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Abstract

Molecular property evaluation units are essential
components of property-driven drug-discovery
pipelines, as their accuracy and generalizability di-
rectly influence the success of compound synthe-
sis and optimization. Existing approaches either
employ lightweight models optimized for small
molecules or heavyweight architectures capable
of handling large molecular systems, each with
trade-offs in scope and computational cost. Here,
we propose and evaluate a hybrid framework
that balances these considerations—delivering
broad generalization across diverse molecular
sizes while maintaining efficiency during both
training and inference. Our results demonstrate
that this middle-ground strategy achieves perfor-
mance on par with large-scale predictors for com-
plex targets, yet retains the speed and resource
footprint of more compact models, making it well
suited for practical drug-discovery workflows.All
our results and code are available in our GitHub
repository.

1. Introduction

Accurate prediction of molecular properties is a fundamental
component of modern drug-discovery workflows, serving
both as an early filter to eliminate non-viable candidates
and as a driving unit for property-guided optimization loops.
Computational methods for their accurate prediction can
significantly accelerate the overall process of finding better
drug candidates in a faster and more cost-effective manner
(23). In particular, predictors of key ADMET (Absorption,
Distribution, Metabolism, Excretion, Toxicity) properties
enable virtual screening platforms to discard compounds
with unfavorable pharmacokinetic profiles before synthesis
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(24). Quantitative Structure—Activity Relationship (QSAR)
models leverage molecular descriptors to rapidly estimate
bioactivity and toxicity, thereby reducing reliance on costly
and time-consuming wet-lab assays (25). Meanwhile, three-
dimensional molecular modeling approaches provide high-
fidelity predictions of solubility, permeability, and metabolic
stability, which are critical for candidate viability in preclin-
ical studies (26).

The advent of deep learning has further enhanced prediction
accuracy by learning complex molecular representations di-
rectly from graph and sequence modalities (27). Large-scale
pretrained frameworks, such as ImageMol and ChemBERTa,
demonstrate the ability to predict a diverse array of proper-
ties across chemical spaces, thereby accelerating hit-to-lead
cycles (28). Coupling these property predictors with ac-
tive learning and Bayesian optimization strategies has been
shown to refine candidate libraries more efficiently, shorten-
ing lead optimization timelines and reducing research costs
(29). Moreover, molecular property prediction units are in-
dispensable for multi-parameter optimization, balancing po-
tency, selectivity, and drug-likeness within a single unified
framework (30). By continuously integrating new experi-
mental data, these models adapt to novel chemotypes and
improve generalization over time (31). Altogether, molecu-
lar property prediction units underpin both virtual screening
and generative design strategies, making them essential to
contemporary drug-discovery pipelines (32).

2. Related Works

Traditionally, molecular property prediction relied on statis-
tical models employing handcrafted features, such as molec-
ular fingerprints or physicochemical descriptors. While
effective to a degree, these methods often failed to capture
the complex, non-linear relationships inherent in molecular
structures, limiting their predictive accuracy. The emergence
of deep learning has ushered in a new era of sophistication
for this task. Architectures such as graph neural networks
(GNNs) and transformer models (7; 10; 11) have signifi-
cantly improved predictive performance by leveraging struc-
tural and contextual molecular information. Transformers,
originally developed for natural language processing, have
been adapted to process molecular representations, such as
SMILES strings, due to their ability to model long-range
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dependencies and contextual relationships. Recent reviews,
such as those by (1) and (15), highlight their state-of-the-art
performance across various molecular property prediction
tasks, with models like MolBERT (14) and MolFormer (9)
setting benchmarks in accuracy, and methods like KPGT
(12) showing knowledge-guided pre-training benefits.

However, the computational demands of transformers pose
significant challenges, particularly in drug discovery, where
rapid iteration and resource efficiency are paramount. Train-
ing transformer models often requires substantial com-
putational resources and time, driven by large-scale pre-
training on millions of molecules and complex architec-
tures with millions of parameters. For instance, MolFormer,
pre-trained on approximately 100 million molecules, de-
mands significant computational infrastructure, which may
be impractical for smaller research groups or time-sensitive
projects (2). Moreover, recent studies, such as (2) and sys-
tematic studies (13), suggest that transformers do not always
outperform simpler models. Random forest models trained
on physicochemical properties, for example, can achieve
comparable performance to transformers like MolIBERT
for certain ADME endpoints, raising questions about the
necessity of transformer-based approaches.

3. Methodology

In our methodology, we introduce Linformer++, an exten-
sion of the Molecular Graph Transformer framework (16)
that incorporates low-rank adaptation (LoRA) layers and
targeted optimizations within its attention and feed-forward
modules. By reducing the dimensionality of key projection
matrices and pruning redundant computational pathways,
Linformer++ achieves substantially faster training and in-
ference times while retaining the expressive capacity of the
original transformer architecture.

We further propose PAMMGT, a hybrid model that fuses the
global context modeling strengths of transformers with the
local inductive biases of graph neural networks. Building on
the PAMNet backbone (35), PAMMGT replaces the EGCC
module in the standard Molecular Graph Transformer en-
coder with a PAMNet inspired module: one part performs ra-
dial message-passing updates characteristic of PAMNet, and
the other executes the physics informed feature-extraction.
This combination ensures that PAMMGT captures both
fine-grained structural relationships and long-range depen-
dencies, resulting in an efficient and accurate predictor for
metal—organic framework property estimation.

The Molecular Graph Transformer (MGT) (16) extends the
standard Transformer encoder to graph-structured molecu-
lar inputs by incorporating both atom and bond information
directly into the attention mechanism and feed-forward up-
dates. We represent each molecule as a graph of N nodes,
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Figure 1. Model Schematic

where the initial embedding of node i is given by
hgo) = AtomEmbed(type,) + PE(r;),

combining a learnable atom-type embedding with sinusoidal
positional encodings derived from the atom’s 3D coordinate
r;. Each edge (i,7) is likewise encoded as a continuous
distance feature e;; and passed through a small MLP to
produce a bias term B;; used in attention. The core of
MGT consists of L layers, each performing a sequence of
multi-head self-attention, edge-gated graph convolution, and
feed-forward updates with residual connections and layer
normalization.

3.1. Improving Molecular Graph Transformer (MGT):
MGT++

In the attention block, queries, keys, and values are formed
by linear projections of the node features,

Q=HY9Wqy, K=HO9Wg, V=HO9Wy,

and attention weights are computed with an added edge
bias,

Attn(Q, K, V) = softmax(% + B)V,

where B;; = MLP(e;;) injects distance information. To
reduce the O(N?2d) cost of full attention on large graphs, we
adopt the Linformer approximation (5), projecting keys and
values via shared low-dimensional matrices F, F' € RV **:

X — 7 — —g QKT \y
K=KE, V=VF, Attny, = softmax( S )V,
thus achieving O(Nk d) complexity with £k <« N. We
further explore a low-rank factorization of each projection,
decomposing Wq = UqV,y with Ug, Vo € R to re-

duce both parameter count and FLOPs, since

Woh = Uq(Vgh), rank(Wg) <r.

Following attention, we apply an Edge-Gated Graph Convo-
Iution (EGGC) layer that adaptively gates messages based
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on both node and edge features. Given incoming node fea-
tures h; and edge features y;;, we compute

mi; = 0 (Wachi + Wasthj + Wedge ¥ij ) Wahi,
aggregate normalized messages
D i Mij
200+ €
and update edge features via residual gated units. This

gating mechanism allows each bond to modulate atomic
messages in a learned, feature-dependent fashion.

h; = Wsrchj +

To capture three-body angle information, we interleave
EGGC updates on the line graph of bond angles with atom
updates in an ALIGNN layer. Specifically, we alternately
update angle features (y, z) on the line graph and then atom-
edge pairs (h,y) on the molecular graph, enabling the net-
work to propagate angular context throughout the graph.

Each attention and EGGC block is wrapped with residual
connections and layer normalization:

h = h+ Block(h), h = LayerNorm(h),

and we apply dropout for regularization. Finally, after L
layers, the node embeddings H (%) are pooled via a learned
weighted sum,

N
hpo = Z oy hz(-L), o = softmax(MLP(hZ(.L)))7
i=1

and passed through an MLP head to predict molecular prop-
erties. By combining efficient linearized attention, low-
rank projections, edge gating, and angle-aware graph con-
volutions within a unified Transformer framework, MGT
achieves both high representational power and scalable per-
formance on large molecular datasets.

4. Experiments
4.1. GNN Experiments

For evaluating molecular property predictors on small
systems, we chose PAMNet—a graph-neural-network(35)
model originally benchmarked on QM9—to investigate its
scalability to larger datasets. By extending its codebase to
train on the substantially bigger QMOF dataset, we achieved
a validation MAE of 0.76, even after exploring multiple ar-
chitectural tweaks. However, scaling pure message-passing
GNNs to large graphs often runs into prohibitive computa-
tional and memory costs, as the quadratic growth in edge
count quickly overwhelms GPU resources (17). In practice,
straightforward extensions of small-scale GNNs either crash
due to out-of-memory errors or require aggressive down-
sampling, which can compromise the fidelity of learned
representations (18).

Beyond resource limits, deep GNNs on large graphs suf-
fer from the “over-smoothing” phenomenon, where node
embeddings become indistinguishable as network depth or
graph size increases, eroding their discriminative power
(19). Moreover, the inherently local nature of message pass-
ing confines each node’s receptive field, making it difficult
to capture long-range dependencies in extensive molecular
structures without stacking many layers—an approach that
only exacerbates over-smoothing and memory issues (20).
These fundamental limitations have motivated the devel-
opment of hybrid and implicit GNN variants (e.g., Graph-
SAINT, DropEdge) and efficient-attention mechanisms pre-
cisely to overcome scalability bottlenecks (21), yet pure
GNNs still struggle to generalize reliably to large molecular
graphs (22). Our PAMNet experiments thus reaffirm that,
without incorporating specialized scalability strategies, stan-
dard GNN architectures face an uphill battle when applied
beyond small-molecule domains.

4.2. Integration Experiment

The experimental results presented in the table and the train-
ing log (e.g., achieving a validation MAE of 0.1419) high-
light an effective strategy where we combine MGT and
PAMNet, ie: classic GNN, and Graph transformers. This
architecture represents an integration strategy that combines
key principles from 3D geometry-aware graph neural net-
works, similar in motivation to PAMNet and SchNet (4),
with the efficient graph transformer framework described in
Section 2.1 (16).

The theoretical premise for this integration is to capture both
local 3D structural information, crucial for accurate physical
property prediction, and long-range global dependencies
within the molecular graph, which transformers excel at.
Traditional MPNNs, while effective for local interactions,
can struggle with capturing context over larger molecular
distances. Standard transformers, on the other hand, can be
computationally expensive for large graphs. By merging
concepts, we aim for a model that is both expressive and
scalable.

Mathematically and architecturally, this integration is real-
ized through the use of interleaved message-passing layers,
inspired by the PAMNET framework, which our combined
model builds upon. The core building block is a Message
Passing Layer (4) :

mi; = o (¢m(hi, by, €ij)) - Weei;

where h;, h; are node features, e;; are edge features, ¢,, is
an MLP combining these features, o is a sigmoid activation
for gating, and W, is a linear transformation of edge features.
) .
The updated node features h; are computeq by aggregat.mg
these gated messages over neighbors A/ (j) and applying
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another update function ¢,,:

Wy =u(hy Y i)
iEN(J)
This gated mechanism allows the network to selectively
propagate information based on the nature and strength of
the bond (edge).

The integration of 3D geometric information, reminiscent of
PAMNet’s use of spherical harmonics for angular features, is
achieved via incorporating this into the transformer encoder.

Efficiency is maintained by employing techniques such as
Low-Rank Linear layers within the MLPs and linear trans-
formations (W, ¢.,, @), as described in the MGT section.
This reduces the number of parameters and computational
cost associated with the feature transformations within each
layer.

5. Experimental Setup

Our experiments are designed to systematically evaluate
both transformer-based and non-transformer graph models
under comparable conditions. We aim to (1) assess the sam-
ple efficiency and convergence behavior of each architecture,
(2) measure computational requirements including training
time, peak GPU memory usage, and model parameter sizes,
that lead to the best results.

Due to limited computational resources, all models were
trained and evaluated on a uniformly sampled subset of the
full QMOF collection( 20 percent). We performed random
sampling, while ensuring that the subset faithfully reflects
the structural diversity of the complete database. Impor-
tantly, every model in our study was trained on exactly
the same configuration, so relative comparisons of training
speed and validation MAE remain valid despite the reduced
scale. Moreover, the dramatic differences we observe in
per-epoch runtimes and final MAE values provide strong
evidence that our conclusions would generalize to the full
dataset.

All models are trained with the same set of hyperparameters,
a batch size of 8, with the same number of GNN units,
the only differences being, when there were fundamental
differences in the model architecture.

5.1. Datasets and Preprocessing

We conduct all experiments on the QMOF benchmark
dataset:

The QMOF dataset is a comprehensive collection of 20,345
metal-organic frameworks (MOFs) drawn from the CoRE-
MOF and the Cambridge Structural Database, curated to
support high-throughput quantum-chemical and machine-
learning studies (33; 34). Each entry in QMOF is annotated
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with an extensive suite of properties—most prominently,
the electronic band gap computed via periodic density func-
tional theory (typically with the PBE-D3(BJ) functional)
as well as density of states, partial atomic charges (Bader
or DDEC), and net magnetic moments. To capture a broad
range of structural complexity, the dataset spans frameworks
as small as 17 atoms up to exceptionally large nets of 517
atoms per unit cell, with a mean size of approximately 100
atoms. In addition to transition-metal centers such as Fe,
Cu, and Zn, the library features over 30 distinct element
types embedded within diverse organic linkers, reflecting
both experimentally synthesized materials and hypothetical
variants. The resulting chemical and topological diversity
makes QMOF an ideal benchmark for developing and eval-
uating efficient graph- and transformer-based models for
molecular property prediction.

6. Results and Conclusion

6.1. Performance Comparison

Table 1 reports the total training time and MAE components
for each model on the QMOF subset.

The training and evaluation results reveal several important
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Table 1. Performance comparison between original MGT, Linformer*", PAMNet, and PAMNet+MGT Fusion

Model Training Time (s) Validation MAE Bandgap MAE HOMO MAE LUMO MAE
Original MGT* 5688.92 0.252 0.240 0.262 0.263
Linformer** 772.80 0.1382 0.1177 0.1500 0.1470
PAMNet 1080.00 0.7460 0.7300 0.7700 0.7380
PAMNet+MGT Fusion 812.20 0.1419 0.1307 0.1500 0.1450
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insights. First, the Original MGT model requires the most
extensive training time—nearly 1 hour and 35 minutes per
epoch (5,688.92 s)—yet achieves a mean validation MAE
of 0.25602, with individual errors of 0.1325 for bandgap,
0.1580 for HOMO, and 0.1523 for LUMO. By contrast, the
Linformer++ variant reduces training time by almost a factor
of seven, completing in just 12 minutes and 53 seconds per
epoch (772.80 s), and further improves performance by low-
ering the average MAE to 0.1382 (bandgap: 0.1177, HOMO:
0.1500, LUMO: 0.1470), thereby surpassing the previous
state of the art models. Although Pamnet trains moderately
quickly—requiring only 18 minutes (1,080.00 s)—it fails to
generalize effectively to the larger MOF graphs, resulting in
a high overall MAE of 0.7460 (bandgap: 0.7300, HOMO:
0.7700, LUMO: 0.7380). Finally, the Pamnet+MGT Fusion
approach strikes an optimal balance between cost and accu-
racy: with a training time of just under 14 minutes (812.20
8), it restores competitive predictive quality, achieving a
mean MAE of 0.1419 (bandgap: 0.1307, HOMO: 0.1500,
LUMO: 0.1450).

Overall, the Linformer++ variant clearly offers the best
trade-off among all models: it not only outperforms the full
Original MGT in predictive accuracy (0.1382 vs. 0.1476
MAE) but also slashes training time by more than 86 per-
cent. In contrast, Pamnet’s inability to generalize indicates
that a purely lightweight architecture may be insufficient
for complex MOF graph structures. The Pamnet+MGT Fu-
sion model demonstrates that integrating MGT attention
mechanisms into a PAMNet backbone can recover and even
enhance predictive performance while maintaining a signifi-
cantly reduced training cost, confirming the value of hybrid
architectures for efficient, high-quality molecular property
prediction.

Parameter Savings By applying low-rank projections in
Linformer++, we reduced model size from 30 M to 17 M
parameters (a 43% reduction) while improving MAE.

Convergence and Efficiency The combined Pam-
net+MGT Fusion matches the accuracy gains of Lin-
former++ (MAE 0.1419 and 0.1382) (812.2 s and 772.8 s),
demonstrating that both approaches, hybridizing message-
passing and linearized attention are effective recipes for
scalable molecular prediction.
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6.2. Graph Transformer vs. GNN Variants

Across all transformer and GNN baselines, low-rank factor-
ization and linear attention consistently speed up training by
20-85%, without sacrificing—and often improving—MAE
on the QMOF datasets.

6.3. Implications and Recommendations

For very small graphs (e.g. molecules with N < 30), stan-
dard message-passing neural networks style GNNS remain
a lightweight yet powerful baseline, offering strong perfor-
mance without the overhead of attention mechanisms. When
working with drug-discovery pipelines of larger scales,
graph transformer based approaches work significantly bet-
ter and, incorporating factorization and projection meth-
ods—such as those introduced in Linformer (5) and FA-
VOR+ (6)—can effectively replace heavy modules while
preserving or even improving predictive accuracy. More-
over, combining these low-rank attention techniques with
physics-inspired message-passing yields architectures that
are both efficient and state-of-the-art in molecular property
prediction.

6.4. Conclusion and Future Work

We have shown that enhancing the Molecular Graph Trans-
former (MGT) with a Linformer-style low-rank attention
mechanism achieves comparable accuracy to full transform-
ers while substantially reducing computational cost. This
hybrid design is especially advantageous in practical drug-
discovery pipelines, where fast turnaround and limited re-
sources are paramount. Looking ahead, we plan to extend
the low-rank MGT framework to support dynamic batch-
ing of variable-size graphs and to investigate adaptive rank
selection on a per-layer basis for further complexity con-
trol. Additionally, integrating higher-order geometric fea-
tures—such as torsional angles—into the Linformer atten-
tion bias and incorporating graph-coarsening techniques
promise to further accelerate both training and inference.
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provements for the field of drug-discovery, where these eval-
uator units usually play a fundamental role within property-

guided optimization.
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