Under review as a conference paper at ICLR 2021

NON-GREEDY GRADIENT-BASED HYPERPARAMETER
OPTIMIZATION OVER LONG HORIZONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-based meta-learning has earned a widespread popularity in few-shot
deep learning, but remains broadly impractical for tasks with long horizons (many
gradient steps), due to memory scaling and gradient degradation issues. A com-
mon workaround is to learn meta-parameters online, but this introduces greediness
which comes with a significant performance drop. In this work, we enable non-
greedy meta-learning of hyperparameters over long horizons by sharing hyperpa-
rameters that are contiguous in time, and using the sign of hypergradients rather
than their magnitude to indicate convergence. We implement this with forward-
mode differentiation, which we extend to the popular momentum-based SGD op-
timizer. We demonstrate that the hyperparameters of this optimizer can be learned
non-greedily without gradient degradation over ~ 10% inner gradient steps, by
only requiring ~ 10 outer gradient steps. On CIFAR-10, we outperform greedy
and random search methods for the same computational budget by nearly 10%.
Code will be available upon publication.

1 INTRODUCTION

Deep neural networks have shown tremendous success on a wide range of applications, including
classification (He et al., 2016)), generative models (Brock et al.,[2019), natural language processing
(Devlin et al, |2018)) and speech recognition (Oord et al., |2016). This success is in part due to
effective optimizers such as SGD with momentum or Adam (Kingma & Ba, 2015)), which require
carefully tuned hyperparameters for each application. In recent years, a long list of heuristics to
tune such hyperparameters has been compiled by the deep learning community, including things
like: how to best decay the learning rate (Loshchilov & Hutter, [2017)), how to scale hyperparameters
with the budget available (Li et al.,[2020), and how to scale learning rate with batch size (Goyal et al.,
2017). Unfortunately these heuristics are often dataset specific and architecture dependent (Dong
et al., [2020), and must constantly evolve to accommodate new optimizers (Loshchilov & Hutter,
2019), or new tools, like batch normalization which allows for larger learning rates and smaller
weight decay (loffe & Szegedy, |2015).

With so many ways to choose hyperparameters, the deep learning community is at risk of adopting
models based on how much effort went into tuning them, rather than their methodological insight.
The field of hyperparameter optimization (HPO) aims to find hyperparameters that provide a good
generalization performance automatically. Unfortunately, existing tools are rather unpopular for
deep networks, largely owing to their inefficiency. Here we focus on gradient-based HPO, which
calculates hypergradients, i.e. the gradient of some generalization loss with respect to each hyperpa-
rameter. Gradient-based HPO should be more efficient than black box methods as the dimensionality
of the hyperparameter space increases, since it relies on gradients rather than trial and error. In prac-
tice however, learning hyperparameters with gradients has only been popular in few-shot learning
tasks where the horizon is short. This is because long horizons cause hypergradient degradation, and
incur a memory cost that makes reverse-mode differentiation prohibitive. Greedy alternatives allevi-
ate both of these issues, but come at the cost of solving hyperparameters locally instead of globally.
Forward-mode differentiation has been shown to offer a memory cost constant with horizon size, but
it doesn’t address gradient degradation and only scales to few hyperparameters, which has limited
its use to the greedy setting as well.

Under review as a conference paper at ICLR 2021

—4
x10 10
0.5 0.30
8
2.
04 0.25 8
0.20 6 "
0.3 6 2
5 z
3 @ (.15 3 Z
. i £
0.2 ! 1 E
o
0.10 ! i
" 1] — = Ours
0.1 i 214 i
: 0.05 T]] i o] ——__ HD (greedy) | &2
anS o 1 vy 2 Beyeireet=a)
VPN aNr o tmmp oy “ ,,,‘JN\’ v : A"‘\ . v 7 i
0.0 0.00] === 0 ey 2 - o
0 20 10 0 20 40 0 20 10 0 20 10
epochs epochs epochs epochs
P T T P

Figure 1: Our method applied to the SGD optimizer to learn (from left to right) the learning rate
schedule «, the momentum 3, and weight decay p for a WRN-16-1 on CIFAR-10. For each outer
step (color) we solve CIFAR-10 from scratch for 50 epochs, and update all hyperparameters such that
the final weights minimize some validation loss. We use hyperparameter sharing over 10, 50 and 50
epochs for a, 3 and p respectively. All hyperparameters are initialized to zero and converge within
just 10 outer steps to values that significantly outperform the online greedy alternative (Baydin et al.,
2018)), and match aggressively hand-tuned baselines for this setting (see Section @

To the best of our knowledge, this work demonstrates for the first time that gradient-based HPO can
be applied for long horizon problems like CIFAR-10 without being greedy. Specifically, we make
the following contributions: (1) we propose to share hyperparameters through time and show that
this significantly reduces the variance of hypergradients, (2) we show that the sign of hypergradients
is a better indicator of convergence than their magnitude and enables a small number of outer steps,
(3) we combine the above in a forward-mode algorithm adapted to modern SGD optimizers with
momentum and weight decay, and (4) we show that our method significantly outperforms random
search and greedy alternatives when used with the same computational budget.

2 RELATED WORK

There are many ways to perform hyperparameter optimization (HPO), including Bayesian optimiza-
tion (Snoek et al.|[2015)), reinforcement learning (Zoph & Le},[2017)), a mix of the two (Falkner et al.,
2018), evolutionary algorithms (Jaderberg et al.,|2017) and gradient-based methods (Bengio, | 2000).
Here we focus on the latter, but a comparison of HPO methods can be found in (Feurer & Hut-
ter, |2019). Modern work in meta-learning deals with various forms of gradient-based HPO, many
examples of which are discussed in this survey (Hospedales et al., 2020). However, meta-learning
typically focuses on the few-shot regime where horizons are conveniently short, while in this work
we focus on long horizons.

Gradient-based HPO. Using the gradient of some validation loss with respect to the hyperparam-
eters is typically the preferred choice when the underlying optimization is differentiable. This is a
type of bilevel optimization (Franceschi et al., 2018)) which stems from earlier work on backprop-
agation through time (Werbos| [1990) and real-time recurrent learning (Williams & Zipser, [1989).
Unfortunately, differentiating optimization is an expensive procedure in both time and memory, and
most proposed methods are limited to small models and toy datasets (Domke} 2012;|Maclaurin et al.,
2015} [Pedregosa, |2016). Efforts to make the problem more tractable include optimization shortcuts
(Fu et al.| [2016)), truncation (Shaban et al., [2019) and implicit gradients (Rajeswaran et al.l 2019;
Lorraine et al., 2019). Truncation can be combined with our approach but produces biased gradients
(Metz et al., [2019), while implicit differentiation is only applicable to hyperparameters that define
the training loss (e.g. augmentation) but not to hyperparameters that define how the training loss
is minimized (e.g. optimizer hyperparameters). Forward-mode differentiation (Williams & Zipser,
1989) boasts a memory cost constant with horizon size, but it doesn’t address gradient degradation
which has restricted its use to the greedy setting (Franceschi et al., [2017)).

Under review as a conference paper at ICLR 2021

Greedy Methods. One trick that prevents gradient degradation and significantly reduces compute
and memory cost is to solve the bilevel optimization greedily. This has become the default trick in
various long-horizon problems, including HPO over optimizers (Luketina et al., 20165 [Franceschi
et al., [2017; Baydin et al., 2018} |[Donini et al., |2019), architecture search (Liu et al.,|2019), dataset
distillation (Wang et al.,|2018)) or curriculum learning (Ren et al., 2018). Greediness refers to finding
the best hyperparameters locally rather than globally. In practice, it involves splitting the inner opti-
mization problem into smaller chunks (often just one batch), and solving for hyperparameters over
these smaller horizons instead; often in an online fashion. In this paper we expand upon previous
observations (Wu et al.l 2018)) and take the view that greediness fundamentally solves for the wrong
objective. Instead, the focus of our paper is to extend forward-mode differentiation methods to the
non-greedy setting.

Gradient Degradation. Gradient degradation of some scalar w.r.t a parameter is a broad issue that
arises when that parameter influences the scalar in a chaotic fashion, such as through long chains
of nonlinear mappings. This manifests itself in HPO as vanishing or exploding hypergradients,
due to low or high curvature components of the validation loss surface respectively. This leads
to hypergradients with a large variance, which we denote as hypervariance (more in Section [5.1)),
and which prevents long-horizon optimization. This is usually observed in the context of recurrent
neural networks (Bengio et al.|[{1993;|1994), but also in reinforcement learning (Parmas et al.| [2018))
and HPO (Maclaurin et al.l 2015). Solutions like LSTMs (Hochreiter & Schmidhuber, [1997)) and
gradient clipping (Pascanu et al., [2013) have been proposed, but are respectively inapplicable and
insufficient to our problem. Variational optimization (Metz et al.,2019)) and preconditioning warp-
layers (Flennerhag et al.l [2020) can mitigate gradient degradation, but these methods are expensive
in memory and therefore are limited to small architectures and/or a few hundred inner steps. In
comparison, we differentiate over ~ 10* inner steps for Wide ResNets (Zagoruyko & Komodakis)
2016).

3 BACKGROUND

3.1 PROBLEM STATEMENT

Consider a neural network with weights 0, trained to minimize a 1oss L4,.4;,, over a dataset Dy,qn,
with a gradient-based optimizer ® : 0,41 = P(0;(Xjg.4—1]), Ay). Here X € RE*T is a hyperpa-
rameter matrix, with K the number of hyperparameters used per step (e.g. 2 if learning momentum
and learning rate), and 7' the total number of update steps. Throughout this paper we write column
indices in brackets to differentiate them from a variable evaluated at time ¢.

We would like to find A* such that the minimizer of L4, namely 8* ~ 6r(X), also minimizes
some generalization loss £,; on a validation dataset D,,,;. Bilevel optimization (Stackelberg}, [1952)
is the usual framework to express this problem:

X = argmin L4 (07(N), Dyar) (D
A
subject to BT = arg min Etrain(ev Dtrain) 2
0
solved with 6,11 = ®(0;(Xjo.4-1]), Ay) 3)

The inner loop (lower level) in Eq[2]expresses a constraint on the outer loop (upper level) in Eq[I} In
gradient-based HPO, our task is to compute the hypergradient dL,,;/dA and update A accordingly.
The horizon H refers to the number of update steps taken in the inner loop (to optimize 6) before one
step is taken in the outer loop (to optimize X). When solving Eq [[| non-greedily we have H = T
However, most modern approaches are greedy: they rephrase the above problem into a sequence
of several independent problems of smaller horizons, where /\fm 4] is learned in the outer loop
subject to an inner loop optimization from 6, to 6,y with H < T. Despite its popularity, we
argue against greediness in Section [4]

Under review as a conference paper at ICLR 2021

3.2 FORWARD-MODE DIFFERENTIATION OF MODERN OPTIMIZERS

In modern gradient-based HPO, reverse-mode differentiation is used in the inner optimization prob-
lem (Eq[2) to optimize 6. However, the memory cost of using it for the outer optimization (Eq|l) is
O(FH) where F is the memory cost of one forward pass through the network (weights plus acti-
vations). This is extremely limiting: for large networks, only H ~ 10 could be solved with modern
GPUs, while problems like CIFAR-10 require H ~ 10%. Instead, we must use forward-mode differ-
entiation, which scales in memory as O(DN), where D is the number weights and N is the number
of learnable hyperparameters. The additional scaling with NV is a limitation in many applications,
but sharing hyperparameters (Section[d)) conveniently allows for smaller values of N.

In this section we give a background on forward-mode differentiation of hyperparameters, and ex-
tend it to the most popular optimizer, namely SGD with momentum and weight decay. To the best
of our knowledge, previous work focuses on simpler versions of this optimizer, usually by removing
momentum and weight decay, and only learns the learning rate, greedily.

First, we use the chain rule to write:

d‘cval aAC'ual daj

dx 001 d\

4)

Note that the direct gradient has been dropped since 9L ,q;/OX = 0 for optimizer hyperparameters.
The first term on the RHS is trivial and can be obtained with reverse-mode differentiation as usual.
The second term is more problematic because 87 = 07 (07 _1(07_2(...), A\jp—2), A;r—17). We use
the chain rule again to calculate this term recursively:

do, 00,

dx 00,

01 06
N2

which we write as Z; = A; Z;_1 + B; (®)]

01

where Z; € RPXN_ A, € RP*P and B; € RP*YN . We use Pytorch’s update rule for SGD (Paszke
et al., 2019), with learning rate a;, momentum J;, weight decay u; and velocity v;:

0, =2(0,_1) =0,_1 —av, where vy =1+ (0Lprain/00i—1) + 01 (6)

Now let us consider the case where we learn the learning rate schedule, namely A = a. If we use
the update rule without momentum (Donini et al.,[2019), B; is conveniently sparse: itisa D x N
matrix that only has one non-zero column corresponding to the hyperparameters used at step ¢, i.e.
a. However we introduce momentum and therefore the velocity depends on the hyperparameters
of previous steps. A further recursive term C; = (9v;/OX) must now be considered to get exact
hypergradients. Putting it together (see Appendix A) we obtain:

2
0 Etrain

1D><D
ooz, M

Ata :1D><D—O[t(

a»c rain
By = —f,0,CY | — 5tDXN Brvg—1 + —lram He0r 1 @)
00,1
82£ rain
CP = BiCe) + | el PP + — 2= | Z¢ |
00;7_,

where 6% (q) turns a vector q of size D into a zero matrix of size D x N where the column
corresponding to the hyperparameter used at step ¢ is set to g. A similar technique can be applied
to momentum and weight decay to get Z? and Z%: (Appendix A). The first-order approximation of
the above system corresponds to setting the Hessian to zero, but in practice we find it too crude of
an approximation for large horizons. All hypergradient derivations in this paper were thoroughly
checked with finite differences. Finally, note that the approach above can be extended to any dif-
ferentiable hyperparameter. In particular, other optimizers like Adam (Kingma & Bal, 2015) simply
have different Z;, A; and B; matrices.

Under review as a conference paper at ICLR 2021

Algorithm 1: Non-greedy learning of the learning rate schedule o, using forward-mode differ-
entiation with hyperparameter sharing and a sign-based outer optimizer.

foroinl,2,...do

initialize: D;,qin, Dyas, @ € RP, a = 0N, 72 = P> Na g = gP*Na ~a ¢ RNa
foriinl,2,...,H do

Tirains Ytrain ~ Dirain

Gtrain = actrain(wtrain7 ytrain)/aa
if rruncate==False then

HZ> = 8(gtra1inza)/80
7% = A*Z% + B> (Eq[])

update 6 and v (Eq|6)
Gval = a‘cval(Dval)/ﬁe
8o = sgn(goa Z%) // hypergradient signs
forninl,2,..,N, do
if 807[71] 7é 80_17[,“] then
Vo < Vi /2

a—oa—8, Oy

4 ENABLING NON-GREEDINESS

Greedy approaches (Luketina et al., 2016} Franceschi et al.,[2017}; |Baydin et al., 2018; [Donini et al.,
2019) have many advantages: they mitigate gradient degradation issues, lower training time, and
require less memory in reverse-mode differentiation. However, these methods look for A* that
does well locally rather than globally, i.e. they constrain A* to a subspace of solutions such that
07,05, ...,07 all yield good validation performances. In the same way that running a marathon
by optimizing for a sequence of 100m sprints is sub optimal, greediness is a poor proxy to minimize
L441(07). In our experiments, we found that getting competitive hyperparameters with greediness
often revolves around tricks such as online learning with a very low outer learning rate combined
with hand-tuned initial hyperparameter values, to manually prevent convergence to small values. But
solving the greedy objective correctly leads to poor solutions, a special case of which was previously
described as the “short-horizon bias” (Wu et al.| 2018) when learning the learning rate. Finally, we
found that most of the greedy literature uses the test set as the validation set, which creates a risk of
meta-overfitting to the test set. Throughout this work, we carve out a validation set from our training
set instead.

The main challenge of doing non-greedy bilevel optimization over long horizons is gradient degra-
dation. In HPO this arises because a small change in the state of the network at inner step ¢ can
cascade forward into a completely different weight trajectory given enough subsequent steps, yield-
ing very different hypergradients. We refer to this phenomenon as hypervariance, and quantify it in
Section 5.1

Hyperparameter Sharing. One way to iron out this hypervariance would be to take many outer
steps on the hyperparameters, with previous work suggesting that a few thousands would be re-
quired (Wu et al.|, [2018)). But since each outer step requires computing the entire inner problem,
this is intractable. Instead, we propose to use the long horizon to our advantage and average out
hypergradients through inner steps rather than outer steps. This is equivalent to hyperparameter
sharing: learning one hyperparameter for several contiguous steps in the inner loop. Assuming that
contiguous steps have hypergradients drawn from the same distribution, the average hypergradient
is more stable, since it is less likely to reflect a single batch in the inner loop. The key to this solution

Under review as a conference paper at ICLR 2021

being effective is that it gets better as degradation gets worse: the larger the horizon, the more noisy
individual hypergradients become, but the more samples are included in the average hypergradient,
and so the less noisy the average hypergradient becomes. Assuming n contiguous hypergradients
are drawn from the same distribution, the standard error of their mean will scale as 1/4/n.

Convergence From Hypergradient Signs. While hyperparameter sharing produces stable hyper-
gradients with a reasonable range (see Appendix C), reaching zero hypergradients and thus conver-
gence remains difficult, and often requires a large number of outer steps. We propose to use the sign
of hypergradients as an indicator of convergence instead of their magnitude. More specifically, we
update hyperparameters with positive (negative) hypergradients by an amount +~ (—+), and 7y is de-
cayed by a factor of 2 every time the corresponding hypergradient changes sign across consecutive
outer steps. This allows for convergence after hypergradients have changed signs a few times, and
we find this much more robust than using modern optimizers to update A like Adam. This has the
added benefit of letting the user define the range of hyperparameter search more explicitly, rather
than having it implicitly defined by the magnitude of hypergradients.

Putting it all together, Algorithm 1 shows how to learn a schedule of N learning rates efficiently.
Hyperparameter sharing is implemented by reusing the same Z< columns for several consecutive
inner steps. The most expensive part per outer step is to compute the Hessian matrix product HZ<
at each inner step 7. We can adapt the work of (Shaban et al.,2019)) to forward mode differentiation
by truncating alternating steps. We could also use functional forms for more complex schedules
to be learned in terms of fewer hyperparameters, which would cheapen the calculation of HZ<.
However, this typically results in including a stronger inductive bias about the general shape of
each hyperparameter schedule, which can easily cloud the true performance of HPO algorithms. In
practice, we use a similar form to Algorithm 1 to learn the learning rate, momentum and weight
decay jointly.

5 EXPERIMENTS

In Section [5.1] we quantify gradient degradation and show that non-greediness increases it while
hyperparameter sharing significantly reduces it. In Section[5.2] we show that our method allows for
stable non-greedy HPO on 3 datasets, and outperforms several other methods when used with the
same computational budget. Implementation details for each of our experiments can be found in
Appendix B.

5.1 REDUCING GRADIENT DEGRADATION

Gradient degradation in the context of HPO over long horizons isn’t well understood. In this section
we propose a simple metric to quantify this degradation (hypervariance), and we propose a method to
reduce it (hyperparameter sharing). We also consider the fluctuation of the sign of the hypergradients
to motivate the use of the outer optimizer described in Section 4]

Hypervariance Definition. Consider the hypergradients of the learning rates «c. These are af-
fected by four main factors: the training data, the validation data, the weights’ initialization 8, and
the current learning rate schedule cxg. We can slightly perturb each factor individually P times
while keeping all others constant. This gives us a distribution of hypergradients around a fixed point
for each hyperparameter, which should have low variance in order for the outer optimization to be
stable. We define the hypervariance to be a (unitless) inverse signal to noise ratio, namely the ratio
of the standard deviation to the mean of hypergradients, computed for each hyperparameter. This
makes the norm of the hypergradients irrelevant, which is desired since it can always be scaled as
needed with some outer learning rate in practice.

Hypergradient Sign Fluctuation. In Section 4] we made the case for using the sign of hyper-
gradients alone. Since hypervariance doesn’t capture the fluctuation in the sign of hypergradients,
we also measure this quantity by looking at the smallest quantity between P, and P_, the number
of positive and negative signs, expressed as a ratio: sign fluctuation = min(P_ /P, Py /P). This
quantity is capped at 50% which corresponds to hypergradients maximally uninformative regarding
whether or not some hyperparameter should increase or decrease.

Under review as a conference paper at ICLR 2021

Dtmi'n D’L'al 0() o
g 6
5 31|\
o
s "y
0 Pt L IRVASAY, WAVl g | I N A N J N P A —— v) we
go/ 40 Greedy
g Non-greedy
= N —— Ours
£ 2
=
= /\—/\
?c_b “
Rz) VA VAN \' A, hA VYV AL AN WA
0 150 300 0 150 300 0 150 300 0 150 300
steps steps steps steps

Figure 2: The hypervariance (top row) and sign fluctuation (bottom row), when learning several
learning rates on the SVHN dataset. These are calculated as we perturb, from left to right, the
choice of training data, the choice of validation data, the initial weights and the initial learning rates.
We observe that non-greediness over long horizons is responsible for a large hypervariance and sign
fluctuation (purple vs blue). However, we can preserve non-greediness and greatly reduce gradient
degradation by sharing hyperparameters for each 40 contiguous inner steps (red).

The variance and sign fluctuation of hypergradients are shown in Figure [2] when hypergradients
are calculated for several learning rates, for a LeNet on the SVHN dataset. We observe that non-
greediness makes hypergradients much more sensitive to small changes in the optimization land-
scape. For instance, changing the seed for the sampling of the training dataset produces hypergradi-
ents with a standard deviation that is over 6 times larger than the mean, making outer optimization
very inefficient. However, sharing contiguous hyperparameters lowers the hypervariance and sign
fluctuation drastically. In particular, the sign of hypergradients only fluctuates by an average of 1.5%
across all factors of variation, making it a robust quantity for outer optimization.

5.2 NON-GREEDY HPO OVER LONG HORIZONS

The section above considered hypergradient noise around a fixed hyperparameter setting. In this
section, we consider how that noise and its mitigation translate to the outer optimization process,
where hyperparameters are updated at each outer step.

MNIST & SVHN. We start with HPO over medium length horizons with small networks, where
reverse-mode differentiation can be used to learn many hyperparameters non-greedily as a baseline.
In Figure [3| we learn the learning rate schedule starting from o« = 0, in the maximally greedy
and non-greedy setting, with and without hyperparameter sharing. We do not use tricks like online
learning as in (Baydin et al., |2018)) to make greediness more transparent. As previously observed by
Wu et al.|(2018)), greedy optimization leads to poor solutions with learning rates that are too small.
While the vanilla non-greedy setting works well for simple datasets like MNIST, it fails to learn a
good schedule for real-world datasets like SVHN, converging to much higher values than reasonable.
By sharing hyperparameters, we stabilize the outer optimization by lowering hypervariance, and this
allows us to learn a schedule that even beats an off-the-shelf baseline for this dataset.

CIFAR-10. We test Algorithm |1 on 50 epochs of CIFAR-10, for a Wide ResNet of 16 layers.
Results are shown in Figure [II We choose not to use larger architectures or more epochs to save
compute time, and because we find that hyperparameters matter most for fewer epochs. Note also
that we are not interested in the absolute performance of the model, but rather in the performance
of the hyperparameters for any given model. To the best of our knowledge, we are the first to

Under review as a conference paper at ICLR 2021

0.12 100 fr e -
Tesal — 80
% 0081/ \\\ & . Greedy
= T Tr———e > o 60 J
= < \\\ % Non-greedy
= 0.04 \\\—\—_’ E 40 — Ous
i 204 == Baseline

200 300
steps steps

Figure 3: The learning rate schedule o learned for the MNIST and SVHN datasets using a LeNet
architecture over 500 inner gradient steps. We observe that on real-world datasets like SVHN, both
greedy and non-greedy hyperparameter optimizations fail to learn decent learning rate schedules.
However, sharing learning rates within neighbouring batches stabilizes non-greedy hypergradients
and allows us to find schedules that can even outperform off-the-shelf schedules.

demonstrate a stable gradient-based optimization of the learning rate, momentum and weight decay
for such a large number of steps (~ 10%). Interestingly, our algorithm mostly relies on high weight
decays for regularization, which allows for smaller momentum with no performance drop. Finally,
we note that the search range of our algorithm is much larger than typical methods learning similar
hyperparameters. By initializing o to zero and v to 0.1, taking 10 outer steps effectively defines
a search range of [—1, 1] which is about 20 times larger than usual competing methods on the same
dataset (Falkner et al.,|2018)). In short, we assume much less prior knowledge about the nature of the
hyperparameters to learn. This makes it much harder for non-gradient based methods like random
search or Bayesian optimization to find good hyperparameter configurations.

Baseline Comparison. We compare our algorithm to baselines in Table [T} A common theme in
meta-learning research has been the lack of appropriate baselines, with researchers often finding
that random search (RS) can outperform complex search algorithms, for instance in NAS (Li & Tal-
walkar, |2019) or automatic augmentation (Cubuk et al.,2020). One reason why RS may beat greedy
alternatives is precisely that RS isn’t greedy. Another reason is that many of these applications de-
fine a search range that is contrived to have mostly good candidates. In the case of DARTS (Liu
et al., 2019), expanding the search space to include many poor architectures has helped diagnose
issues with its search algorithm (Zela et al., 2020). We run RS over the same search space as our
method, and for a comparable GPU time (~ 13 hours). As stated above, our search space is large
and this makes it difficult for RS to find good hyperparameters quickly. Bayesian optimization un-
derperforms RS in our experimental setting, and we refer the reader to Appendix E for more details.
We also evaluate hypergradient descent (Baydin et al.l [2018) with various initial hyperparameters
sampled from our search range, so as to match its computational budget with ours.

Hand-tuned Comparison. Finally, we manually search for the best hyperparameters by using
the ones that are most common in the literature, and evaluating multiple values around them (see
Appendix D). Note that this manual baseline relies on strong inductive biases which wouldn’t be
available, say, when learning hyperparameters for a new unknown optimizer. Our method signifi-
cantly outperforms both random search and hypergradient descent, while matching the performance
of the best hand-tuned hyperparameters. The latter suggests that our method would be an efficient
way to perform HPO for new applications or new optimizers, where good hyperparameter priors
don’t already exist.

Under review as a conference paper at ICLR 2021

Table 1: Test accuracy of our method compared to baselines ran for the same computational budget.
MNIST and SVHN are optimized over 2 epochs (~ 10? steps) while CIFAR-10 is optimized over
50 epochs (~ 10* steps). Note how greediness gets worse as the dataset becomes more complex.

Method \ MNIST SVHN CIFAR-10
Hand-tuned (best choice) \ 98.4 +01 85.1 03 89.2 10.2
Random Search 98.0 +0.2 822411 82.3 +o.7
Greedy (Baydin et al.,2018) | 97.5 t0.1 84.0 +o.2 80.8 +0.2
Ours 98.7 +0.1 85.7 +0s8 89.3 +0.1

6 DISCUSSION

This work makes an important step towards gradient-based HPO for long horizons, by enabling non-
greediness through the mitigation of gradient degradation. More specifically, we show that sharing
contiguous hyperparameters is a simple and efficient way to reduce the variance of hypergradients.
The nature of non-greedy bilevel optimization requires the inner optimization to be run several times,
and so HPO over ImageNet-like datasets remains costly. However, we show that only ~ 10 outer
steps are sufficient to converge to good hyperparameters, as opposed to the thousands conjectured
in previous work (Wu et al.| [2018). This is in part made possible by high quality hypergradients,
and by using the fluctuation of their sign as a criterion for convergence. Extensions to this work
could consider extending our method to discrete-valued hyperparameters with relaxation techniques,
which would enable a larger range of non-greedy meta-learning applications. We hope that our work
encourages the community to reconsider gradient-based hyperparameter optimization in terms of
non-greediness, and pave the way towards a ubiquitous hyperparameter solver.

Under review as a conference paper at ICLR 2021

REFERENCES

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. Botorch: Programmable bayesian optimization in py-
torch. CoRR, abs/1910.06403, 2019. URL http://arxiv.org/abs/1910.06403.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. On-
line learning rate adaptation with hypergradient descent. In International Conference on Learning
Representations, 2018.

Y. Bengio, P. Frasconi, and P. Simard. The problem of learning long-term dependencies in recurrent
networks. In IEEE International Conference on Neural Networks, 1993.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks, 1994.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural Comput., August 2000.
ISSN 0899-7667. doi: 10.1162/089976600300015187.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2019.

E. D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated
data augmentation with a reduced search space. 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pp. 3008-3017, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Justin Domke. Generic methods for optimization-based modeling. In Neil D. Lawrence and Mark
Girolami (eds.), International Conference on Artificial Intelligence and Statistics, Proceedings of
Machine Learning Research, La Palma, Canary Islands, 21-23 Apr 2012. PMLR.

Xuanyi Dong, Mingxing Tan, Adams Wei Yu, Daiyi Peng, Bogdan Gabrys, and Quoc V. Le. Auto-
has: Differentiable hyper-parameter and architecture search, 2020.

Michele Donini, Luca Franceschi, Massimiliano Pontil, Orchid Majumder, and Paolo Frasconi.
Scheduling the Learning Rate via Hypergradients: New Insights and a New Algorithm. arXiv
e-prints, art. arXiv:1910.08525, October 2019.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter opti-
mization at scale. In Proceedings of the 35th International Conference on Machine Learning, pp.
1436-1445, 2018.

Matthias Feurer and Frank Hutter. Hyperparameter Optimization. Springer International Publishing,
Cham, 2019. ISBN 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-5_1.

Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-learning with warped gradient descent. In International Conference on Learning
Representations, 2020.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In Doina Precup and Yee Whye Teh (eds.), Inter-
national conference on Machine Learning, Proceedings of Machine Learning Research, Interna-
tional Convention Centre, Sydney, Australia, 06—11 Aug 2017. PMLR.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
Machine Learning, 2018.

Jie Fu, Hongyin Luo, Jiashi Feng, Kian Hsiang Low, and Tat-Seng Chua. Drmad: Distilling reverse-

mode automatic differentiation for optimizing hyperparameters of deep neural networks. In IJCAI,
2016.

10

http://arxiv.org/abs/1910.06403

Under review as a conference paper at ICLR 2021

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), International conference
on Machine Learning, Proceedings of Machine Learning Research, Lille, France, 07-09 Jul 2015.
PMLR.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), International Conference on Learning Representations, 2015.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
UAI, 2019.

Mengtian Li, Ersin Yumer, and Deva Ramanan. Budgeted training: Rethinking deep neural network
training under resource constraints. In International Conference on Learning Representations,

2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing Millions of Hyperparameters by
Implicit Differentiation. arXiv e-prints, art. arXiv:1911.02590, November 2019.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning
of continuous regularization hyperparameters. In International conference on Machine Learning,
2016.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based Hyperparameter Opti-
mization through Reversible Learning. arXiv e-prints, art. arXiv:1502.03492, February 2015.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. volume 97 of
Proceedings of Machine Learning Research, pp. 4556-4565, Long Beach, California, USA, 09—
15 Jun 2019. PMLR.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS: Flexible model-based
policy search robust to the curse of chaos. volume 80 of Proceedings of Machine Learning Re-
search, pp. 4065—4074, Stockholmsmissan, Stockholm Sweden, 10-15 Jul 2018. PMLR.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International conference on Machine Learning, 2013.

11

Under review as a conference paper at ICLR 2021

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2019.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International con-
ference on Machine Learning, 2016.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. In Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2019.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In International conference on Machine Learning, 2018.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In AISTATS, 2019.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International conference on Machine Learning, 2015.

H Stackelberg. The Theory Of Market Economy. Oxford University Press, 1952.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 1990.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural Computation, 1989.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In International Conference on Learning Representations, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hut-
ter. Understanding and robustifying differentiable architecture search. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
H1gDNyrKDS.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Interna-
tional Conference on Learning Representations, 2017.

12

https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS

Under review as a conference paper at ICLR 2021

Appendices

A: Forward-mode Hypergradient Derivations

Recall that we are interested in calculating
Zy = AiZy 4 + By
recursively during the inner loop, where

_ 6, _ 00, B, %0
X LT 00,1, O,

Zy

so that we can calculate the hypergradients on the final step using

dﬁval _ 8£val
dx — o6p T

Each type of hyperparameter needs its own matrix Z;, and therefore its own matrices A;, and B;.

Consider first the derivation of these matrices for the learning rate, namely A = «. Recall that the
update rule after substituting the velocity v; in is

(“)E rain
0, =01 —a | frvi—1 + : + (1101
001

and therefore it follows directly that

2
8 ﬁtrain

g =177 — o (T

+ MtlDXD)

The calculation of Bf* is a bit more involved in our work because when using momentum v;_; is
now itself a function of c. First we write

0 Ovy_ 0 oL rain
Bta:—ﬂt <at’vt—1 + oy L 1> at< t +Mt9t—1>

dox oo) O \ 96,
8'0 — aﬁ rain
= —fBray 8;1 — 6PN (ﬂtvt—1 + 80t7t,1 + Mtat—l)
Now since
8£ rain
vy = Bivi—1 + “train + 101

t—1

we can write the partial derivative of the velocity as an another recursive rule:

o Ov
CF = 3a
o agﬁtrain 801‘,71
B /BtCtil + 5‘&80t_1 + He oo
O?Lirain \ 00;_
— [1D><D train t—1
Al ("t T) D

13

Under review as a conference paper at ICLR 2021

And putting all together recovers the system:

82£train
Agx — 1DxD _ y (80?71 +Mt1DXD
e o DxN aﬁtrain
B = —Bia,Cyy — by Brvi—1 + + 101
) 00,1
a E rain
Cp = BCPy + | mlPP — 5) Z,
967,

For learning the momentum and weight decay, a very similar approach yields

2)
Af — 1DxD _ 4, 9 Etzmm 4 1, 1P%D
00;_,

Btﬁ = —ﬂtOétCE_l — (StDXN(O[t'Ut_l)

82£ rain
CP = 07N (w) + Oy + (utlDXD - aet2> 2%
t—1

and

2 .
A{g" = lDXD — O 76 [/t;azn + MtlDXD

007,
BtH = *ﬂtOétC{il — (StDXN(O[tOt_l)

82£ rain
Cl' = 5tDXN(9t—1) + BCH | + (MtlDXD + 7392) YA
t—1

B: Implementation Details

Figure 1. We learn 5 values for the learning rates, 1 for the momentum and 1 for the weight decay,
to make it comparable to the hyperparameters used in the literature for CIFAR-10 (see Appendix
D). A batch size 256 is used, with 5% of the training set of each epoch set aside for validation.
We found larger validation sizes not to be helpful. Hypergradient descent uses hyperparameters
initialized at zero as well, and trains all hyperparameters online with an SGD outer optimizer with
learning rate 0.2 and %1 clipping of the hypergradients. We used initial values v, = 0.1,v3 = 0.15
and vy, = 4x10~* but the performance barely changed when these values were multiplied or divided
by 2. Since we take 10 outer steps and initialize all hyperparameters at zero, this defines a search
ranges: o € [—1,1], 8 € [-1.5,1.5], and v € [-4 x 1073,4 x 10~?]. The Hessian matrix product
is clipped to £10 to prevent one batch from having a dominating contribution to hypergradients.
Strictly speaking, sharing hyperparameters corresponds to summing their hypergradients rather than
averaging them, and therefore we divide this sum by the number of batches each hyperparameter is
used for.

Figure 2. Here we wanted to isolate all factors responsible for hypervariance. We thus used float64
precision with batch size 64, as this reduced hypervariance across all methods. Clipping did not
change the hypervariance drastically but was applied to &1 in the inner loop. We learned 10 learning
rates for our method, namely one learning rate per 40 steps. The unperturbed learning rate was set to
oy = 0.05. The perturbation for initial weights and hyperparameters (here o) corresponds to adding
+1% of their value, while perturbation of Dyq;, and D, correspond to a different sampling seed.
For the plots, we used a moving average for the greedy and non-greedy lines for clarity.

Figure 3. Here we used a batch size of 128 for both datasets to allow 2 epochs worth of inner
optimization in about 500 inner steps. Clipping was restricted to 3 to show the effect of noisy
hypergradients more clearly. Since MNIST and SVHN are cheap datasets to run on a LeNet archi-
tecture, we can afford 50 outer steps and early stopping based on validation accuracy.

14

Under review as a conference paper at ICLR 2021

Table 1. Each method for a given dataset is run for a similar GPU budget. For CIFAR-10 that’s
about 13 hours on a 2080 GTX GPU. Random search and our method both consider 7 learning rates,
1 momentum and 1 weight decay. Note that random search struggles in finding good hyperparame-
ters even though ~ 100 random hyperparameter settings are evaluated, because some hyperparam-
eters can compromise the whole training process. This is the case of large positive learning rates,
negative learning rates, or momentums greater than one. Since random search is a memory-less trial-
and-error method, any hyperparameter region that compromises learning altogether is very harmful.
Truncation was kept < 15% to obtain maximal performance. The error bars are calculated over 3
seeds for each entry in the table.

C: Hypergradients

Here we provide the raw hypergradients corresponding to the outer optimization shown in Figure 1.
Note that the range of these hypergradients is made reasonable by the averaging of gradients coming
from contiguous hyperparameters.

OL a1/ Ocx
! o
\ ﬁ
OLyat /08
0[':{1!/0/-’1

outer steps

—0.2 \ ¢ |
. 0.000

epochs epochs epochs

Figure 4: Hypergradients have a reasonable range but fail to always converge to zero when the
validation performance stops improving.

D: Baselines

The objective here is to select the best hyperparameter setting that a deep learning practitioner would
reasonably be expected to use, based on the hyperparameters used by the community for the datasets
at hand. For CIFAR-10, the most common hyperparameter setting is the following: « is initialized
at g = 0.2 (for batch size 256, as used in our experiments) and decayed by a factor n = 0.2 at
30%, 60% and 80% of the run (MultiStep in Pytorch); the momentum § is constant at 0.9, and
the weight decay p is constant at 5 x 10~%. We search for combinations of hyperparameters around
this setting. More specifically, we search over all combinations of ap = {0.05,0.1,0.2,0.4,0.6},
n=1{0.1,0.2,0.4}, 8 = {0.45,0.9,0.99}, and p = {2.5 x 107%,5 x 104, 1 x 10~3}. This makes
up a total of 135 hyperparameter settings, which we each run 3 times to get a mean and standard
deviation. The distribution of those means are provided in Figure [5] and the best hyperparameter
setting is picked based on validation performance. This is the value we report in Table 1 under
Hand-tuned (best).

MNIST and SVHN hyperparameters matter less, and in particular we observed no gain from using
momentum and weight decay. The most popular learning rate schedules used for these datasets
seem to be the cosine annealing one. We evaluate this schedule for cg = {0.05,0.1,0.2,0.4,0.6}
and select the best hyperparameters based on validation performance.

15

Under review as a conference paper at ICLR 2021

x10~*
0.6] — 1.0
10
05 0.8
8
041 —
0.6
503 R = &R =
0.4
0.2
4
0.1y — ‘\ 0.2
2
0.0 0.0
0 20 40 0 20 40 0 20 40
epochs epochs epochs

freq

82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
test aces (%)

Figure 5: The combination of hyperparameters searched over for CIFAR-10 (top row) and the cor-
responding distribution of test accuracies (bottom row).

E: Bayesian Optimization

We ran numerous BO experiments for our experimental configuration. We used the modern
BoTorch-Ax library (Balandat et al.,2019), with the common BO settings found in the HPO litera-
ture: Gaussian process with Matern 5/2 kernel, with expected improvement (EI) as the acquisition
function, and using Sobol search for the first few arms.

In our experiments, we sought to showcase the efficiency of using gradients in HPO by considering a
large hyperparameter search range. This means that we assume very little about the hyperparameters
we are trying to learn. For instance we learn the learning rate in a range o € [—1, 1] while a common
search range in BO would be about 20 times smaller like o € [107%,1071] (Falkner et al., 2018),
and would use log scaling to search this space more efficiently. In our setting, we find that BO and
related methods struggle to even match random search. This is because the search space mostly
contains configurations that have a high validation loss, and BO spends much of its time exploring
irrelevant fluctuations in that high loss region. In order to slightly outperform random search with
BO, we had to divide the search range by ~ 20 and use 5 times the computational budget. Indeed,
BO is usually orders of magnitude more expensive to run than our method, with some methods
reporting up to 33 GPU days on CIFAR-10 (Falkner et al., [2018) while our algorithm takes ~ 13
hours (albeit for smaller architectures).

16

	Introduction
	Related Work
	Background
	Problem Statement
	Forward-mode differentiation of Modern Optimizers

	Enabling non-greediness
	Experiments
	Reducing Gradient Degradation
	Non-greedy HPO Over Long Horizons

	Discussion

