Subword Information for Authorship Attribution: A Deep Learning
Approach

Anonymous ACL submission

Abstract

Authorship attribution is the process of unveil-
ing the hidden identity of authors from a corpus
of literary data. Many previous works on au-
thorship attribution employed word-based mod-
els to capture an author’s distinctive writing
style. The vocabulary of the training corpus
is heavily dependent on the pre-trained word
vectors, which limits the performance of these
models. Alternate methods using character-
based models proposed to overcome the rare
word problems arising from different linguis-
tic features fail to capture the sequential re-
lationship of words inherently present in the
texts. The question we addressed in this pa-
per is whether it is possible to tackle the am-
biguity of hidden writing style (or words) as
we introduce Gaussian noise while preserving
the sequential context of the text to improve
authorship-related tasks. In this work, we pro-
pose two bidirectional long short-term memory
(BLSTM) with a 2D convolutional neural net-
work (CNN) over a two-dimensional pooling
operation to capture sequential writing styles
for distinguishing different authors. To deter-
mine the appropriate writing style representa-
tion, we used BLSTM to obtain the sequential
relationship between characteristics using sub-
word information and 2D CNN is adopted to
understand the local syntactical position of the
style from unlabelled input text. We extensively
evaluate the model that leverages subword em-
bedding and compare it against state-of-the-art
methods for an extensive range of authors. Our
methods improve 2.42%, 0.96% and 0.97% on
CCATS50, Blog50 and Twitter, respectively and
produce comparable results on the remaining
one.

1 Introduction

Authorship attribution (AA) is the process of identi-
fying the authors of an anonymous text according to
their writing styles and characteristics, which has re-
ceived increasing attention. It is made of three subtasks,

which include author profiling, i.e., distinguishing the
author’s demographics such as age, gender, native lan-
guage, education (L6pez-Monroy et al., 2020), author-
ship verification which identifies the degree of similarity
of texts (Nirkhi et al., 2016) and authorship identifica-
tion, given a document determine its author among a
list of candidate authors (Stamatatos, 2009). In digital
text forensics, AA has been widely used (e.g., attribu-
tion of proclamations to know terrorists) (Sun et al.,
2012), digital humanities (e.g., attributing anonymous
or disputed literary works to available authors) (Stover
et al., 2016), plagiarism discovery (Foltynek et al., 2019;
Layton et al., 2015) and social media analytics (e.g.,
revealing multiple aliases of the same user in social
media).

Over the years, authorship attribution tasks have been
studied widely on a long-text document involving text
samples containing thousands of words (Ramnial et al.,
2016; Wanner et al., 2017) and short text such as Tweets
with texts samples of few words (Schwartz et al., 2013;
Azarbonyad et al., 2015; Rocha et al., 2016; Igbal et al.,
2013; Rocha et al., 2016; Seroussi et al., 2014; Kop-
pel et al., 2011). Majority of the approaches rely on a
large number of stylometric features such as length of
text, the number of words, the average size of terms, the
proportion of digits and capital letters, hapax-legomena,
part-of-speech (POS), vocabulary richness, frequency
of punctuation mark, functional words (FWS) and char-
acter/word n-gram in order to reflect both the content
and the writing style of the author (Madigan et al., 2005;
Aborisade and Anwar, 2018; Seroussi et al., 2014; Fa-
bien et al., 2020). However, they can hardly capture
unseen syntactic and semantic words in the texts, provid-
ing insightful meaning into the author’s writing styles.

Many traditional methods of text classification, such
as bag-of-words (BOW) (Stamatatos, 2009) or simple
statistics of some ordered word combinations (Cambria
and White, 2014; Poria et al., 2016) have also been used.
However, they fails to encode word order (Muttenthaler
et al., 2019; Luyckx and Daelemans, 2011; Sarwar et al.,
2018; Alonso-Fernandez et al., 2021). Topic methods,
such as LDA (Latent Dirichlet Allocation) (Blei et al.,
2003) are time-consuming and inefficient as new fea-
tures needs to be engineered for large scale datasets for

AA tasks (Agrawal et al., 2018; Seroussi et al., 2014;
Mikolov et al., 2013b; Modupe et al., 2014).

As opposed to topic modelling, deep learning neu-
ral network models, e.g., convolution neural network
(CNN) (Kalchbrenner et al., 2014; Kim et al., 2016),
RNN with 1D max-pooling (Lai et al., 2015) or
attention-based operation (Wu et al., 2021) employs pre-
trained word embedding features as inputs to achieve
better performance by mapping vector space to extract
semantics features over the time-step of sentences (Ding
et al., 2017; Sari et al., 2017; Gémez-Adorno et al.,
2018; Bagnall, 2015; Gupta et al., 2017; Jafariakinabad
et al., 2019). However, these models generally converge
slowly. In addition, if embedding vectors of rare words
are poorly estimated, it would likely harm the represen-
tations of words surrounding the author’s writing style
and the model’s performance (or the classification mod-
els). This is particularly problematic in morphologically
rich languages with long-tailed frequency distributions
or domains with dynamic vocabularies (e.g., short digi-
tal text).

In this work, we introduce bidirectional long short-
term memory (BLSTM) with 2D convolution and 2D
max-pooling operation that employs byte-pair encoding
(BPE) to transform input texts into subword embedding.
First, we use BLSTM layers to capture inherent seman-
tic features on both the time-step dimension and the
subword feature dimension. And then feed the feature
vectors into a 2D CNN and 2D max-pooling to obtain
more local syntactical information to represent the input
text for AA tasks.

The reminder of the paper is organized as follows. In
Section 2, we provides an overview of related work. In
Section 3, we describe the structure of our proposed
BLSTM-CNN max-pooling model for AA tasks in de-
tails. In Section 4, we described the details about the
dataset, hyperparameters setting and the experimental
results. Finally, Section 5 depicts our conclusions as
well as future work.

2 Related Work

Traditionally, the AA task largely relies on extracting
stylometric features related to content or style to ascer-
tain the writer of the text. Most of the existing methods
based on stylometric features aim to capture writing
patterns at different linguistic categories, e.g., lexical,
syntactic, structure and semantics. Lexical features cap-
ture an individual’s characters and words to describe
vocabulary richness and choice for particular symbols
or words. At the character level, features include the
number or frequency of different characters. The word-
level feature combines the total number of words, av-
erage word length, a portion of short/long words, most
common words, and the number of unique words (Arga-
mon and Levitan, 2005; Juola, 2007; Stamatatos, 2009).
Another practical set of characteristics combined with
lexical is the n-grams. They describe sequences of n
elements next to one another. The elements can be dif-

ferent, for example, a sequence of characters, words,
symbols, and syllables. However, as the dimension-
ality of the n-gram vector spaces grows with n, the
character or word n-gram features capture too much
content-specific rather than related stylistic information
(Alonso-Fernandez et al., 2021). For example, Plakias
and Stamatatos (2008) used tensors of the second order
with 2500 most frequent 3-grams to represent stylistic
components for a given texts and Muttenthaler et al.
(2019) show the influence of punctuation marks with
n-gram model for AA tasks, while masking punctuation
marks with asterisk (*) symbol. Markov et al. (2017)
allege that digits and named entities are other critical fea-
tures for selecting writing styles. Sapkota et al. (2015)
connect the potential of using character-level n-gram
features to the high priority of subword features (e.g.
suffixes and prefixes) in authorship-related tasks. Zhao
et al. (2019) relax the constraint of n-gram features and
analyze the co-occurrence of word pairs instead. As text
representations created from n-gram model tend to be
high-dimensional and sparse, Niu et al. (2017) employ
principal component analysis (PCA) to decrease them
into low-dimensional vectors and both Seroussi et al.
(2011) and Zhou et al. (2018) is the nearest collaborative
approach that untilizes novel models of finding the style
similarity based on topic models. Structural features
capture the organization of paragraphs and sentences.
They include the number of sentences, paragraphs, lines,
punctuation, average length of sentences and paragraphs.
With structure features, elements such as greetings and
signatures in a text can be analyzed. Koppel et al. (2011)
used lexical and structural features with multiple ran-
domized characteristics to unveil the writing similarity
between two authors by ignoring the order of word, syn-
tax, or meaning in the text. Recently, many researchers
have turned to neural language models such as the skip-
gram model (Mikolov et al., 2013a,b; Pennington et al.,
2014) based on the distributed representation of the
words to learn the distribution of the writing style (Ding
et al., 2017; Gémez-Adorno et al., 2018; Posadas-Duran
et al., 2017).

On the other hand, syntactic features characterize the
use of punctuation and function words (FWS), which
help define the relationship of elements in a sentence.
It also includes POS tagging by categorizing a word as
either verb, noun, pronoun, adjective (e.g., according to
its function). Bevendorff et al. (2019) develop character
trigram vectors for the documents and evaluate the vari-
ations between each couple of documents as features
using seven distance measures. Bagnall (2015) employs
a recurrent neural network (RNN) model on character
level to verify authorship and obtain a higher accuracy
than Bevendorff et al. (2019), proving the power of deep
neural networks on authorship-based tasks. Sari et al.
(2017) worked on using continuous representations via
a neural network jointly with the classification layer for
authorship attribution, and Shrestha et al. (2017) per-
formed authorship attribution of short digit text (e.g.,

tweets) using CNNs over character n-grams by estimat-
ing the importance of input text fragments to improve
model interpretability. Zhang et al. (2018) applied a
novel strategy to encode the syntax parse tree of the sen-
tence into a learnable distributed representation. Specif-
ically, they build an embedding vector for each word in
the text by encoding the path as a syntax tree correspond-
ing to the word. An attribution by Sari et al. (2018) is
one of the state-of-the-art feature-based techniques that
extract features using various stylometric features and
achieves excellent performance. However, it does not
take full advantage of the semantic features. Yao et al.
(2019) is the convolutional graph network for text clas-
sification but can not run on IMDb62 datasets because a
huge text graph takes up too much computer memory.
Jafariakinabad et al. (2019) evaluation the strength and
robustness of the syntactic recurrent neural network to
encode the syntactic patterns of a document in a hierar-
chical structure for AA tasks. However, it is not clear
what is captured by the learned vectors. We leverage
and handle essential elements employing the BLSTM-
CNN module feed with subword embedding based on
the BPE algorithm (Sennrich et al., 2016) to help cap-
ture syntactic and sequential semantic information from
the unlabelled text for AA tasks.

3 Proposed method

The first portion of our system, as presented in Fig. 1
adopt a byte-pair-encoding (BPE) algorithm as an em-
bedding tactic to transform the pure text into numerical
representations. In the second phase, we feed the embed-
ding modules into a bidirectional LSTM to understand
the underlying semantic and apply CNN max-pooling
overtime to capture the local spatial syntactical position
on writing style from the input text. The classifica-
tion consists of a fully-connected layer and soft-max
function, which is sufficient to fit the function which
takes the features and outputs the classification result.
Besides, we combined annealed Gaussian noise with
training the model to learn the writing style representa-
tions for AA tasks, which helped avoid overfitting and
achieved lower training loss. We evaluated the model’s
performance using a k-fold cross-validation with the
Twitter, blog, review, novel, and essay datasets.

3.1 Sub-word Embedding

BPE is a tokenization technique adopted in machine
translation to deal with imaginary word problems or
hidden writing in a given text. It is unsupervised and
requires no information about the author. The algorithm
of BPE first initializes a symbol by splitting the input
text into characters. Then, iteratively count all symbol
pairs and replace each occurrence of the most frequent
pair (x,y) with a new xy symbol and add it to the symbol
set named “merge operation”. Each merge operation
generates a new symbol. The size of the final symbol
set is equal to that of the first single character, plus the
number of merge-operations. The only hyperparameter

for the BPE algorithm, as shown in Algorithm 1 is the
number of the merge operation and return a meaningful
trait (i.e., the word if the merge operation is large).

Algorithm 1: BPE algorithm

Input: training data D of words split into
character sequence with number N of rules

Output: list of K of N merge rules

1 K= [];
3 while length (K) < N do
4 (x,y) := argmax{countp (x,y)};

(xy)
5 rule == ((x,y) — xy);
6 D := apply(rule, D);
7 K := append(rule, K);

s return K

For untokenized unique text, we first split it into a
single character and then iteratively do the merge opera-
tions following the merge order in the training step; until
there are no more symbols that can be merged. That
is to say, if the number of merge operations is large,
the token will tend to have more characters, and the
granularity tends to be large. Otherwise, the granularity
of the original text will be small. In our system, we do
not use BPE as a compression algorithm. Instead, we
use this algorithm to find sub-words as n-grams with
high frequencies for word segmentation, achieved if we
joined characters together. However, we did not sub-
stitute them with new symbols. An example of how
subwords are obtained from a raw input text after N
iterations is shown in Table 1.

The text has now been subdivided into subword
sequences. To use subword embedding to represent the
text, we first create a one-hot vector for each subword
type. The one-hot vector for the ith subword in the
vocabulary is a sparse binary vector o; which has 1
as the ith element and all O for others. After that, we
project this embedding hyperspace onto a smaller
hyperspace by multiplying the one-hot embedding
with a subword embedding matrix S with size N' x D,
where N represent the sub-word vocabulary size and D
is the dimension for the target embedding hyperspace.
Therefore, we represent each sub-word information as
a dense vector s; = SJ i, and the text with length T
is represented by a sequence of subword embedding
vectors (S1,82,++-,87). Therefore, the subword
embedding matrix S are trained together.

3.2 Feature Extraction

The second part of our system is feature extraction based
on the sub-word embeddings feeds into BLSTM and
CNN module, and the final output was a neuron rep-
resenting the probability of feature vectors belonging
to certain authorship. Given the subword embedding,
we use BLSTM to find the inherent grammatical rela-
tionship in the author’s writing style embedded in the

Text
reprazentation

Feature extraction

Clzssification

20
Maz-pooling

S S —

@
g
@
o

Authaor

Prediction

i am not hungry, but now

BFE and CBOW

e

Figure 1: BLSTM-CNN model with subword information

embedding

Iteration Words
0 workers work in workshop
1 workersworkinworkshop
2 workersworkinworkinshop
3 wor kerswor kinwor kshop
4 work ers work in work shop
N work er s work in work shop

Table 1: BPE example given raw input text.

subword and the CNN to capture the local syntactical
information from the input text.

3.2.1 Bidirectional LSTM Layer

Long short-term memory (LSTM) was first proposed by
(Schuster and Paliwal, 1997) to overcome the gradient
vanishing problem of recurrent neural network (RNN).
The idea is to introduce an adaptive gating mechanism,
which decides the degree to keep the previous state and
memorize the extracted features of the current input text.
So, given a sequence of input text X = {x1,x2, - , X},
where 1 represent the length of the input text, LSTM
processes the input as a subword information. At each
time-step t, the memory c and the hidden state A, are
updated as following:

fe = o(x¢Wx,r + he—1 W, ¢ + by)
iy = o(x¢Wy,i + i1 Wy i + bi) (H
0t = 0(x¢Wx,0 + ht—1Wio + bo)

where W, ¢ and W, ¢ are the weights of the LSTM
from input to forget gate and from the hidden state to
the forget gate. The W, ; and W), ; are the weights from
input to input gate and from the hidden state to the input
gate. Similarly, Wy , and W}, , represent the weights
from input to output gate and from the hidden state to

the output gate. Finally, b¢, bi, and, b, are the bias for
the forget, input and output gate. o denotes the logistic
sigmoid function. The memory cell can be calculated
as:

é\t = tanh(xtWX‘c + I’ltf]Wh‘c + bc) (2)

where W, . and Wy, . represent the weights of the
LSTM from input to the memory and from the hidden
state to the memory, respectively, and the b. denotes the
bias. The memory cell at the time step t was computed
by

ce=ftOci1 +1 OC 3)
where ® denoted element-wise multiplication. The hid-
den state can be updated as:

]’lt = :Lt ® tanh (Ct) (4)

The RNN model was forward and the output at the time
steps t depends on the past context as well as the hidden
state, e.g. the future context. Schuster and Paliwal
(1997) introduced a BLSTM to extend the unidirectional
LSTM by introducing a second hidden layer, where the
hidden connections flow in opposition temporal order.
Therefore, the model is able to exploit information from
both the past and the future. In this study, BLSTM is
used to capture the past and the future writing style
information. As shown in Fig. 1, our system contains
two sub-networks for the forward (f) and backward (b)
sequence context based on the subword embedding from
the input text at each time step t as follow:

hi = o(x¢Wy , + ht_y Wi, + bj)

®)

hy = o(xeWP, +hY WY, + b))

The output at each time t can be computed as:
ht = [h: & hE]Wh,o + bo (6)

where ® is the element-wise sum to combine the for-
ward and backward pass outputs.

3.2.2 Convolutional Layer

From the BLSTM layer, we have access to the future
context as well as the past context, o is related to all
other writing style (or words) in the given text. In this
study, we effectively treat the matrix as a feature vectors,
so 1D convolution and the max pooling operation were
used to capture local syntactical information.

For matrix H; = {h1,ha,--- ,h}, H € R>4" ob-
tained from BLSTM layer, where d" is the size of
the subword embeddings. Then narrow convolution
is utilized to extract local features information over H.
The convolution operation involves a filter m € R**4,
which is applied to a window of k subwords and d fea-
ture vectors. For instance, a feature o; j is generated
from a window of vectors H;.jsk.1j:;j+d-1 S

oij = flm - Hi;jsiq, jjra1 +b) @)

where i ranges from 1 to (I-k+1), j ranges from 1 to
(dW —d+1), () represents dot product, b € R is a bias
and an fis a non-linear function similar to hyperbolic
tangent. So, we applied the filter to each possible win-
dow of the BLSTM layer matrix H to obtain a feature
map O:

0 =101,1,012y""* yO1_y41,qw a+1] ®
with 0 € RI-k+1x(a™ ") yenresent one convolu-
tion filter process. The convolution layer have multiple
filters for the same size filter to learn complementary
features, or multiple kinds of filter with different size.
Then 2D max pooling operation p € R(P1*P2) is uti-
lizes to obtain a fixed length vector by applying it to
each possible window of matrix O to extract the maxi-
mum value:

Pij = dOWn(Oi:i+171 SBE 2) ©)

where down(-) represents the map pooling operation
function, i = (1, 1+pq, -+, 1+(1—k+1/p; —1)-p;)
andj = (1,1 +pyys1 +(dw_d+1/p2 —1) ‘Pz)-
Then, we compute the pooling operation as follow:

B =11 15P1514py 51 + L=k +1/py = 1) - pq,
1+ (dw —d+1/p; —1) - p;]
(10)

where 1" € R, and the length of 2™ is [L—k + 1/p;] x
ldw —d+1/p, —1].

3.2.3 C(lassification Layer

For the AA tasks, the output 4™ from the max pooling
was passed over the fully-connected layer of the input
text X, then feeds it to a softmax function as a classifier
to predict the inherent writing style related to a particular
candidate author 9 from the set of discrete set of author
(or classes) Y. So, the classifier takes the hidden state
h* as input as follows:

Plkx) = softmax(WWn* + b)) (11

§ = argmax p(ylx) (12)

Y
To learn the model parameters we minimize the cross-
entropy loss as the training objective by calculating the
loss as a regularized sum:

LR o . 2
J(0)=——> tiloglyd) +AlOllF (13)

i=1

where £ € R™ represent the one-hot encoding for the
ground truth values, y € R™ is the predicted probability
of the candidate author by softmax, m is the number of
expected target authors, and A is the £, regualrization
parameter. Training is done through the Adam Opti-
mization algorithm (KingaD, 2015) as further explained
in Section 4.2. Finally, the pseudocode of our model is
given in Algorithm 2, where we use simplified variables
to make the procedure clear.

4 Experiment and analysis

4.1 Datasets

We benchmark our model by experimenting on three
openly available datasets covering a large spectrum of
authorship attribution on CCATS50, IMDb62, Blog50
and new Twitter datasets. The first three datasets have
been used for many previous studies (Sari et al., 2017,
2018; Seroussi et al., 2014; Zhang et al., 2018). At the
same time, the Twitter dataset has also been used by
(Ruder et al., 2016; Shrestha et al., 2017) extensively.
Due to the limitation of Twitter policy, the actual con-
tent of tweets we were omitted; however, the available
users’ IDs and the tweet IDs enable us to collect rel-
evant tweets. Table 2 shows some detailed statistical
information. CCAT50 has a total of 5,000 documents
written by 50 authors (Stamatatos and Koppel, 2011).
IMDb62 comes from Internet Movie Database (IMDB)
containing 62,000 movie reviews and 17,550 message
posts from 62 prolific authors. In this paper, we choose
62,000 movie reviews as the dataset doing experiments
(Seroussi et al., 2014). Blog50 original contains 681,288
posts by 19,320 bloggers, and in this paper, we select
posts written by the top 50 bloggers. Twitter was an
influencer dataset from a list of 4,391 celebrities, such
as columnists, musicians and influencers on social me-
dia in 68 areas covering politics, social unrest and tech
to arts and culture for AA tasks. We collected over a
million tweets for these users in August and September
2019 using python Twitter API (Gupta et al., 2017). For
our experiment, each dataset is split by sampling 60%
of each author’s documents into a training set, 20% for
validation and renders remainder for testing over 10-fold
cross-validation as used in most AA tasks.

4.2 Experiment settings

We used Adam optimization (KingaD, 2015) for small-
batch training. The default mini-batch size is 64 due to
constraints on the graphics processor (GPU) as NVIDIA

1

2
3
4

5
6

10

Algorithm 2: Pseudocode for BLSTM-2DCNN max-pooling with subword information

Input: Training data X = {X;}I*_; m represent the batch size,n is the number of training samples, w is model
parameters and / represent the length of the input text.

Output: trained model.

Randomly initialize w;

foreach each iteration do

forall k € {1,2,---,[~]}do

Sample from each batch X; from X

Equation 11 and 12 respectively;

2015);

Divide each sample in the batch into the sequence {X;, X2, - -+, X}};

Feed sequential batch into BLSTM consisting of forward and backward neuron, respectively, and
outcome two output sequence {h}, h#,--- ht bl A%, ,--- ht,} Equation 5;

Concatenate the BLSTM layer to obtained H € R dw, the narrow convolution is used to extract local
dependent features over H to produce a feature map O ;

Then, p € R(P1*P2) js applied to each possible window of matrix O to obtain #* Equation 10
represent the stylometric representation (e.g., writing styles) of the input X;
Feed the output 4™ into the softmax classifier layer and obtain the classification result in

Update w by minimizing with the cross-entropy loss in Equation 13 using Adman algorithm (KingaD,

Data c D 18 o w K

CCATS50 50 1000 584 3010 8716 345
IMDb62 62 62000 345 1742 11617 82
Blog50 50 19320 440 541 30712 3
Twitter 1350 4391 31 229 30750 19

Table 2: Statistics of the datasets. ¢: Number of au-
thors. D: Number of documents per authors. p: average
number of words per D. o: average number of character
per D. w: maximum number of character. k: minimum
number of characters.

GeForce 2080Ti to train the model with 0.001 as the ini-
tial learning rate and utilize ReduceLRonPlateau sched-
ule with the patience of 5 epochs and a decay factor of
0.5. During training, the dimension of the subword vec-
tor is 300. The hidden units of BLSTM are 128. We use
100 convolutional filters for the window sizes of (3, 3)
with a max-pooling size of (2,2). For regularization,
we employ Dropout operation (Hinton et al., 2012) with
a dropout rate of 0.5 for the subword embeddings, 0.3
for the BLSTM and 0.2 for the penultimate layer with
Gaussian Noise of 0.2 active at the training time. We
also use {, penalty with coefficient 107> over the pa-
rameter and trained for 20 epochs. All word vectors and
feature vectors are randomly initialized and learned, and
updated during the training process. The dimensions
of the word vector and hidden layer size are d = 64
in all models. We use 128 convolutional filters, each
for window sizes of (3,3) and 2D pooling sizes of (2,2).
All experiments in this paper were repeated five times
with three random seeds (2020), and the accuracy in this
paper refers to the average classification accuracy.

4.3 Results and Discussion

In this work, we implements three different model,
BLSTM-2DCNN, BLSTM-2DCNN word embedding
and BLSTM-2DCNN gradient noise with subword infor-
mation. Table 3 presents the performance of all the three
models and other state-of-the-art models on four dataset
for authorship-based tasks. The overall authorship attri-
bution accuracies of our methods and the baseline are
provided in Table 3. The ”(-)” indicate that the feature
and the model are excluded. As shown in Table 3, the
BLSTM-2DCNN+Gaussian noise with subword embed-
ding achieves comparative performance on three out of
four datasets. Gaussian noise was combined with £,
regularization to gain roughly 10% better performance
when compared to both traditional methods and the ex-
isting CNN based models. Essentially, it achieves 2.9%,
1.6% and 0.9% test accuracy on CCATS50, Blog50 and
Twitter datasets, respectively. In addition, the perfor-
mance of the proposed model is superior to that of the
CNN and BertAA model (Ruder et al., 2016; Fabien
et al., 2020), which shows that learning from charac-
ters or leveraging on the pre-trained language model
without feature engineering task can help to improve
the performance for AA tasks. Our method is much
better than the BertAA model, which validates the ef-
fectiveness of integrating a pre-trained BERT (Devlin
et al., 2018) language model with an extra dense layer
to perform authorship classification. In addition, differ-
ent from existing CNN-based methods, we leveraged
the extracted features employing the BPE algorithm to
represent words (e.g., the writing style) by its index in
the vocabulary together with its subword vector classes.
Consequently, the proposed model inherits the advan-
tage of both traditional CNN-LSTM model (Ruder et al.,
2016; Gupta et al., 2017; Jafariakinabad et al., 2019) and

Models CCAT50 IMDb62 Blog50 Twitter
SVM with 3-gram (Plakias and Stamatatos, 2008) 67.00 81.40 - -
Imposters (Koppel et al., 2011) - 7690 26.00 52.50
LDAH-S with topics (Seroussi et al., 2011) - 72.00 18.30 38.30
SVM Affix + punctuation (Sapkota et al., 2015) 69.30 69.90 - -
Style, content & hybrid (Sari et al., 2018) — 75.76 84.51 —
CNN-character (Ruder et al., 2016) - 91.70 4940 86.80
CNN-word (Ruder et al., 2016) - 84.30 43.00 80.50
CNN n-gram (Shrestha et al., 2017) 76.50 95.21 53.09 -
Continuous n-gram (Sari et al., 2017) 72.60 95.12 52.82 -
Syntax-CNN (Zhang et al., 2018) 81.00 96.16 56.73 -
LSTM word embedding (Gupta et al., 2017) 61.47 - - -
GRU word embedding (Gupta et al., 2017) 69.20 - - -
Syntactic RNN word & POS (Jafariakinabad et al., 2019) 76.72 92.15 - -
BertAA (Fabien et al., 2020) - 90.70 59.70 -
BLSTM-2DCNN 73.25 81.25 48.15 49.52
BLSTM-2DCNN word embedding 74.50 89.72 5326 79.30
BLSTM-2DCNN subword+Gaussian noise 83.42 93.72 60.67 87.76

Table 3: Performance comparison and accuracy scores on four mainstream AA datasets.

BPE algorithms with Gaussian noise, which contributes
to the performance improvement for the AA dataset as
shown in Table 3.

Our model outperforms all the CNN variants by more
than 10% and 4% for both Blog and Twitter datasets
with 50 authors. Differences for the IMDb62 domain
render less discriminatory words or character sequences
when authors review similar movies. The BertAA model
is boosted on IMDDb62 because they are less sensitive
to topical divergence. They are, however, less helpful
in short digit text, e.g., Blog50 and Twitter domain,
where hashtags or emoticons are the most characteristic
features.

To further substantiate the effectiveness of our model,
we tested CNN and BertAA models and the Gaussian
noise, respectively. We then reported the performance of
the results in Table 4. For the CNN-based and BertAA
model, we add Gaussian noise before the softmax clas-
sifier on the same network structure. Comparing CNN-
based and BertAA models, we see that each model can
improve authorship classification accuracy using the
same extracted features from BPE algorithms. In addi-
tion, it can be seen in Table 4 that our model is superior
to the counterpart CNN-based or BertAA model with a
pre-trained weighted vector. The accuracy and conver-
gence curves (e.g., loss) on the datasets were displayed
in Fig. 2, respectively. In Fig. 3, we can see the best
classification accuracy with faster convergence speed in
the training process for Twitter datasets compared to the
CNN-char model (Ruder et al., 2016).

5 Conclusion

This paper demonstrates that input embedded vectors
employing subword information feeds with the BLSTM-
2DCNN model could learn stylometric representations
of different linguistic modalities for AA tasks. It show-

cases such a configuration’s effectiveness in dealing
with common spelling errors from unstructured texts
due to orthography and phonetic reasons, then learns
stylistic and topical information to classify the author.
In addition, the Gaussian noise is introduced to the fully
conventional layers, which substantially reduces the
large number of parameters arising from the model struc-
ture. Thus, the convergence rate of the model signifi-
cantly speeds up and improve the classification accuracy.
We evaluated the model against the state-of-the-art meth-
ods for an extensive range of authors, demonstrating the
proposed model’s effectiveness in handling morphologi-
cal variance and is applicable across authorship-related
tasks. Future works will explore combining the model
with a self-attention mechanism to model different lin-
guistic levels (e.g., structure, POS tagging, dependency
and semantics) applying subword information to im-
prove the alignment of words in the input texts during
training in style-related tasks to find ways to advance
the research on authorship-based tasks.

References

Opeyemi Aborisade and Mohd Anwar. 2018. Classifi-
cation for authorship of tweets by comparing logistic
regression and naive bayes classifiers. In 2018 IEEE

International Conference on Information Reuse and
Integration (IRI), pages 269-276. IEEE.

Amritanshu Agrawal, Wei Fu, and Tim Menzies. 2018.
What is wrong with topic modeling? and how to fix it
using search-based software engineering. Information
and Software Technology, 98:74-88.

Fernando Alonso-Fernandez, Nicole Mariah Sharon
Belvisi, Kevin Hernandez-Diaz, Naveed Muhammad,
and Josef Bigun. 2021. Writer identification using mi-
croblogging texts for social media forensics. IEEE

08

06

04

Accuracy

02

00

07

06

05

04

Accuracy

03

02

01

Models

CCAT50 IMDb62 Blog50 Twitter

CNN-char (Ruder et al., 2016)
CNN-word (Ruder et al., 2016)

BertAA (Fabien et al., 2020)
Our method

76.77
77.03
78.90
83.42

91.01 59.70 84.29
92.30 62.40 82.50
93.00 64.40 62.50
93.72 60.67 87.76

Table 4: Performance comparison of CNN and BretAA model on all the datasets.

— CCATSO
= = |MDBGZ
== = Blog50 -
- = Twitter ,-./'—
P -
p—
- -
-
‘-—
0 5 bt 15 0

The number of iterations

(a) Accuracy

=~ — CCATS0
~s N = = IMDBE2

NS = = Elag50
A N - = Twitter

0 5 0 15 o
The number of iterations
(b) Loss

Figure 2: The accuracy and convergence curve over iterations on all the datasets

m— BLSTM-20 CNN+GN
= NN-char

0 5 bt 5 0
The number of iterations

(a) Accuracy

m— CNMN-char
m— BLSTM-20 CNM+GN

0 5 10 5 20

The number of iterations
(b) Loss

Figure 3: The accuracy and convergence curve over iterations on Twitters dataset.

Transactions on Biometrics, Behavior, and Identity Sci-
ence.

Shlomo Argamon and Shlomo Levitan. 2005. Measur-

ing the usefulness of function words for authorship
attribution. In Proceedings of the 2005 ACH/ALLC
Conference, pages 4-7.

Hosein Azarbonyad, Mostafa Dehghani, Maarten Marx,
and Jaap Kamps. 2015. Time-aware authorship attribu-
tion for short text streams. In Proceedings of the 38th
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 727-730.

Douglas Bagnall. 2015. Author identification us-
ing multi-headed recurrent neural networks. CoRR,
abs/1506.04891.

Janek Bevendorff, Matthias Hagen, Benno Stein, and
Martin Potthast. 2019. Bias analysis and mitigation in
the evaluation of authorship verification. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 6301-6306.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. the Journal of ma-
chine Learning research, 3:993-1022.

Erik Cambria and Bebo White. 2014. Jumping nlp
curves: A review of natural language processing re-
search. IEEE Computational intelligence magazine,

9(2):48-57.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Steven HH Ding, Benjamin CM Fung, Farkhund Igbal,
and William K Cheung. 2017. Learning stylometric
representations for authorship analysis. IEEE transac-
tions on cybernetics, 49(1):107-121.

Maél Fabien, Esau Villatoro-Tello, Petr Motlicek, and
Shantipriya Parida. 2020. Bertaa: Bert fine-tuning for
authorship attribution. In Proceedings of the 17th Inter-
national Conference on Natural Language Processing
(ICON), pages 127-137.

Tomas Foltynek, Norman Meuschke, and Bela Gipp.
2019. Academic plagiarism detection: a systematic
literature review. ACM Computing Surveys (CSUR),
52(6):1-42.

Helena G6mez-Adorno, Juan-Pablo Posadas-Duran,
Grigori Sidorov, and David Pinto. 2018. Document em-
beddings learned on various types of n-grams for cross-
topic authorship attribution. Computing, 100(7):741-
756.

Bhumika Gupta, Monika Negi, Kanika Vishwakarma,
Goldi Rawat, Priyanka Badhani, and B Tech. 2017.
Study of twitter sentiment analysis using machine learn-
ing algorithms on python. International Journal of
Computer Applications, 165(9):29-34.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012. Im-
proving neural networks by preventing co-adaptation
of feature detectors. arXiv preprint arXiv:1207.0580.

Farkhund Igbal, Hamad Binsalleeh, Benjamin CM Fung,
and Mourad Debbabi. 2013. A unified data mining
solution for authorship analysis in anonymous textual
communications. Information Sciences, 231:98—-112.

Fereshteh Jafariakinabad, Sansiri Tarnpradab, and
Kien A Hua. 2019. Syntactic recurrent neural
network for authorship attribution. arXiv preprint
arXiv:1902.09723.

Patrick Juola. 2007. Future trends in authorship attri-
bution. In IFIP International Conference on Digital
Forensics, pages 119-132. Springer.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for mod-
elling sentences. arXiv preprint arXiv:1404.2188.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial in-
telligence.

AdamJB KingaD. 2015. A methodforstochasticopti-
mization. Anon. InternationalConferenceon Learning
Representations. SanDego: ICLR.

Moshe Koppel, Jonathan Schler, and Shlomo Argamon.
2011. Authorship attribution in the wild. Language
Resources and Evaluation, 45(1):83-94.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text classi-
fication. In Twenty-ninth AAAI conference on artificial
intelligence.

Robert Layton, Paul A Watters, and Richard Dazeley.
2015. Authorship analysis of aliases: Does topic in-
fluence accuracy? Natural Language Engineering,
21(4):497-518.

A Pastor Lépez-Monroy, Fabio A Gonzalez, and
Thamar Solorio. 2020. Early author profiling on twitter
using profile features with multi-resolution. Expert
Systems with Applications, 140:112909.

Kim Luyckx and Walter Daelemans. 2011. The effect
of author set size and data size in authorship attribution.
Literary and linguistic Computing, 26(1):35-55.

David Madigan, Alexander Genkin, David D Lewis, and
Dmitriy Fradkin. 2005. Bayesian multinomial logistic
regression for author identification. In AIP conference
proceedings, volume 803, pages 509-516. American
Institute of Physics.

Ilia Markov, Efstathios Stamatatos, and Grigori Sidorov.
2017. Improving cross-topic authorship attribution:
The role of pre-processing. In International Confer-
ence on Computational Linguistics and Intelligent Text
Processing, pages 289-302. Springer.

http://arxiv.org/abs/1506.04891
http://arxiv.org/abs/1506.04891
http://arxiv.org/abs/1506.04891

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages
3111-3119.

Abiodun Modupe, Oludayo O Olugbara, and Sunday O
Ojo. 2014. Filtering of mobile short messaging service
communication using latent dirichlet allocation with so-
cial network analysis. In Transactions on Engineering
Technologies, pages 671-686. Springer.

Lukas Muttenthaler, Gordon Lucas, and Janek Amann.
2019. Authorship attribution in fan-fictional texts given
variable length character and word n-grams. In CLEF
(Working Notes).

Smita Nirkhi, RV Dharaskar, and VM Thakare. 2016.
Authorship verification of online messages for forensic
investigation. Procedia Computer Science, 78:640—
645.

Xing Niu, Marianna Martindale, and Marine Carpuat.

2017. A study of style in machine translation: Con-
trolling the formality of machine translation output.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2814—
2819.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532—1543.

Spyridon Plakias and Efstathios Stamatatos. 2008. Ten-
sor space models for authorship identification. In Hel-
lenic Conference on Artificial Intelligence, pages 239—
249. Springer.

Soujanya Poria, Erik Cambria, Newton Howard, Guang-

Bin Huang, and Amir Hussain. 2016. Fusing audio,
visual and textual clues for sentiment analysis from
multimodal content. Neurocomputing, 174:50-59.

Juan-Pablo Posadas-Duran, Helena Gémez-Adorno,
Grigori Sidorov, Ildar Batyrshin, David Pinto, and Lil-
iana Chanona-Hernandez. 2017. Application of the
distributed document representation in the authorship
attribution task for small corpora. Soft Computing,
21(3):627-639.

Hoshiladevi Ramnial, Shireen Panchoo, and Sameer-
chand Pudaruth. 2016. Authorship attribution using
stylometry and machine learning techniques. In Intel-
ligent Systems Technologies and Applications, pages
113-125. Springer.

Anderson Rocha, Walter J Scheirer, Christopher W
Forstall, Thiago Cavalcante, Antonio Theophilo,
Bingyu Shen, Ariadne RB Carvalho, and Efstathios
Stamatatos. 2016. Authorship attribution for social
media forensics. IEEE transactions on information
forensics and security, 12(1):5-33.

10

Sebastian Ruder, Parsa Ghaffari, and John G Breslin.
2016. Character-level and multi-channel convolutional
neural networks for large-scale authorship attribution.
arXiv preprint arXiv:1609.06686.

Upendra Sapkota, Steven Bethard, Manuel Montes, and
Thamar Solorio. 2015. Not all character n-grams are
created equal: A study in authorship attribution. In Pro-
ceedings of the 2015 conference of the North American
chapter of the association for computational linguistics:
Human language technologies, pages 93—102.

Yunita Sari, Mark Stevenson, and Andreas Vlachos.
2018. Topic or style? exploring the most useful fea-
tures for authorship attribution. In Proceedings of the
27th International Conference on Computational Lin-
guistics, pages 343-353.

Yunita Sari, Andreas Vlachos, and Mark Stevenson.
2017. Continuous n-gram representations for author-
ship attribution. In Proceedings of the 15th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Volume 2, Short Papers, pages
267-273.

Raheem Sarwar, Chenyun Yu, Ninad Tungare, Kanatip
Chitavisutthivong, Sukrit Sriratanawilai, Yaohai Xu,
Dickson Chow, Thanawin Rakthanmanon, and Sarana
Nutanong. 2018. An effective and scalable framework
for authorship attribution query processing. IEEE Ac-
cess, 6:50030-50048.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE transactions on
Signal Processing, 45(11):2673-2681.

Roy Schwartz, Oren Tsur, Ari Rappoport, and Moshe
Koppel. 2013. Authorship attribution of micro-
messages. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1880-1891.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1715-1725.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert.

2011. Authorship attribution with latent dirichlet al-
location. In Proceedings of the fifteenth conference
on computational natural language learning, pages
181-189.

Yanir Seroussi, Ingrid Zukerman, and Fabian Bohnert.
2014. Authorship attribution with topic models. Com-
putational Linguistics, 40(2):269-310.

Prasha Shrestha, Sebastian Sierra, Fabio A Gonzalez,
Manuel Montes, Paolo Rosso, and Thamar Solorio.
2017. Convolutional neural networks for authorship
attribution of short texts. In Proceedings of the 15th
Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers,

pages 669-674.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the Ameri-

can Society for information Science and Technology,
60(3):538-556.

Efstathios Stamatatos and Moshe Koppel. 2011. Pla-
giarism and authorship analysis: introduction to the
special issue. Language Resources and Evaluation,

45(1):1-4.

Justin Anthony Stover, Yaron Winter, Moshe Koppel,

and Mike Kestemont. 2016. Computational authorship
verification method attributes a new work to a major
2nd century a frican author. Journal of the Association
for Information Science and Technology, 67(1):239—
242.

Jianwen Sun, Zongkai Yang, Sanya Liu, and Pei Wang.
2012. Applying stylometric analysis techniques to
counter anonymity in cyberspace. Journal of Networks,
7(2):259.

Leo Wanner et al. 2017. On the relevance of syntactic
and discourse features for author profiling and iden-
tification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers, pages
681-687.

Haiyan Wu, Zhigiang Zhang, and Qingfeng Wu. 2021.
Exploring syntactic and semantic features for author-
ship attribution. Applied Soft Computing, 111:107815.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7370-7377.

Richong Zhang, Zhiyuan Hu, Hongyu Guo, and Yongyi

Mao. 2018. Syntax encoding with application in au-
thorship attribution. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2742-2753.

Zhenjie Zhao, Andrew Cattle, Evangelos Papalexakis,
and Xiaojuan Ma. 2019. Embedding lexical features
via tensor decomposition for small sample humor recog-
nition. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP).

Deyu Zhou, Yang Yang, and Yulan He. 2018. Relevant
emotion ranking from text constrained with emotion
relationships. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 561-571.

11

