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Abstract

This paper introduces a novel speech separation technique that leverages the clustering of
time-frequency (T-F) bin patches or raw speech blocks. Our approach integrates traditional
graph-based clustering objectives with deep neural networks, enabling effective and scalable
speech separation. By extracting features from T-F bin patches or raw speech blocks using
a pre-trained encoder, we apply deep modularization for clustering, allowing us to identify
clusters dominated by individual speakers in mixed speech signals. Extensive evaluations
across multiple datasets, such as WSJ0-2mix and WHAM!, demonstrate the competitiveness
of our method compared to fully supervised state-of-the-art speech separation models. In
particular, our approach excels in separating complex acoustic mixtures without the need
for parallel datasets and effectively mitigates the problem of permutation ambiguity, making
it well-suited for real-world applications in multi-speaker environments.

1 Introduction

Speech separation is a challenging task, where the goal is to separate individual sources from a mixed speech
signal. Many tools, including those proposed by (Zeghidour & Grangier, 2021a), (Weng et al., 2015), and
(Hershey et al., 2016), frame this task as a multi-class regression problem. In this approach, training a speech
separation model involves comparing its output to the target sources, with the model producing an output
dimension for each target class. However, when multiple sources of the same type are present, the system
must arbitrarily assign output dimensions to each target, leading to the well-known permutation ambiguity
problem (Hershey et al., 2016). This ambiguity arises when the system cannot differentiate between identical
sources, such as two overlapping speakers, and randomly assigns each source to an output dimension.

To address permutation ambiguity, various techniques have been developed, with the most notable being
permutation invariant training (PIT), introduced by (Yu et al., 2017). PIT determines the optimal output-
target pairing by minimizing the error between the predicted and target signals, regardless of the order in
which they appear. While PIT has shown effectiveness, it suffers from high computational complexity, with
factorial time complexity O(S!), making it expensive as the number of sources (S) increases (Tachibana,
2021; Dovrat et al., 2021).

Furthermore, PIT-based models often encounter a mismatch between the number of speakers during training
and inference due to their fixed output dimensions (Jiang & Duan, 2020). To mitigate this, these models
set a maximum number of sources S that they can output for any given mixture (Nachmani et al., 2020;
Liu & Wang, 2019a). When a mixture contains fewer than S sources (S > K), the model generates S −K
invalid outputs. Some models handle this by outputting silence for the invalid sources (Liu & Wang, 2019a;
Nachmani et al., 2020), while others discard invalid outputs based on energy levels relative to the mixture
(Luo & Mesgarani, 2020). However, these energy-based methods can struggle in low-energy scenarios, where
accurately discarding invalid outputs becomes more difficult (Luo & Mesgarani, 2020). Another class of
models (Shi et al., 2018; Takahashi et al., 2019) iteratively generates a single speech signal and subtracts it
from the mixture until no speech remains. However, determining when to stop the iterations is non-trivial,
and performance often degrades during later iterations (Takahashi et al., 2019).
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Given the computational complexity and limitations of PIT-based models, clustering-based methods have
emerged as a promising alternative for handling permutation ambiguity. Methods proposed by (Hershey
et al., 2016), (Qin et al., 2020), and (Zeghidour & Grangier, 2021b) apply clustering techniques to separate
multiple speakers from mixed speech signals. These approaches avoid the need for output-target pairing
by grouping time-frequency (T-F) bins based on their similarity, assigning each bin to the speaker that
dominates the given time-frequency region. However, despite their success, clustering-based methods still
rely on large amounts of annotated speech data, which is costly and labor-intensive to produce.

In this work, we introduce a novel speech separation technique based on clustering, known as deep modular-
ization (Müller, 2023), which eliminates the need for parallel annotated datasets. Deep modularization is a
technique that combines traditional graph-based clustering objectives with deep neural networks to optimize
feature partitioning in an end-to-end differentiable manner. We extract features from spectrogram points
(T-F bins) or raw speech blocks using a pre-trained model, and leverage these features in downstream clus-
tering tasks via deep modularization. This approach enables us to achieve speech separation without the
need for parallel speech data, addressing one of the major bottlenecks in current speech separation systems.

Our contributions are as follows:

1. We propose a competitive clustering technique for speech separation that optimizes the cluster
assignments of spectrogram points or raw speech blocks in an end-to-end differentiable manner,
without relying on parallel data.

2. We evaluate the performance of the proposed technique using both raw speech and Fourier-
transformed speech as input.

3. We conduct extensive evaluations across multiple datasets to assess the effectiveness of the proposed
technique in various speech separation scenarios.

4. We perform ablation studies to investigate whether training the pre-trained model with contaminated
inputs benefits the downstream task of speech separation.

1.1 Related Work

Several unsupervised speech separation methods have been developed in recent years. One notable technique
is MixIT (Wisdom et al., 2020b), which performs speech separation by mixing mixtures. Given a set of mixed
speech signals X = x1, x2, · · · , xn, where each mixture xi contains up to N sources, MixIT creates a mixture
of mixtures (MoM) by randomly drawing and adding mixtures from X. For instance, if x1 and x2 are
selected, the MoM x̄ is created as x̄ = x1 + x2. This MoM is then fed into a deep neural network (DNN),
which estimates the sources ŝ within x1 and x2. The model is trained to minimize the following loss:

LMixIT = min
A

2∑
i=1

L(xi, [Aŝ]i)

Here, A ∈ B2×M is a set of binary matrices, where each column sums to 1, and M is the maximum number
of sources in a given mixture xi. The loss minimizes the difference between mixtures xi and the remixed
separated sources Aŝ. A limitation of MixIT is over-separation, where the model estimates more sources
than are present in the mixtures (Zhang et al., 2021). Additionally, MixIT struggles with denoising (Saito
et al., 2021). Variants of MixIT, such as (Zhang et al., 2021) and (Karamatlı & Kırbız, 2022), address the
over-separation problem, while (Trinh & Braun, 2022) and (Saito et al., 2021) enhance MixIT for denoising
tasks.

Another unsupervised method, RemixIT (Tzinis et al., 2022), employs a teacher-student model for speech
denoising and separation. The teacher model estimates the clean speech sources ŝi and noises n̂i for a batch
of size b. The estimated noises are randomly mixed to generate np, which, together with the clean sources,
form new mixtures m̂i = ŝi+np. These new mixtures are used as input to the student model, which is trained
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to output ŝi and np, effectively denoising the speech. RemixIT relies on a pre-trained speech enhancement
model as the teacher.

Other unsupervised approaches, such as (Wang et al., 2016), perform speech separation based on speaker
characteristics like gender. These methods use i-vectors to model differences in vocal tract properties, pitch,
timing, and rhythm between male and female speakers, and the DNN acts as a gender separator.

Speech separation tools are designed to accept either Fourier spectrum or time-domain input features. Fourier
spectrum-based models apply the discrete Fourier transform (DFT) to convert the raw time-domain signal
into the frequency domain. These models recognize the non-stationary nature of speech and its variability
in both time and frequency. Commonly used features include log-power spectrum (Fu et al., 2017; Xu et al.,
2015), Mel-frequency spectrum (Liu et al., 2022; Du et al., 2020; Donahue et al., 2018), DFT magnitude
(Nossier et al., 2020; Grais & Plumbley, 2018; Fu et al., 2019), and complex DFT features (Fu et al.,
2017; Williamson & Wang, 2017; Kothapally & Hansen, 2022a;b). Most models using Fourier spectrum
features assume that phase information is less critical for human auditory perception and primarily focus on
magnitude or power for training (Xu et al., 2014; Kumar & Florencio, 2016; Du & Huo, 2008; Tu et al., 2014;
Li et al., 2017). The noisy phase is typically used for signal reconstruction based on the work of (Ephraim
& Malah, 1984), which suggests that the phase of the noisy signal is a close estimator of the clean signal’s
phase.

However, recent research (Paliwal et al., 2011) shows that further improvements in speech quality can be
achieved by processing both the magnitude and phase spectra. To address phase challenges with Fourier-
based features, several time-domain speech separation models have been developed, such as (Luo & Mes-
garani, 2018; Luo et al., 2020; Luo & Mesgarani, 2019a; Subakan et al., 2021a). These models replace the
DFT-based input with data-driven representations learned during model training. Instead of converting
the raw signal to the frequency domain, they process the mixed waveform directly, generating either the
estimated clean sources or masks applied to the noisy waveform to produce clean speech. This approach
allows the models to fully capture both magnitude and phase information, leading to improved separation
performance (Luo et al., 2020).

2 Speech Separation by Deep Modularization

In this section, we describe our proposed speech separation technique based on deep modularization. The
process consists of four key components: 1) Speech pre-processing, where spectrogram points (T-F bins) or
raw speech blocks are extracted from the input speech; 2) A pre-trained model that learns representations of
these spectrogram points or raw blocks; 3) Deep modularization, which clusters the extracted features into
k clusters corresponding to different speakers; and 4) Clean signal generation, where k clean speech signals
are reconstructed from the clustered data. An overview of the entire pipeline is shown in Figure 1.

Figure 1: Overview of the proposed speech separation method based on deep modularization.
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2.0.1 Generating T-F Bins

We begin with a pool of n clean speech signals in the time domain, denoted as x ∈ RT . Each clean speech
signal is augmented by mixing it with a randomly sampled noise excerpt, producing a noisy version set, Sn.
To further augment the data, reverberation is applied to the noisy speech, creating a second version set, Snr,
containing speech signals with both noise and reverberation.

Both Sn and Snr are downsampled to 8 kHz for computational efficiency. We then process the signals using
the Short-Time Fourier Transform (STFT) with a 25 ms Hamming window and a 10 ms hop size. This
setup strikes a balance between time and frequency resolution, capturing the audio’s frequency content over
short intervals. For a speech signal of duration t, this configuration generates a spectrogram of dimensions
128× 100t, where 128 corresponds to the number of frequency bins, and 100t to the number of time frames.

From these spectrograms, we extract 3 × 3 patches of T-F bins with an overlap of 1 in both the time and
frequency domains. This overlap ensures continuity and complete coverage of the spectrogram for further
processing, providing detailed feature extraction.

We generate two sets of T-F bin patches:

• S̄n: 3× 3 T-F bin patches for noisy speech signals.

• S̄nr: 3× 3 T-F bin patches for noisy and reverberant speech signals.

Each 3× 3 patch with overlap covers a total of 440 time-domain samples.

2.0.2 Generating Time-Domain Blocks as Input

Similar to the T-F bin generation process, we begin by processing clean speech signals x ∈ RT , and generate
both noisy (Sn) and noisy + reverberant (Snr) versions. These augmented signals are passed through an
encoder, similar to the one proposed by (Subakan et al., 2021b), which produces an STFT-like representation
h ∈ RF ×T .

The STFT-like representation is then divided into blocks of size 440 samples, with an 80-sample overlap
along the time axis, resulting in a set of blocks L ∈ RF ×W ×N , where W denotes the block length, and N
represents the number of blocks. The time-domain blocks are categorized into two sets:

• X̄n: Time-domain blocks for noisy speech signals.

• X̄nr: Time-domain blocks for noisy and reverberant speech signals.

2.1 Pre-trained Model

To extract meaningful representations from input speech, we employ a pre-trained model capable of pro-
cessing either T-F bin patches or time-domain blocks. The model is trained on a large corpus of patches or
speech blocks, enabling it to generate robust feature representations. These learned features serve as input
to the subsequent clustering step.

We leverage contrastive learning (CL) to train the pre-trained model fθ, where the goal is to minimize
the distance between similar objects (positive pairs) and maximize the distance between dissimilar objects
(negative pairs) in the embedding space. Specifically, CL defines a representation function fθ : x 7→ Rd,
mapping augmented inputs into d-dimensional vectors. The objective is to ensure that similar augmentations
of the same input are close in the embedding space, while different inputs are pushed apart.

Typically, augmentations (x, x+) are generated by applying two distinct augmentation functions to the same
input. In our case, these augmentations preserve critical features, such as speaker identity, while altering
irrelevant aspects like noise and reverberation.

The contrastive learning model fθ, parameterized by θ, is trained using either T-F bin patches or raw speech
blocks as inputs. Positive pairs consist of two T-F bin patches or raw blocks from the same speaker, while
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negative samples are patches or blocks from different speakers. For example, a speaker similarity function
T randomly selects a positive pair (xni , xnri), where xni ∈ X̄n and xnri ∈ X̄nr, ensuring both come from
the same speaker.

For a batch of size N , given a positive pair (xni , xnri), the remaining N − 2 patches or blocks in the batch
serve as negative samples. The contrastive learning objective is optimized via the following loss function:

ℓn = − log exp(sim(zni
, znri

)/τ)
N∑

i′=1,i′ ̸=i

exp(sim(zni
, znri′ )/τ)

Here, sim(zni
, znri

) represents the similarity between the embeddings of the positive pair, and τ is a tem-
perature parameter controlling the separation between positive and negative pairs.

Algorithm 1 outlines the training process of the pre-trained model using contrastive learning.

Algorithm 1 Establishing the function fθ

1: Initialize: Data X̄n, X̄nr, fθ(·) (encoder), gθ(·) (projection head), and T (speaker similarity function)
2: for each minibatch of data {xni

: i ∈ N} from X̄n do
3: for i = 1 to N do
4: Sample xnri from X̄nr using T
5: xni ← 1st augmentation of xni

6: hni
= fθ(xni

) {Extract embedding}
7: zni

= gθ(hni
) {Project embedding}

8: xnri
← 2nd augmentation of xnri

9: hnri
= fθ(xnri

) {Extract embedding}
10: znri = gθ(hnri) {Project embedding}
11: end for
12: Define ℓn = − log exp(sim(zni

,znri
)/τ)

N∑
i′=1,i′ ̸=n

exp(sim(zni
,znr

i′ )/τ)

13: ℓ = 1
N

N∑
n=1

ℓn {Simplified SimCLR loss}

14: Update encoder fθ(·) and projection head gθ(·) to minimize ℓ {Maximize agreement}
15: end for
16: return Encoder fθ(·)

2.2 Deep Modularization for T-F Bin or Raw Speech Block Clustering

The goal is to use a deep modularization technique to cluster patches or raw speech blocks such that those
dominated by a given speaker are clustered together. Deep modularization is a technique that integrates a
graph clustering objective with a deep neural network (DNN). We start by defining a graph G(V, E) where
V = (v1, v2, · · · , vn), with |V | = n, is the set of all patches or raw speech blocks generated from a mixed
speech signal, as described in the speech pre-processing section. The set of edges is E ⊂ V × V , with
|E| = m, which connects the generated patches or raw speech blocks (subsequently referred to as "blocks").
The adjacency matrix of G is denoted as A, where Aij = 1 if vi, vj ∈ E, and 0 otherwise. The degree of vi

is defined as di =
∑n

j Aij . Our objective is to generate a graph partition function F : V → 1, · · · , k that
splits the set of patches or blocks V into k partitions, where vi = vj : F(vj) = i, given the patches or block
attributes F̄ ∈ Rn×d learned from the pre-trained model.

To partition the vertices, we use the statistical approach known as modularity (Q) (Newman, 2006). Modu-
larity measures the difference between the actual number of edges within partitions and the expected number
of edges in equivalent randomized partitions (null networks). Formally, modularity is defined as:
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Q = Number of edges within partitions− Expected number of such edges. (1)

A high value of Q indicates stronger similarity among members of the same partition. Therefore, the goal
is to maximize Q. Let gi represent the community to which vertex i belongs. Modularity (Q) is derived in
(Newman, 2006) as:

Q = 1
2m

∑
ij

(Aij − Pij)δ(gi, gj) (2)

where δ(gi, gj) equals 1 if vertices i and j belong to the same partition and 0 otherwise. Pij is the expected
number of edges between vertices i and j, while Aij is the actual number of edges between them. If vertices
i and j have degrees di and dj , respectively, then the expected degree of vertex i is

∑
j Pij = di. Hence,

vertex i and vertex j are connected with probability Pij = didj

2m (Newman, 2006). Consequently, Equation 2
becomes:

Q = 1
2m

∑
ij

(
Aij −

didj

2m

)
δ(gi, gj) (3)

Maximizing Q is NP-hard (Brandes et al., 2006). To solve this, we define a partition assignment matrix S ∈
Rn×k, where n is the number of vertices. Each column of S indexes a partition, meaning S = s1 | s2 | · · · | sk,
with Sij = 1 if vertex i belongs to partition j, and 0 otherwise. The columns of S are mutually orthogonal,
as each row sums to 1, and S satisfies the normalization Tr(ST S) = n, where Tr(·) is the matrix trace.
Based on this definition, δ(gi, gj) =

∑k
k=1 SikSjk, and Equation 3 becomes:

Q = 1
2m

n∑
ij=1

k∑
k=1

(Aij − Pij)SikSjk = 1
2m

Tr(ST BS) (4)

where B is the modularity matrix, defined as Bij = Aij − Pij . By relaxing S ∈ Rn×k, the optimal S
that maximizes Q corresponds to the top k eigenvectors of matrix B. Work by (Müller, 2023) enhances
this objective by adding a regularization term to avoid trivial partitions, as shown in Equation 5. This
regularization maintains consistency in community detection as the number of nodes increases (Müller,
2023):

L(S) = − 1
2m

Tr(ST BS) +
√

k

n

∣∣∣∣∣∑
i

ST
i

∣∣∣∣∣
F

− 1 (5)

Here, | · |F is the Frobenius norm. The complexity of the modularity term Tr(ST BS) is O(n2) per update
of L(S), making the training computationally expensive. To address this, (Müller, 2023) proposes to decom-
pose Tr(ST BS) into sparse matrix-matrix multiplication and rank-one degree normalization, reducing the
complexity to O(d2n):

L(S) = − 1
2m

Tr(ST AS − SdT dS) +
√

k

n

∣∣∣∣∣∑
i

ST
i

∣∣∣∣∣
F

− 1 (6)

We adopt the objective in Equation 6 to modularize the features F̄ ∈ Rn×d learned via the pre-trained
model. To optimize the cluster assignment, we adapt the deep neural network graph partitioning technique
proposed in (Bianchi et al., 2020) and (Müller, 2023), where nodes of a graph are partitioned as follows:

F̄ = GNN(Ã, X, θGNN) (7)
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S = softmax(F̄ ) (8)

Here, Ã = D− 1
2 AD− 1

2 , X are the input features, D is the diagonal matrix of degrees d1, . . . , dn, and A is
the adjacency matrix. In Equation 7, node features F̄ are learned via a graph neural network (GNN), and
the assignment matrix S is generated through a softmax function. In (Bianchi et al., 2020), the assignment
matrix S is established via a multilayer perceptron (MLP) with softmax at the output layer. In our case,
we formulate the problem as:

F̄ = Pre-M(X, θcon) (9)

S = MOD(F̄ , θrnn) (10)

Here, the feature matrix F̄ is obtained via the pre-trained model (Pre-M). Since we extracted 3× 3 patches
and speech separation is typically performed over individual 1×1 T-F bins via masking, we apply a Gaussian-
weighted patch averaging technique to compute the mean feature representation for each 1× 1 T-F bin. To
preserve local dependencies, we restrict the averaging to the three closest neighboring T-F bins, i.e., |C| = 3,
in both the time and frequency domains. For each feature vector f̄j ∈ F̄ , the Gaussian-weighted averaged
feature is computed as:

f̄avg,j =
∑

i∈C wi · f̄i∑
i∈C wi

where C consists of the central T-F bin and its two closest neighbors. The weights wi are assigned using a
2D Gaussian kernel, emphasizing the importance of proximity within the local T-F region to retain crucial
local information.

The averaged feature f̄avg,j provides a compact and locally representative feature that captures the most
relevant information from the neighboring T-F bins and serves as input to the BLSTM model.

The BLSTM, as proposed in Huang et al. (2022), takes the averaged patch feature and assigns it to the j-th
column of the cluster assignment matrix S. The final cluster assignments are established using a softmax at
the output layer.

To optimize the assignment S, we use the loss function described in Equation 6, effectively training a DNN
model using a graph clustering objective but with averaged patch features. This enhances the robustness of
the learned features by reducing noise and capturing more meaningful representations for each patch.

For speech blocks, no further averaging or processing is applied, and the features F̄ are used directly for
clustering or downstream tasks.

2.3 Adjacency matrix

To construct the adjacency matrix A, we first measure the similarity between each T-F bin or block i and
all other nodes in the feature space. This similarity is computed using the inner product:

eij = f̄T
i f̄j

where i, j = 1, 2, . . . , n, and f̄i and f̄j ∈ F̄ are feature vectors obtained from the pre-trained model (Pre-M).
The higher the inner product, the more similar the two feature vectors are.

Next, to form the edges of the graph, we select a similarity threshold θ. If eij < θ, we remove the edge
between nodes i and j, thereby limiting the graph to meaningful edges. The adjacency matrix is defined as:
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Aij =
{

1, if eij ≥ θ (edge exists)
0, if eij < θ (no edge)

Choosing an optimal threshold θ is crucial for constructing a meaningful graph. A high value of θ ensures
only highly similar nodes are connected, but this can exclude meaningful relationships. On the other hand,
a low θ results in a dense graph filled with weaker, uninformative edges, which increases computation time
during clustering.

To find the optimal θ, we experimented on multiple datasets, varying the threshold values and observing
both modularity and the number of clusters generated. Modularity measures the quality of clusters, with
higher values indicating better-defined clusters.

Figure 2 shows how modularity and the number of clusters change with varying θ on the WSJ0-5mix test
dataset. For visualization purposes, modularity values are normalized (multiplied by 100) and the number of
clusters is scaled by 10. As shown in the figure, increasing θ boosts modularity but risks creating singleton
partitions. Decreasing θ, however, increases unnecessary clusters and lowers modularity.

After careful evaluation, we selected θ = 0.3 as the optimal threshold, which was used consistently across all
our experiments.

Figure 2: Modularity and number of clusters as a function of the similarity threshold θ.

3 Clean source signal estimation

We use the downstream model to classify patches or blocks into k partitions. Once the model generates
the probability distribution via softmax, we use this distribution to generate soft masks. Each mask is a
continuous vector composed of values between 0 and 1. A value close to 0 indicates minimal contribution
from a particular T-F bin in the corresponding cluster, while a value closer to 1 signifies dominance of the
source in that bin. These masks are based on the assumption of sparsity and orthogonality of the sources in
the domain where they are computed. This assumption implies that, within any given T-F bin, the dominant
source is the primary contributor, though partial contributions from other sources are possible. As a result,
each T-F bin is assumed to correspond to a weighted combination of sources.

Once the soft masks are constructed, they are applied to the mixed signal, isolating k estimated clean
sources. For speech signals that have been transformed into their Short-Time Fourier Transform (STFT)
representation, the masks are directly applied to the STFT spectrogram to estimate the spectrograms of
the individual clean speech signals. The inverse STFT is then applied to each estimated spectrogram to
reconstruct the corresponding clean speech signals in the time domain.

In the case of raw time-domain signals, the masks are applied to STFT-like representations generated by the
encoder, which learns features analogous to T-F bins. The masked representations are then passed through
the decoder (a transposed version of the encoder) to generate the estimated clean speech signals in the time
domain.
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For phase reconstruction in the STFT domain, we adopt the technique proposed by Wang (2018), which
jointly reconstructs the phase of all sources in each mixture by leveraging their estimated magnitudes and the
noisy phase information. This is achieved using the Multiple Input Spectrogram Inversion (MISI) algorithm
(Gunawan 2010), which iteratively refines the phase to ensure coherence across the estimated signals.

4 Experimental setup

Pre-training Dataset: To pre-train the two model variants—one using patches as input and the other
using raw speech blocks—we utilized the widely known Wall Street Journal (WSJ0) corpus (Paul & Baker,
1992). This dataset was recorded using a close-talk microphone, ensuring it is free from both reverberation
and noise. We used 30 hours of speech data from the si_tr_s subset to train the models.

To generate augmented versions of the speech data, we first added noise and then convolved the noisy speech
with impulse responses. For noise addition, we used the noise dataset from (Wichern et al., 2019), which
contains recordings captured using a binaural microphone in various locations around the San Francisco Bay
area. Each speech sample was mixed with a randomly selected noise excerpt from this dataset, ensuring
that the signal-to-noise ratio (SNR) between the speech and noise in each mixture was less than 2. For
reverberation, we convolved the noisy speech with impulse responses provided by (Maciejewski et al., 2020),
specifically using the medium reverberation settings. These impulse responses simulate various acoustic
environments, with reverberation times (T60) uniformly sampled between 0.2 and 0.6 seconds. From the
augmented speech data, we extracted patches and raw speech blocks as described in the speech pre-processing
section. The 30 hours of speech data generated a dataset of over 59 million patches or speech blocks.

Pre-trained Model: We trained a model known as TFBlockNet, based on a convolutional neural network
(CNN) architecture designed for embedding two-dimensional inputs of patches or raw speech blocks. The
architecture is built around multiple layers of Mobile Inverted Bottleneck Convolutional Blocks (MBConv),
which are recognized for their efficiency and ability to capture complex patterns with fewer parameters. The
network concludes with a global pooling layer, followed by a fully connected projection layer (MLP). This
MLP is responsible for projecting the high-dimensional feature maps into a lower-dimensional embedding
space suitable for contrastive learning. The final embedding vector is set to 128 dimensions, optimizing the
model for clustering. The architecture is summarized in Table 1 below.

Table 1: Breakdown of the TFBlockNet Architecture by Stages

Stage Operator #Channels #Layers
1 Conv3x3 32 1
2 MBConv1, k3x3 16 1
3 MBConv6, k3x3 24 2
4 MBConv6, k5x5 40 2
5 MBConv6, k3x3 80 3
6 MBConv6, k5x5 112 3
7 MBConv6, k5x5 192 4
8 MBConv6, k3x3 320 1
9 Conv1x1 & Pooling & FC 1280 1

Pre-training Configuration: Two variants of the model were pre-trained—one on batches and the other
on raw speech blocks—using the Adam optimizer. A cyclical learning rate schedule (Smith, 2017) was
employed, with the learning rate cycling between 1 × 10−4 and 1 × 10−1. This triangular policy, cycling
the learning rate over 10,000 steps, allows for faster convergence and helps avoid overfitting by continuously
adjusting the learning rate throughout training. Each model was trained for 2 million steps on a single
NVIDIA V100 GPU with a batch size of 512, ensuring efficient utilization of computational resources while
maintaining robust feature learning.

Speech Separation Dataset: To evaluate the quality of the separated speech resulting from the proposed
technique, we used several standard benchmark datasets: WSJ0-2mix, WSJ0-3mix (Hershey et al., 2016),
WSJ0-4mix, WSJ0-5mix (Nachmani et al., 2020), Libri5Mix, and Libri10Mix (Dovrat et al., 2021). These
datasets contain mixtures of 2, 3, 4, and 5 speakers (WSJ0-based), or 5 and 10 speakers (LibriMix-based),
respectively.
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The WSJ0-based datasets (WSJ0-2mix, WSJ0-3mix, WSJ0-4mix, and WSJ0-5mix) were generated from the
WSJ0 corpus by mixing clean speech utterances from multiple speakers. Random gains were applied to
achieve relative levels between the speakers, ranging from 0 to 5 dB, to simulate real-world conditions. Each
dataset consists of 30 hours of training data, 10 hours of validation data, and 5 hours of test data. The
training and validation sets share common speakers, while the test set contains unseen speakers, providing
a robust evaluation of the model’s generalization ability.

The LibriMix-based datasets, Libri5Mix and Libri10Mix, were created from the LibriSpeech corpus (Panay-
otov et al., 2015), and contain more complex mixtures involving 5 and 10 speakers, respectively. These
datasets were generated without background noise, with the resulting mixtures having SNRs (signal-to-noise
ratios) that are normally distributed with a mean of 0 dB and a standard deviation of 4.1 dB (Dovrat et al.,
2021). This variety of mixtures represents different levels of complexity in speech separation tasks.

Both the WSJ0 and LibriMix datasets assume an anechoic environment, where speech is recorded in ideal,
noiseless conditions. However, this assumption is unrealistic for practical speech separation, where speech is
often recorded with distant microphones, introducing noise and reverberation. To address this, we also eval-
uated the performance of the proposed technique using the WHAM! (Wichern et al., 2019) and WHAMR!
(Maciejewski et al., 2020) datasets. These datasets are derived from WSJ0-2mix by adding environmen-
tal noise (WHAM!) and both noise and reverberation (WHAMR!), thereby creating more challenging and
realistic conditions for speech separation.

For all datasets, the test set was used to evaluate speech separation performance. The patches or raw
blocks generated from the test speech mixtures were processed by the relevant pre-trained model to generate
embeddings, depending on the type of input the model was trained on (i.e., patches or raw speech blocks).

Clustering: We explored two configurations for clustering the features generated by the pre-trained models.
In the first configuration, we trained a modularization module (MOD) (see Equation 6, the clustering loss
function) on top of a frozen encoder to partition the patches or raw speech blocks. In the second configuration,
we fine-tuned the pre-trained encoder during clustering, optimizing the encoder in an end-to-end differentiable
manner while still using Equation 6 as the loss function. These two configurations allowed us to explore
whether fine-tuning the encoder would improve clustering performance or if a frozen encoder could generalize
effectively.

We trained four different MOD configurations:

1. MOD1: Clustering of patches using a frozen TFBlockNet pre-trained on patches.

2. MOD2: Clustering of raw speech blocks using a frozen TFBlockNet pre-trained on raw speech blocks.

3. MOD3: Clustering of patches with a fine-tuned TFBlockNet pre-trained on patches.

4. MOD4: Clustering of raw speech blocks with a fine-tuned TFBlockNet pre-trained on raw speech
blocks.

Each model was trained using the Adam optimizer with a cyclical learning rate schedule (Smith, 2017),
where the learning rate ranged from 1×10−4 to 1×10−1. Training was conducted on a single NVIDIA V100
GPU for 2 million steps, with a batch size of 512 T-F bins or raw speech blocks per step. The number of
clusters, k, was varied based on the dataset, e.g., k = 3 for the WSJ0-3mix test dataset.

Evaluation Metrics: We evaluated the performance of our speech separation models using several objec-
tive metrics, including both traditional measures and newer, deep learning-based metrics. The traditional
metrics include Short-Time Objective Intelligibility (STOI) (Taal et al., 2011), Perceptual Evaluation of
Speech Quality (PESQ) (Rix et al., 2001), SI-SNR improvement (SI-SNRi), and Signal-to-Distortion Ratio
improvement (SDRi).

STOI measures the intelligibility of the separated speech, particularly in noisy environments. PESQ provides
a perceptual evaluation of speech quality, correlating well with human listening scores. SI-SNRi evaluates
the improvement in the signal-to-interference ratio, reflecting how effectively the model separates the target
speech from interfering sources. SDRi assesses the improvement in overall signal quality after separation.
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In addition to these traditional metrics, we utilized the Deep Noise Suppression Mean Opinion Score (DNS-
MOS) (Reddy et al., 2021), a reference-free metric that evaluates perceptual speech quality. DNSMOS
is based on a deep neural network (DNN) trained on human ratings and follows an online framework for
listening experiments, adhering to the ITU-T P.808 standard.

We also incorporated the SIG, BAK, and OVRL scores from the non-intrusive speech quality assessment
model DNSMOS P.835 (Reddy et al., 2022). These scores evaluate different aspects of speech quality:

• SIG: Assesses the quality of the target speech signal.

• BAK: Measures the suppression of background noise.

• OVRL: Provides an overall quality score.

5 Results

5.1 Quality of Clusters

We first evaluated which of the four model configurations (MOD1, MOD2, MOD3, MOD4) produces better
clusters (partitions). To measure cluster quality, we used the graph-based cluster evaluation metrics proposed
in (Yang & Leskovec, 2012), focusing on metrics that quantify how well a partition is separated from the
rest, i.e., the number of edges connecting a given partition to other partitions. A high-quality partition
should have few edges pointing outside. The most relevant metrics for our study are graph modularity and
conductance.

Cluster Conductance (C) is defined as C = cs

2ms+cs
, where S is a partition, ms is the number of edges

within S (i.e., ms = {(u, v) ∈ E | u ∈ S, v ∈ S}), and cs is the number of edges on the boundary of S (i.e.,
cs = {(u, v) ∈ E | u ∈ S, v /∈ S}). Conductance measures the fraction of edges pointing outside a partition,
with lower values indicating better quality.

Graph Modularity (Q) is defined as Q = 1
4 (ms − E(ms)), where E(ms) is the expected value of ms.

Higher modularity indicates better partition quality.

The results of our evaluation are shown in Table 2. Comparing similarly trained models across all datasets,
we found that encoders trained on raw speech blocks produced higher-quality clusters than those trained
on T-F bin patches. This suggests that for this setup, raw speech features capture more relevant speech
information compared to STFT-transformed features. Additionally, fine-tuning the encoder significantly
improved cluster quality compared to using a frozen encoder.

Table 2: Results of conductance C and modularity Q when using different input configurations and different
mixtures. Here the values of C and Q have been multiplied by 100.

WSJ0-3mix test-dataset
Model Configuration C(↓) Q(↑)

MOD1 14.9 85.1
MOD2 14.4 86.7
MOD3 14.1 88.5
MOD4 13.9 88.9

WSJ0-4mix test-dataset
MOD1 16.2 85.3
MOD2 15.8 86.9
MOD3 15.1 87.2
MOD4 14.6 87.6

WSJ0-5mix test-dataset
MOD1 19.0 76.6
MOD2 18.4 78.5
MOD3 18.0 78.8
MOD4 17.7 79.6
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5.2 Evaluation of Speech Separation Quality

We evaluated the performance of four speech separation models (MOD1, MOD2, MOD3, and MOD4) using
the WSJ0-2mix, WSJ0-3mix, and WSJ0-4mix test datasets. The results, summarized in Table 3, show that
MOD4 consistently achieved the highest performance across all metrics, followed by MOD2, irrespective of
the number of speakers in the mixture. Specifically, MOD4 demonstrated significant improvement in SDRi
(Signal-to-Distortion Ratio improvement), SI-SNRi (Scale-Invariant Signal-to-Noise Ratio improvement),
and STOI (Short-Time Objective Intelligibility), outperforming the other models across all test sets.

Interestingly, this contrasts with the clustering quality evaluation, where MOD4 also produced the best
clusters, but MOD3 outperformed MOD2 in cluster quality. The lower performance of MOD3 compared to
MOD2 in separation quality can be attributed to phase reconstruction issues that arise when using STFT-
transformed features. The phase reconstruction process, essential for high-fidelity speech reconstruction, is
more challenging with MOD3’s approach, leading to suboptimal separation performance.

Across the three datasets, the superior performance of MOD4 and MOD2 is consistent with models trained
on raw speech blocks for both pre-training and downstream tasks. This indicates that raw speech blocks
capture more relevant and meaningful features for speech separation compared to models trained with STFT-
transformed patches (T-F bins). The inferior performance of the T-F bin-based models (MOD1 and MOD3)
likely stems from the phase reconstruction difficulties inherent in this approach, which is further exacerbated
in the separation process.

Table 3: Speech separation results when the two variants of inputs are used

WSJ0-2mix test-dataset
Model SDRi(↑) SI-SNRi(↑) STOI(↑) PESQ (↑) DNSMOS (↑) SIG (↑) BAK (↑) OVRL (↑)

MOD1 16.0 15.8 0.8969 3.93 3.98 3.96 4.11 4.01
MOD2 21.9 21.6 0.9146 4.04 4.14 4.09 4.17 4.16
MOD3 16.2 16.0 0.9054 3.98 4.02 4.00 4.13 4.07
MOD4 22.6 22.3 0.9346 4.08 4.17 4.11 4.23 4.20

WSJ0-3mix test-dataset
MOD1 15.2 14.8 0.8702 3.76 3.86 3.88 3.91 3.89
MOD2 19.7 19.5 0.9051 4.01 4.05 4.01 4.08 4.11
MOD3 15.5 15.2 0.8837 3.86 3.98 3.91 4.07 4.01
MOD4 21.8 21.3 0.9150 4.04 4.10 4.07 4.14 4.09

WSJ0-4mix test-dataset
MOD1 14.4 14.0 0.8414 3.52 3.67 3.75 3.81 3.78
MOD2 17.4 17.0 0.8896 3.92 3.97 3.94 4.01 4.03
MOD3 15.3 15.0 0.8522 3.70 3.84 3.87 4.03 3.98
MOD4 20.9 20.5 0.9011 3.98 4.02 4.00 4.08 4.04

5.3 Comparison with Other Speech Separation Tools in Few-Source Mixtures (n ≤ 3)

We evaluated the performance of the proposed speech separation technique (MOD4) against several state-
of-the-art models on the WSJ0-2mix and WSJ0-3mix test datasets. The results, summarized in Table 4,
demonstrate that MOD4 consistently achieves competitive results. On the WSJ0-2mix dataset, MOD4
attained an SI-SNRi of 22.6, trailing MossFormer2 by 1.5 points, and an SDRi of 22.9, which is only 0.6
points lower than the top-performing TF-GridNet. These results indicate that MOD4, despite not relying
on parallel datasets, is highly competitive with fully supervised methods.

On the WSJ0-3mix dataset, MOD4’s robustness and scalability to higher-source mixtures become evident.
While MossFormer2’s SI-SNRi dropped by 1.9 points between the WSJ0-2mix and WSJ0-3mix tasks, MOD4
only experienced a minor drop of 0.8 points. This ability to maintain performance across more complex
mixtures highlights MOD4’s generalization capability, with MOD4 achieving an SI-SNRi of 21.8, only 0.4
points behind MossFormer2, showing strong scalability as the number of sources increases.

Furthermore, MOD1 and MOD3 outperformed LMISI − 5Enh3, a supervised STFT-based method, which
uses non-negative masking with MISI for phase reconstruction. The superior performance of MOD1 and
MOD3 suggests that the proposed models’ ability to more accurately predict the magnitude of the source
signal results in higher-quality separation, even in the absence of parallel data. This highlights the strength
of raw speech block models over STFT-based models for speech separation tasks.

In conclusion, the results show that the proposed technique (MOD4) generalizes well to more complex
mixtures and performs competitively against top supervised models, despite not relying on parallel datasets,
making it an attractive choice for real-world applications where parallel data is limited.
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Table 4: Comparing the results of the proposed technique with other state of the art speech separation tools.

WSJ0-2mix test-dataset
Model SI-SNRi SDRi

TF-GridNet (Wang et al., 2023) 23.5 23.6
MossFormer2 (Zhao et al., 2024) 24.1 -
SepFormer (Subakan et al., 2021b) 20.4 20.5
SepFormer+DM (Subakan et al., 2021b) 22.3 22.4
Wavesplit (Zeghidour & Grangier, 2021b) 21.0 21.2
Wavesplit+DM (Zeghidour & Grangier, 2021b) 22.2 22.3
DeepCASA (Liu & Wang, 2019b) 17.7 18.0
ConvTasnet (Luo & Mesgarani, 2019b) 15.3 15.6
MixIT(on 8KHz test data) (Wisdom et al., 2020a) 17.0 -
LEnh3

MISI−5(Wang et al., 2019) 15.3 15.6
MOD1 15.8 16.0
MOD2 21.9 22.1
MOD3 16.0 16.2
MOD4 22.6 22.9

WSJ0-3mix test-dataset
MossFormer2 22.2 -
SepFormer 17.6 17.9
SepFormer+DM 19.5 19.7
Wavesplit 17.3 17.6
Wavesplit+DM 17.8 18.1
ConvTasnet 12.7 13.1
LEnh3

MISI−5(Wang et al., 2019) 12.1 12.5
MOD1 14.8 15.2
MOD2 19.7 19.7
MOD3 15.2 15.5
MOD4 21.8 21.9

Table 5: Performance of the proposed technique on high source mixtures as compared to other tools that
can perform high source mixtures separation.

WSJ0-5mix test-dataset
Model SDRi

ConvTasNet (Luo & Mesgarani, 2019a) 6.8
DPRNN (Luo et al., 2020) 8.6
MulCat (Nachmani et al., 2020) 10.6
Hungarian (Dovrat et al., 2021) 13.2
MOD1 8.4
MOD2 12.3
MOD3 9.9
MOD4 13.4

Libri5Mix test-dataset
SinkPIT (Tachibana, 2021) 9.4
MulCat (Nachmani et al., 2020) 10.8
Hungarian (Dovrat et al., 2021) 12.7
MOD1 8.6
MOD2 11.5
MOD3 10.1
MOD4 13.0

Libri10Mix test-dataset
SinkPIT (Tachibana, 2021) 6.8
MulCat (Nachmani et al., 2020) 4.8
Hungarian (Dovrat et al., 2021) 7.8
MOD1 6.9
MOD2 8.1
MOD3 7.3
MOD4 9.8

5.4 Comparison with Other Speech Separation Tools in High-Source Mixtures (n ≥ 5)

We evaluated the performance of the proposed technique on mixtures with a large number of sources. The
results, presented in Table 5, demonstrate that MOD4 achieves superior performance across the SDRi metric,
outperforming existing tools by 0.2, 0.3, and 2.0 points on the WSJ0-5mix, Libri5Mix, and Libri10Mix
datasets, respectively. This consistent performance highlights the ability of the proposed technique to scale
effectively to high-source mixtures while maintaining high-quality separation.

Specifically, in the WSJ0-5mix test set, MOD4 achieved the highest SDRi score of 13.4, surpassing the
previous top-performing Hungarian algorithm by 0.2 points. Similarly, in the Libri5Mix test set, MOD4
obtained an SDRi score of 13.0, outperforming Hungarian by 0.3 points. Notably, the most significant
improvement was observed in the Libri10Mix test set, where MOD4 outperformed Hungarian by 2.0 points,
further demonstrating its scalability in handling increasingly complex mixtures.

These results suggest that MOD4’s architecture and underlying techniques are well-suited for separating a
larger number of sources, surpassing several state-of-the-art methods. This scalability is especially important
for real-world applications, where mixtures of many sources are common, and maintaining high separation
quality becomes increasingly challenging.
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5.5 Results on WHAM! and WHAMR! Datasets

We also assessed the proposed technique on two datasets that include noise and reverberation: WHAM!
and WHAMR!. The results, summarized in Table 6, show that MOD4 achieved the best performance
compared to other state-of-the-art methods on both datasets. On the WHAM! dataset, which requires
simultaneous speech separation and denoising, the model was able to effectively handle the additional noise
partition, demonstrating its robustness in noisy environments. Similarly, on the WHAMR! dataset, where the
model must handle denoising, dereverberation, and speech separation simultaneously, MOD4 outperformed
competing models across both the SI-SNRi and SDRi metrics.

These results highlight the proposed technique’s ability to generalize well to real-world conditions involving
both noise and reverberation, maintaining high separation quality under challenging scenarios. Compared to
models like SepFormer and Wavesplit with dynamic masking (DM), MOD4’s consistent performance across
both noise and reverberation tasks further demonstrates its versatility and robustness in handling complex
acoustic conditions.

Table 6: Comparing the results of the proposed technique with other state-of-the-art speech separation tools
on WHAM and WHARM test-datasets.

WHAM test-dataset
Model SI-SNRi SDRi

SepFormer (Subakan et al., 2021b) 14.7 15.1
SepFormer+DM (Subakan et al., 2021b) 16.4 16.7
Wavesplit+DM (Zeghidour & Grangier, 2021b) 16.0 16.5
ConvTasnet (Luo & Mesgarani, 2019b) 12.7 -
MOD1 13.6 13.9
MOD2 16.4 16.8
MOD3 13.8 14.0
MOD4 17.2 17.4

WHARM test-dataset
SepFormer 11.4 10.4
SepFormer+DM 14.0 13.0
Wavesplit+DM 13.2 12.2
ConvTasnet 8.3 -
BiLSTM Tasnet 9.2 -
MOD1 12.9 13.1
MOD2 14.1 14.4
MOD3 13.2 13.5
MOD4 15.0 15.4

6 Ablation

6.1 k-Means vs. Deep Modularization

In this experiment, we replaced deep modularization with classical k-means clustering to generate partitions,
setting k = 2 for the WSJ0-2mix test dataset and k = 3 for the WSJ0-3mix test dataset. Specifically, after
extracting T-F bin patches or raw speech block features using a frozen pre-trained encoder, we applied k-
means to cluster these features and generate partitions, which were subsequently used for mask generation.
We evaluated k-means in two configurations:

1. k-means (raw speech blocks): Clustering was applied to features extracted from raw speech blocks.

2. k-means (patches): Clustering was applied to features extracted from patches.

The mask generation and speech reconstruction processes remained identical to those outlined in Section 3.
We compared the performance of k-means clustering with that of deep modularization in terms of speech
separation quality. Since k-means uses a frozen pre-trained encoder for feature extraction, we benchmarked
its performance against MOD1 and MOD2, which also leverage a frozen encoder.

As shown in Table 7, deep modularization consistently outperformed k-means across all test datasets. These
results suggest that deep modularization is more effective at capturing the relationships between T-F bins
patches or raw speech blocks, resulting in superior mask generation and better speech separation quality
compared to the classical k-means approach.
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Table 7: Comparing the results of the proposed technique with other state of the art speech separation tools.

WSJ0-2mix test-dataset
Model SI-SNRi SDRi

MOD1 15.8 16.0
MOD2 21.9 22.1
k-means(raw speech blocks) 17.5 17.8
k-means(T-F bin) 12.3 12.4

WSJ0-3mix test-dataset
MOD1 14.8 15.2
MOD2 19.7 19.7
k-means(raw speech blocks) 15.5 15.9
k-means(T-F bin) 11.4 11.9

7 Conclusion

This work introduces an unsupervised technique for speech separation, leveraging a pre-trained model to
generate input features, which are subsequently used in downstream tasks. In the downstream task, we
integrate deep neural networks with graph clustering objectives to create clusters of spectrogram points or raw
speech blocks, grouping T-F bins or blocks dominated by the same speaker together. Extensive experiments
across multiple datasets demonstrate that the proposed method achieves state-of-the-art performance in
both clean and noisy environments.
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