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Abstract
Authorship attribution is the process of unveil-001
ing the hidden identity of authors from a corpus002
of literary data. Many previous works on au-003
thorship attribution employed word-based mod-004
els to capture an author’s distinctive writing005
style. The vocabulary of the training corpus006
is heavily dependent on the pre-trained word007
vectors, which limits the performance of these008
models. Alternate methods using character-009
based models proposed to overcome the rare010
word problems arising from different linguis-011
tic features fail to capture the sequential re-012
lationship of words inherently present in the013
texts. The question we addressed in this pa-014
per is whether it is possible to tackle the am-015
biguity of hidden writing style (or words) as016
we introduce Gaussian noise while preserving017
the sequential context of the text to improve018
authorship-related tasks. In this work, we pro-019
pose two bidirectional long short-term memory020
(BLSTM) with a 2D convolutional neural net-021
work (CNN) over a two-dimensional pooling022
operation to capture sequential writing styles023
for distinguishing different authors. To deter-024
mine the appropriate writing style representa-025
tion, we used BLSTM to obtain the sequential026
relationship between characteristics using sub-027
word information and 2D CNN is adopted to028
understand the local syntactical position of the029
style from unlabelled input text. We extensively030
evaluate the model that leverages subword em-031
bedding and compare it against state-of-the-art032
methods for an extensive range of authors. Our033
methods improve 2.42%, 0.96% and 0.97% on034
CCAT50, Blog50 and Twitter, respectively and035
produce comparable results on the remaining036
one.037

1 Introduction038

Authorship attribution (AA) is the process of identi-039
fying the authors of an anonymous text according to040
their writing styles and characteristics, which has re-041
ceived increasing attention. It is made of three subtasks,042

which include author profiling, i.e., distinguishing the 043
author’s demographics such as age, gender, native lan- 044
guage, education (López-Monroy et al., 2020), author- 045
ship verification which identifies the degree of similarity 046
of texts (Nirkhi et al., 2016) and authorship identifica- 047
tion, given a document determine its author among a 048
list of candidate authors (Stamatatos, 2009). In digital 049
text forensics, AA has been widely used (e.g., attribu- 050
tion of proclamations to know terrorists) (Sun et al., 051
2012), digital humanities (e.g., attributing anonymous 052
or disputed literary works to available authors) (Stover 053
et al., 2016), plagiarism discovery (Foltỳnek et al., 2019; 054
Layton et al., 2015) and social media analytics (e.g., 055
revealing multiple aliases of the same user in social 056
media). 057

Over the years, authorship attribution tasks have been 058
studied widely on a long-text document involving text 059
samples containing thousands of words (Ramnial et al., 060
2016; Wanner et al., 2017) and short text such as Tweets 061
with texts samples of few words (Schwartz et al., 2013; 062
Azarbonyad et al., 2015; Rocha et al., 2016; Iqbal et al., 063
2013; Rocha et al., 2016; Seroussi et al., 2014; Kop- 064
pel et al., 2011). Majority of the approaches rely on a 065
large number of stylometric features such as length of 066
text, the number of words, the average size of terms, the 067
proportion of digits and capital letters, hapax-legomena, 068
part-of-speech (POS), vocabulary richness, frequency 069
of punctuation mark, functional words (FWS) and char- 070
acter/word n-gram in order to reflect both the content 071
and the writing style of the author (Madigan et al., 2005; 072
Aborisade and Anwar, 2018; Seroussi et al., 2014; Fa- 073
bien et al., 2020). However, they can hardly capture 074
unseen syntactic and semantic words in the texts, provid- 075
ing insightful meaning into the author’s writing styles. 076

Many traditional methods of text classification, such 077
as bag-of-words (BOW) (Stamatatos, 2009) or simple 078
statistics of some ordered word combinations (Cambria 079
and White, 2014; Poria et al., 2016) have also been used. 080
However, they fails to encode word order (Muttenthaler 081
et al., 2019; Luyckx and Daelemans, 2011; Sarwar et al., 082
2018; Alonso-Fernandez et al., 2021). Topic methods, 083
such as LDA (Latent Dirichlet Allocation) (Blei et al., 084
2003) are time-consuming and inefficient as new fea- 085
tures needs to be engineered for large scale datasets for 086
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AA tasks (Agrawal et al., 2018; Seroussi et al., 2014;087
Mikolov et al., 2013b; Modupe et al., 2014).088
As opposed to topic modelling, deep learning neu-089

ral network models, e.g., convolution neural network090
(CNN) (Kalchbrenner et al., 2014; Kim et al., 2016),091
RNN with 1D max-pooling (Lai et al., 2015) or092
attention-based operation (Wu et al., 2021) employs pre-093
trained word embedding features as inputs to achieve094
better performance by mapping vector space to extract095
semantics features over the time-step of sentences (Ding096
et al., 2017; Sari et al., 2017; Gómez-Adorno et al.,097
2018; Bagnall, 2015; Gupta et al., 2017; Jafariakinabad098
et al., 2019). However, these models generally converge099
slowly. In addition, if embedding vectors of rare words100
are poorly estimated, it would likely harm the represen-101
tations of words surrounding the author’s writing style102
and the model’s performance (or the classification mod-103
els). This is particularly problematic in morphologically104
rich languages with long-tailed frequency distributions105
or domains with dynamic vocabularies (e.g., short digi-106
tal text).107
In this work, we introduce bidirectional long short-108

term memory (BLSTM) with 2D convolution and 2D109
max-pooling operation that employs byte-pair encoding110
(BPE) to transform input texts into subword embedding.111
First, we use BLSTM layers to capture inherent seman-112
tic features on both the time-step dimension and the113
subword feature dimension. And then feed the feature114
vectors into a 2D CNN and 2D max-pooling to obtain115
more local syntactical information to represent the input116
text for AA tasks.117
The reminder of the paper is organized as follows. In118

Section 2, we provides an overview of related work. In119
Section 3, we describe the structure of our proposed120
BLSTM-CNN max-pooling model for AA tasks in de-121
tails. In Section 4, we described the details about the122
dataset, hyperparameters setting and the experimental123
results. Finally, Section 5 depicts our conclusions as124
well as future work.125

2 Related Work126

Traditionally, the AA task largely relies on extracting127
stylometric features related to content or style to ascer-128
tain the writer of the text. Most of the existing methods129
based on stylometric features aim to capture writing130
patterns at different linguistic categories, e.g., lexical,131
syntactic, structure and semantics. Lexical features cap-132
ture an individual’s characters and words to describe133
vocabulary richness and choice for particular symbols134
or words. At the character level, features include the135
number or frequency of different characters. The word-136
level feature combines the total number of words, av-137
erage word length, a portion of short/long words, most138
common words, and the number of unique words (Arga-139
mon and Levitan, 2005; Juola, 2007; Stamatatos, 2009).140
Another practical set of characteristics combined with141
lexical is the n-grams. They describe sequences of n142
elements next to one another. The elements can be dif-143

ferent, for example, a sequence of characters, words, 144
symbols, and syllables. However, as the dimension- 145
ality of the n-gram vector spaces grows with n, the 146
character or word n-gram features capture too much 147
content-specific rather than related stylistic information 148
(Alonso-Fernandez et al., 2021). For example, Plakias 149
and Stamatatos (2008) used tensors of the second order 150
with 2500 most frequent 3-grams to represent stylistic 151
components for a given texts and Muttenthaler et al. 152
(2019) show the influence of punctuation marks with 153
n-gram model for AA tasks, while masking punctuation 154
marks with asterisk (∗) symbol. Markov et al. (2017) 155
allege that digits and named entities are other critical fea- 156
tures for selecting writing styles. Sapkota et al. (2015) 157
connect the potential of using character-level n-gram 158
features to the high priority of subword features (e.g. 159
suffixes and prefixes) in authorship-related tasks. Zhao 160
et al. (2019) relax the constraint of n-gram features and 161
analyze the co-occurrence of word pairs instead. As text 162
representations created from n-gram model tend to be 163
high-dimensional and sparse, Niu et al. (2017) employ 164
principal component analysis (PCA) to decrease them 165
into low-dimensional vectors and both Seroussi et al. 166
(2011) and Zhou et al. (2018) is the nearest collaborative 167
approach that untilizes novel models of finding the style 168
similarity based on topic models. Structural features 169
capture the organization of paragraphs and sentences. 170
They include the number of sentences, paragraphs, lines, 171
punctuation, average length of sentences and paragraphs. 172
With structure features, elements such as greetings and 173
signatures in a text can be analyzed. Koppel et al. (2011) 174
used lexical and structural features with multiple ran- 175
domized characteristics to unveil the writing similarity 176
between two authors by ignoring the order of word, syn- 177
tax, or meaning in the text. Recently, many researchers 178
have turned to neural language models such as the skip- 179
gram model (Mikolov et al., 2013a,b; Pennington et al., 180
2014) based on the distributed representation of the 181
words to learn the distribution of the writing style (Ding 182
et al., 2017; Gómez-Adorno et al., 2018; Posadas-Durán 183
et al., 2017). 184

On the other hand, syntactic features characterize the 185
use of punctuation and function words (FWS), which 186
help define the relationship of elements in a sentence. 187
It also includes POS tagging by categorizing a word as 188
either verb, noun, pronoun, adjective (e.g., according to 189
its function). Bevendorff et al. (2019) develop character 190
trigram vectors for the documents and evaluate the vari- 191
ations between each couple of documents as features 192
using seven distance measures. Bagnall (2015) employs 193
a recurrent neural network (RNN) model on character 194
level to verify authorship and obtain a higher accuracy 195
than Bevendorff et al. (2019), proving the power of deep 196
neural networks on authorship-based tasks. Sari et al. 197
(2017) worked on using continuous representations via 198
a neural network jointly with the classification layer for 199
authorship attribution, and Shrestha et al. (2017) per- 200
formed authorship attribution of short digit text (e.g., 201
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tweets) using CNNs over character n-grams by estimat-202
ing the importance of input text fragments to improve203
model interpretability. Zhang et al. (2018) applied a204
novel strategy to encode the syntax parse tree of the sen-205
tence into a learnable distributed representation. Specif-206
ically, they build an embedding vector for each word in207
the text by encoding the path as a syntax tree correspond-208
ing to the word. An attribution by Sari et al. (2018) is209
one of the state-of-the-art feature-based techniques that210
extract features using various stylometric features and211
achieves excellent performance. However, it does not212
take full advantage of the semantic features. Yao et al.213
(2019) is the convolutional graph network for text clas-214
sification but can not run on IMDb62 datasets because a215
huge text graph takes up too much computer memory.216
Jafariakinabad et al. (2019) evaluation the strength and217
robustness of the syntactic recurrent neural network to218
encode the syntactic patterns of a document in a hierar-219
chical structure for AA tasks. However, it is not clear220
what is captured by the learned vectors. We leverage221
and handle essential elements employing the BLSTM-222
CNN module feed with subword embedding based on223
the BPE algorithm (Sennrich et al., 2016) to help cap-224
ture syntactic and sequential semantic information from225
the unlabelled text for AA tasks.226

3 Proposed method227

The first portion of our system, as presented in Fig. 1228
adopt a byte-pair-encoding (BPE) algorithm as an em-229
bedding tactic to transform the pure text into numerical230
representations. In the second phase, we feed the embed-231
ding modules into a bidirectional LSTM to understand232
the underlying semantic and apply CNN max-pooling233
overtime to capture the local spatial syntactical position234
on writing style from the input text. The classifica-235
tion consists of a fully-connected layer and soft-max236
function, which is sufficient to fit the function which237
takes the features and outputs the classification result.238
Besides, we combined annealed Gaussian noise with239
training the model to learn the writing style representa-240
tions for AA tasks, which helped avoid overfitting and241
achieved lower training loss. We evaluated the model’s242
performance using a k-fold cross-validation with the243
Twitter, blog, review, novel, and essay datasets.244

3.1 Sub-word Embedding245

BPE is a tokenization technique adopted in machine246
translation to deal with imaginary word problems or247
hidden writing in a given text. It is unsupervised and248
requires no information about the author. The algorithm249
of BPE first initializes a symbol by splitting the input250
text into characters. Then, iteratively count all symbol251
pairs and replace each occurrence of the most frequent252
pair (x,y) with a new xy symbol and add it to the symbol253
set named “merge operation”. Each merge operation254
generates a new symbol. The size of the final symbol255
set is equal to that of the first single character, plus the256
number of merge-operations. The only hyperparameter257

for the BPE algorithm, as shown in Algorithm 1 is the 258
number of the merge operation and return a meaningful 259
trait (i.e., the word if the merge operation is large). 260

Algorithm 1: BPE algorithm
Input: training data D of words split into

character sequence with number N of rules
Output: list of K of N merge rules

1 K := [ ];
33 while length (K) ≤ N do
4 (x, y) := argmax

(x,y)

{countD(x, y)};

5 rule := ⟨(x, y) −→ xy⟩;
6 D := apply(rule, D);
7 K := append(rule, K);

8 return K

For untokenized unique text, we first split it into a 261
single character and then iteratively do the merge opera- 262
tions following the merge order in the training step; until 263
there are no more symbols that can be merged. That 264
is to say, if the number of merge operations is large, 265
the token will tend to have more characters, and the 266
granularity tends to be large. Otherwise, the granularity 267
of the original text will be small. In our system, we do 268
not use BPE as a compression algorithm. Instead, we 269
use this algorithm to find sub-words as n-grams with 270
high frequencies for word segmentation, achieved if we 271
joined characters together. However, we did not sub- 272
stitute them with new symbols. An example of how 273
subwords are obtained from a raw input text after N 274
iterations is shown in Table 1. 275
The text has now been subdivided into subword 276

sequences. To use subword embedding to represent the 277
text, we first create a one-hot vector for each subword 278
type. The one-hot vector for the ith subword in the 279
vocabulary is a sparse binary vector oi which has 1 280
as the ith element and all 0 for others. After that, we 281
project this embedding hyperspace onto a smaller 282
hyperspace by multiplying the one-hot embedding 283
with a subword embedding matrix S with size N ×D, 284
where N represent the sub-word vocabulary size and D 285
is the dimension for the target embedding hyperspace. 286
Therefore, we represent each sub-word information as 287
a dense vector si = ST

o i, and the text with length T 288
is represented by a sequence of subword embedding 289
vectors (s1, s2, · · · , sT ). Therefore, the subword 290
embedding matrix S are trained together. 291

292

3.2 Feature Extraction 293

The second part of our system is feature extraction based 294
on the sub-word embeddings feeds into BLSTM and 295
CNN module, and the final output was a neuron rep- 296
resenting the probability of feature vectors belonging 297
to certain authorship. Given the subword embedding, 298
we use BLSTM to find the inherent grammatical rela- 299
tionship in the author’s writing style embedded in the 300
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Figure 1: BLSTM-CNN model with subword information

Iteration Words
0 workers work in workshop
1 workersworkinworkshop
2 workersworkinworkinshop
3 wor kerswor kinwor kshop
4 work ers work in work shop
N work er s work in work shop

Table 1: BPE example given raw input text.

subword and the CNN to capture the local syntactical301
information from the input text.302

3.2.1 Bidirectional LSTM Layer303

Long short-term memory (LSTM) was first proposed by304
(Schuster and Paliwal, 1997) to overcome the gradient305
vanishing problem of recurrent neural network (RNN).306
The idea is to introduce an adaptive gating mechanism,307
which decides the degree to keep the previous state and308
memorize the extracted features of the current input text.309
So, given a sequence of input text X = {x1, x2, · · · , xl},310
where l represent the length of the input text, LSTM311
processes the input as a subword information. At each312
time-step t, the memory ct and the hidden state ht are313
updated as following:314

ft = σ(xtWx,f + ht−1Wh,f + bf)

it = σ(xtWx,i + ht−1Wh,i + bi)

ot = σ(xtWx,o + ht−1Wh,o + bo)

(1)315

where Wx,f and Wh,f are the weights of the LSTM316
from input to forget gate and from the hidden state to317
the forget gate. The Wx,i and Wh,i are the weights from318
input to input gate and from the hidden state to the input319
gate. Similarly, Wx,o and Wh,o represent the weights320
from input to output gate and from the hidden state to321

the output gate. Finally, bf, bi, and, bo are the bias for 322
the forget, input and output gate. σ denotes the logistic 323
sigmoid function. The memory cell can be calculated 324
as: 325

ĉt = tanh(xtWx,c + ht−1Wh,c + bc) (2) 326

where Wx,c and Wh,c represent the weights of the 327
LSTM from input to the memory and from the hidden 328
state to the memory, respectively, and the bc denotes the 329
bias. The memory cell at the time step t was computed 330
by 331

ct = ft ⊙ ct−1 + it ⊙ ĉt (3) 332

where ⊗ denoted element-wise multiplication. The hid- 333
den state can be updated as: 334

ht = it ⊙ tanh (ct) (4) 335

The RNN model was forward and the output at the time 336
steps t depends on the past context as well as the hidden 337
state, e.g. the future context. Schuster and Paliwal 338
(1997) introduced a BLSTM to extend the unidirectional 339
LSTM by introducing a second hidden layer, where the 340
hidden connections flow in opposition temporal order. 341
Therefore, the model is able to exploit information from 342
both the past and the future. In this study, BLSTM is 343
used to capture the past and the future writing style 344
information. As shown in Fig. 1, our system contains 345
two sub-networks for the forward (f) and backward (b) 346
sequence context based on the subword embedding from 347
the input text at each time step t as follow: 348

hft = σ(xtW
f
x,h + hft−1W

f
h,h + bf

h)

hb
t = σ(xtW

b
x,h + hb

t−1W
b
h,h + bb

h )
(5) 349

The output at each time t can be computed as: 350

ht = [hft ⊗ hbt ]Wh,o + bo (6) 351

where ⊗ is the element-wise sum to combine the for- 352
ward and backward pass outputs. 353
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3.2.2 Convolutional Layer354

From the BLSTM layer, we have access to the future355
context as well as the past context, ot is related to all356
other writing style (or words) in the given text. In this357
study, we effectively treat the matrix as a feature vectors,358
so 1D convolution and the max pooling operation were359
used to capture local syntactical information.360
For matrix Ht = {h1, h2, · · · , hl}, H ∈ Rl×dw

ob-361
tained from BLSTM layer, where dw is the size of362
the subword embeddings. Then narrow convolution363
is utilized to extract local features information over H.364
The convolution operation involves a filter m ∈ Rk×d,365
which is applied to a window of k subwords and d fea-366
ture vectors. For instance, a feature oi,j is generated367
from a window of vectors Hi:i+k-1,j:j+d-1 as368

oi,j = f(m · Hi:i+k-1, j:j+d-1 + b) (7)369

where i ranges from 1 to (l-k+1), j ranges from 1 to370
(dw−d+1), (·) represents dot product, b ∈ R is a bias371
and an f is a non-linear function similar to hyperbolic372
tangent. So, we applied the filter to each possible win-373
dow of the BLSTM layer matrix H to obtain a feature374
map O:375

O = [o1,1, o1,2, · · · , ol−k+1,dw−d+1 ] (8)376

with O ∈ R(l−k+1)×(dw−d+1) represent one convolu-377
tion filter process. The convolution layer have multiple378
filters for the same size filter to learn complementary379
features, or multiple kinds of filter with different size.380
Then 2D max pooling operation p ∈ R(p1×p2) is uti-381
lizes to obtain a fixed length vector by applying it to382
each possible window of matrix O to extract the maxi-383
mum value:384

pi,j = down(Oi:i+p1,j:j+p2) (9)385

where down(·) represents the map pooling operation386
function, i = (1, 1+p1, · · · , 1+(l−k+1/p1 − 1)·p1)387
and j = (1, 1+ p2, · · · , 1+ (dw −d+ 1/p2 − 1) · p2).388
Then, we compute the pooling operation as follow:389

h∗ = [p1,1, p1,1+p2 , · · · , p1 + (l− k+ 1/p1 − 1) · p1,

1+ (dw − d+ 1/p2 − 1) · p2]
(10)

390

where h∗ ∈ R, and the length of h∗ is ⌊l− k+ 1/p1⌋×391
⌊dw − d+ 1/p2 − 1⌋.392

3.2.3 Classification Layer393

For the AA tasks, the output h∗ from the max pooling394
was passed over the fully-connected layer of the input395
text X, then feeds it to a softmax function as a classifier396
to predict the inherent writing style related to a particular397
candidate author ŷ from the set of discrete set of author398
(or classes) Y. So, the classifier takes the hidden state399
h∗ as input as follows:400

p̂(y|x) = softmax
(
W(x)h∗ + b(x)) (11)401

402
ŷ = argmax

y
p̂(y|x) (12) 403

To learn the model parameters we minimize the cross- 404
entropy loss as the training objective by calculating the 405
loss as a regularized sum: 406

J(θ) = −
1

m

m∑
i=1

ti log(yi) + λ||θ||2F (13) 407

where t ∈ Rm represent the one-hot encoding for the 408
ground truth values, y ∈ Rm is the predicted probability 409
of the candidate author by softmax, m is the number of 410
expected target authors, and λ is the ℓ2 regualrization 411
parameter. Training is done through the Adam Opti- 412
mization algorithm (KingaD, 2015) as further explained 413
in Section 4.2. Finally, the pseudocode of our model is 414
given in Algorithm 2, where we use simplified variables 415
to make the procedure clear. 416

4 Experiment and analysis 417

4.1 Datasets 418

We benchmark our model by experimenting on three 419
openly available datasets covering a large spectrum of 420
authorship attribution on CCAT50, IMDb62, Blog50 421
and new Twitter datasets. The first three datasets have 422
been used for many previous studies (Sari et al., 2017, 423
2018; Seroussi et al., 2014; Zhang et al., 2018). At the 424
same time, the Twitter dataset has also been used by 425
(Ruder et al., 2016; Shrestha et al., 2017) extensively. 426
Due to the limitation of Twitter policy, the actual con- 427
tent of tweets we were omitted; however, the available 428
users’ IDs and the tweet IDs enable us to collect rel- 429
evant tweets. Table 2 shows some detailed statistical 430
information. CCAT50 has a total of 5, 000 documents 431
written by 50 authors (Stamatatos and Koppel, 2011). 432
IMDb62 comes from Internet Movie Database (IMDB) 433
containing 62,000 movie reviews and 17,550 message 434
posts from 62 prolific authors. In this paper, we choose 435
62,000 movie reviews as the dataset doing experiments 436
(Seroussi et al., 2014). Blog50 original contains 681,288 437
posts by 19,320 bloggers, and in this paper, we select 438
posts written by the top 50 bloggers. Twitter was an 439
influencer dataset from a list of 4,391 celebrities, such 440
as columnists, musicians and influencers on social me- 441
dia in 68 areas covering politics, social unrest and tech 442
to arts and culture for AA tasks. We collected over a 443
million tweets for these users in August and September 444
2019 using python Twitter API (Gupta et al., 2017). For 445
our experiment, each dataset is split by sampling 60% 446
of each author’s documents into a training set, 20% for 447
validation and renders remainder for testing over 10-fold 448
cross-validation as used in most AA tasks. 449

4.2 Experiment settings 450

We used Adam optimization (KingaD, 2015) for small- 451
batch training. The default mini-batch size is 64 due to 452
constraints on the graphics processor (GPU) as NVIDIA 453
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Algorithm 2: Pseudocode for BLSTM-2DCNN max-pooling with subword information
Input: Training data X = {Xi}

n
i=1 m represent the batch size,n is the number of training samples, w is model

parameters and l represent the length of the input text.
Output: trained model.

1 Randomly initialize w;
2 foreach each iteration do
3 forall k ∈ {1, 2, · · · , ⌊ n

m
⌋} do

4 Sample from each batch Xk from X;
5 Divide each sample in the batch into the sequence {X1

k ,X2
k , · · · ,Xl

k};
6 Feed sequential batch into BLSTM consisting of forward and backward neuron, respectively, and

outcome two output sequence {h1
fk,h2

fk, · · · ,hl
fk,h1

bk,h2
bk, · · · ,hl

bk} Equation 5;
7 Concatenate the BLSTM layer to obtained H ∈ Rl×dw

, the narrow convolution is used to extract local
dependent features over H to produce a feature map O ;

8 Then, p ∈ R(p1×p2) is applied to each possible window of matrix O to obtain h∗ Equation 10
represent the stylometric representation (e.g., writing styles) of the input X;

9 Feed the output h∗ into the softmax classifier layer and obtain the classification result in
Equation 11 and 12 respectively;

10 Update w by minimizing with the cross-entropy loss in Equation 13 using Adman algorithm (KingaD,
2015);

Data c D µ σ ω κ

CCAT50 50 1000 584 3010 8716 345
IMDb62 62 62000 345 1742 11617 82
Blog50 50 19320 440 541 30712 3
Twitter 1350 4391 31 229 30750 19

Table 2: Statistics of the datasets. c: Number of au-
thors. D: Number of documents per authors. µ: average
number of words per D. σ: average number of character
per D. ω: maximum number of character. κ: minimum
number of characters.

GeForce 2080Ti to train the model with 0.001 as the ini-454
tial learning rate and utilize ReduceLRonPlateau sched-455
ule with the patience of 5 epochs and a decay factor of456
0.5. During training, the dimension of the subword vec-457
tor is 300. The hidden units of BLSTM are 128. We use458
100 convolutional filters for the window sizes of (3, 3)459
with a max-pooling size of (2, 2). For regularization,460
we employ Dropout operation (Hinton et al., 2012) with461
a dropout rate of 0.5 for the subword embeddings, 0.3462
for the BLSTM and 0.2 for the penultimate layer with463
Gaussian Noise of 0.2 active at the training time. We464
also use ℓ2 penalty with coefficient 10−5 over the pa-465
rameter and trained for 20 epochs. All word vectors and466
feature vectors are randomly initialized and learned, and467
updated during the training process. The dimensions468
of the word vector and hidden layer size are d = 64469
in all models. We use 128 convolutional filters, each470
for window sizes of (3,3) and 2D pooling sizes of (2,2).471
All experiments in this paper were repeated five times472
with three random seeds (2020), and the accuracy in this473
paper refers to the average classification accuracy.474

4.3 Results and Discussion 475

In this work, we implements three different model, 476
BLSTM-2DCNN, BLSTM-2DCNN word embedding 477
and BLSTM-2DCNN gradient noise with subword infor- 478
mation. Table 3 presents the performance of all the three 479
models and other state-of-the-art models on four dataset 480
for authorship-based tasks. The overall authorship attri- 481
bution accuracies of our methods and the baseline are 482
provided in Table 3. The ”(–)” indicate that the feature 483
and the model are excluded. As shown in Table 3, the 484
BLSTM-2DCNN+Gaussian noise with subword embed- 485
ding achieves comparative performance on three out of 486
four datasets. Gaussian noise was combined with ℓ2 487
regularization to gain roughly 10% better performance 488
when compared to both traditional methods and the ex- 489
isting CNN based models. Essentially, it achieves 2.9%, 490
1.6% and 0.9% test accuracy on CCAT50, Blog50 and 491
Twitter datasets, respectively. In addition, the perfor- 492
mance of the proposed model is superior to that of the 493
CNN and BertAA model (Ruder et al., 2016; Fabien 494
et al., 2020), which shows that learning from charac- 495
ters or leveraging on the pre-trained language model 496
without feature engineering task can help to improve 497
the performance for AA tasks. Our method is much 498
better than the BertAA model, which validates the ef- 499
fectiveness of integrating a pre-trained BERT (Devlin 500
et al., 2018) language model with an extra dense layer 501
to perform authorship classification. In addition, differ- 502
ent from existing CNN-based methods, we leveraged 503
the extracted features employing the BPE algorithm to 504
represent words (e.g., the writing style) by its index in 505
the vocabulary together with its subword vector classes. 506
Consequently, the proposed model inherits the advan- 507
tage of both traditional CNN-LSTM model (Ruder et al., 508
2016; Gupta et al., 2017; Jafariakinabad et al., 2019) and 509
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Models CCAT50 IMDb62 Blog50 Twitter
SVM with 3-gram (Plakias and Stamatatos, 2008) 67.00 81.40 – –
Imposters (Koppel et al., 2011) – 76.90 26.00 52.50
LDAH-S with topics (Seroussi et al., 2011) – 72.00 18.30 38.30
SVM Affix + punctuation (Sapkota et al., 2015) 69.30 69.90 – –
Style, content & hybrid (Sari et al., 2018) – 75.76 84.51 –
CNN-character (Ruder et al., 2016) – 91.70 49.40 86.80
CNN-word (Ruder et al., 2016) – 84.30 43.00 80.50
CNN n-gram (Shrestha et al., 2017) 76.50 95.21 53.09 –
Continuous n-gram (Sari et al., 2017) 72.60 95.12 52.82 –
Syntax-CNN (Zhang et al., 2018) 81.00 96.16 56.73 –
LSTM word embedding (Gupta et al., 2017) 61.47 – – –
GRU word embedding (Gupta et al., 2017) 69.20 – – –
Syntactic RNN word & POS (Jafariakinabad et al., 2019) 76.72 92.15 – –
BertAA (Fabien et al., 2020) – 90.70 59.70 –
BLSTM-2DCNN 73.25 81.25 48.15 49.52
BLSTM-2DCNN word embedding 74.50 89.72 53.26 79.30
BLSTM-2DCNN subword+Gaussian noise 83.42 93.72 60.67 87.76

Table 3: Performance comparison and accuracy scores on four mainstream AA datasets.

BPE algorithms with Gaussian noise, which contributes510
to the performance improvement for the AA dataset as511
shown in Table 3.512
Our model outperforms all the CNN variants by more513

than 10% and 4% for both Blog and Twitter datasets514
with 50 authors. Differences for the IMDb62 domain515
render less discriminatory words or character sequences516
when authors review similar movies. The BertAA model517
is boosted on IMDb62 because they are less sensitive518
to topical divergence. They are, however, less helpful519
in short digit text, e.g., Blog50 and Twitter domain,520
where hashtags or emoticons are the most characteristic521
features.522
To further substantiate the effectiveness of our model,523

we tested CNN and BertAA models and the Gaussian524
noise, respectively. We then reported the performance of525
the results in Table 4. For the CNN-based and BertAA526
model, we add Gaussian noise before the softmax clas-527
sifier on the same network structure. Comparing CNN-528
based and BertAA models, we see that each model can529
improve authorship classification accuracy using the530
same extracted features from BPE algorithms. In addi-531
tion, it can be seen in Table 4 that our model is superior532
to the counterpart CNN-based or BertAA model with a533
pre-trained weighted vector. The accuracy and conver-534
gence curves (e.g., loss) on the datasets were displayed535
in Fig. 2, respectively. In Fig. 3, we can see the best536
classification accuracy with faster convergence speed in537
the training process for Twitter datasets compared to the538
CNN-char model (Ruder et al., 2016).539

5 Conclusion540

This paper demonstrates that input embedded vectors541
employing subword information feeds with the BLSTM-542
2DCNN model could learn stylometric representations543
of different linguistic modalities for AA tasks. It show-544

cases such a configuration’s effectiveness in dealing 545
with common spelling errors from unstructured texts 546
due to orthography and phonetic reasons, then learns 547
stylistic and topical information to classify the author. 548
In addition, the Gaussian noise is introduced to the fully 549
conventional layers, which substantially reduces the 550
large number of parameters arising from the model struc- 551
ture. Thus, the convergence rate of the model signifi- 552
cantly speeds up and improve the classification accuracy. 553
We evaluated the model against the state-of-the-art meth- 554
ods for an extensive range of authors, demonstrating the 555
proposed model’s effectiveness in handling morphologi- 556
cal variance and is applicable across authorship-related 557
tasks. Future works will explore combining the model 558
with a self-attention mechanism to model different lin- 559
guistic levels (e.g., structure, POS tagging, dependency 560
and semantics) applying subword information to im- 561
prove the alignment of words in the input texts during 562
training in style-related tasks to find ways to advance 563
the research on authorship-based tasks. 564
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