from k stacked unit n-vectors, and Q(v̄) be the
product of the corresponding Householder reflections (as defined in Eq. 8, 9). Then,

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (21)

where LQ = 2
√
k.

6

Under review as a conference paper at ICLR 2023

Figure 3: Learning curves corresponding to the configurations with the best average final success
rate, over all hyperparameter configurations, for each method. Each curve shows the mean success
rate over five runs of the best configuration, with the shaded regions indicating the standard error.

Proof. Please see section A.3 in the appendix.

Using the fact that the Lipschitz constant of a composition of Lipschitz continuous functions is
upper bounded by the product of the constituent Lipschitz constants Gouk et al. (2018), we combine
the results of equation 20 and theorem 1 to obtain a Lipschitz constant for Q: NHT is Lipschitz
continuous with L = 2Lh

√
k.

Thus, the low dimensional action a is guaranteed to result in similar actuations in nearby contexts:

∥û1 − û2∥ ≤ 2LhM
√
k · ∥c1 − c2∥ (22)

where û1 = Q̂1a and û2 = Q̂2a, respectively.

4 EXPERIMENTAL SETUP

Our experimental results focus on validating the efficacy of neural householder transforms for learn-
ing kinematic tasks within a custom MuJoCo simulation of a Barrett WAM robotic manipulator with
seven degrees-of-freedom (see Figure 2). We model each task as an MDP, and report results in two
environments: WAMWipe and WAMGrasp. Learning involves first training an NHT model on an of-
fline dataset of demonstrations, and then fixing the parameters of NHT and using Deep Deterministic
Policy Gradient (DDPG) (Lillicrap et al., 2016) to learn a policy online. We compare DDPG agents
trained with an NHT action interface against agents trained with a state-of-the-art latent action model
(Allshire et al., 2021), agents trained with an actuation basis computed by SVD, and agents trained
in the raw actuation space of the task (7dof joint velocity control). In our experiments we used a pub-
licly available implementation of deep deterministic policy gradient (Andrychowicz et al., 2017)3.

(a) WAMWipe (b) WAMGrasp

Figure 2: Simulated kinematic manipula-
tion environments with distinct goal types
and constraints.

4.1 WAM ENVIRONMENTS

WAMWipe and WAMGrasp were designed to study
the effects of using NHT to augment reinforcement
learning in kinematic manipulation tasks with a binary
reward function. These tasks can be classified accord-
ing to how their goals are defined, and constraints on
the configuration of the manipulator during execution
of the task. Table 1 in the appendix enumerates the
goal type and constraints present in WAMWipe and
WAMGrasp. Section A.1 includes detailed descrip-
tions of these environments.

4.2 ACTION INTERFACE BASELINES

In addition to training NHT from a dataset of demonstrations, we trained LASER (Allshire et al.,
2021) from the same dataset, and computed the singular value decomposition (SVD) of the dataset

3Although we used the implementation of DDPG introduced in the HER paper, we did not use HER in any
of our experiments.

7

Under review as a conference paper at ICLR 2023

of joint velocities executed during the demonstrations. In our experiments, the state-conditioned
actuation basis computed by NHT, static basis computed by SVD, and nonlinear decoder of LASER
all serve as different choices of interface between DDPG and the raw actuation commands that
determine the next state of the environment. In our WAMWipe experiments, NHT, LASER, and
SVD all exposed a two-dimensional action interface to DDPG, while in WAMGrasp they all exposed
three-dimensional interfaces. The k ∈ {2, 3} actuation bases provided by SVD were the vectors in
R7 corresponding to the k largest singular values.

Demonstrations were collected by recording observation-actuation (c,u) pairs from PD controllers
that were hand-engineered for each environment. For WAMWipe, the dataset consisted of 20,000
transitions, where a single demonstration consisted of roughly 250 transitions on average. In
WAMGrasp, the dataset consisted of 100,000 transitions, where a single demonstration consisted
of roughly 100 transitions on average. In both environments, the observation c upon which the
output of NHT and LASER are conditioned was the concatenation of joint angles and Cartesian
coordinates of the end-effector. LASER is regularized by the KL and dynamics terms in its loss
function (see equation 3), while we regularize NHT by enforcing Lipschitz continuity with Lips-
chitz constant L at each layer during training (Gouk et al., 2018). The Adam optimizer is used
for both NHT and LASER, with learning rate αmap, and otherwise default parameters. Likewise,
Adam is used as the optimizer in our chosen implementation of DDPG, with learning rates αactor

and αcritic for the policy and value function, respectively.

4.3 HYPERPARAMETER SEARCH

Figure 4: Violin plots of final success rates across
128 randomly sampled hyperparameter configura-
tions (5 runs each).

We would like to estimate the performance
of the best policy that could be learned by
DDPG in a finite amount of time for agents
trained with (1) an NHT action interface, (2) a
LASER (Allshire et al., 2021) action interface,
(3) an actuation basis computed by SVD, and
(4) seven degree-of-freedom joint velocity ac-
tions. In addition, we would like to study the
sensitivity of agent learning-dynamics to dif-
ferent hyperparameter configurations for each
action interface. As such, we performed a ran-
dom search over map (i.e. NHT, LASER) and
DDPG hyperparameters. We jointly sampled
128 configurations each for NHT + DDPG,
LASER + DDPG, DDPG with SVD, and DDPG with joint velocity actions. For the latter two
conditions the only hyperparameters of interest are those of DDPG itself. For each configuration,
we first trained the mapping function (if applicable), and then trained the DDPG agent, over five runs
with different random seeds. We chose to randomly sample hyperparameters because of previous
work suggesting it to be more computationally efficient to find better hyper parameters (Bergstra &
Bengio, 2012). The ranges and method of sampling used for each hyperparameter are listed in Table
2 of the appendix.

4.4 HALFCHEETAH

While our main interest for the application of NHT lies in constrained/safe robotic manipulation,
there is value in validating the utility of NHT on more standard reinforcement learning environ-
ments. In addition, it is important to show that the action interface learned by NHT is useful for
agents trained with various RL algorithms; not only for DDPG agents. We therefore performed a
hyperparameter search experiment with a standard implementation Dhariwal et al. (2017) of PPO
Schulman et al. (2017) on the HalfCheetah-v4 environment from OpenAI Gym Brockman et al.
(2016). This environment has a 17-dimensional observation space that includes angular positions
and velocities, and a 6-dimensional torque actuation space (compared to the joint velocity actuation
space in WAMGrasp and WAMWipe). We compared NHT agents to agents that learned in the stan-
dard 6dof actuation space of HalfCheetah, and agents with LASER Allshire et al. (2021) and SVD
action interfaces. NHT, SVD, and LASER all learned 2-dimensional action interfaces. This exper-
iment precisely mirrored the hyperameter search experiments reported in section 4.3, except that

8

Under review as a conference paper at ICLR 2023

Figure 5: Results of hyperparameter search for action mapping methods in HalfCheetah-v4. Left:
Learning curves corresponding to the configurations with the best average final success rate. Right:
Violin plots of final success rates across 128 randomly sampled hyperparameter configurations (5
runs each).

the demonstrations used to train NHT, SVD and LASER were collected from the best-performing
policy learned by the standard 6dof agent. A total of just 1,000 transitions were recorded from this
expert policy. The return on this demonstration episode was over 6,000. The hyperparameter ranges
and sampling methods for this experiment are summarized in Table 3 (see Appendix).

5 EXPERIMENTAL RESULTS

Figure 4 summarizes the results of the random hyperparameter search in the WAMWipe and
WAMGrasp environments. The violin plots represent the distribution of final success rates (success
rate after 100 epochs of training) across every randomly sampled hyperparameter configuration. The
learning curves in Figure 3 plot the mean success rate during training for the best performing agent
in each condition, averaged over five runs.

It can be seen that DDPG agents trained with an NHT action interface produced the best performing
agents after hyperparameter optimization (higher success rates in fewer epochs) in both WAMWipe
and WAMGrasp. In addition, the distributions of final success rates across hyperparameter configu-
rations suggest that agents trained with NHT are more robust to hyperparameter choices compared
to the baselines. Although in some runs the 7dof agent managed to reach a success rate of 100% in
WAMGrasp, the variance of final success rates amongst 7dof agents is much larger than the variance
of success rates for NHT agents. In general there was not a strong correlation between any one
hyperparameter and the final performance of the agents (coefficient of determination < 0.1).

The learning curves of the agents with the best average final performance, and the distribution of
final agent performances for each method in HalfCheetah-v4 are shown in Figure 5. Interestingly, we
found that the constant (i.e. not state-dependent) action interface of SVD was sufficient to learn more
efficiently than the standard 6dof agent while still achieving the same asymptotic performance. This
suggests that all of the instantaneous actuations used by an expert (> 6, 000 return) HalfCheetah
agent lie close to a fixed 2-dimensional linear subspace! There appears to be some benefit to the
agent learning in an adaptive actuation subspace with NHT, although the performance gains are
small in this environment. The agents learning with NHT tended again to be more robust to different
hyperparameter configurations.

6 CONCLUSION

We proposed contextual subspace approximation as a novel alternative to deep latent actions models
for robotic control. We derived the Neural Householder Transform model as an approach to con-
textual subspace approximation, and showed that it is smooth with respect to changes in context.
In a large hyperparameter search experiment, we found that reinforcement learning agents trained
with NHT outperformed agents trained to act in (1) the original actuation space, (2) a global linear
actuation basis computed by SVD, and (3) a state-of-the-art deep latent action model, LASER, in
novel WAMWipe and WAMGrasp robotic manipulation environments, as well as in the standard
HalfCheetah environment.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization Algorithms on Matrix
Manifolds, volume 78. 12 2008. ISBN 978-0-691-13298-3. doi: 10.1515/9781400830244.

Arthur Allshire, Roberto Martı́n-Martı́n, Charles Lin, Shawn Manuel, Silvio Savarese, and Ani-
mesh Garg. LASER: learning a latent action space for efficient reinforcement learning. CoRR,
abs/2103.15793, 2021. URL https://arxiv.org/abs/2103.15793.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
453fadbd8a1a3af50a9df4df899537b5-Paper.pdf.

Panagiotis K. Artemiadis and Kostas J. Kyriakopoulos. Emg-based control of a robot arm using
low-dimensional embeddings. IEEE Transactions on Robotics, 26(2):393–398, 2010. doi: 10.
1109/TRO.2009.2039378.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(10):281–305, 2012. URL http://jmlr.org/papers/
v13/bergstra12a.html.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Jyotikrishna Dass and Rabi Mahapatra. Householder sketch for accurate and accelerated least-mean-
squares solvers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
2467–2477. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/
dass21a.html.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural
networks by enforcing lipschitz continuity, 2018. URL https://arxiv.org/abs/1804.
04368.

Hong Jun Jeon, Dylan Losey, and Dorsa Sadigh. Shared Autonomy with Learned Latent Ac-
tions. In Robotics: Science and Systems XVI. Robotics: Science and Systems Foundation, July
2020. ISBN 978-0-9923747-6-1. doi: 10.15607/RSS.2020.XVI.011. URL http://www.
roboticsproceedings.org/rss16/p011.pdf.

Siddharth Karamcheti, Albert J. Zhai, Dylan P. Losey, and Dorsa Sadigh. Learning visually guided
latent actions for assistive teleoperation. In Ali Jadbabaie, John Lygeros, George J. Pappas, Pablo
A. Parrilo, Benjamin Recht, Claire J. Tomlin, and Melanie N. Zeilinger (eds.), Proceedings of the
3rd Conference on Learning for Dynamics and Control, volume 144 of Proceedings of Machine
Learning Research, pp. 1230–1241. PMLR, 07 – 08 June 2021. URL http://proceedings.
mlr.press/v144/karamcheti21a.html.

Diederik P. Kingma and M. Welling. Auto-Encoding Variational Bayes. ICLR, 2014.

Jens Kober and Jan Peters. Learning motor primitives for robotics. In 2009 IEEE International
Conference on Robotics and Automation, pp. 2112–2118, 2009. doi: 10.1109/ROBOT.2009.
5152577.

Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity
barrier to regret-optimal model-free reinforcement learning. CoRR, abs/2110.04645, 2021. URL
https://arxiv.org/abs/2110.04645.

10

https://arxiv.org/abs/2103.15793
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://proceedings.mlr.press/v139/dass21a.html
https://proceedings.mlr.press/v139/dass21a.html
https://github.com/openai/baselines
https://github.com/openai/baselines
https://arxiv.org/abs/1804.04368
https://arxiv.org/abs/1804.04368
http://www.roboticsproceedings.org/rss16/p011.pdf
http://www.roboticsproceedings.org/rss16/p011.pdf
http://proceedings.mlr.press/v144/karamcheti21a.html
http://proceedings.mlr.press/v144/karamcheti21a.html
https://arxiv.org/abs/2110.04645

Under review as a conference paper at ICLR 2023

Hongzhuo Liang, Lin Cong, Norman Hendrich, Shuang Li, Fuchun Sun, and Jianwei Zhang. Mul-
tifingered grasping based on multimodal reinforcement learning. IEEE Robotics and Automation
Letters, 7(2):1174–1181, 2022. doi: 10.1109/LRA.2021.3138545.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1509.02971.

Dylan P. Losey, K. Srinivasan, Ajay Mandlekar, Animesh Garg, and D. Sadigh. Controlling Assis-
tive Robots with Learned Latent Actions. 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020. doi: 10.1109/ICRA40945.2020.9197197.

Dylan P. Losey, Hong Jun Jeon, Mengxi Li, Krishnan Srinivasan, Ajay Mandlekar, Animesh Garg,
Jeannette Bohg, and Dorsa Sadigh. Learning latent actions to control assistive robots. CoRR,
abs/2107.02907, 2021. URL https://arxiv.org/abs/2107.02907.

Roberto Martı́n-Martı́n, Michelle A. Lee, Rachel Gardner, Silvio Savarese, Jeannette Bohg, and
Animesh Garg. Variable impedance control in end-effector space: An action space for reinforce-
ment learning in contact-rich tasks. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1010–1017, 2019. doi: 10.1109/IROS40897.2019.8968201.

Alexander Mathiasen, Frederik Hvilshøj, Jakob Rødsgaard Jørgensen, Anshul Nasery, and Davide
Mottin. {Faster Orthogonal Parameterization with Householder Matrices. In {ICML Workshop
on Invertible Neural Networks and Normalizing Flows, 2020.

Giulia Matrone, Christian Cipriani, Maria Chiara Carrozza, and Giovanni Magenes. Real-time myo-
electric control of a multi-fingered hand prosthesis using principal components analysis. Journal
of neuroengineering and rehabilitation, 9:40, 06 2012. doi: 10.1186/1743-0003-9-40.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 2401–2409. PMLR, 06–11 Aug
2017. URL https://proceedings.mlr.press/v70/mhammedi17a.html.

Rajbir Nirwan and Nils Bertschinger. Rotation invariant householder parameterization for Bayesian
PCA. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 4820–4828. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/nirwan19a.html.

Anton Obukhov, Maxim Rakhuba, Alexander Liniger, Zhiwu Huang, Stamatios Georgoulis,
Dengxin Dai, and Luc Van Gool. Spectral tensor train parameterization of deep learning layers.
In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th International Confer-
ence on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pp. 3547–3555. PMLR, 13–15 Apr 2021. URL https://proceedings.mlr.
press/v130/obukhov21a.html.

Aggeliki Odest and Odest Jenkins. 2d subspaces for user-driven robot grasping. Robotics, Science
and Systems Conference: Workshop on Robot Manipulation, 2007.

Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Probabilistic move-
ment primitives. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
e53a0a2978c28872a4505bdb51db06dc-Paper.pdf.

Danilo Jimenez Rezende, George Papamakarios, Sebastien Racaniere, Michael Albergo, Gurtej
Kanwar, Phiala Shanahan, and Kyle Cranmer. Normalizing flows on tori and spheres.
In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.

11

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2107.02907
https://proceedings.mlr.press/v70/mhammedi17a.html
https://proceedings.mlr.press/v97/nirwan19a.html
https://proceedings.mlr.press/v97/nirwan19a.html
https://proceedings.mlr.press/v130/obukhov21a.html
https://proceedings.mlr.press/v130/obukhov21a.html
https://proceedings.neurips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf

Under review as a conference paper at ICLR 2023

8083–8092. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
rezende20a.html.

Marco Santello, Martha Flanders, and John Soechting. Postural hand synergies for tool use. The
Journal of Neuroscience, 18:10105–15, 12 1998. doi: 10.1523/JNEUROSCI.18-23-10105.1998.

Stefan Schaal. Dynamic Movement Primitives -A Framework for Motor Control in Humans and
Humanoid Robotics, pp. 261–280. Springer Tokyo, Tokyo, 2006. ISBN 978-4-431-31381-6. doi:
10.1007/4-431-31381-8 23. URL https://doi.org/10.1007/4-431-31381-8_23.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Sahil Singla, Surbhi Singla, and Soheil Feizi. Improved deterministic l2 robustness on cifar-10 and
cifar-100, 2021. URL https://arxiv.org/abs/2108.04062.

Jakub M. Tomczak and Max Welling. Improving variational auto-encoders using householder flow,
2016. URL https://arxiv.org/abs/1611.09630.

Samuele Tosatto, Georgia Chalvatzaki, and Jan Peters. Contextual latent-movements off-policy
optimization for robotic manipulation skills. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 10815–10821, 2021. doi: 10.1109/ICRA48506.2021.9561870.

L.N. Trefethen and D. Bau. Numerical Linear Algebra. Other Titles in Applied Mathematics.
Society for Industrial and Applied Mathematics, 1997. ISBN 9780898713619. URL https:
//books.google.com/books?id=4Mou5YpRD_kC.

Rianne van den Berg, Leonard Hasenclever, Jakub Tomczak, and Max Welling. Sylvester normaliz-
ing flows for variational inference. In proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI), 2018.

Elise van der Pol, Thomas Kipf, Frans A. Oliehoek, and Max Welling. Plannable approximations
to mdp homomorphisms: Equivariance under actions. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’20, pp. 1431–1439, Rich-
land, SC, 2020. International Foundation for Autonomous Agents and Multiagent Systems. ISBN
9781450375184.

Jiong Zhang, Qi Lei, and Inderjit Dhillon. Stabilizing gradients for deep neural networks via effi-
cient SVD parameterization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learn-
ing Research, pp. 5806–5814. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/zhang18g.html.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. 2020.

A APPENDIX

Here we provide additional details about the WAMWipe and WAMGrasp environments, details
about our hyperparameter search, and a proof for the theorem presented in Section 3.3 of the main
paper. We also include in section A.4 supplementary results from an ablation study where we strip
NHT of the constraint that it must output orthonormal bases. Finally, we compare NHT to a Jacobian
pseudoinverse action interface in section A.5.

A.1 RL ENVIRONMENT DETAILS

In both WAMWipe and WAMGrasp, one environment step corresponds to 10 MuJoCo simulation
time-steps of length 0.002 seconds each. Both environments allow a maximum of 200 environment
steps per episode.

12

https://proceedings.mlr.press/v119/rezende20a.html
https://proceedings.mlr.press/v119/rezende20a.html
https://doi.org/10.1007/4-431-31381-8_23
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2108.04062
https://arxiv.org/abs/1611.09630
https://books.google.com/books?id=4Mou5YpRD_kC
https://books.google.com/books?id=4Mou5YpRD_kC
https://proceedings.mlr.press/v80/zhang18g.html
https://proceedings.mlr.press/v80/zhang18g.html

Under review as a conference paper at ICLR 2023

Env Action Dim. Actuation Dim. Goal Type Constraints

WAMWipe 2 7 Pos Safety, Contact, Orientation
WAMGrasp 3 7 Pos, Orientation Safety

Table 1: Properties of reinforcement learning environments in simulation experiments.

A.1.1 WAMWIPE

In WAMWipe the goal is to control the manipulator such that the flat face of the last link remains
flush against a table while sliding to a randomly sampled goal position. The reward is -1 every step
unless the end-effector is within a small distance of the goal position, in which case the reward is
0. Episode failure occurs if the end-effector: (1) Pushes into the table, (2) Lifts off of the table, or
(3) The end-effector tilts such that it is no longer flush with the table. Let p denote the unit vector
orthogonal to the face of the end-effector, pictured as a purple arrow in figure A.1. Constraint (3), the
orientation constraint, was considered violated when the angle between p and the vector orthogonal
to the surface of the table (not pictured) was greater than π/16 radians. The agent observation in
our experiments was a concatenated vector of joint angles, Cartesian coordinates of the end-effector,
Cartesian coordinates of the goal position, and the unit vector orthogonal to the face of the end-
effector. The actions in our WAMWipe experiments were either 7dof joint velocity commands, or
2-dimensional actions input to an NHT, SVD, or LASER action interface.

A.1.2 WAMGRASP

Figure A.1: The 3-vector p pictured here
was used to determine whether the orienta-
tion constraint/goal-condition was satisfied in
WAMWipe/WAMGrasp, respectively.

In WAMGrasp the goal is to simultaneously
reach a randomly sampled grasp-point, while
achieving a goal orientation that is determined
by the grasp-point. Let p∗ denote the unit vec-
tor pointing from the grasp-point (small sphere
in Figure A.1) to the object being grasped (large
sphere in Figure A.1). We consider the orienta-
tion satisfactory if the angle θ between p∗ and
the vector orthogonal to the face of the manip-
ulator, p, is less than π/16 radians. The reward
in WAMGrasp is -1 at every step unless the end-
effector is within a small distance of the grasp-
point with a satisfactory orientation. Episode
failure occurs if the end-effector collides with
either the object being grasped (large red sphere
in Figure A.1) or the table. In each episode the
grasp-point is randomly sampled from the sur-
face of a sphere with the same center but larger
radius than the large red sphere in Figure A.1.
The agent observation was a concatenated vector of joint angles, Cartesian coordinates of the end-
effector, and Cartesian coordinates of the grasp point. The actions in our WAMGrasp experiments
were either 7dof joint velocity commands, or 3-dimensional actions input to an NHT, SVD, or
LASER action interface.

A.2 HYPERPARAMETER SEARCH DETAILS

The hyperparameter search experiment described in section 4.3 of the main paper was designed to
estimate the performance of the best policy that could be learned by DDPG in a finite amount of
time for agents trained with (1) an NHT action interface, (2) a LASER Allshire et al. (2021) action
interface, (3) an actuation basis computed by SVD, and (4) seven degree-of-freedom joint velocity
actions.

The hyperparameter search also enabled us to study the sensitivity of agent learning-dynamics to
different hyperparameter configurations for each action interface. The results serve as empirical
evidence with which to answer questions such as: “Could changing the neural architecture of NHT

13

Under review as a conference paper at ICLR 2023

cause a significant drop in the final success rate of a policy learned by DDPG?” Answering such
questions is non-trivial since there may or may not be complex interactions between map (i.e. NHT,
LASER) hyperparameters, DDPG hyperparameters, and final agent performance. It is unknown
whether NHT hyperparameters tuned for an agent with arbitrary configuration A will be the best
NHT hyperparameters for an agent with a different configuration B. For example, it is conceivable
that a DDPG agent with hyperparameter configuration A may perform best with NHT configuration
C, while DDPG with configuration B performs best with NHT configuration D. Thus a meaningful
search should jointly vary the hyperparameters of the mapping models and the DDPG agent.

We jointly sampled 128 configurations each for NHT + DDPG, LASER + DDPG, DDPG with SVD,
and DDPG with joint velocity actions. For each configuration, we first trained the mapping function
(if applicable), and then trained the DDPG agent, over five runs with different random seeds. The
range of values and sampling method used for each hyperparameter are listed in table 2.

For both WAMWipe and WAMGrasp, each agent was trained for one million environment steps,
using three workers to generate experience. This resulted in 100 training epochs of 10,000 steps
each.

Parameter Range Sampling

αmap (1e-6, 1e-1) Exponential
βKL (LASER) (1e-6, 1e0) Exponential
βdyn (LASER) (1e-6, 1e0) Exponential
L (SCL) (1e-1, 1e2) Exponential
Map Batch Size (32, 256) Uniform
Map Activation {ReLU, sigmoid, tanh} Uniform
Map Hidden Layers {1, 2, 3, 4} Uniform
Map Hidden Units (16, 1024) Geometric

αactor (1e-4, 1e-2) Exponential
αcritic (1e-4, 1e-2) Exponential
Rand Action ϵ (0, 0.4) Uniform
Action Noise σ (0, 0.4) Uniform
Penalty on ∥a∥ (0, 1) Uniform
Max ∥a∥ (1, 10)* Exponential
DDPG Batch Size (32, 256) Uniform
Polyak (0.9, 0.99) Uniform

Table 2: Hyperparameter ranges and sampling methods for pre-trained mapping functions (top) and
DDPG (bottom). We use 1ex as shorthand to denote 1× 10x. Exponential and Geometric sampling
of parameters was carried out as described in Bergstra & Bengio (2012). *For the agent with 7dof
actions we use the range (0.1, 10).

The parameter ranges and sampling methods for the PPO agent used in the HalfCheetah hyperpa-
rameter search are given in table 3.

Parameter Range Sampling

α (1e-4, 1e-2) Exponential
Discount Factor γ (0.9, 0.99) Uniform
GAE Parameter λ (0.9, 0.99) Uniform
VF coefficient (0.25,1) Uniform
Clipping Parameter ϵ (0.05,0.5) Uniform
Steps-per-update {1024,2048,4096} Uniform

Table 3: Hyperparameter ranges for PPO in the HalfCheetah-v4 experiments. We use 1ex as short-
hand to denote 1×10x. Exponential sampling of parameters was carried out as described in Bergstra
& Bengio (2012).

14

Under review as a conference paper at ICLR 2023

A.3 SMOOTHNESS OF Q(v̄)

In this section we prove the Lipschitz continuity of Q(v̄), as stated in theorem 1.
Theorem 1. Let v̄1, v̄2 ∈ Rnk be constructed from k stacked unit n-vectors, and Q(v̄) be the
product of the corresponding Householder reflections (as defined in Eq. 8, 9). Then,

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (21)

where LQ = 2
√
k.

We write Hi as shorthand for H(vi) = I − 2viv
⊤
i . We write v̄ ∈ Rnk to denote the concate-

nated column vector of vi ∈ Rn: v̄ = [v⊤
1 ,v

⊤
2 , . . . ,v

⊤
k]

⊤. We denote the map from v̄ to the
corresponding product of reflections as Q : v̄ 7→ Q(v̄), where

Q(v̄) = H(v1)H(v2) · · ·H(vk) (23)

We likewise write δ̄ ∈ Rnk to denote the concatenated vector of perturbations to each vi

δ̄ =

δ′1
δ′2
...
δ′k

 =

c1δ1
c2δ2

...
ckδk

 (24)

where ∥δ̄∥ = 1, with scalars ci ∈ R scaling the unit norm δi vectors that represent the direction of
change for each vi. We consider the directional derivative of Q(v̄) in the direction of δ̄:

∇δ̄Q(v̄)
.
= lim

ϵ→0

Q(v̄ + ϵδ̄)−Q(v̄)

ϵ
(25)

where ∥δ̄∥ = 1.

The existence of a positive constant LQ that bounds ∥∇δ̄Q(v̄)∥ implies Lipschitz continuity of
Q(v̄):

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (26)
for all v̄1, v̄2 constructed with k stacked unit n-vectors. We explicitly compute such an LQ below.
As a first step, we show in section A.3.1 that ∥∇δH(v)∥ = 2. We will then use this result to
compute an upper bound on LQ in section A.3.2.

A.3.1 LIPSCHITZ CONTINUITY OF H(v)

The directional derivative of H(v) in the direction of δ is defined as:

∇δH(v)
.
= lim

ϵ→0

H(v + ϵδ)−H(v)

ϵ
(27)

where δ ∈ Rn. Recall that v is in the n − 1 sphere, and thus any instantaneous change to v must
occur in a direction tangent to the sphere at v; that is, δ ⊥ v. Furthermore, without loss of generality
we let ∥δ∥ = 1. Thus, δ is a unit vector in the direction of the perturbation of v.

We first simplify the first term in the numerator:

H(v + ϵδ) = I− 2(v + ϵδ)(v + ϵδ)⊤ (28)

= I− 2(vv⊤ + ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤) (29)

= I− 2vv⊤ − 2(ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤) (30)

= H(v)− 2(ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤) (31)

Substituting the result into the definition of ∇δH(v), we have:

∇δH(v) = lim
ϵ→0

−2(ϵδv⊤ + ϵvδ⊤ + ϵ2δδ⊤)

ϵ
(32)

= lim
ϵ→0

−2(δv⊤ + vδ⊤ + ϵδδ⊤) (33)

= −2(δv⊤ + vδ⊤) (34)

15

Under review as a conference paper at ICLR 2023

Now we compute ∥∇δH(v)∥. Note that the symmetry of the sphere guarantees that ∥∇δH(v)∥ is
invariant with respect to both δ and v.

∥∇δH(v)∥ .
= max

x ̸=0

∥∇δH(v)x∥
∥x∥

(35)

The numerator is maximized when x is in the plane spanned by v and δ. Given this is the case, we
can write x as a linear combination of v and δ. Let

x = αv + βδ (36)

for some α, β ∈ R. We then have the following:

∥∇δH(v)∥ = max
x̸=0

∥∇δH(v)x∥
∥x∥

(37)

= max
x̸=0

∥ − 2(δv⊤ + vδ⊤)x∥
∥x∥

(38)

= 2
∥(δv⊤ + vδ⊤)(αv + βδ)∥

∥x∥
(39)

= 2
∥αδv⊤v + αvδ⊤v + βδv⊤δ + βvδ⊤δ∥

∥x∥
(40)

= 2
∥αδv⊤v + βvδ⊤δ∥

∥x∥
(41)

= 2
∥αδ + βv∥

∥x∥
(42)

where equation 41 follows from 40 by the fact that δ ⊥ v. Equation 42 follows from the fact that
both δ and v have unit norm.

Now, recall that x = αv+βδ. The numerator in 42 represents a simple change of basis for x. Since
δ and v are orthonormal, this change of basis preserves the norm of x. Hence ∥αδ + βv∥ = ∥x∥,
and we have:

∥∇δH(v)∥ = 2 (43)

This implies H(v) is Lipschitz continuous with Lipschitz constant 2.

A.3.2 LIPSCHITZ CONTINUITY OF Q

We now consider the directional derivative of Q(v̄) in the direction of δ̄:

∇δ̄Q(v̄)
.
= lim

ϵ→0

Q(v̄ + ϵδ̄)−Q(v̄)

ϵ
(44)

where ∥δ̄∥ = 1. Recall:

δ̄ =

δ′1
δ′2
...
δ′k

 =

c1δ1
c2δ2

...
ckδk

 (45)

Theorem 1. Let v̄1, v̄2 ∈ Rnk be constructed from k stacked unit n-vectors, and Q(v̄) be the
product of the corresponding Householder reflections (as defined in Eq. 8, 9). Then,

∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (21)

where LQ = 2
√
k.

Proof. We begin by expanding the numerator of ∇δ̄Q

∇δ̄Q(v̄) = lim
ϵ→0

H(v1 + ϵδ′1)H(v2 + ϵδ′2) · · ·H(vk + ϵδ′k)−Q(v̄)

ϵ
(46)

16

Under review as a conference paper at ICLR 2023

We now consider the first term in the numerator. In the following we write Hi as shorthand for
H(vi), and ∇Hi as shorthand for ∇δi

H(vi), the derivative of H(vi) as defined in equation (27).

H(v1 + ϵδ′1)H(v2 + ϵδ′2) · · ·H(vk + ϵδ′k) (47)

= (H1 + ϵc1∇H1)(H2 + ϵc2∇H2) · · · (Hk + ϵck∇Hk) +O(ϵ2) (48)
= H1H2 · · ·Hk + ϵc1(∇H1)H2 · · ·Hk + ϵc2H1(∇H2)H3 · · ·Hk + . . . (49)

+ ϵckH1H2 · · ·Hk−1(∇Hk) +O(ϵ2) (50)

= Q(v̄) + ϵc1(∇H1)(

k∏
i=2

Hi) + ϵc2H1(∇H2)(

k∏
i=3

Hi) + · · ·+ ϵck(

k−1∏
i=1

Hi)(∇Hk) +O(ϵ2)

(51)

= Q(v̄) + ϵ

k∑
j=1

cj

(j−1∏
i=1

Hi)(∇Hj)(

k∏
l=j+1

Hl)

+O(ϵ2) (52)

and substitute the result into the definition of ∇δ̄Q(v̄):

∇δ̄Q(v̄) = lim
ϵ→0

Q(v̄) + ϵ
∑k

j=1 cj

[
(
∏j−1

i=1 Hi)(∇Hj)(
∏k

l=j+1 Hl)
]
+O(ϵ2)−Q(v̄)

ϵ
(53)

=

k∑
j=1

cj

(j−1∏
i=1

Hi)(∇Hj)(

k∏
l=j+1

Hl)

 (54)

We now work toward bounding the norm of ∇δ̄Q(v̄):

∥∇δ̄Q(v̄)∥ =

∥∥∥∥∥∥
k∑

j=1

cj

(j−1∏
i=1

Hi)(∇Hj)(

k∏
l=j+1

Hl)

∥∥∥∥∥∥ (55)

≤
k∑

j=1

cj

∥∥∥∥∥∥(
j−1∏
i=1

Hi)(∇Hj)(

k∏
l=j+1

Hl)

∥∥∥∥∥∥ (56)

=

k∑
j=1

cj∥∇Hj∥ (57)

≤

√√√√ k∑
j=1

c2j

√√√√ k∑
j=1

∥∇Hj∥2

 (58)

=
∥∥δ̄∥∥

√√√√ k∑
j=1

∥∇δjH(vj)∥2 (59)

=

√√√√ k∑
j=1

(2)2 (60)

= 2
√
k (61)

Where equation (57) is thanks to the fact that each of the Hi in the preceding equation are orthogo-
nal, and equation (58) follows by the Cauchy-Schwarz inequality.

Hence, the norm of the directional derivative of Q(v̄) is bounded by 2
√
k; that is:

∥∇Q(v̄)∥ ≤ 2
√
k (62)

which implies
∥Q(v̄1)−Q(v̄2)∥ ≤ LQ∥v̄1 − v̄2∥ (63)

with Lipschitz constant LQ = 2
√
k.

17

Under review as a conference paper at ICLR 2023

A.4 ABLATION OF ORTHONORMAL CONSTRAINT

What is the benefit of enforcing orthonormal actuation bases in NHT? Beside the fact that the pseu-
doinverse of Q̂ can be computed trivially as the transpose during training, we wanted to find out
if there was any empirical benefit. To answer this question we performed an experiment in which
we trained a neural network to produce an arbitrary state-conditioned matrix as an actuation basis
for WAMWipe and WAMGrasp. Unlike NHT, this baseline is not constrained to output a matrix
with orthonormal columns. We will refer to the baseline as the state-conditioned linear map (SCL)
model. The SCL baseline is a neural network hθ : c 7→ B̂ ∈ Rn×k that maps context vectors to an
n× k matrix B̂. In our WAMWipe experiment n = 7 and k = 2, while for WAMGrasp n = 7 and
k = 3.

Figure A.2: Violin plots of final success rates across 128 randomly sampled hyperparameter config-
urations (5 runs each) for NHT vs a non-orthonormal state-conditioned linear (SCL) action mapping
baseline.

As in section 4.3 of the main text, we performed a hyperparameter search in which we sampled
128 hyperparameter configurations and trained NHT/SCL and then a DDPG agent with 5 different
random seeds. The sampling method and ranges for each parameter were the same for both NHT
and SCL, and are listed in Table 2 of section A.2. Figure A.2 summarizes the results of this hy-
perparameter search with violin plots of the final performance attained by agents with NHT and
SCL action interfaces for the WAMWipe and WAMGrasp environments. The NHT hyperparameter
search results reported in this figure are the same as those reported in section 4.3 of the main text.

We found that 64 out of 640 (10%) of the runs for SCL in WAMWipe failed due to numerical in-
stability. In these cases the matrices output by the unconstrained neural network had large norms,
resulting in very large joint velocity actuations that caused the mujoco simulations to fail. Interest-
ingly, we did not observe the same numerical stability issues in the SCL models that were trained
for WAMGrasp. Note that, in contrast, for NHT numerical stability is not an empirical issue. The
2-norm of the matrix produced by NHT is guaranteed to be equal to one.

In WAMWipe, the best hyperparameter configurations of SCL resulted in actuation interfaces that
were suitable for the DDPG agent to achieve 100% success rate. However, in both WAMWipe and
WAMGrasp, the distributions of final agent performance in figure A.2 indicate that NHT was more
robust than SCL with respect to variation in hyperparameter configurations. This suggests that NHT
may be less sensitive to different choices of hyperparameters, making it easier to tune in practice.

A.5 COMPARISON TO JACOBIAN PSEUDOINVERSE INTERFACE

Here we compare NHT to an additional choice of action interface that, unlike the baselines discussed
in the main text, is not learned from demonstrations. The Jacobian of the robotic manipulator de-
scribes the relationship between the joint velocities and the Cartesian and angular velocity of the
end-effector. The pseudoinverse of the Jacobian can be used to define a six-dimensional action in-
terface for an RL agent: 3 dimensions in the agent’s action space correspond to Cartesian velocity,
and the remaining 3 correspond to angular velocity.

18

Under review as a conference paper at ICLR 2023

Figure A.3: Violin plots of final success rates across 128 randomly sampled hyperparameter configu-
rations (5 runs each) for NHT vs a Jacobian pseudoinverse (Jacobian pinv) action mapping baseline.

We compared NHT to the Jacobian pseudoinverse as an action interface for a DDPG agent in
WAMGrasp and WAMWipe in a hyperparameter search experiment with the same methodology
described in section 4.3 of the main text (128 hyperparameter configurations, 5 seeds for each con-
figuration). As already noted, the dimensionality of the agent’s action space was 6 when using
the Jacobian pseudoinverse interface. NHT was used to learn a 2-dimensional action interface for
WAMWipe, and a 3-dimensional action interface for WAMGrasp. The hyperparameter search re-
sults are plotted in figure A.3. The NHT hyperparameter search results reported in this figure are the
same as those reported in section 4.3 of the main text. The variation in performance for the Jacobian
pseudoinverse agents are entirely due to different DDPG agent configurations (the Jacobian has no
hyperparameters).

As expected, the agent with the Jacobian pseudoinverse action interface performed poorly in
WAMWipe; like the 7dof joint velocity agent, the Jacobian pseudoinverse agent was able to freely
jam the end-effector of the robot into the table, or lift the end-effector from the table, resulting in
an automatic failure for its training episodes. Without a learned action interface, the exploratory
behavior inherent in reinforcement learning resulted in destructive behavior that made learning in
the highly constrained environment of WAMWipe difficult.

In WAMGrasp, the Jacobian pseudoinverse agents were sometimes able to learn to achieve 100%
success rate. However, it is clear from the violin plots in figure A.3 that limiting the joint velocity
commands to useful subspaces learned by NHT has some benefit over allowing free exploration with
the Jacobian pseudoinverse interface. Some of the poorer hyperparameter configurations resulted in
close to 0% success rate when interacting with WAMGrasp through the Jacobian pseudoinverse
interface. NHT tended to concentrate agent performance, over all hyperparameter configurations,
toward a success rate of 75% to 100%.

19

	Introduction
	Background and Preliminaries
	Problem Statement
	Markov Decision Processes
	Latent Policy Framework

	Contextual Subspace Approximation
	Neural Householder Transform
	Exponential Map on Unit Sphere

	Existence
	Smoothness of Q

	Experimental Setup
	WAM Environments
	Action Interface Baselines
	Hyperparameter Search
	HalfCheetah

	Experimental Results
	Conclusion
	Appendix
	RL Environment Details
	WAMWipe
	WAMGrasp

	Hyperparameter Search Details
	Smoothness of Q()
	Lipschitz Continuity of H(v)
	Lipschitz Continuity of Q

	Ablation of Orthonormal Constraint
	Comparison to Jacobian Pseudoinverse Interface

