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Abstract
As single-cell datasets are growing, it is becoming possible to analyse differ-

ences between groups of samples on a cellular and molecular level. The promise of
patient stratification, disease classification, and early-stage diagnosis has led to the
development of several so-called sample representation methods. However, con-
sistent standards for the evaluation of sample representation methods are lacking.
We developed SPARE – a modular and extendable sample representation bench-
mark, defining 3 application-inspired metrics, and used these to compare 8 sam-
ple representation methods on 5 datasets, testing different preprocessing regimes.
We find that the density-based method GloScope outperforms other methods on
most datasets and identify general best-practice preprocessing strategies for sam-
ple representation methods. We envision that this study will set standards for the
development of sample representation methods and facilitate users in selecting an
optimal tool, leading to improved outcomes for single-cell applications in preci-
sion medicine.

1 Introduction
Single-cell transcriptomics profiles cells at unprecedented resolution in health and dis-
ease [Regev et al., 2018]. With an ever-growing number of donors in single-cell tran-
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scriptomics datasets [Hrovatin et al., 2025], it has become possible to study variation
on a donor level, which has led to the development of sample representation methods.
These methods enable researchers to stratify patient populations [Boyeau et al., 2024],
infer disease trajectories and connect them to changes in cell type proportions and gene
expression [Joodaki et al., 2024].

While a variety of sample representation methods1 have been suggested, systematic
comparisons are lacking. Existing publications [Appendix A.3] use different datasets to
compare methods, define baselines in an inconsistent way, and apply different metrics,
typically without assessing their biological relevance. A common way to evaluate the
methods in the sample representation literature is the silhouette score [Joodaki et al.,
2024, Boyeau et al., 2024, Wang et al., 2024] measuring how well patients with differ-
ent health status are separated. However, this metric is not extendable to continuous
sample-level covariates, such as age, and is not reliable in nested batch-effect scenarios
[Rautenstrauch and Ohler, 2025], which are common in single-cell datasets.

Here, we present a Single-cell-based Patient Representation Evaluation (SPARE)
benchmark. We developed 4 evaluation metrics measuring clinically relevant informa-
tion retention, batch effect removal, biological trajectory preservation and robustness
of sample representation methods. We used these to systematically compare 8 sample
representation methods on single-cell transcriptomics data from 5 large-scale datasets
on COVID-19 [COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium, 2022,
Stephenson et al., 2021], aging [Yazar et al., 2022], Chronic Obstructive Pulmonary
Disease (COPD)2, and Human Lung Cell Atlas (HLCA) [Sikkema et al., 2023]. As
data preprocessing has been shown to be crucial for cell-level analysis, we addition-
ally explore the effect of 5 preprocessing approaches for sample representations. We
demonstrate the impact of using top-performing methods by showcasing the recovery
of COVID-19 biomarkers. Our work provides a framework for sample representation
evaluation and an easily extendable Nextflow pipeline [Di Tommaso et al., 2017] to
facilitate future method development. We envision that the SPARE benchmark will
standardize the problem definition of generating meaningful sample representations
from single-cell data and guide both users and developers of these methods to better
derive relevant patient-level insights from single-cell data, paving the way for single-
cell-informed personalised medicine.

2 Benchmarking setup
Sample representation methods have been developed using a variety of approaches,
from simple averaging to optimal transport Joodaki et al. [2024], Chen et al. [2020]
or tensor decomposition [Mitchel et al., 2024]. As a result, method input and output
formats vary. To consistently benchmark sample representation methods, we devel-
oped a benchmarking pipeline (Figure 1) that defines common data input and output
formats to which all methods were adapted. We collected 5 population-scale datasets
with comprehensive sample-level metadata from 2 tissues comprising 4.5 million cells

1Sometimes also called patient representation methods. To disambiguate from cases when all the donors
in a dataset are healthy or when donors have multiple samples taken, we prefer using the term “sample”.

2Unpublished, provided by collaborators
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Figure 1: Benchmark overview. Top: benchmarking pipeline, bottom: metrics and
examples of a good and a bad representation for each metric.

and 1668 samples (Table 1). We classified the metadata into technical (e.g., batch,
number of cells) and relevant (e.g., disease severity, symptoms duration). Here, rele-
vant metadata are signals relevant to the main focus of the corresponding study and are
regarded as most important to accurately represent and technical metadata signals are
regarded as a nuisance signal. Single-cell datasets are preprocessed using 5 strategies
that comprise 3 batch correct methods (scVI [Gayoso et al., 2022], scANVI [Xu et al.,
2021], and scPoli [De Donno et al., 2023]) and 2 non-batch corrected cellular represen-
tations (PCA [Pearson, 1901] and gene expression), and the preprocessed single-cell
embeddings are input into 8 methods comprising baseline methods and sample rep-
resentation methods [Argelaguet et al., 2020, Wang et al., 2024, Joodaki et al., 2024,
De Donno et al., 2023, Heumos et al., 2024]. Excluding the methods that did not finish
the computation in 24 hours, this gives a total of 169 runs in the benchmark.

Overall, this setup is sufficiently flexible to evaluate different types of sample rep-
resentation methods while ensuring that methods are evaluated in comparison with
simple baseline methods that have performed well in the past on a range of datasets
that cover diverse application scenarios.

3 Defining biologically meaningful metrics
In this section, we suggest metrics inspired by biological applications. We define infor-
mation retention and batch effect removal scores to rank sample representation meth-
ods by their diagnostic applicability, a trajectory preservation score to evaluate the
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Table 1: Datasets overview.
Dataset COMBAT Stephenson Onek1k HLCA COPD

#donors 140 130 982 344 61 (72 samples)

#cells 784k 639k 1.25M 1.68M 176k

Tissue PBMC PBMC PBMC Lung and airways Lung parenchyma

Relevant covariates Condition, Severity,
Death in 28 days, Duration

Condition, Severity,
Outcome, Duration Age

Tissue anatomical location,
Condition, Smoking status

Severity, Lung function tests,
Progression

Technical covariates Institute, Pool ID Site Sex
Suspension type,
Fresh or frozen,

Sequencing platform, Assay
Batch, Lung lobe, Cancer

representation of continuous processes, and a replicate robustness score to check the
consistency of results across replicate samples. Rigorous definitions of these metrics
can be found in the appendix A.4.

3.1 Information retention and batch effect removal
The structure of a meaningful sample representation should be determined by relevant
biological and clinical parameters of interest and not by technical artefacts. Mathemat-
ically, this can be quantified by assessing the proximity of biologically similar samples
in an embedding space. A good sample representation can be used to annotate samples
with unknown labels based on similar samples in this embedding. This can be helpful
for personalised medicine applications, such as disease diagnostics, and for atlassing,
where researchers often struggle due to missing labels in the data [Huang et al., 2023].

To overcome the limitations of a typically used silhouette score, we propose eval-
uating embeddings using a KNN-based prediction of sample-level features. In this
setup, the prediction performance reflects the preservation of the corresponding effect
in the sample embedding. We measure the F1 score corrected for random prediction
(see Appendix A.5) for categorical covariates and the Spearman correlation score for
ordinal and continuous variables. For relevant features (Table 1), we call this metric
information retention. For batch effect removal, we use the same KNN prediction ap-
proach but invert the metric so that score 0 means an embedding, where technical fea-
tures are grouped perfectly, and score 1 means a complete removal of technical effect
from a sample representation. We report the average metric for all relevant or technical
covariates, thus focusing not only on one covariate of interest, but on all accessible
metadata.

3.2 Biological trajectory preservation
Many biological processes that are likely of interest in a sample representation (such
as infection, development, or aging) are continuous in nature. It is therefore important
to not only group samples in a meaningful way but also to order them correctly. To
measure how well such effects are preserved in the sample embeddings, we assess
whether sample-level trajectories can be identified that order ordinal or continuous
relevant metadata covariates correctly. For this, we calculate diffusion pseudotime
starting from the putatively earliest point in the trajectory (see Appendix) and compute
its correlation with various trajectories from the metadata.
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3.3 Replicate robustness
Assuming that a tissue sample represents the health of the underlying organ, replicate
samples taken from the same individual at the same time point should capture tech-
nical variability, potentially some biological variability from differences in sampling
location, but limited or no clinical variability. Thus, these samples should have a very
similar sample representation. We test this assumption with different samples from the
same patients in the COPD dataset. We use the fraction of samples less similar to a
given sample than its replicate as a metric. A value 0 means that all samples are more
similar to a sample than its replicate, and a value 1 means that replicates are the most
similar samples in the representation. We report the average value for 6 replicate pairs
as a final metric.

3.4 Metric aggregation
To aggregate scores into one metric for ranking, we used a weighted average with
weights equal to 1 for every metric except for batch removal, where it is set to 1/2.
This is done to prevent prioritizing poor representations because the batch removal
score is equal to 1 for a random embedding. It is not easy to reach a high score in
other metrics so the batch removal score without down-weighting biases results towards
representations closer to random. The aggregated total score is then scaled to the [0; 1]
interval.

4 Benchmarking results

4.1 GloScope and baselines often outperform other methods
We find that for all tasks, most or all top-performing sample representations are built
with cell embeddings from variational autoencoders (Table 2). Even baseline sam-
ple representation methods, such as pseudobulk or cell-type pseudobulk, often show
good performance and outperform most other tools when batch-corrected cell embed-
dings are used. The only methods with a higher total score than baselines were Glo-
Scope [Wang et al., 2024], which showed consistent performance across datasets, and
MOFA [Argelaguet et al., 2020], which provided the best sample representations for
the Stephenson dataset.

4.2 GloScope is the best method for information retention
We find that across all sample representation tasks, the density estimation-based method
GloScope performed best in information retention (score 0.448 ± 0.123 across datasets).
Furthermore, GloScope also showed the lowest standard deviation among top-performing
methods, suggesting its robust performance across tasks: individual embeddings of
GloScope were top performers for 4 out of 5 datasets in our benchmark. PCA-GloScope
representation scored best for HLCA and COPD datasets, while embeddings built on
scANVI features performed best for Onek1k and COMBAT datasets. For the Stephen-
son dataset, the highest information retention score was obtained with MOFA trained
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Table 2: Top 3 best and 1 worst representation per dataset according to the total score.
Representation names consist of input space (where applicable) and sample represen-
tation method. sc[AN]VIb refers to a sc[AN]VI model trained with the batch covariate
“batch” to integrate the data, while sc[AN]VIs uses sample ID as a batch covariate.

Dataset Representation
Information

retention
Batch

removal
Replicate
robustness

Trajectory
preservation Total

COMBAT

scPoli – GloScope 0.37 0.57 – 0.79 0.58
scANVIs – GloScope 0.31 0.47 – 0.71 0.50
scANVIb – CT pseudobulk 0.24 0.70 – 0.62 0.48
counts - MOFA 0.23 0.53 – 0.03 0.21

Stephenson

scVIs – MOFA 0.48 0.47 – 0.45 0.47
scVIb – MOFA 0.47 0.44 – 0.45 0.45
scANVIb – MOFA 0.41 0.42 – 0.45 0.43
scPoli - Pseudobulk 0.06 0.58 – 0.07 0.17

Onek1k

scPoli – GloScope 0.60 0.55 – 0.41 0.52
scANVIs – GloScope 0.63 0.47 – 0.42 0.51
Cell type composition 0.54 0.65 – 0.40 0.50
scPoli - MOFA 0.00 0.97 – 0.00 0.20

HLCA

scVIb – Pseudobulk 0.54 0.36 – 0.81 0.61
scANVIb – Pseudobulk 0.48 0.46 – 0.81 0.61
scVIs – Pseudobulk 0.54 0.37 – 0.80 0.61
Ehrapy 0.00 0.98 – 0.07 0.23

COPD

PCA – GloScope 0.54 0.69 0.98 0.26 0.61
scANVIb – CT pseudobulk 0.48 0.61 0.96 0.33 0.59
scANVIb – GloScope 0.47 0.61 0.99 0.32 0.59
Random vector10 0.01 0.97 0.37 0.02 0.25
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Figure 2: Information retention
and batch effect removal trade-
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best sample representation from
each method.
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on scVI or scANVI cell embeddings, with several GloScope representations closely
following.

Comparing sample representation methods with varying preprocessing strategies,
scPoli [De Donno et al., 2023] stands out as a preprocessing strategy because it pro-
vides sample embeddings in addition to cell representations. Notably, scPoli is one of
the worst performing methods for sample embedding with a mean information reten-
tion score of 0.225 ± 0.065 and a batch removal score of 0.641 ± 0.176, outperform-
ing only negative baseline with random vectors and ehrapy representation in capturing
relevant information. However, scPoli cell embeddings were a valuable input for Glo-
Scope, providing top-performing representations for COMBAT and Onek1k.

Notably, all methods in our benchmark outperformed the Ehrapy [Heumos et al.,
2024] representation built on accessible clinical metadata. This highlights the signifi-
cant information gain from single-cell transcriptomics data and its potential application
in a clinical scenario.

4.3 GloScope recovers biomarkers of COVID-19 severity
After evaluating all methods on all datasets using trajectory preservation score, we
again found that GloScope embeddings are in the top 3 of all datasets. Gloscope pro-
duces the best representation for COVID-19 severity in the COMBAT (score = 0.787)
and aging in the Onek1k (score = 0.420) datasets. MOFA represented COVID-19 sever-
ity in the Stephenson dataset with a score of 0.453. Cell-type pseudobulk captured
COPD severity best (score = 0.332), and pseudobulk obtained the best embedding for
continuous anatomical location in HLCA (score = 0.814). All the best trajectory repre-
sentations were based on cellular features from a variational autoencoder (scANVI for
all except COMBAT, where scPoli-based representation scored the highest).

To demonstrate the biological utility of this metric, we further investigated the top-
performing embedding in a COVID-19 severity case study. While the scANVI-based
GloScope representation scored the highest for information retention (score = 0.429),
pseudotime built on this embedding only had a correlation score of 0.266 with COVID-
19 severity. In contrast, the scPoli-GloScope embedding had an information retention
score of 0.373 but a trajectory preservation score of 0.787. UMAP visualisations of
the sample embeddings (Figure 3) provide some context for this discrepancy. The
scANVI-based representation places patients with sepsis separately, thus achieving a
better KNN-based score, while the scPoli-based embedding mixes these patients with
COVID-19 cases, thereby potentially representing inflammation patterns that are com-
mon in different diseases.

We confirm this by computing the correlation of pseudotime with cell type pro-
portions. The pseudotime trajectory for the scPoli-GloScope representation correlates
with the proportion of classical monocytes (Spearman correlation 0.489, adj. p-value
1.95e-08), platelets (Spearman correlation 0.462, adj. p-value 1.02e-07) and other hall-
marks of COVID-19 severity [COvid-19 Multi-omics Blood ATlas (COMBAT) Con-
sortium, 2022], thus acting as a severity score. In contrast, the scANVI-based rep-
resentation only correlates with B-cell proportions (Spearman correlation 0.297, adj.
p-value 0.007). This result suggests that our trajectory-evaluation metric is a useful
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orthogonal measure of sample representations, and it can be used as an analysis tool to
obtain biological insights on likely disease biomarkers.

4.4 Many sample representation methods fail to robustly represent
replicates

The only methods that correctly represent all the replicates as the closest samples were
scANVI-GloScope and PCA-MOFA (Table 4). Aggregated results with the best repre-
sentation per input space according to the robustness metric suggest that GloScope is
the most robust method (score of 0.986), followed by cell type composition (score of
0.974, 1 data point only), and PILOT (score of 0.937).

4.5 Scalability limits the application of certain methods
The number of cells in datasets has grown exponentially over the years, and recently,
datasets with close to a thousand samples have become available. With expectations of
even larger datasets, sample representation methods must be not only efficient but also
scalable.

Our experiments were run on a computational cluster with 300 GB RAM and 32
CPU cores. Preprocessing was performed on a computational cluster with a GPU. We
find that most methods compared in this study take minutes to run (at most 11 minutes
29 seconds for one PILOT run). However, GloScope, despite great performance in all
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metrics, took 6 hours and 53 minutes to finish on average, with the longest run taking
16 hours. For HLCA, GloScope did not finish computations in 24 hours and was not
evaluated. Moreover, some published methods were not described in this benchmark-
ing study [Boyeau et al., 2024, Tong et al., 2021] as they caused out-of-memory error,
even on a 50% subset of the data. We encourage the method developers community to
use our benchmarking setup to suggest new methods or improve the efficiency of the
existing tools.

5 Conclusion
In this study, we defined biologically meaningful metrics to evaluate sample represen-
tation methods from single-cell data and showed how they can select methods that pro-
vide valuable insights into disease. SPARE can distinguish good from poor perform-
ing sample representation methods and therefore sets standards for the development of
these methods and prioritizes tools for differnet use cases. We find that cell embeddings
from variational autoencoder-based models provide valuable input for sample repre-
sentation, and a density estimation method, GloScope, outperforms other approaches
in all metrics despite worse scalability. We see great potential for method development
in this direction facilitated by our sample representation benchmark setup and easily
extendable Nextflow pipeline.

6 Code availability
SPARE benchmark pipeline is available on GitHub: https://github.com/lueckenlab/
SPARE. For running sample representation methods, evaluating the methods and biomarker
analysis, we used the open-source patpy package: https://github.com/lueckenlab/
patpy.
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Meaningfulness Statement

We consider a meaningful representation of life to be a biological sample representation
that reflects the biological and clinical features of donors. Our work builds a bench-
mark for sample representation from single-cell data and evaluates existing methods
with biologically meaningful metrics. This paves the way for single-cell genomics
applications for human health and personalised medicine.
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A Appendix

A.1 Sample representation task
Let xs

i = {gsi1, gsi2, . . . , gsim, lsi } be a cell of sample s with g·j ∈ Z≥0 representing gene
expression and l representing a cell type label. A single-cell sample is a collection of ns

cells Xs = {xs
1,x

s
2, . . . ,x

s
ns
}. We define a sample representation task as calculating a

divergence or distance between single-cell datasets:

d(f(Xj), f(Xk)) (1)
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Where f is a preprocessing function. Sample representation is, therefore, a matrix
of pairwise distances (or divergencies) between samples. This is a convenient format
because every output of every sample representation method can be converted to a
distance between samples and because all of the metrics in our study require only the
distances between samples, not sample embeddings. Distance matrix can be used for
other downstream tasks, such as clustering to find groups of similar samples, and for
visualisation with TSNE, UMAP or Multidimensional scaling.

A.2 Preprocessing methods
A.2.1 Normalized expression

We use scanpy [Wolf et al., 2018] to preprocess single-cell data. Raw gene expres-
sion is normalized to 10,000 and log1p-transformed. 3000 highly-variable genes are
selected in a batch-aware approach with seurat v3 method [Stuart et al., 2019].

A.2.2 PCA

We use Principal Components Analysis [Pearson, 1901] (PCA)-transformed normal-
ized expression as a low-dimensional representation of cells to have a non-batch cor-
rected input space. 50 principal components are used.

A.2.3 scVI

scVI [Gayoso et al., 2022] is a variational autoencoder trained to embed cells in a latent
space with the normal distribution of the features and reconstruct counts from latent
features. We train the scVI model with parameters n layers=2, n latent=30,
gene likelihood="nb", following the recommendations in the scvi-tools docu-
mentation. For all datasets except COPD, we train 2 scVI models with a sample or
batch as a batch covariate to eliminate technical effects. Latent cell representations of
the trained models are then used as input to sample representation methods.

A.2.4 scANVI

scANVI [Xu et al., 2021] is a semi-supervised extension of scVI that incorporates cell
type information in the model. It was shown to be the best method for atlassing level
integration of single-cell data [Luecken et al., 2022] and is widely used in the atlassing
[Sikkema et al., 2023]. We initialize scANVI model with a trained scVI model and
train it for additional 20 epochs.

A.2.5 scPoli

scPoli is a variational autoencoder model for population-level integration of single-
cell datasets. Its distinct features are learning sample embeddings instead of one-hot
encoding sample IDs in scVI and scANVI models and using prototype loss to learn cell-
type prototypes. We train scPoli with parameters latent dim=3, n epochs=50,
pretraining epochs=40, eta=5.
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A.3 Sample representation methods
A.3.1 Random vector

As a negative baseline to validate the correct behaviour of our metrics, we generate
random representations for samples in each dataset. This method is completely data-
independent. I terms of the equation 1,

f(X) ∼ NK(0, IK)

Where K is a dimensionality of a random vector. We use K = 10, 30 and Eu-
clidean distance as d.

A.3.2 Pseudobulk

This simple baseline method aggregates all the cells of a sample in a single vector
representing an average cell of this sample. Hence the name: it simulates a sample
from a bulk RNA-sequencing study.

f(Xs) =
1

ns

ns∑
i=1

xi

Where xi is ith cell representation of a given sample. Features of xi must not
be raw expression counts at this point and can be any real number. As d, we use
Euclidean and cosine distance but discard the latter due to its identical performance
with the Euclidean distance.

A.3.3 Cell type pseudobulk

This baseline method aggregates cells per cell type. Each sample is therefore repre-
sented as a vector with length K ∗C, where K is the dimensionality of input space and
C is the number of cell types in a dataset. Let nci be the number of cells with cell type
label ci. Then:

f(X) = {pc1 ,pc2 , . . . ,pcC}

Where pci is a pseudobulk of all cells with label ci. Euclidean distance between ag-
gregated representations of overlapping cell types between samples is then calculated.

A.3.4 Cell type composition

This baseline method does not use expression information at all and only compares
samples based on the differences in cell type proportions.

f(Xs) = {
ns∑
i=1

1li=c1

ns
,

ns∑
i=1

1li=c2

ns
, . . . ,

ns∑
i=1

1li=cC

ns
}

Where, 1li=ci is the indicator function that equals 1 if the cell i has label li equal
to cell type ci, and 0 otherwise. We use Euclidean distance as d.
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A.3.5 Ehrapy

This baseline stands out of the others because it is the only one using sample metadata.
We select easily accessible covariates that can be routinely measured in a clinical prac-
tice or provided by a patient. We then one-hot encode categorical variables, build PCA
and calculate Euclidean distances between PCA features of the samples.

Table 3: Metadata features used to build Ehrapy representation.
Dataset Accessible metadata features
COMBAT Age, Sex, BMI, Hospitalstay, PreExistingHeartDisease, Pre-

ExistingLungDisease, PreExistingKidneyDisease, PreExisting-
Diabetes, PreExistingHypertension, PreExistingImmunocom-
promised, Smoking, Requiredvasoactive, Respiratorysupport,
SARSCoV2PCR, TimeSinceOnset

Stephenson Swab result, Smoker, Days from onset, sex, development stage
Onek1k age, sex
HLCA BMI, age or mean of age range, age range, anatom-

ical region ccf score, smoking status, sex, tissue,
self reported ethnicity, development stage

COPD Smoking Status, Age, Sex, FEV1, FEV1 FVC, Bronchodila-
tor Use, Leukotriene Use, Steroid Use, Pack Year, Smok-
ing History, Quit Data

A.3.6 scPoli

We use scPoli sample embeddings to calculate distances between samples. f , in this
case, is a lookup table, which returns a sample embedding from a trained variational
autoencoder. d is an Euclidean distance.

A.3.7 PILOT

PILOT [Joodaki et al., 2024] is an optimal transport method that calculates the Wasser-
stein distance between 2 samples represented as cell type proportions, taking into ac-
count cell type similarity. f is similar to cell type composition, but instead of cell type
proportions, maximum a posteriori estimates of parameters of the multinomial distribu-
tion are taken. d is the Earth Moving Distance between estimated cell type proportions.
To compute optimal transport cost, it uses cosine distance between cell types defined
as medoids of cell type (similar to pseudobulk, but per-feature median is used instead
of average). For details, see the original publication [Joodaki et al., 2024].

A.3.8 GloScope

GloScope [Wang et al., 2024] estimates distance between distributions of cells of dif-
ferent samples. To do so, it uses Kullback-Leibler (KL) divergence. Let rj(xi,u) be the

15



distance from the uth cell in sample i to its kth nearest neighbour in sample j. Then,
the KL divergence is estimated as:

K̂L(Xi ∥ Xj) =
K

ni

ni∑
u=1

log
rj(xi,u)

ri(xi,u)
+ log

nj

ni − 1

Where K is the cell representation dimensionality. The resulting divergence be-
tween samples is obtained by symmetrizing KL divergence:

d(Xi,Xj) = KL(Xi ∥ Xj) +KL(Xj ∥ Xi)

We run GloScope with parameters dist mat="KL", dens="KNN", k=25.

A.3.9 MOFA

MOFA [Argelaguet et al., 2020] uses factor decomposition to decompose cell type
pseudobulks Pi:

Pi = ZW + ϵ

Where Z ∈ RS×F is a sample by factor matrix with S samples and F factors,
and W ∈ RF×K is the factor loading matrix for cell features. We then calculate the
Euclidean distance between factor values for each sample.

A.4 Metrics definition
A.4.1 Information retention and batch removal scores

Let NN(Xi, k) be the indices of the k nearest neighbors of ith sample in a sample rep-
resentation. For a categorical metadata covariate G, kNN-based prediction is obtained
as:

Ĝi = argmax
l∈unique(G)

∑
j∈NN(Xi,k)

1Gj=l

Where unique(G) is the set of unique values of G. For a numerical or ordinal
covariate R, a prediction is obtained as:

R̂i =
1

k

∑
j∈NN(Xi,k)

Rj

An information retention score for categorical covariates is the macro F1 score
corrected for random prediction (see Appendix A.5 for the motivation and proof):

I(G) = F̃1
macro

=
L

L− 1
(F1

macro(G, Ĝ)− 1

L
)

For categorical and ordinal covariates, an information retention score is the absolute
value of the Spearman correlation [Spearman, 1904] between true and predicted values:
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I(R) = |ρ(R, R̂)|

Batch removal score is an inverted information retention score for technical covari-
ates:

B(G) = 1− I(G)

B(R) = 1− I(R)

We use k = 3 for all datasets and covariates in the study.

A.4.2 Trajectory preservation

To evaluate trajectory preservation, we use disease severity in COMBAT, Stephenson
and COPD datasets, age in Onek1k dataset, and continuous anatomical location in the
HLCA. We select the earliest time point in each trajectory, i.e. the youngest non-
smoking healthy donor or the most proximal sample, as the start of the trajectory and
apply diffusion pseudotime [Haghverdi et al., 2016] to order the other samples in a
representation. Let T be a vector of diffusion pseudotime values and R a ground truth
trajectory covariate. The trajectory preservation score TS is defined as the absolute
value of Spearman correlation between T and R:

TS = |ρ(T,R)|

A.4.3 Replicate robustness

Let U(Xi,Xj) be the number of samples with distance to Xi smaller than distance
between Xi and its replicate Xj :

U(Xi,Xj) =

N∑
k=1,k ̸=i,j

1d(Xk,Xj)<d(Xi,Xj)

The replicate robustness score RS is the fraction of samples that are less similar to
Xi than its replicate:

RS(i, j) = 1− U(Xi,Xj)

N − 1

The final replicate robustness score is the average across all replicates in a dataset:

RS =
1

|replicates|
∑

i,j∈replicates

RS(i, j)

We use different samples from the same patients in the COPD dataset to calculate
the replicate robustness score.
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A.5 F1 score corrected for random prediction
To measure how well a sample representation preserves information about categorical
covariates, we use the macro F1 score for the values predicted from the nearest neigh-
bours for every sample. However, for the default implementation of this score, its value
depends on the number of levels L in a covariate. Below, we prove that for a random
prediction, the expected value of Fmacro

1 score is 1
L . For example, if a covariate is

binary, the value would be 1
2 , and for a covariate with 6 levels, the score would be 1

6 .
Such a behaviour makes it unclear which covariate is represented better and which has
a higher value merely due to fewer classes. To be able to rank covariates by the quality
of prediction, and make an averaged score more interpretable, we use the corrected
version of the metric:

F̃1
macro

=
L

L− 1
(F1

macro − 1

L
) (2)

This score takes values from [− 1
L−1 ; 1], where a score of 1 means a perfect pre-

diction for every sample, 0 means a random prediction and negative values mean a
prediction worse than random. We further clip negative values to 0 to not distinguish
between the latter 2 cases.

Proof. In the sklearn implementation, macro F1 score is defined as an un-
weighted average of F1 scores for each of L classes:

Fmacro
1 =

1

L

L∑
i=1

F i
1 (3)

Where the score for each class F i
1 is a harmonic mean of precision and recall con-

sidering instances of class i as a ”true” label:

F i
1 = 2

precisioni ∗ recalli
precisioni + recalli

(4)

Precision and recall are defined through true positive (TP ), false positive (FP ),
and false negative (FN ) predictions:

precisioni =
TPi

TPi + FPi
(5)

recalli =
TPi

TPi + FNi
(6)

Let pi be a fraction of class i to the total number of observations. For a random
prediction, expectations of both precision and recall are equal to pi as well as their
harmonic mean F i

1. Summing pi over all classes removes the sum in 3 and finishes the
proof. Note that the expected value of Fmacro

1 does not depend on the proportion of
the classes but only on their number.
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A.6 Batch effect correction is a necessary step of optimal sample
embedding

Batch effect correction is a crucial analysis step to draw biologically meaningful con-
clusions that are not affected by technical artefacts from genomics data. For single-cell
transcriptomics, variational autoencoder-based methods [Gayoso et al., 2022, Xu et al.,
2021, De Donno et al., 2023] have shown good performance for large-scale data inte-
gration [Luecken et al., 2022]. However, the effect of batch effect correction on sample
representation was not previously explored. Our analysis shows that technical and rel-
evant features are often entangled, and better retention of relevant information usually
means worse batch effect removal (Figure 2). In an attempt to break this relation, we
tested if sample representations based on batch-corrected cellular features outperform
representations based on PCA-transformed count data.

We compared the information retention and batch removal scores for all methods
that could take different cell representations as input with those of the same method
based on PCA (Figure 4). Notably, using a batch-corrected space often did not improve
the relevant feature representation. Instead, the information retention score was often
reduced while batch correction was improved, showing information loss in the embed-
ding. Most frequently, this was the case for MOFA and pseudobulk experiments. For
some methods, however, batch correction prior to sample representation improved the
information retention score while reducing batch effects. GloScope, PILOT and pseu-
dobulk benefitted from batch-corrected cell representations the most. Notably, many of
the inproved representations used cell embeddings from scANVI or scPoli, which both
leverage cell type labels on training. This result suggests that using cell-type aware in-
tegration methods benefits sample representation. This can be explained by the fact that
they use more prior information or that they converge better with default parameters.

A.7 Replicate robustness results

Table 4: Average replicate robustness metric for different methods
Sample representation method Average replicate robustness metric
GloScope 0.986 ± 0.001
Cell type composition 0.974
PILOT 0.937 ± 0.025
Pseudobulk 0.912 ± 0.103
CT pseudobulk 0.911 ± 107
MOFA 0.751 ± 0.235
Random vector 0.370

A.8 Not aggregated results for the KNN score
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Figure 4: Effect of batch correction on sample representation. Axes
represent differences in information retention (horizontal) and batch
removal (vertical) scores for each method in comparison to PCA-
based representation with the same method.
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Figure 5: Not aggregated results for Figure 2
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