
SLR: Automated Synthesis for Scalable Logical Reasoning

Anonymous ACL submission

Abstract001

We introduce SLR, an end-to-end framework002
for systematic evaluation and training of Large003
Language Models (LLMs) via Scalable Logical004
Reasoning. Given a user’s task specification,005
SLR automatically synthesizes (i) an instruc-006
tion prompt for an inductive reasoning task,007
(ii) a validation program, executable on model008
outputs to provide verifiable rewards, and (iii)009
the latent ground-truth rule. This process is010
fully automated, scalable, requires no human011
annotations, and offers precise control over task012
difficulty. Using SLR, we create SLR-BENCH,013
a benchmark comprising 19k prompts orga-014
nized into 20 curriculum levels that progres-015
sively increase in relational, arithmetic, and re-016
cursive complexity. Large-scale evaluation re-017
veals that contemporary LLMs readily produce018
syntactically valid rules, yet often fail at cor-019
rect logical inference. Recent reasoning LLMs020
demonstrate improved performance but incur021
very high test-time computation, with costs ex-022
ceeding $300 for just 1,000 prompts. Finally,023
curriculum learning via SLR doubles Llama-3-024
8B accuracy on SLR-BENCH, achieving parity025
with Gemini-Flash-Thinking at a fraction of026
computational cost. Moreover, these reason-027
ing capabilities generalize to a wide range of028
established benchmarks, underscoring the ef-029
fectiveness of SLR for downstream reasoning.1030

1 Introduction031

Logical reasoning is a fundamental aspect of intelli-032

gence, yet state-of-the-art AI systems still struggle033

with tasks that require robust reasoning and system-034

atic generalization (Delfosse et al., 2025; Kostikova035

et al., 2025; Woydt et al., 2025; Wüst et al., 2025;036

Helff et al., 2025; Sinha et al., 2019). Existing037

benchmarks intended to evaluate reasoning capabil-038

ities, however, primarily emphasize deductive rea-039

soning, where conclusions necessarily follow from040

1
SLR-BENCH: https://huggingface.co/datasets/LG-Anonym/

SLR-Bench, Verifiable Logic Rewards: https://huggingface.co/spaces/

LG-Anonym/VerifiableRewardsForScalableLogicalReasoning

given premises. This includes tasks such as math 041

word problems (Hendrycks et al., 2021) and logic 042

puzzles (Lin et al., 2025; Xie et al., 2025; Liu et al., 043

2025). Inductive reasoning, by contrast, involves 044

inferring general rules or patterns from specific 045

examples, which remains particularly challenging 046

and underexplored in large language models (Luo 047

et al., 2024; Xie et al., 2024) (see also Tab. 1). 048

Current evaluation frameworks commonly em- 049

ploy constrained formats (e.g., multiple-choice) or 050

rely on other LLMs as judges (Patel et al., 2024a; 051

Lin, 2024; Lin et al., 2024), making it difficult 052

to assess whether models genuinely understand 053

logical structure or are merely exploiting super- 054

ficial patterns in the data. Moreover, as training 055

sets grow, benchmark items or their paraphrases 056

increasingly overlap with pre-training data, making 057

apparent reasoning abilities potentially just memo- 058

rization (Shojaee et al., 2025; Xie et al., 2024). 059

To tackle these challenges, this paper intro- 060

duces SLR (Scalable Logical Reasoning), an open- 061

source framework for evaluating and training mod- 062

els in inductive logical reasoning. Based on a user- 063

defined logic task (Fig. 1, left), the task synthesizer 064

(center) automatically generates novel inductive 065

logic programming (ILP) tasks (Muggleton and de 066

Raedt, 1994; Cropper and Dumančić, 2022) of con- 067

trollable complexity. Each task comes with (i) a 068

latent ground-truth rule, (ii) an executable valida- 069

tion program, and (iii) an instruction prompt for the 070

reasoning task. The ground-truth rule serves as the 071

reference answer, while the validation program de- 072

terministically evaluates any candidate hypothesis. 073

SLR supports both systematic model evaluation 074

(Fig. 1, top right) and downstream model training, 075

via supervised finetuning or reinforcement learning 076

with rewards provided by the integrated symbolic 077

judge (Fig. 1, bottom right). SLR ’s fully sym- 078

bolic and automated pipeline eliminates the need 079

for human annotation and avoids dataset overlap. 080

Leveraging SLR, we present SLR-BENCH (Fig. 081

1

https://huggingface.co/datasets/LG-Anonym/SLR-Bench
https://huggingface.co/datasets/LG-Anonym/SLR-Bench
https://huggingface.co/spaces/LG-Anonym/VerifiableRewardsForScalableLogicalReasoning
https://huggingface.co/spaces/LG-Anonym/VerifiableRewardsForScalableLogicalReasoning

RL
SFT

Task
Synthesiser

Evaluation

Training

Vocabulary

Grammar

Valdiation
Program LLM Hypothesis

Symbolic
Judge

Eval-Score

Instruction &
Task Prompt

Predicates:

Constants:

blue long short scaling
complexity

{has_car(train, car),
car_color(car, red),
car_color(car, blue)…

Rule (Length, Sampling)

BK (Size, Distribution)

has_car()car_color()

train

red

car

Task Specification

TaskConfig

Rule

eastbound(Train):-
has_car(Train,Car),
car_len(Car,short)

LLM

car_len()

Language

Scalable Logical Reasoning

Figure 1: Overview of the SLR Framework, including task specification, automated task synthesis, training, and
evaluation. Left (blue): Language defines vocabulary and grammar, Task Config specifies configuration parameters
for the synthesis. Middle (green): The task synthesizer automatically generates ground-truth rules, validation
programs, and instruction prompts. Right (purple): Training LLMs on logic tasks via SFT (cross-entropy) or RL
(symbolic judge feedback). Right (orange): Evaluates LLMs using feedback provided by the symbolic judge.
Arrows denote data and control flow through synthesis, prompting, evaluation, and downstream training loops.

3), a 19k task benchmark that forms a twenty-level082

curriculum of increasing logical complexity. These083

levels are further organized into four curriculum084

tiers: basic, easy, medium, and hard. Each task is085

unique, with a precise and systematic assessment086

of inductive logical reasoning skills. In evaluations,087

we find that while LLMs are generally well-versed088

in generating syntactically valid rules, robust log-089

ical reasoning remains challenging. Performance090

declines sharply as task complexity increases. Scal-091

ing model size brings only marginal improvements,092

while scaling test-time compute boosts reasoning,093

but returns diminish as complexity rises.094

Beyond evaluation, SLR enables curriculum095

learning, boosting reasoning both in-domain and096

across established reasoning benchmarks. SLR-097

tuned Llama-3-8B not only surpasses all conven-098

tional LLMs on SLR-BENCH, but also outper-099

forms recent reasoning LLMs such as Gemini-2.0-100

flash-thinking, while using fewer inference tokens.101

Notably, these enhanced reasoning capabilities gen-102

eralize downstream, improving performance on103

MMLU, LogicQA, HellaSwag, and GPQA.104

In sum, our contributions are: (i) SLR, an open105

framework for automated synthesis and symbolic106

evaluation of logical reasoning in LLMs; (ii) SLR-107

BENCH, a 19k-task benchmark organized as a 20-108

level curriculum of increasing logical complexity,109

enabling both training and evaluation across a con-110

trolled reasoning spectrum; (iii) a large-scale eval-111

uation of LLMs on SLR-BENCH, revealing key 112

insights and trade-offs in model performance; (iv) 113

curriculum learning with SLR substantially im- 114

proves both in-domain and downstream reasoning. 115

2 Related Work 116

Evaluating LLMs’ Logical Reasoning. Tab. 1 117

provides an overview of existing logical rea- 118

soning benchmarks in terms of inference types, 119

dataset origins, and evaluation formats. Notable 120

datasets include LogiQA/2.0 (Liu et al., 2020, 121

2023), FOLIO (Han et al., 2022) (deductive rea- 122

soning), AbductionRules (Young et al., 2022) (ab- 123

ductive reasoning), bAbI (Weston et al., 2015), 124

and CLUTRR (Sinha et al., 2019) (synthetic QA 125

with inductive reasoning). Aggregate testbeds 126

such as BIG-Bench (Kazemi et al., 2025; Suz- 127

gun et al., 2023), HLE (Phan et al., 2025), FineL- 128

ogic (Zhou et al., 2025), and LogiGLUE (Luo et al., 129

2024) span a range of tasks and inference styles. 130

Other benchmarks, such as Proofwriter, PrOntoQA, 131

KOR-Bench, FLD, Multi-LogiEval, SynLogic, Ze- 132

braLogic, and the K&K Sandbox (Oyvind et al., 133

2021; Saparov and He, 2023; Morishita et al., 2024; 134

Patel et al., 2024b; Liu et al., 2025; Lin et al., 2025; 135

Xie et al., 2025, 2024; Mondorf and Plank, 2024) 136

generate tasks using various logics or ontologies, 137

often with fixed configurations or evaluation via 138

exact match. However, most existing benchmarks 139

lack key features such as scalability, extensibility, 140

2

Table 1: Comparison of logic reasoning benchmarks. Reasoning Type: Logical inference type (deduction,
induction, abduction). Creation: Dataset origin (synthetic, human-annotation, DS collection). Evaluation: Output
scoring (symbolic execution, multiple choice (MC), LLM, exact match (EM)). Task Synthesis: Supports for tasks
generation. Custom Tasks: User-defined task creation (via language, grammar, or setup). Curriculum Learning:
Curriculum-based progression of difficulty. Scalable Complexity: Supports arbitrarily scaling task complexity.
(✓: fully supported, ✗: not supported, (✓): partially/limited)

Reasoning Data Evaluation Task Custom Curriculum Scalable
Dataset Type Creation Methodology Synthesis Tasks Learning Complexity

LogiQA (Liu et al., 2020) Deduction Human MC ✗ ✗ ✗ ✗

FOLIO (Han et al., 2022) Deduction Human EM ✗ ✗ ✗ ✗

AbductionRules (Young et al., 2022) Abduction Synthetic/Human EM ✗ ✗ ✗ ✗

CLUTRR (Sinha et al., 2019) Induction Synthetic EM ✗ ✗ ✗ ✗

PrOntoQA (Saparov and He, 2023) Deduction Synthetic EM ✓ ✗ ✗ ✗

SynLogic (Liu et al., 2025) Deduction Synthetic EM ✓ ✗ ✗ ✗

FLD (Morishita et al., 2024) Deduction Synthetic Symbolic ✓ ✓ ✗ (✓)
K&K (Xie et al., 2025, 2024) Deduction Synthetic EM ✓ ✗ (✓) (✓)
ZebraLogic (Lin et al., 2025) Deduction Synthetic EM ✓ ✗ (✓) (✓)
SLR (ours) Induction Synthetic Symbolic ✓ ✓ ✓ ✓

controlled curricula, and flexible task synthesis, all141

of which are addressed by SLR.142

Limits and Promises of Reasoning LLMs. LLMs143

like GPT-4 (OpenAI et al., 2024), Llama-3 (Meta144

et al., 2024), and Qwen (Bai et al., 2023) can145

handle basic reasoning and coding tasks but often146

struggle with true abstraction (Shojaee et al., 2025;147

Xie et al., 2024). Recent reasoning LLMs attempt148

to bridge this gap by scaling test-time compute.149

Systems like OpenAI’s o1/o3 (OpenAI, 2025) or150

DeepSeek-R1 (DeepSeek-AI et al., 2025) generate151

and re-rank thousands of reasoning traces per query,152

achieving state-of-the-art results on, e.g., math or153

coding (Quan et al., 2025; Hendrycks et al., 2021;154

Rein et al., 2024; Gao et al., 2024a; Fourrier et al.,155

2024; Clark et al., 2018). However, these gains156

come at a steep cost (Fan et al., 2025; Kim et al.,157

2025). Some studies question whether such mod-158

els truly learn logical structure or merely exploit159

surface-level patterns (Fan et al., 2025; Shojaee160

et al., 2025; Xie et al., 2024). Curriculum learn-161

ing has been shown to enhance training robustness162

and generalization (Bengio et al., 2009; Bursztyn163

et al., 2022), yet no prior framework offers a flex-164

ible framework for task synthesis for automatic165

curriculum generation with symbolic evaluation166

for reasoning at scale. SLR addresses this gap.167

3 SLR: Automatic Logic Benchmark168

Synthesis169

SLR is a scalable methodology for systematically170

generating, evaluating, and training LLMs on in-171

ductive reasoning tasks. Its goal is to automate172

the creation of diverse, challenging logical reason-173

ing benchmarks, embedded as natural language 174

prompts, with model outputs that can be efficiently 175

verified via symbolic execution of Inductive Logic 176

Programming (ILP) programs (Muggleton and de 177

Raedt, 1994; Cropper and Dumančić, 2022). The 178

overall pipeline (Fig. 1) has three main stages: task 179

specification, synthesis, and evaluation/training. 180

3.1 Task Specification (Input) 181

The SLR synthesizer is controlled by the Task Lan- 182

guage L, which defines the logical vocabulary and 183

grammar, and the Task Configuration Θ, which 184

controls the generation process (see Fig. 1, left). 185

Language Specification (L): We define a lan- 186

guageL = (V,G) that specifies the building blocks 187

for task generation. The Vocabulary V comprises 188

a set of constant, function, and predicate symbols 189

that form the syntax for generating rules, examples, 190

and background knowledge. The vocabulary in- 191

duces the Herbrand base HB(V), which is the set of 192

all syntactically valid ground atoms (facts) (Lloyd, 193

2012). The Grammar G is formed by a set of se- 194

mantic rules that filter the Herbrand base to include 195

only meaningful atoms, HBG(V). For instance, a 196

color can be assigned to a car (car_color(car, red)) 197

but not to semantically incompatible objects. 198

Task Configuration (Θ): The configuration param- 199

eters Θ = ⟨Rsample, Rlen, Bπ, κ⟩ give control over 200

the synthesis process. The (i) Rule Sampling Pol- 201

icy (Rsample) controls the synthesis of the ground 202

truth rule R⋆, which can either be sampled ran- 203

domly (Uniform Sampling) or generated via an 204

LLM (LLM-Guided Generation). To ensure the 205

LLM produces diverse and challenging logic rules, 206

we leverage an exhaustive prompt (see App. E) 207

3

Algorithm 1 Task Synthesizer
Require: L, Bπ, κpos, κneg, Rsample, Rlen
1: B ← ∅, E+ ← ∅, E− ← ∅

Rule Synthesis
2: R⋆ ← RULEGENERATOR(L, Rlen, Rsample)
3: while |E+| < κpos or |E−| < κneg do

Background Synthesis
4: b← BACKGROUNDGENERATOR(L, Bπ)
5: (y, q)← ASSIGNLABEL(R⋆, b)

Stratified Rejection Sampling
6: if y = 1 and |E+| < κpos then ▷ accept positive
7: B ← B ∪ {b}; E+ ← E+ ∪ {q}
8: else if y = 0 and |E−| < κneg then ▷ accept negative
9: B ← B ∪ {b}; E− ← E− ∪ {q}

10: else
11: continue ▷ reject sample
12: end if
13: end while

Synthesizer Output
14: program← VALIDATIONPROGRAM(B,E+, E−)
15: prompt← PROMPTGENERATOR(B,E+, E−)
16: return (R⋆, program, prompt)

that covers a wide array of logical structures and208

Prolog features (containing arithmetics, recursions,209

variables, cuts, or comparison operators, etc.). The210

(ii) Rule Length (Rlen) specifies the number of lit-211

erals in the body of the ground-truth rule R⋆. The212

(iii) Background Sampling Policy (Bπ) defines a213

probability mass function that assigns a selection214

probability to each ground atom in the grammar-215

filtered Herbrand base HBG(V), enabling designers216

to encode priors on the data distribution (e.g., uni-217

form). We also include mirror sampling, where218

backgrounds for (E+, E−) are identical except for219

ground atoms relevant to R⋆. The (vi) Problem Size220

(κ = (κpos, κneg)) specifies the target number of221

positive (κpos = |E+|) and negative (κneg = |E−|)222

examples. This directly controls the size and class223

balance of each generated task.224

3.2 Task Synthesis (Generation)225

The task synthesizer (Fig. 1, center) is an auto-226

mated process detailed in Alg. 1. Given a high-227

level task specification, the synthesizer generates228

complete and solvable ILP problems. The process229

consists of two main phases: rule synthesis and230

background synthesis.231

Rule Synthesis (Alg. 1, line 2). The process be-232

gins with the RULEGENERATOR creating a latent,233

ground-truth rule R⋆. This rule represents the un-234

derlying logical pattern that a model is expected to235

induce. The generation is guided by pre-defined236

parameters (Rlen, Rsample) that control the length237

and generation policy for the rule. The resulting238

rule is a syntactically valid definite clause of the239

east(train0).
has_car(train0, car0_1).
car_num(car0_1, 1).
car_color(car0_1, red).
car_len(car0_1, long).

west(train1).
has_car(train1, car1_1).
car_num(car1_1, 1).
car_color(car1_1, blue).
car_len(car1_1, long).

Metrics

eastbound(T):-has_car(T,Car),car_len(Car,long).

Verifiable Logic Rewards

?-eastbound(train0).->true.

?-eastbound(train1).->true.

Syntax:
Solved:
Partial: 1/2

Validation Program

LLM Hypothesis

Symbolic Judge

Figure 2: Verifiable Logic Rewards: A candidate hy-
pothesis is evaluated by executing it against the valida-
tion program. It outputs three metrics: syntactic validity
(binary), perfect task completion (binary), and a partial
score for the fraction of correctly classified examples.

form h:-b1, . . . , bRlen . 240

Background Synthesis (Alg. 1, lines 3-13). Once 241

R⋆ is fixed, the synthesizer enters a loop to con- 242

struct the background knowledge B and the label 243

sets E+ and E−. This loop executes three steps 244

until the desired number of positive and negative 245

examples is generated: 246

(i) Sample Background: The BACKGROUND- 247

GENERATOR samples a set of ground atoms speci- 248

fying the properties and relationships of the back- 249

ground instance. Ground atoms are drawn from the 250

probability mass function Bπ over HBG(V). 251

(ii) Assign Label: The function labels a query 252

atom q (ground atom of target predicate h) as posi- 253

tive if it is logically entailed by the background b 254

and rule R⋆, i.e., ASSIGNLABEL(R⋆, b) = (1, q) 255

if b ∪R⋆ |= q, and negative otherwise, (0, q). 256

(iii) Accept/Reject Sample: To ensure the de- 257

sired class balance, a stratified rejection sampling 258

strategy is used to populate the example sets. The 259

generated background b and query q are accepted 260

only if the corresponding example set (E+ or E−) 261

is not yet full, as specified by the task size param- 262

eter (κ). If accepted, b is added to the task’s main 263

background knowledge B, and q is added to the 264

appropriate example set. Otherwise, it is discarded. 265

Synthesizer Outputs (Alg. 1, lines 14–17). For 266

each task, the synthesizer generates three outputs: 267

(1) the latent ground-truth rule R⋆; (2) a validation 268

program, an executable logic program encoding 269

(B,E+, E−) for automatic evaluation; and (3) an 270

instruction prompt presenting the task in natural 271

language or Prolog, ready for LLM input. See App. 272

Fig.6 for an example synthesis run. 273

4

3.3 Training and Evaluation274

The final stage, shown in Fig. 1 (right), uses the275

synthesized task to evaluate and train models.276

SYMBOLICJUDGE. The SymbolicJudge is central277

to both training and evaluation, providing verifi-278

able logic rewards (see Fig 2). It deterministically279

evaluates candidate hypotheses by executing them280

against the validation program and verifying all281

positive examples (E+) are entailed and all nega-282

tive examples (E−) are not entailed (see App. B).283

Model Evaluation. SLR streamlines the creation284

of logical reasoning benchmark datasets for sys-285

tematic model evaluation. By specifying various286

combinations of task language and configuration,287

users can generate diverse ILP tasks that span a288

broad range of domains, prompt styles, and rea-289

soning complexities. Each synthesized task com-290

prises a natural language prompt, the correspond-291

ing ground-truth rule, and an executable validation292

program for assessment by the Symbolic Judge.293

Model Training. SLR enables automated training294

loops, with model feedback available in two flavors.295

For supervised fine-tuning (SFT), the ground-truth296

rule R⋆ serves as the training target, allowing for297

cross-entropy loss updates based on predicted rules.298

For reinforcement learning, the symbolic judge299

provides verifiable rewards (RLVR) to guide the300

model’s policy updates. This cohesive, automated301

pipeline enables scalable generation, evaluation,302

and training of LLMs, facilitating systematic ad-303

vances in logical reasoning capabilities.304

Novelty and Systematic Generalization. As SLR305

is fully synthetic, overlap with existing data is sta-306

tistically negligible, making it robust against data307

leakage and memorization. By default, test set308

ground-truth rules (R⋆) are excluded from the train-309

ing set, guaranteeing that inputs and outputs at test310

time are completely novel to the model. This en-311

ables assessing whether the model is capable of312

systematically generalizing to entirely new rules.313

4 SLR-BENCH: Instantiating SLR314

With SLR-BENCH, we instantiate SLR as a 20-315

level curriculum of logical reasoning tasks with316

increasing complexity (see Fig. 3). Each level spec-317

ifies its own language L and configuration θ, pro-318

ducing a total of 19k generated reasoning tasks.319

Each level contains 1k train2, 10 eval, and 50 test320

samples. Each task comes with (i) a generated321

2The train sets of levels 1-3 are smaller (26, 234, and 793),
due to the limited number of different tasks available

Logical Complexity
0

200

400

600

800

C
om

b.
 S

iz
e

(lo
g)

Basic Easy Medium Hard

0

25

50

75

100

Pe
rf

or
m

an
ce

Figure 3: Overview of SLR-BENCH: The benchmark
curriculum spans from basic to hard tasks with increas-
ing logical and combinatorial complexity (bars, right
y-axis). As logical complexity increases, Model perfor-
mance (red, left y-axis) declines, highlighting current
LLMs’ limitations on more challenging reasoning tasks.

latent ground-truth rule, (ii) the corresponding vali- 322

dation program, and associated instruction prompt 323

for the task. An illustrative example for prompts 324

and ground-truth rules can be found in Fig. 4. 325

Design rationale. The logic task is inspired by the 326

V-LoL trains domain (Helff et al., 2025; Michalski, 327

1980; Mitchell, 1997), chosen for three main rea- 328

sons. First, its hierarchical object structure (trains 329

→ cars → attributes) naturally gives rise to first- 330

order rules that are far richer than simple lookups, 331

yet more tractable than general theorem proving. 332

Second, every attribute has a small, discrete ground- 333

ing domain, which allows us to measure and control 334

the complexity of the problem precisely. Third, we 335

ensure expandability and novelty, as SLR-BENCH 336

is fully synthetic and programmatically generated. 337

Languages. Each curriculum level is parame- 338

terized by level-specific language L, detailed in 339

App. A.1. The vocabulary includes mutually exclu- 340

sive class labels eastbound and westbound, 341

which serve as the targets for classification 342

tasks. Additionally, the vocabulary includes five 343

predicates (has_car, car_num, car_color, 344

car_len, and has_wall) with their respective 345

grounding domains specified in App. A.1. As 346

curriculum levels increase in complexity, the vocab- 347

ulary expands monotonically by introducing new 348

predicates and grounding domains selected from 349

a predefined set. These include categorical pred- 350

icates such as has_roof, has_payload, 351

has_window, car_type, and numeri- 352

cal predicates load_num, has_wheel, 353

passenger_num. Semantic coherence is 354

ensured by constraining predicate groundings to 355

valid combinations (e.g., only colors as arguments 356

for car_color), and by enforcing mutually 357

5

You are a train classifier who is observing trains that are traveling either east- or westbound. Each train is
composed of one or more cars, and each car is characterized by a set of properties, represented as ground atoms over
a fixed set of predicates. The direction (eastbound or westbound) of a train is to be determined from its composition.
To describe the trains we define a set of predicates and grounding domains:

'has_car(Train, Car)': Specifies that 'Car' is part of the train 'Train'.
...
'has_wall(Car, WallType)': Specifies the wall type of a car. 'WallType' can be either 'full' or a 'railing'.

You are provided with positive and negative examples in the form of eastbound(t) or westbound(t) for each train t,
together with background knowledge consisting of ground facts over the above predicates which describe its composition.

eastbound(train0). westbound(train1).
has_car(train0, car0_1). has_car(train1, car1_1).
car_color(car0_1, red). car_color(car1_1, red).
car_len(car0_1, short). car_len(car1_1, long).
has_wall(car0_1, railing). has_wall(car1_1, railing).

Your task is to formulate a hypothesis, i.e. a prolog rule of the form 'eastbound(Train) :- Body.' ... Your rule must
use only predicates defined above and must perfectly separate eastbound from westbound trains.

Instruction & Task Prompt

Ground-Truth Rule
eastbound(Train) :- has_car(Train,Car), car_len(Car,long)

Figure 4: Illustrative prompt and ground-truth rule generated by SLR (Level 1, SLR-BENCH). Language (L): 5
predicates, 1 car variable per train. Task configuration (Θ): κ = (1, 1) (one positive and one negative example);
Bπ = mirror; Rlen = 1; Rsample = uniform. The prompt provides the full ILP instance, including background B,
positive/negative examples (E+, E−), and natural-language instructions for the learning task.

exclusive constraints across predicates (e.g.,358

passenger cars cannot carry payloads).359

Task configs. Each curriculum level is parameter-360

ized by level-specific settings of θ, summarized in361

App. Tab.4 and supplied directly to the synthesizer362

(Alg.1). Problem size (κ) increases steadily across363

levels, maintaining an equal balance of positive364

and negative samples. Levels 1–5 use a mirror365

sampling policy for background knowledge, gener-366

ating simple, nearly identical east- and westbound367

trains that differ only in ground atoms relevant to368

R⋆. From level 6 onward, the background is sam-369

pled uniformly from the filtered Herbrand base,370

increasing diversity. Rule generation is uniform371

for the basic levels; from level 6, 30% of rules are372

LLM-guided, introducing greater variety in vari-373

ables, arithmetic, recursion, and more.374

Curriculum. SLR-BENCH comprises 20 levels375

across four tiers: basic, easy, medium, and hard.376

Each level systematically increases complexity by377

expanding task size (κ), adding new car constants378

and predicates, lengthening rules, and varying both379

the background knowledge and rule sampling pol-380

icy; see App.Sec.A, Tab. 4. As a result, the com-381

binatorial space of possible tasks grows exponen-382

tially, and later levels become progressively harder383

and require deeper reasoning beyond surface cues.384

Intended Use. SLR-BENCH is designed for two385

complementary purposes. (1) As a static bench-386

mark, it enables fine-grained evaluation of an387

LLM’s reasoning abilities across tasks of increas-388

ing logical complexity. It is also easily extensible389

to accommodate future improvements in model ca-390

pabilities. (2) As a dynamic curriculum, it serves391

as a training backbone, supplying structured rea-392

soning tasks and feedback to enhance reasoning in 393

both conventional and reasoning LLMs. 394

5 LLMs Can’t Do Induction at Scale 395

We evaluate and train LLMs on SLR-BENCH, as- 396

sessing reasoning, syntactic correctness, and com- 397

putational efficiency across four difficulty levels: 398

basic, easy, medium, and hard. Our analysis high- 399

lights key trends, common failure modes, and the 400

effectiveness of curriculum-based logic-tuning. 401

Evaluation Setup. All models are evaluated in 402

a zero-shot setting using SLR-BENCH prompts, 403

with a single attempt per task (pass@1). We report 404

the following metrics: (i) Logical Reasoning Level 405

(LRL): cumulative model score over all curricu- 406

lum levels LRL =
∑L

ℓ=1
#solvedℓ
#tasksℓ

(ii) Syntax Score: 407

The proportion of syntactically valid logic rules; 408

(iii) Logical-Reasoning Accuracy: Fraction of cor- 409

rect solutions per complexity tier; (iv) Compute: 410

Aggregate completion tokens and computational 411

cost. For further details on downstream evaluations, 412

see App. Sec. G, and for pricing, refer to Tab. 5. 413

Training Setup. We investigate how LLMs benefit 414

from curriculum training on SLR-BENCH with 415

SFT (for more details see App. Sec. G). To prevent 416

data leakage, we ensure that no prompts or rules 417

from the test set are included in the training set. 418

5.1 Analysis and Key Findings 419

In the following, we highlight downstream gains 420

from training via SLR curriculum learning (Tab. 2). 421

Next, we benchmark SOTA conventional and rea- 422

soning LLMs on SLR-BENCH (Tab. 3), showcas- 423

ing the trade-offs of test-time compute (Fig. 5). 424

6

Table 2: Curriculum Learning and Generalization. Benchmark scores (↑%) for base and SLR-tuned models
(Llama3.1-8b-it) on SLR-BENCH and downstream benchmarks; LRL measuring cumulative curriculum progress.
The tuned model surpasses the baseline across all curriculum stages, while generalizing to other reasoning tasks.

Curriculum Learning (SLR-BENCH)
LRL (↑0-20) Syntax(↑%) Basic(↑%) Easy(↑%) Medium(↑%) Hard(↑%)

Llama-8b 3.6 99 61 10 1 0
Llama-8b-SLR 8.8 (+5.2) 100 (+1) 96 (+35) 56 (+46) 20 (+19) 5 (+5)

Downstream Reasoning Performance
MMLU (↑%) MMLU-Stats (↑%) MMLU-CS (↑%) MMLU-ML (↑%) LogiQA (↑%) LogiQA2 (↑%)

Llama-8b 63.3 42.6 61.0 49.1 30.1 34.3
Llama-8b-SLR 66.1 (+2.8) 59.7 (+17) 75.0 (+14) 52.7 (+3.6) 31.0 (+0.9) 39.4 (+5.2)

GPQA (↑%) GPQA-Extended (↑%) GPQA-Diamond (↑%) ARC-Easy (↑%) ARC (↑%) HellaSwag (↑%)

Llama-8b 31.7 26.9 21.7 81.4 52.7 57.4
Llama-8b-SLR 32.8 (+1.1) 33.0 (+6.1) 28.3 (+6.6) 82.8 (+1.4) 54.6 (+1.9) 58.9 (+1.5)

SLR Boosts Downstream Reasoning. Curricu-425

lum learning on SLR-BENCH yields substantial im-426

provements in both in-domain and downstream rea-427

soning (see Tab 2). SLR-tuned models outperform428

all conventional LLMs on SLR-BENCH (cf. Tab.3)429

and surpass reasoning LLMs such as Gemini-2.0-430

flash-thinking, while using far fewer inference to-431

kens and compute resources. On popular reasoning432

benchmarks, SLR delivers gains on logic-intensive433

tasks, e.g., on MMLU High School Statistics (+17),434

Computer science (+14), and Machine learning435

(+3.6) (Hendrycks et al., 2021), as well as no-436

table improvements on LogicQA (Liu et al., 2020),437

LogicQA2 (Liu et al., 2023), ARC (Clark et al.,438

2018), HellaSwag (Zellers et al., 2019), GPQA,439

and GPQA-Extended, GPQA-Diamond (Rein et al.,440

2024). These consistent gains across curriculum441

levels and downstream benchmarks demonstrate442

that curriculum learning with SLR not only en-443

hances in-domain reasoning but also generalizes444

effectively to diverse reasoning tasks.445

Curriculum Levels Modulate Task Complexity:446

LLMs Break Down as Complexity Increases.447

SLR-BENCH creates a controlled gradient in logi-448

cal complexity as model performance steadily de-449

clines throughout the curriculum levels (cf. Fig. 3,450

Tab. 3). Most models readily solve the basic lev-451

els. However, base LLMs already struggle on the452

easy tasks, solving less than half. Reasoning LLMs453

provide improved performance, though they incur454

substantial drops at the medium levels. Only a few455

reasoning LLMs manage to solve more than half456

the medium tasks, yet none on hard. This pattern457

is also reflected in the LRL score, empirically in-458

dicating how far each model can progress before459

performance collapses.460

Reasoning Remains Challenging; Syntax Not.461

Base LLMs reliably generate syntactically valid 462

rules, reflected in their high syntax scores (see 463

Tab. 3). Reasoning models exhibit slightly lower 464

scores, particularly on more complex reasoning 465

tasks, where longer outputs can lead to invalid or 466

missing responses. Nonetheless, the primary bar- 467

rier to higher performance is semantic, as reflected 468

by the gap between syntax and LRL in Tab. 3. 469

Scaling Test-time Compute Improves Reason- 470

ing, but Returns Diminish and Costs Escalate. 471

Reasoning LLMs clearly outperform the base mod- 472

els; not even the best base model is able to match 473

any of the reasoning LLMs (cf. Tab. 3). This, how- 474

ever, comes at a steep cost as moving from GPT- 475

4o to o3 doubles accuracy, but considerably in- 476

creases the number of completion tokens (1777%) 477

and thus the computational costs (1034%). More- 478

over, scaling test-time compute on the same model 479

also boosts overall performance, but does not guar- 480

antee higher accuracy across all tasks. For exam- 481

ple, while o4-mini-high typically outperforms o4- 482

mini (LRL: 12.8 vs. 12.3), it underperforms on 483

the medium complexity tier (40% vs. 52%). This 484

plateau effect demonstrates that, beyond a certain 485

threshold, additional compute may yield diminish- 486

ing or even negative returns. 487

Scaling Model Parameters Brings Limited 488

Gains in Logical Reasoning. Increasing model 489

size yields only marginal gains in logical reasoning. 490

While larger models like Llama-3-70B and GPT- 491

4.5-prev generally outperform their smaller coun- 492

terparts, returns diminish as improvements are in- 493

creasingly modest (see Tab. 3). As even the largest 494

base models still fall short of the reasoning models, 495

a capability gap remains that suggests that scaling 496

model parameters alone does not guarantee sub- 497

stantial advances in logical reasoning capabilities. 498

7

Table 3: SLR-BENCH Leaderboard. We report the models’ Logical Reasoning Level (LRL), syntax score,
stage-specific logical reasoning accuracy (basic, easy, medium, hard), total completion tokens, and inference cost.
Higher LRL and accuracy indicate superior logical reasoning; lower compute, greater efficiency. Performance drops
as complexity increases, while Reasoning LLMs (orange) consistently outperform conventional LLMs (blue).

LRL Syntax Logical-Reasoning Acc. (%)↑ Total Compute

Model (↑0-20) Score (↑%) Basic Easy Medium Hard Tokens (↓M) Costs (↓$)

o3 15.5 80 99 93 74 45 4.30 207.24
o4-mini-high 12.8 88 98 96 40 21 4.62 24.24
o4-mini 12.3 86 93 88 52 13 3.98 21.43
o1 11.9 68 92 89 41 15 5.19 364.72
o3-mini 11.6 75 97 90 37 7 4.73 24.71
o4-mini-low 10.3 91 91 81 25 9 0.77 7.26
o1-mini 10.1 95 97 82 20 3 3.65 19.98
R1-Llama-70B2 8.8 75 98 67 8 4 11.61 5.33
Gemini-thinking1 8.6 83 93 65 13 1 — —
gpt-4.5-prev 7.6 100 96 50 5 2 0.37 576.40
gpt-4o 6.4 100 94 31 2 1 0.26 20.03
Llama-3.3-70B 5.9 100 94 24 0 0 0.48 0.81
gpt-4-turbo 5.5 100 90 19 2 0 0.41 81.30
Llama 3.1-8B 3.6 99 61 10 1 0 1.96 0.20
Llama 3.2-3B 0.7 70 13 1 0 0 2.10 0.16
Llama 3.2-1B 0.0 34 0 0 0 0 5.30 0.23

1Gemini-2.0-flash-thinking-exp-01-21 2DeepSeek-R1-Distill-Llama-70B — information not available

0 2500 5000 7500 10000 12500 15000 17500
Completion Tokens

0

25

50

75

100

Ac
cu

ra
cy

Complexity Tier and Model Type
basic
easy

medium
hard

LLM
Reasoning LLM

Figure 5: Compute–Performance Trade-Off. Reason-
ing LLMs achieve higher accuracy than base LLMs but
require more compute. However, increased compute
does not always translate to higher accuracy.

Compute Increases with Task Complexity. As499

reasoning tasks become more complex, reasoning500

LLMs require more tokens to solve the tasks, lead-501

ing to increased financial costs (see Fig. 5). These502

increased demands impose limits on scaling rea-503

soning through increased test-time compute.504

6 Conclusion and Future Direction505

In this work, we introduced SLR, a fully automated506

and scalable framework for synthesizing logical507

reasoning benchmarks with verifiable rewards pro-508

vided by logic programs. Our instantiation, SLR-509

BENCH, offers a 20-level curriculum spanning 19k510

tasks with increasing logical complexity. 511

Our evaluations reveal that while current LLMs 512

readily produce syntactically valid logic rules, ro- 513

bust logical reasoning remains elusive for conven- 514

tional LLMs, especially as task complexity scales. 515

Scaling model parameters yields only limited gains. 516

Reasoning LLMs, aided by increased test-time 517

compute, close part of this gap, albeit at signifi- 518

cant computational costs. 519

Notably, curriculum learning on SLR-BENCH 520

significantly boosts both in-domain and down- 521

stream reasoning. Our SLR-tuned Llama3-8B not 522

only outperforms all conventional LLMs on SLR- 523

BENCH, but also surpasses several SOTA reasoning 524

LLMs at a fraction of their inference costs. Further- 525

more, we observe improved reasoning capabilities 526

across a wide range of established benchmarks, un- 527

derscoring the effectiveness of curriculum-based 528

logic-tuning for downstream reasoning tasks. 529

Looking ahead, SLR paves the way for several 530

promising research directions, including the inte- 531

gration of reinforcement learning for reasoning 532

LLMs using SLR, expanding into richer logical 533

domains, benchmarking neuro-symbolic and in- 534

teractive reasoning systems, and moving toward 535

higher-order logic tasks like causal inference. Ul- 536

timately, SLR provides a flexible and extensible 537

resource for probing and advancing the frontiers of 538

logical reasoning in the next generation of LLMs. 539

8

7 Limitations540

While SLR and SLR-BENCH provide a scalable541

testbed for logical reasoning, there remain many542

opportunities for further enrichment. Although543

SLR-BENCH currently applies SLR to the train544

domain with a single rule, the framework is readily545

extensible to multiple more complex, multi-rule546

reasoning scenarios and to entirely different do-547

mains. Our current focus on first-order, function-548

free Horn clauses enables systematic benchmark549

creation and evaluation; future instantiations could550

expand towards higher-order logic or probabilistic551

reasoning. While synthetic task generation comes552

with many benefits, such as ensuring novelty and553

precise control, it makes it difficult to incorporate554

real-world diversity and ambiguity. Our symbolic555

judge provides deterministic, discrete scoring and556

could potentially be enhanced to also recognize par-557

tial solutions, syntactically invalid rules, or natural558

language formulations. Overall, these points high-559

light the flexibility of our framework and outline560

promising directions for broadening its reach and561

impact.562

Broader Impact563

SLR and SLR-BENCH provide a scalable, repro-564

ducible foundation for evaluating and advancing565

logical reasoning in AI without relying on human566

annotation. By enabling robust measurement and567

targeted training, our framework supports progress568

in areas such as scientific discovery, program syn-569

thesis, and trustworthy AI. However, as LLMs ac-570

quire deeper logical competence, the risk of dual-571

use knowledge increases, enabling beneficial appli-572

cations but also the potential for misuse, such as573

generating deceptive arguments or bypassing safety574

mechanisms. We urge responsible use and active575

consideration of ethical risks as these capabilities576

advance.577

References578

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,579
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,580
and Jingren Zhou. 2023. Qwen-vl: A versatile581
vision-language model for understanding, localiza-582
tion, text reading, and beyond. arXiv preprint583
arXiv:2308.12966.584

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,585
and Jason Weston. 2009. Curriculum learning. In586
Proceedings of the 26th Annual International Confer-587
ence on Machine Learning, ICML ’09, page 41–48,588

New York, NY, USA. Association for Computing 589
Machinery. 590

Victor Bursztyn, David Demeter, Doug Downey, and 591
Larry Birnbaum. 2022. Learning to perform complex 592
tasks through compositional fine-tuning of language 593
models. In Findings of the Association for Computa- 594
tional Linguistics: EMNLP 2022, pages 1676–1686, 595
Abu Dhabi, United Arab Emirates. Association for 596
Computational Linguistics. 597

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 598
Ashish Sabharwal, Carissa Schoenick, and Oyvind 599
Tafjord. 2018. Think you have solved question an- 600
swering? try arc, the ai2 reasoning challenge. ArXiv, 601
abs/1803.05457. 602

Andrew Cropper and Sebastijan Dumančić. 2022. In- 603
ductive logic programming at 30: A new introduction. 604
J. Artif. Int. Res., 74. 605

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 606
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 607
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 608
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi- 609
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others. 610
2025. Deepseek-r1: Incentivizing reasoning capa- 611
bility in llms via reinforcement learning. Preprint, 612
arXiv:2501.12948. 613

Quentin Delfosse, Jannis Blüml, Fabian Tatai, Théo 614
Vincent, Bjarne Gregori, Elisabeth Dillies, Jan Pe- 615
ters, Constantin Rothkopf, and Kristian Kersting. 616
2025. Deep reinforcement learning agents are 617
not even close to human intelligence. Preprint, 618
arXiv:2505.21731. 619

Siqi Fan, Peng Han, Shuo Shang, Yequan Wang, and 620
Aixin Sun. 2025. Cothink: Token-efficient reason- 621
ing via instruct models guiding reasoning models. 622
Preprint, arXiv:2505.22017. 623

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, 624
Konrad Szafer, and Thomas Wolf. 2024. Open llm 625
leaderboard v2. https://huggingface.co/ 626
spaces/open-llm-leaderboard/open_ 627
llm_leaderboard. 628

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider- 629
man, Sid Black, Anthony DiPofi, Charles Foster, 630
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, 631
Haonan Li, Kyle McDonell, Niklas Muennighoff, 632
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey 633
Schoelkopf, Aviya Skowron, Lintang Sutawika, and 634
5 others. 2024a. The language model evaluation har- 635
ness. 636

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider- 637
man, Sid Black, Anthony DiPofi, Charles Foster, 638
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, 639
Haonan Li, Kyle McDonell, Niklas Muennighoff, 640
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey 641
Schoelkopf, Aviya Skowron, Lintang Sutawika, and 642
5 others. 2024b. The language model evaluation 643
harness. 644

9

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.18653/v1/2022.findings-emnlp.121
https://doi.org/10.18653/v1/2022.findings-emnlp.121
https://doi.org/10.18653/v1/2022.findings-emnlp.121
https://doi.org/10.18653/v1/2022.findings-emnlp.121
https://doi.org/10.18653/v1/2022.findings-emnlp.121
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2505.21731
https://arxiv.org/abs/2505.21731
https://arxiv.org/abs/2505.21731
https://arxiv.org/abs/2505.22017
https://arxiv.org/abs/2505.22017
https://arxiv.org/abs/2505.22017
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting645
Qi, Martin Riddell, Luke Benson, Lucy Sun, Eka-646
terina Zubova, Yujie Qiao, Matthew Burtell, David647
Peng, Jonathan Fan, Yixin Liu, Brian Wong, Mal-648
colm Sailor, Ansong Ni, Linyong Nan, Jungo Ka-649
sai, Tao Yu, and 7 others. 2022. Folio: Natural lan-650
guage reasoning with first-order logic. arXiv preprint651
arXiv:2209.00840.652

Lukas Helff, Wolfgang Stammer, Hikaru Shindo, De-653
vendra Singh Dhami, and Kristian Kersting. 2025.654
V-lol: A diagnostic dataset for visual logical learning.655
Journal of Data-centric Machine Learning Research.656

Dan Hendrycks, Collin Burns, Steven Basart, Andy657
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-658
hardt. 2021. Measuring massive multitask language659
understanding. Proceedings of the International Con-660
ference on Learning Representations (ICLR).661

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John662
Palowitch, Chrysovalantis Anastasiou, Sanket Vaib-663
hav Mehta, Lalit K. Jain, Virginia Aglietti, Disha664
Jindal, Peter Chen, Nishanth Dikkala, Gladys Tyen,665
Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska,666
Yi Tay, Vinh Q. Tran, Quoc V. Le, and Orhan667
Firat. 2025. Big-bench extra hard. Preprint,668
arXiv:2502.19187.669

Jiin Kim, Byeongjun Shin, Jinha Chung, and Minsoo670
Rhu. 2025. The cost of dynamic reasoning: Demysti-671
fying ai agents and test-time scaling from an ai infras-672
tructure perspective. Preprint, arXiv:2506.04301.673

Aida Kostikova, Zhipin Wang, Deidamea Bajri, Ole674
Putz, Benjamin Paassen, and Steffen Eger. 2025.675
Lllms: A data-driven survey of evolving research676
on limitations of large language models.677

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying678
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.679
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-680
cient memory management for large language model681
serving with pagedattention. In Proceedings of the682
ACM SIGOPS 29th Symposium on Operating Systems683
Principles.684

Bill Yuchen Lin. 2024. Zeroeval: A unified framework685
for evaluating language models.686

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson,687
Ashish Sabharwal, Radha Poovendran, Peter Clark,688
and Yejin Choi. 2025. Zebralogic: On the scaling689
limits of llms for logical reasoning.690

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze691
Brahman, Abhilasha Ravichander, Valentina Py-692
atkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi.693
2024. Wildbench: Benchmarking llms with chal-694
lenging tasks from real users in the wild. Preprint,695
arXiv:2406.04770.696

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan697
Duan, Ming Zhou, and Yue Zhang. 2023. Logiqa698
2.0—an improved dataset for logical reasoning in699

natural language understanding. IEEE/ACM Trans- 700
actions on Audio, Speech, and Language Processing, 701
31:2947–2962. 702

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, 703
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal- 704
lenge dataset for machine reading comprehension 705
with logical reasoning. In Proceedings of the Twenty- 706
Ninth International Joint Conference on Artificial 707
Intelligence, IJCAI-20, pages 3622–3628. Interna- 708
tional Joint Conferences on Artificial Intelligence 709
Organization. 710

Junteng Liu, Yuanxiang Fan, Zhuo Jiang, Han Ding, 711
Yongyi Hu, Chi Zhang, Yiqi Shi, Shitong Weng, 712
Aili Chen, Shiqi Chen, Yunan Huang, Mozhi Zhang, 713
Pengyu Zhao, Junjie Yan, and Junxian He. 2025. Syn- 714
logic: Synthesizing verifiable reasoning data at scale 715
for learning logical reasoning and beyond. Preprint, 716
arXiv:2505.19641. 717

John W Lloyd. 2012. Foundations of logic program- 718
ming. Springer Berlin, Heidelberg. 719

Man Luo, Shrinidhi Kumbhar, Ming shen, Mihir Parmar, 720
Neeraj Varshney, Pratyay Banerjee, Somak Aditya, 721
and Chitta Baral. 2024. Towards logiglue: A brief 722
survey and a benchmark for analyzing logical rea- 723
soning capabilities of language models. Preprint, 724
arXiv:2310.00836. 725

Meta, Aaron Grattafiori, Abhimanyu Dubey, Abhinav 726
Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad 727
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 728
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 729
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 730
tra, Archie Sravankumar, Artem Korenev, and 543 731
others. 2024. The llama 3 herd of models. Preprint, 732
arXiv:2407.21783. 733

Ryszard S. Michalski. 1980. Pattern recognition as rule- 734
guided inductive inference. IEEE Transactions on 735
Pattern Analysis and Machine Intelligence, PAMI- 736
2(4):349–361. 737

Tom Michael Mitchell. 1997. Machine learning, inter- 738
national edition. In McGraw-Hill Series in Computer 739
Science. 740

Philipp Mondorf and Barbara Plank. 2024. Liar, liar, 741
logical mire: A benchmark for suppositional reason- 742
ing in large language models. In Proceedings of 743
the 2024 Conference on Empirical Methods in Natu- 744
ral Language Processing, pages 7114–7137, Miami, 745
Florida, USA. Association for Computational Lin- 746
guistics. 747

Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, 748
and Yasuhiro Sogawa. 2024. Enhancing reasoning 749
capabilities of llms via principled synthetic logic cor- 750
pus. In Annual Conference on Neural Information 751
Processing Systems. 752

Stephen Muggleton and Luc de Raedt. 1994. Induc- 753
tive logic programming: Theory and methods. The 754
Journal of Logic Programming, 19-20:629–679. 755

10

https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://arxiv.org/abs/2209.00840
https://openreview.net/forum?id=IkbFIPiqFe
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2506.04301
https://arxiv.org/abs/2506.04301
https://arxiv.org/abs/2506.04301
https://arxiv.org/abs/2506.04301
https://arxiv.org/abs/2506.04301
https://api.semanticscholar.org/CorpusID:278905232
https://api.semanticscholar.org/CorpusID:278905232
https://api.semanticscholar.org/CorpusID:278905232
https://github.com/WildEval/ZeroEval
https://github.com/WildEval/ZeroEval
https://github.com/WildEval/ZeroEval
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2502.01100
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2406.04770
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.1109/TASLP.2023.3293046
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://doi.org/10.24963/ijcai.2020/501
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2505.19641
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2310.00836
https://arxiv.org/abs/2407.21783
https://doi.org/10.1109/TPAMI.1980.4767034
https://doi.org/10.1109/TPAMI.1980.4767034
https://doi.org/10.1109/TPAMI.1980.4767034
https://api.semanticscholar.org/CorpusID:43861320
https://api.semanticscholar.org/CorpusID:43861320
https://api.semanticscholar.org/CorpusID:43861320
https://doi.org/10.18653/v1/2024.emnlp-main.404
https://doi.org/10.18653/v1/2024.emnlp-main.404
https://doi.org/10.18653/v1/2024.emnlp-main.404
https://doi.org/10.18653/v1/2024.emnlp-main.404
https://doi.org/10.18653/v1/2024.emnlp-main.404

OpenAI. 2025. Openai o3 and o4-mini system756
card. https://cdn.openai.com/pdf/757
2221c875-02dc-4789-800b-e7758f3722c1/758
o3-and-o4-mini-system-card.pdf.759

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,760
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-761
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-762
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,763
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-764
ing Bao, Mohammad Bavarian, Jeff Belgum, and765
262 others. 2024. Gpt-4 technical report. Preprint,766
arXiv:2303.08774.767

Tafjord Oyvind, Dalvi Bhavana, and Clark Peter. 2021.768
ProofWriter: Generating implications, proofs, and769
abductive statements over natural language. In Find-770
ings of the Association for Computational Linguistics:771
ACL-IJCNLP 2021, pages 3621–3634. Association772
for Computational Linguistics.773

Bhrij Patel, Souradip Chakraborty, Wesley A. Sut-774
tle, Mengdi Wang, Amrit Singh Bedi, and Dinesh775
Manocha. 2024a. Aime: Ai system optimization via776
multiple llm evaluators. Preprint, arXiv:2410.03131.777

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna778
Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and779
Chitta Baral. 2024b. Multi-logieval: Towards eval-780
uating multi-step logical reasoning ability of large781
language models. Preprint, arXiv:2406.17169.782

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li,783
Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang,784
Mohamed Shaaban, John Ling, Sean Shi, Michael785
Choi, Anish Agrawal, Arnav Chopra, Adam Khoja,786
Ryan Kim, Richard Ren, Jason Hausenloy, Oliver787
Zhang, Mantas Mazeika, and 1090 others. 2025. Hu-788
manity’s last exam. Preprint, arXiv:2501.14249.789

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng,790
Dayiheng Liu, An Yang, Xuancheng Ren, Bofei791
Gao, Yibo Miao, Yunlong Feng, and 1 others. 2025.792
Codeelo: Benchmarking competition-level code gen-793
eration of llms with human-comparable elo ratings.794
arXiv preprint arXiv:2501.01257.795

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-796
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-797
lian Michael, and Samuel R. Bowman. 2024. GPQA:798
A graduate-level google-proof q&a benchmark. In799
First Conference on Language Modeling.800

Abulhair Saparov and He He. 2023. Language models801
are greedy reasoners: A systematic formal analysis802
of chain-of-thought. In The Eleventh International803
Conference on Learning Representations.804

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh,805
Maxwell Horton, Samy Bengio, and Mehrdad Fara-806
jtabar. 2025. The illusion of thinking: Understanding807
the strengths and limitations of reasoning models via808
the lens of problem complexity.809

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle810
Pineau, and William L. Hamilton. 2019. CLUTRR:811

A diagnostic benchmark for inductive reasoning from 812
text. In Proceedings of the 2019 Conference on 813
Empirical Methods in Natural Language Processing 814
and the 9th International Joint Conference on Natu- 815
ral Language Processing (EMNLP-IJCNLP), pages 816
4506–4515, Hong Kong, China. Association for Com- 817
putational Linguistics. 818

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 819
bastian Gehrmann, Yi Tay, Hyung Won Chung, 820
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, 821
Denny Zhou, and Jason Wei. 2023. Challenging 822
big-bench tasks and whether chain-of-thought can 823
solve them. In ACL (Findings), pages 13003–13051. 824

Jason Weston, Antoine Bordes, Sumit Chopra, and 825
Tomas Mikolov. 2015. Towards ai-complete question 826
answering: A set of prerequisite toy tasks. arXiv: 827
Artificial Intelligence. 828

Tim Woydt, Moritz Willig, Antonia Wüst, Lukas Helff, 829
Wolfgang Stammer, Constantin A. Rothkopf, and 830
Kristian Kersting. 2025. Fodor and pylyshyn’s legacy 831
– still no human-like systematic compositionality in 832
neural networks. 833

Antonia Wüst, Tim Tobiasch, Lukas Helff, Inga 834
Ibs, Wolfgang Stammer, Devendra S Dhami, Con- 835
stantin A Rothkopf, and Kristian Kersting. 2025. 836
Bongard in wonderland: Visual puzzles that still 837
make ai go mad? In Proceedings of the 42nd Inter- 838
national Conference on Machine Learning (ICML). 839

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, 840
Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih Ghazi, 841
and Ravi Kumar. 2024. On memorization of large 842
language models in logical reasoning. Preprint, 843
arXiv:2410.23123. 844

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, 845
Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu, Zhi- 846
rong Wu, and Chong Luo. 2025. Logic-rl: Un- 847
leashing llm reasoning with rule-based reinforcement 848
learning. Preprint, arXiv:2502.14768. 849

Nathan Young, Qiming Bao, Joshua Bensemann, and 850
Michael Witbrock. 2022. AbductionRules: Train- 851
ing transformers to explain unexpected inputs. In 852
Findings of the Association for Computational Lin- 853
guistics: ACL 2022, pages 218–227, Dublin, Ireland. 854
Association for Computational Linguistics. 855

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 856
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 857
machine really finish your sentence? In Proceedings 858
of the 57th Annual Meeting of the Association for 859
Computational Linguistics. 860

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 861
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. 862
2024. Llamafactory: Unified efficient fine-tuning 863
of 100+ language models. In Proceedings of the 864
62nd Annual Meeting of the Association for Compu- 865
tational Linguistics (Volume 3: System Demonstra- 866
tions), Bangkok, Thailand. Association for Computa- 867
tional Linguistics. 868

11

https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://arxiv.org/abs/2410.03131
https://arxiv.org/abs/2410.03131
https://arxiv.org/abs/2410.03131
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2406.17169
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
https://arxiv.org/abs/2501.14249
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=qFVVBzXxR2V
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://api.semanticscholar.org/CorpusID:3178759
https://api.semanticscholar.org/CorpusID:3178759
https://api.semanticscholar.org/CorpusID:3178759
https://api.semanticscholar.org/CorpusID:279120044
https://api.semanticscholar.org/CorpusID:279120044
https://api.semanticscholar.org/CorpusID:279120044
https://api.semanticscholar.org/CorpusID:279120044
https://api.semanticscholar.org/CorpusID:279120044
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2410.23123
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://arxiv.org/abs/2502.14768
https://doi.org/10.18653/v1/2022.findings-acl.19
https://doi.org/10.18653/v1/2022.findings-acl.19
https://doi.org/10.18653/v1/2022.findings-acl.19
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Yujun Zhou, Jiayi Ye, Zipeng Ling, Yufei Han, Yue869
Huang, Haomin Zhuang, Zhenwen Liang, Kehan870
Guo, Taicheng Guo, Xiangqi Wang, and Xiangliang871
Zhang. 2025. Dissecting logical reasoning in llms:872
A fine-grained evaluation and supervision study.873
Preprint, arXiv:2506.04810.874

12

https://arxiv.org/abs/2506.04810
https://arxiv.org/abs/2506.04810
https://arxiv.org/abs/2506.04810

A Task Specification875

Each task in SLR-BENCH is precisely governed by876

a combination of language features and task config-877

uration parameters, enabling fine-grained control878

over complexity and diversity. A task specification879

comprises two main components: (i) the logical880

language, which determines the set of predicates881

and argument types available, and (ii) the task con-882

figuration, which defines structural aspects of the883

task such as problem size, background knowledge884

sampling, rule length, sampling strategy, and the885

combinatorial space of realizable tasks. Tab. 4886

details the curriculum’s level-wise specifications,887

showing how both language elements and the task888

config to create the individual levels.889

A.1 Language890

Predicates and Types. SLR defines a flexible,891

extensible vocabulary to support the systematic892

generation and evaluation of logical reasoning893

tasks. The primary predicate signatures and their894

argument types used in SLR-BENCH are:895

eastbound(TRAIN)896

westbound(TRAIN)897

has_car(TRAIN ,CAR)898

car_num(CAR,NUM)899

car_color(CAR,COLOR)900

car_len(CAR,LEN)901

has_wall(CAR,WALL)902

has_roof(CAR,ROOF)903

has_payload(CAR,LOADS)904

load_num(CAR,NPAY)905

has_wheel(CAR,WHEELS)906

has_window(CAR,WINDOW)907

car_type(CAR,CTYPE)908

909

Grounding Domains. Each argument type is 910

grounded in a finite set of discrete constants: 911

NUM ::= J0-9K+ 912

CAR ::= J0-9K+ 913

COLOR ::= red | blue | green | 914

yellow | white 915

LEN ::= short | long 916

WALL ::= full | railing 917

ROOF ::= roof_foundation | solid_roof | 918

braced_roof | peaked_roof | none 919

WHEELS ::= 2 | 3 920

LOADS ::= blue_box | golden_vase | 921

barrel | diamond | metal_pot | 922

oval_vase | none 923

NPAY ::= 0 | 1 | 2 | 3 924

WINDOW ::= full | half | none 925

CTYPE ::= passenger | freight | mixed 926

NPAX ::= J0-9K 927

Grammar Constraints. Predicates are only in- 928

stantiated with semantically compatible constant 929

types. For example, car_color(·, ·) only takes 930

car objects and color constants as arguments; ill- 931

typed facts are excluded during synthesis. 932

B Logic Rewards Provided by the 933

Symbolic Judge 934

The SYMBOLICJUDGE computes verifiable logic 935

rewards for a candidate hypothesis H against a 936

given background knowledge base B and sets of 937

positive (E+) and negative (E−) examples. These 938

rewards are used for both evaluation and model 939

training, and they include three distinct metrics: 940

Syntax Validity Score: This binary score (0 941

or 1) indicates whether the candidate hypothesis 942

H is a syntactically and semantically valid Prolog 943

rule. This serves as a prerequisite check for further 944

evaluation; if H is invalid, other scores are typically 945

assigned 0. 946

OVERALLSCORE: This metric provides a bi- 947

nary indication of perfect task completion. It is 1 if 948

and only if the hypothesis H , in conjunction with 949

the background knowledge B, correctly entails all 950

positive examples (E+) and correctly refutes all 951

negative examples (E−). Otherwise, the score is 0. 952

13

Table 4: SLR-BENCH Curriculum: level-wise configurations, detailing language and task parameters for each
difficulty stage. Language complexity is systematically increased by expanding the number of car constants and
predicates. Task configuration grows via adapting problem size, background sampling, rule length, and rule sampling
strategy. The final column reports the approximate combinatorial size of unique tasks available at each level.

Level
Language Task Configuration Comb.

size#Const. #Pred. κ Bπ Rlen Rsample

1 1 5 2 mirror 1 uniform 103

2 1 5 2 mirror 1-2 uniform 103

3 1 5 4 mirror 1-2 uniform 105

4 2 5 4 mirror 1-2 uniform 1010

B
as

ic

5 2 5 6 mirror 1-2 uniform 1016

6 2 5 6 uniform 1-2 uniform/llm 1016

7 2 6 6 uniform 1-2 uniform/llm 1024

8 2-3 6 8 uniform 1-2 uniform/llm 1032

9 2-3 6 10 uniform 2-3 uniform/llm 1040

E
as

y

10 2-3 7 12 uniform 2-3 uniform/llm 1055

11 2-4 7 14 uniform 2-3 uniform/llm 1065

12 2-4 9 16 uniform 3-4 uniform/llm 10120

13 4-6 9 18 uniform 3-4 uniform/llm 10271

14 4-6 9 20 uniform 4-5 uniform/llm 10300M
ed

iu
m

15 4-6 9 22 uniform 4-5 uniform/llm 10330

16 5-6 10 24 uniform 4-5 uniform/llm 10507

17 5-6 10 26 uniform 4-5 uniform/llm 10549

18 5-6 12 28 uniform 4-5 uniform/llm 10805

19 5-6 12 30 uniform 5 uniform/llm 10861

H
ar

d

20 5-6 12 32 uniform 5 uniform/llm 10919

OVERALLSCOREB,E+,E−(H) = J953

∀q ∈ E+ : (B ∪H) |= q ∧954

∀q ∈ E− : (B ∪H) ̸|= qK ∈ {0, 1}955

Where J·K is the Iverson bracket, evaluating to 1 if956

the condition inside is true, and 0 otherwise.957

PARTIALSCORE: This metric reflects the frac-958

tion of examples (from both E+ and E−) that are959

correctly classified by the candidate hypothesis H960

when combined with the background knowledge B.961

This provides a continuous signal of progress, even962

when the overall task is not perfectly completed.963

PARTIALSCOREB,E+,E−(H) =964 ∑
q∈E+J(B ∪H) |= qK +

∑
q∈E−J(B ∪H) ̸|= qK

|E+ ∪ E−|
965

Here, the numerator sums the count of correctly966

entailed positive examples and correctly refuted967

negative examples. The denominator is the total968

number of examples, ensuring the score is normal-969

ized between 0 and 1.970

These metrics provide rich feedback for both971

discrete evaluation (e.g., for filtering valid rules)972

and continuous optimization (e.g., for guiding re- 973

inforcement learning agents), allowing for robust 974

assessment of learned logical hypotheses. 975

C Compute Costs and Model Pricing 976

Compute Costs. Compute costs are reported as 977

the total USD cost to run all prompts, based on 978

publicly listed API prices as of 01.05.2025. Pricing 979

ignores server-side token caching, as actual cache 980

hit counts are unavailable. Table 5 summarizes 981

per-model cost rates and API sources. 982

D Example: Task Synthesis Process 983

E LLM Guided Rule Generation 984

This section provides the prompt used for LLM- 985

guided rule generation. The prompt was carefully 986

designed to be both diverse and comprehensive, in- 987

cluding a wide range of logical structures and Pro- 988

log features such as conjunction, disjunction, nega- 989

tion, recursion, aggregation, and pattern matching. 990

By presenting the model with these varied and com- 991

plex examples, we encourage the generation of 992

14

Table 5: Model Pricing ($ per 1M tokens). API rates as of 01.05.2025.

Model Model Tag Input Input(Cached) Output API

gpt-4.1 gpt-4.1-2025-04-14 2.00 0.50 8.00 OpenAI
gpt-4.1-mini gpt-4.1-mini-2025-04-14 0.40 0.10 1.60 OpenAI
gpt-4.1-nano gpt-4.1-nano-2025-04-14 0.10 0.025 0.40 OpenAI
gpt-4.5-preview gpt-4.5-preview-2025-02-27 75.00 37.50 150.00 OpenAI
gpt-4o gpt-4o-2024-08-06 2.50 1.25 10.00 OpenAI
gpt-4o-mini gpt-4o-mini-2024-07-18 0.15 0.075 0.60 OpenAI
o1 o1-2024-12-17 15.00 7.50 60.00 OpenAI
o1-pro o1-pro-2025-03-19 150.00 600.00 OpenAI
o3 o3-2025-04-16 10.00 2.50 40.00 OpenAI
o4-mini-low o4-mini-2025-04-16 1.10 0.275 4.40 OpenAI
o4-mini o4-mini-2025-04-16 1.10 0.275 4.40 OpenAI
o4-mini-high o4-mini-2025-04-16 1.10 0.275 4.40 OpenAI
o3-mini o3-mini-2025-01-31 1.10 0.55 4.40 OpenAI
o1-mini o1-mini-2024-09-12 1.10 0.55 4.40 OpenAI
DeepSeek-R1 DeepSeek-R1-Distill-Llama-70B 0.10 0.40 OpenRouter
Internlm2-20b Internlm2-20b 0.15 0.20 Estimated
Llama-3.2-3B Llama-3.2-3B-Instruct 0.015 0.025 OpenRouter
Llama-3.1-8B Llama-3.1-8B-Instruct 0.02 0.03 OpenRouter
Llama-3.3-70B Llama-3.3-70B-Instruct 0.10 0.25 OpenRouter
Mixtral-8x7B Mixtral-8x7B-Instruct-v0.1 0.24 0.24 OpenRouter
Qwen2-57B-A14B Qwen2-57B-A14B-Instruct 0.70 0.70 Estimated
QwQ-32B QwQ-32B-Preview 0.15 0.20 OpenRouter
CodeLlama-34b CodeLlama-34b-Instruct-hf 0.776 0.776 TogetherAI
MetaTuned Llama Llama-3.1-8B-Tuned-FFT 0.02 0.03 OpenRouter
MetaTuned Llama LoRA Llama-3.1-8B-Tuned-LoRA 0.02 0.03 OpenRouter

challenging and realistic logic rules. This diversity993

is crucial for robust model generation of new rules,994

as it ensures that the LLM is exposed to representa-995

tive samples of possible rule types encountered in996

real-world logic programming tasks.997

1. Conjunction with Existential Quantification:998

There exists a red short car999

There is at least one car that is both short and red.1000

1 eastbound(Train) :-1001
2 has_car(Train, Car),1002
3 car_color(Car, red),1003
4 car_len(Car, short).1004

2. Disjunction: Some car is white or yellow.1005

At least one car is either white or yellow.1006

1 eastbound(Train) :-1007
2 has_car(Train, Car),1008
3 (car_color(Car, white) ; car_color(1009

Car, yellow)).1010

3. Negation: The train does not contain any red 1011

cars 1012

No car on the train is red. 1013

1 eastbound(Train) :- 1014
2 \+ (has_car(Train, Car), car_color(1015

Car, red)). 1016

4. Inequality/Distinctness: Two cars must have 1017

different colors 1018

There are at least two cars on the train with different 1019

colors. 1020

1 eastbound(Train) :- 1021
2 has_car(Train, CarA), 1022
3 has_car(Train, CarB), 1023
4 CarA \= CarB, 1024
5 car_color(CarA, Color1), 1025
6 car_color(CarB, Color2), 1026
7 Color1 \= Color2. 1027

5. Aggregation/Counting: There are more 1028

green cars than yellow cars 1029

The train contains more green cars than yellow 1030

cars. 1031

15

1 eastbound(Train) :-1032
2 findall(Car, (has_car(Train, Car),1033

car_color(Car, green)), Greens),1034
3 findall(Car, (has_car(Train, Car),1035

car_color(Car, yellow)), Yellows),1036
4 length(Greens, G),1037
5 length(Yellows, Y),1038
6 G > Y.1039

6. Mutual Exclusion: Only one car is yellow; all1040

others are not yellow1041

There is exactly one yellow car; all others are not1042

yellow.1043

1 eastbound(Train) :-1044
2 findall(Car, (has_car(Train, Car),1045

car_color(Car, yellow)), [YellowCar1046
]),1047

3 forall(1048
4 (has_car(Train, Car), Car \=1049

YellowCar),1050
5 (car_color(Car, NotYellow),1051
6 NotYellow \= yellow)1052
7).1053

7. Uniqueness: No two cars have the same color1054

All cars have unique colors.1055

1 eastbound(Train) :-1056
2 findall(Color, (has_car(Train, Car),1057

car_color(Car, Color)), Colors),1058
3 sort(Colors, UniqueColors),1059
4 length(Colors, N),1060
5 length(UniqueColors, N).1061

8. No-Other/Uniqueness: Only two cars in the1062

train1063

Only two cars are present in the train.1064

1 eastbound(Train) :-1065
2 findall(Car, has_car(Train, Car),1066

Cars),1067
3 length(Cars, 2).1068

9. Universal Quantification: Every full-wall car1069

is long1070

All cars with a full wall must be long.1071

1 eastbound(Train) :-1072
2 forall(1073
3 (has_car(Train, Car), has_wall(1074

Car, full)),1075
4 car_len(Car, long)1076
5).1077

10. Conditional Implication: All long cars are1078

either red or blue1079

Every long car is either red or blue.1080

1 eastbound(Train) :-1081
2 forall(1082
3 (has_car(Train, Car), car_len(1083

Car, long)),1084

4 (car_color(Car, Color), (Color = 1085
red ; Color = blue)) 1086

5). 1087

11. Conditional Aggregation: All long cars are 1088

either red or blue 1089

Every long car is either red or blue. 1090

1 eastbound(Train) :- 1091
2 forall(1092
3 (has_car(Train, Car), car_len(1093

Car, long)), 1094
4 (car_color(Car, Color), (Color = 1095

red ; Color = blue)) 1096
5). 1097

12. Pattern Matching: All full-wall cars are 1098

white 1099

Every full-wall car is white. 1100

1 eastbound(Train) :- 1101
2 forall(1102
3 (has_car(Train, Car), has_wall(Car 1103

, full)), 1104
4 car_color(Car, white) 1105
5). 1106

13. Symmetry: Two cars are neighbors with 1107

same color 1108

CarA and CarB are neighbors on the train and have 1109

the same color. 1110

1 eastbound(Train) :- 1111
2 has_car(Train, CarA), 1112
3 has_car(Train, CarB), 1113
4 CarA \= CarB, 1114
5 car_num(CarA, N1), 1115
6 car_num(CarB, N2), 1116
7 (N2 =:= N1 + 1 ; N2 =:= N1 - 1), 1117
8 car_color(CarA, Color), 1118
9 car_color(CarB, Color). 1119

14. Combinatorial Group: Exactly two short 1120

yellow cars 1121

There are exactly two yellow cars, and both are 1122

short. 1123

1 eastbound(Train) :- 1124
2 findall(Car, (has_car(Train, Car), 1125

car_color(Car, yellow), car_len(Car, 1126
short)), L), 1127

3 length(L, 2). 1128

15. Recursion: At least one long car in the train 1129

The train has at least one long car. 1130

1 eastbound([Car|Cars]) :- 1131
2 car_len(Car, long) 1132
3 ; 1133
4 eastbound(Cars). 1134

16

16. Existence of a Structure (Sublist Pattern1135

Matching)1136

Exists three cars in sequence: Num, Num+1,1137

Num+2, matching pattern.1138

1 eastbound(Train) :-1139
2 has_car(Train, Car1), car_num(Car1,1140

N),1141
3 car_len(Car1, short),1142
4 N2 is N+1, N3 is N+2,1143
5 has_car(Train, Car2), car_num(Car2,1144

N2), car_len(Car2, long),1145
6 has_car(Train, Car3), car_num(Car3,1146

N3), car_len(Car3, short).1147

17. Min/Max and Extremal Values1148

A short car followed by a long car followed by a1149

short car, anywhere in the train.1150

1 eastbound(Train) :-1151
2 findall(N, (has_car(Train, Car),1152

car_num(Car, N)), Numbers),1153
3 max_list(Numbers, Max),1154
4 has_car(Train, LastCar),1155
5 car_num(LastCar, Max),1156
6 car_color(LastCar, white).1157

18. Subset/Superset Constraints1158

All full-wall cars are among the first three cars.1159

1 eastbound(Train) :-1160
2 forall(1161
3 (has_car(Train, Car), has_wall(Car1162

, full)),1163
4 (car_num(Car, N), N =< 3)1164
5).1165

19. Projection/Aggregation Over Multiple1166

Properties1167

All pairs of cars have different (color, length) tu-1168

ples.1169

1 eastbound(Train) :-1170
2 has_car(Train, CarA), has_car(Train,1171

CarB), CarA \= CarB,1172
3 car_color(CarA, ColA), car_len(CarA,1173

LenA),1174
4 car_color(CarB, ColB), car_len(CarB,1175

LenB),1176
5 (ColA \= ColB ; LenA \= LenB).1177

20. All-Different on Multiple Attributes1178

Enforce all car colors are different, AND all car1179

numbers are different (car numbers are unique by1180

assumption, but see structure).1181

1 eastbound(Train) :-1182
2 findall(Color, (has_car(Train, Car),1183

car_color(Car, Color)), Colors),1184
3 sort(Colors, UniqueColors),1185
4 length(Colors, N), length(1186

UniqueColors, N).1187

F First-Order Logic Details 1188

We revisit essential definitions of first-order logic 1189

that we follow in this paper. An FOL Language L 1190

is a tuple (P,A,F ,V), where P is a set of predi- 1191

cates, A is a set o constants, F is a set of function 1192

symbols (functors), and V is a set of variables. A 1193

term is a constant, a variable, or a term that con- 1194

sists of a functor. A ground term is a term with 1195

no variables. We denote n-ary predicate p by p/n. 1196

An atom is a formula p(t1, . . . , tn), where p is an 1197

n-ary predicate symbol and t1, . . . , tn are terms. 1198

A ground atom or simply a fact is an atom with no 1199

variables. A literal is an atom or its negation. A 1200

positive literal is just an atom. A negative literal 1201

is the negation of an atom. A clause is a finite dis- 1202

junction (∨) of literals. A definite clause is a clause 1203

with exactly one positive literal. If A,B1, . . . , Bn 1204

are atoms, then A ∨ ¬B1 ∨ . . . ∨ ¬Bn is a definite 1205

clause. We write definite clauses in the form of 1206

A :- B1, . . . , Bn. Atom A is called the head, and 1207

set of negative atoms {B1, . . . , Bn} is called the 1208

body. We call definite clauses by rules for simplic- 1209

ity in this paper. An atom is an atomic formula. For 1210

formula F and G, ¬F , F ∧G, and F ∨G are also 1211

formulas. Interpretation of language L is a tuple 1212

(D, IA, IF , IP), where D is the domain, IA is the 1213

assignments of an element in D for each constant 1214

a ∈ A, IF is the assignments of a function from 1215

Dn to D for each n-ary function symbol f ∈ F , 1216

and IP is the assignments of a function from Dn 1217

to {⊤,⊥} for each n-ary predicate p ∈ P . For 1218

language L and formula X , an interpretation I 1219

is a model if the truth value of X w.r.t I is true. 1220

Formula X is a logical consequence or logical en- 1221

tailment of a set of formulas H, denoted H |= X , 1222

if, I is a model forH implies that I is a model for 1223

X for every interpretation I of L. 1224

G Training and Evaluation Details 1225

G.1 Training Setup 1226

For curriculum learning experiments on SLR- 1227

BENCH, we fine-tune the Llama-3.1-8B-Instruct 1228

model using supervised fine-tuning (SFT) with 1229

LoRA adapters using LLaMA-Factory (Zheng 1230

et al., 2024). Training is performed over two 1231

epochs on approximately 17k examples, which are 1232

presented sequentially, without shuffling, reflect- 1233

ing a curriculum of increasing logical complex- 1234

ity. Training is distributed across 8 GPUs using 1235

DeepSpeed with ZeRO Stage 3 optimization, tak- 1236

ing 4 hours. Both optimizer states and model pa- 1237

17

rameters are offloaded to CPU with pinned mem-1238

ory to maximize GPU memory efficiency. The1239

AdamW optimizer is used in conjunction with a1240

Warmup Cosine learning rate scheduler. Mixed-1241

precision training is employed, with both bfloat161242

and fp16 enabled in automatic mode. Communi-1243

cation overlap and contiguous gradients are acti-1244

vated to improve throughput, and model weights1245

are saved in 16-bit precision at each checkpoint.1246

Due to memory limitations, input sequences are1247

truncated to a maximum length of 6k tokens us-1248

ing the Llama3 template, restricting training to1249

slr_basic_train, slr_easy_train, and1250

slr_medium_train splits. Optimization is per-1251

formed using cross-entropy loss over the ground1252

truth rule R⋆, with a per-device batch size of 51253

and gradient accumulation over 2 steps, resulting1254

in an effective batch size of 80 samples per step1255

across 8 GPUs. The learning rate is set to 2×10−4,1256

scheduled with a cosine scheduler and a warmup1257

ratio of 0.03. All relevant hyperparameters and1258

training scripts are included in the codebase for full1259

reproducibility.1260

G.2 Evaluation Setup1261

For downstream evaluation, we use the Language1262

Model Evaluation Harness (Gao et al., 2024b) with1263

default settings for each benchmark, enabling few-1264

shot as multiturn prompting to support multi-turn1265

contexts where applicable, including the official1266

pass rate (typically pass@1) and whether evalua-1267

tion is performed in zero-shot or few-shot mode.1268

All evaluations are conducted on 8 GPUs using1269

vLLM (Kwon et al., 2023) for efficient batch in-1270

ference. Reported scores reflect accuracy for each1271

model and benchmark, and all results are based1272

on the official evaluation splits and standardized1273

prompt formatting consistent with the SLR curricu-1274

lum.1275

H Code and Licenses1276

This work introduces and publicly releases sev-1277

eral scientific artifacts, including the SLR frame-1278

work for scalable logical reasoning with large lan-1279

guage models, the SLR-BENCH dataset compris-1280

ing 19,000 tasks across 20 curriculum levels, and1281

associated training, evaluation, and logic validation1282

scripts. All code and data with the logic reward1283

interface will be made publicly available after pub-1284

lication.1285

All original software developed as part of this re-1286

search is distributed under the MIT License, while 1287

the datasets are released under the Creative Com- 1288

mons Attribution 4.0 International License (CC BY 1289

4.0), unless specified otherwise in the respective 1290

repositories. These licenses permit broad academic 1291

and research use, as well as modification and re- 1292

distribution, provided appropriate credit is given to 1293

the original authors. 1294

In addition to the artifacts created in this project, 1295

several external resources were utilized, including 1296

pretrained language models (e.g., Llama, OpenAI, 1297

DeepSeek, Gemini) and open-source Python li- 1298

braries such as HuggingFace Transformers and Py- 1299

Torch. All third-party resources were used strictly 1300

in accordance with their respective licenses and 1301

intended research purposes, and are appropriately 1302

cited in this paper and in the code repositories. 1303

We further note that AI-based tools were used 1304

during the preparation of this work. Specifically, 1305

AI-guided writing assistants (such as ChatGPT) 1306

were employed to refine scientific text, and GitHub 1307

Copilot was used to support code development and 1308

debugging. The use of these tools was limited 1309

to improving clarity and efficiency; all research 1310

design, results interpretation, and final manuscript 1311

decisions were made by the authors. 1312

The intended use of all released code and data is 1313

for research, academic, and educational purposes. 1314

Commercial use or deployment in production envi- 1315

ronments is not permitted without explicit permis- 1316

sion or legal review. Any derivatives or extensions 1317

of the dataset must comply with the original li- 1318

cense terms and the conditions of any incorporated 1319

sources. Users are encouraged to consult the indi- 1320

vidual license files provided in each repository for 1321

further details. 1322

I Potential Risks 1323

While this work is primarily intended to advance 1324

research in logical reasoning with language models, 1325

we recognize several potential risks associated with 1326

its development and open release. Enhanced rea- 1327

soning capabilities in LLMs may be misused, for 1328

example, in generating persuasive but misleading 1329

arguments, automating manipulation, or circum- 1330

venting safety mechanisms. The resources and 1331

benchmarks we provide, although synthetic and 1332

research-focused, could be repurposed for unin- 1333

tended or dual-use applications. 1334

Additionally, while our work does not directly 1335

contribute to artificial general intelligence (AGI), 1336

18

we acknowledge broader discussions in the AI com-1337

munity regarding the long-term risks of increas-1338

ingly capable AI systems. We believe the immedi-1339

ate risks of our work relate to dual-use and misuse1340

as described above, and we encourage responsible1341

use and ongoing monitoring of downstream appli-1342

cations as AI capabilities continue to evolve.1343

19

Synthesis Process and Outputs

Task Specification:
(i) Language L = (V,G):

• Vocabulary V: Predicates P = {is_red_train/1, has_car/2, car_color/2,
car_len/2}; Constants C = {t1, t2, c1, c2, red, blue, short, long}

• Grammar G: Restricts predicates to apply to compatible constant types.
(ii) Configuration Θ: Rule length Rlen = 2; Problem size κ = (κpos = 1, κneg = 1)

Synthesis Steps:
1. Rule Synthesis: The RULEGENERATOR produces a latent ground-truth rule R⋆:

is_red_train(T) :- has_car(T, C), car_color(C, red).

2. Background Synthesis (Loop):
Iteration 1 (finds a positive example):

• Sample Background (b1): ‘has_car(t1, c1). car_color(c1, red).‘
• Assign Label: Query q1 = is_red_train(t1). Entailment b1 ∪R⋆ |= q1 holds. Result: (1, q1).
• Accept/Reject: |E+| < κpos, sample is accepted. B ← b1, E+ ← {q1}.

Iteration 2 (finds a negative example):
• Sample Background (b2): ‘has_car(t2, c2). car_color(c2, blue).‘
• Assign Label: Query q2 = is_red_train(t2). Entailment b2 ∪R⋆ |= q2 fails. Result: (0, q2).
• Accept/Reject: |E−| < κneg, sample is accepted. B ← B ∪ b2, E− ← {q2}.

The loop terminates as both target sizes are met. The final task is I = (B,E+, E−).
Final Synthesizer Outputs:
1. Latent Ground-Truth Rule (R⋆):

is_red_train(T) :- has_car(T, C), car_color(C, red).

2. Validation Program (B,E+, E−):
has_car(t1, c1).
car_color(c1, red).
has_car(t2, c2).
car_color(c2, blue).
is_red_train(t1).

3. Instruction Prompt (example formats):
(a) Prolog-style Prompt:

% Given the following background knowledge:
has_car(t1, c1).
car_color(c1, red).
has_car(t2, c2).
car_color(c2, blue).
is_red_train(t1).
% Your task is to find a rule "is_red_train(T) :-" that solves the bk.

(b) Natural Language Prompt:

% Given the following background knowledge:
Train t1 has a car c1. The car c1 is red.
Train t2 has a car c2. The car c2 is blue.
% Your task is to find a rule "is_red_train(T) :-" that solves the bk.

Figure 6: Step-by-step example of the automatic ILP task synthesis process in SLR. Given a task specification,
comprising a language and a task config, the synthesizer generates a ground-truth rule, samples background
knowledge, assigns positive and negative example labels, and produces symbolic (Prolog-style) or natural-language
prompts. The figure illustrates all intermediate steps and the final output of the synthesizer.

20

	Introduction
	Related Work
	SLR: Automatic Logic Benchmark Synthesis
	Task Specification (Input)
	Task Synthesis (Generation)
	Training and Evaluation

	SLR-Bench: Instantiating SLR
	LLMs Can’t Do Induction at Scale
	Analysis and Key Findings

	Conclusion and Future Direction
	Limitations
	Task Specification
	Language

	Logic Rewards Provided by the Symbolic Judge
	Compute Costs and Model Pricing
	Example: Task Synthesis Process
	LLM Guided Rule Generation
	First-Order Logic Details
	Training and Evaluation Details
	Training Setup
	Evaluation Setup

	Code and Licenses
	Potential Risks

