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Abstract

Recent work has applied differential privacy (DP) to adapt large language models1

(LLMs) for sensitive applications, offering theoretical guarantees. However, its2

practical effectiveness remains unclear, partly due to LLM pretraining, where3

overlaps and interdependencies with adaptation data can undermine privacy despite4

DP efforts. To analyze this issue in practice, we investigate privacy risks under5

DP adaptations in LLMs using state-of-the-art attacks such as robust membership6

inference and canary data extraction. We benchmark these risks by systematically7

varying the adaptation data distribution, from exact overlaps with pretraining data,8

through in-distribution (IID) cases, to entirely out-of-distribution (OOD) examples.9

Additionally, we evaluate how different adaptation methods and different privacy10

regimes impact the vulnerability. Our results show that distribution shifts strongly11

influence privacy vulnerability: the closer the adaptation data is to the pretraining12

distribution, the higher the practical privacy risk at the same theoretical guarantee,13

even without direct data overlap. We find that parameter-efficient fine-tuning14

methods, such as LoRA, achieve the highest empirical privacy protection for OOD15

data. Our benchmark identifies key factors for achieving practical privacy in DP16

LLM adaptation, providing actionable insights for deploying customized models in17

sensitive settings. Looking forward, we propose a structured framework for holistic18

privacy assessment beyond adaptation privacy, to identify and evaluate risks across19

LLMs’ full pretrain-adapt pipeline.20

1 Introduction21

The use of pretrained large language models (LLMs) for sensitive downstream tasks, such as medical22

decision making, has grown rapidly [25, 12, 49]. To offer protection for the private data used to23

adapt the LLMs to these sensitive tasks, differential privacy (DP) [16, 17] has emerged as a gold24

standard [53, 54, 30, 13, 33]. However, adapting a pretrained LLM with DP may not always provide25

the anticipated privacy protections [48]. The challenge arises from potential overlap or complex26

interdependencies between data used to pretrain the LLMs and the adaptation dataset. The problem is27

exacerbated by the fact that for most LLMs, their pretraining datasets are not disclosed [35, 39, 46],28

rendering a structured reasoning of the interdependencies with the private adaptation data impossible.29

While prior work has investigated privacy risks stemming from LLM pretraining [10, 9], post-hoc30

leakage in non-private adaptations [58], or auditing DP adaptations via synthetic canaries [36], we31

still lack a structured understanding of the empirical privacy risks of DP adaptations. This is a32

critical gap. Without a clear understanding of the practical risks, LLM practitioners are left with little33

guidance on how to privately apply LLMs in privacy-sensitive settings, including critical questions34

like: which adaptation method to use, what pretrained model is best given the private adaptation data35

distribution, and what privacy levels will be protective enough.36
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Figure 1: Setup for Privacy Auditing of DP-LLM Adaptations. We perform our audits based
on the privately adapted LLM’s output, either by using RMIA [8] as the strongest state-of-the-art
membership inference attack, or by relying on data extraction attacks. For the latter, we include
canary data into the adaptation set and measure its exposure.

To close this gap, we conduct a comprehensive benchmark evaluation that sheds light on the empirical37

leakage introduced by DP adaptations. We evaluate a wide range of private adaptation strategies,38

including full and last-layer DP fine-tuning [30], parameter-efficient fine-tuning (PEFT) methods39

such as DP-LoRA [21, 54], DP-Prefix Tuning [31], as well as DP prompting schemes [13]. To assess40

leakage, we focus on the Robust Membership Inference Attack (RMIA) [56], which represents the41

strongest state-of-the-art threat model for auditing LLM privacy, and complement this with data42

extraction attacks [47, 7, 6] to evaluate more severe forms of information leakage. A general overview43

of privacy auditing for adapted LLMs is provided in Figure 1.44

We systematically analyze a spectrum of possible distributions for the adaptation data with respect45

to the pretraining data—ranging from data perfectly overlapping with the pretraining data, over IID46

scenarios, to entirely OOD examples—to understand the possible privacy implications for all setups.47

Our benchmark spans six datasets drawn from diverse domains, four adaptation methods, and six48

pretrained LLMs of different sizes and architectures, enabling comprehensive comparisons across49

setups. We further analyze a broad spectrum of privacy regimes from no privacy to high privacy,50

enabling structured reasoning about the resulting risks. Our study is guided by a central question:51

What are the empirical privacy risks for the adaptation data that result from DP adaptations?52

Looking ahead, we highlight the need to jointly audit privacy risks from pretraining and adaptation53

and their interplay, as LLMs may leak information from either stage. To address this, we propose54

a new structured framework for holistic privacy assessment across the full pretrain-adapt pipeline.55

It defines four key audit stages: (1) pretraining, (2) adaptation, (3) their joint interaction, and (4)56

post-adaptation auditing of pretraining. To formally ground these audits and make them instantiatable,57

we redefine each stage’s membership inference game [52, 23]. We hope this formalization and our58

practical insights from the benchmark will guide researchers in developing future assessments and59

help practitioners deploy customized LLMs responsibly in sensitive domains.60

2 Background and Related Work61

Differential Privacy. The mathematical framework of DP [16] formalizes the intuition that privacy62

guarantees can be obtained when a randomized mechanism M executed on two neighboring datasets63

D, D→ that differ in only one data point, yields roughly the same result, i.e.,64

Pr[M(D) → S] ↑ e
ω · Pr[M(D→) → S] + ω. (1)

The privacy parameter ε specifies how much the result can differ, and ω is the probability of failure to65

meet that guarantee. There are two canonical algorithms to implement DP guarantees in machine66

learning (ML): DPSGD (Differentially Private Stochastic Gradient Descent) algorithm [2], which67

extends standard stochastic gradient descent with clipping and noising gradients, and PATE (Private68

Aggregation of Teacher Ensembles) [37, 38], which is an inference time algorithm that privately69

transfers knowledge from an ensemble of teachers to a public student model.70
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Private Adaptations of LLMs. LLMs are pretrained on extensive amounts of public data, followed71

by adaptations to private downstream tasks. The existing methods for private LLM adaptations fall72

into two categories: (1) private tuning methods, such as PrivateLoRA [54] or PromptDPSGD [13],73

that rely on access to the LLM gradients and are based on the DPSGD algorithm, and (2) private74

in-context learning (ICL) methods, such as DP-ICL [51] or PromptPATE [13], which require only75

API (black-box) access to the LLM and are based on PATE. See Appendix A.1 for details.76

Membership Inference Attacks. A membership inference attack (MIA) [44, 56, 43, 8] aims to77

determine whether a specific data point can be identified as part of a model’s training set. This78

approach plays a crucial role in applications ranging from privacy assurance [45] to identifying79

protected or copyrighted content embedded in pretraining data [41]. While most MIA research has80

focused on supervised learning settings [8], new advancements reveal their broader relevance. Duan81

et al. [14] revealed a discrete-prompt-based MIA, disclosing vulnerabilities in proprietary LLMs like82

GPT-3, which risk leaking private information through prompt-based queries [13]. See Appendix A.283

for an in-depth discussion of the existing attacks.84

Canary Exposure and Data Extraction Attacks. An alternative to membership inference attacks85

(MIAs) for evaluating privacy leakage in machine learning models is to measure the exposure86

of training data. Given a universe of candidates U and an attacker’s ranking Ẑ by likelihood of87

membership, the exposure of a target sample z → U is defined as:88

exposure(z, Ẑ) = log2 |U| ↓ log2
(
rank(z; Ẑ)

)
. (2)

This score is maximal when z is ranked most likely and zero when ranked least likely. In a comple-89

mentary vein, extractability quantifies how readily a model emits a secret string when prompted. A90

suffix s is said to be extractable with k tokens of context if there exists some prefix p of length k such91

that, under greedy decoding, the model outputs s immediately following p. When s is sufficiently92

long and random, its extractability serves as a practical metric of memorization in LLMs. Further93

discussion appears in Appendix A.3.94

Benchmarking Privacy Vulnerabilities. Zhu et al. [58] introduced PrivAuditor, which systematically95

and empirically evaluates the privacy leakage from LLM adaptations. In contrast to our work, they96

focus on non-private adaptations only. Li et al. [27] evaluated the privacy leakage of private LLMs97

adaptations through empirical privacy attacks, such as data extraction, MIAs, and embedding-level98

privacy attacks. This benchmark focuses mostly on tradeoffs between privacy and utility, highlighting99

the complexity of balancing them. Contrary to our work, this work does not explore the relationship100

between the pretraining data and the fine-tuning one. LLM-PBE [28] empirically evaluates privacy101

risks throughout the LLM lifecycle, including pretraining, fine-tuning, and querying. Zhou et al. [57]102

investigated potential data leakage across widely used software engineering benchmarks.103

3 Experimental Setup104

We begin by detailing the setup used for our benchmark. Further details are presented in Appendix B.105

Models and Pretraining Data. Our work primarily focuses on the Pythia family of models trained106

on the Pile dataset [18], and the GPT-Neo family [4]. To benchmark the effects over various model107

sizes, we use Pythia 1.4B, Pythia 1B, Pythia 410M, Pythia 160M, Pythia 70M, GPT Neo 1.3B, and108

GPT Neo 125 M. The Pile dataset [18] is an 800GB collection of diverse English-language datasets,109

including text from sources such as books, academic papers, or source code repositories. In all cases110

where a specific model is not explicitly mentioned, we use Pythia 1B as the default model.111

Adaptation Datasets. We categorize the datasets used in our experiments into in-distribution (IID)112

and out-of-distribution (OOD), depending on their relationship to the pretraining data. IID datasets113

come from the same distribution as the pretraining data, and we identify two cases: one with a full114

overlap between pretraining and adaptation data, where we use data directly from the pretraining115

set for the adaptations, and one with no overlap, where the data is sourced from the corresponding116

validation set from the pretraining distribution. We focus on the following Pile subsets for the IID117

datasets: BookCorpus2, GitHub, and Enron Emails [24]. In contrast, OOD datasets are derived from118

a different distribution and do not overlap with pretraining data. Thereby, we choose SAMSum [19],119

and GermanWiki [1]. We elaborate more in Appendix B.1.120

Adaptation Methods. We evaluate different types of adaptations, including fine-tuning of all model121

parameters [30], or the last layer (i.e., the head) and PEFT methods, such as LoRA [21, 54] and Prefix122
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Tuning [31, 13]. Considering a Pythia 1B model, we train 1B parameters for Full Fine-Tuning, 1M123

for LoRA, 130M for Prefix Tuning, and 100M for last-layer (Head) Fine-Tuning. Since membership124

inference success is highly dependent on the train-test gap, for a fair comparison of the privacy125

leakage, we ensure similar evaluation perplexities, in particular, similar validation loss values at the126

end of the adaptation’s training for specific datasets across adaptation methods, see Appendix B.2.127

Membership Inference. For membership inference, we rely on the strongest state-of-the-art attack,128

namely RMIA (Robust Membership Inference Attack) [56]. We use its offline version because it is129

computationally effective and does not require training customized reference models for each targeted130

sample (as in the online version of the attack). We also leverage a single reference model for our131

experiments, as the authors show strong MIA performance even with a single reference model. We132

consider different types of reference models. Unless explicitly stated, we focus on using a “shadow”133

model (adaptation), in our case Pythia 1B, which is trained in the same way as the target model,134

but on a different split of the same fine-tuning data. We also evaluate the Reference method [7],135

which calibrates the target model’s loss using a reference model, and compare against Min-K% as136

a reference-less baseline attack. As with RMIA, we report the best AUC from a grid search over137

Min-K%’s parameter K. See Appendix B.4 for a detailed description of the setup.138

Canary Exposure and Data Extraction Attacks. To evaluate memorization, we insert adversarial139

canaries into a small portion of the adaptation data and estimate their exposure using two approx-140

imation methods: sampling and distribution modeling. Both approaches perform similarly when141

using 256 non-member canaries, and we adopt sampling for efficiency. Moreover, when considering142

k-extractable memorization, we set k = 10 tokens. A detailed description of the data extraction setup143

is provided in Appendix B.5.144

4 Benchmark design and experiments145

To address our benchmark’s central question—What are the empirical privacy risks to adaptation146

data under DP adaptations?—we break it down into five concrete research questions.147

4.1 RQ1: How does the relationship (overlapping, IID, OOD) between adaptation and148

pretraining datasets impact data privacy?149

Motivation. The pretrain-adapt paradigm uses LLMs pretrained on large public datasets, which are150

then adapted to smaller, often sensitive, private datasets using DP methods. While DP offers formal151

guarantees, its practical effectiveness under the pretrain-adapt paradigm remains unclear—particularly152

how the relationship and interplay between adaptation and pretraining data (e.g., overlapping, IID, or153

OOD) influences actual privacy leakage.154

Summary of Findings. Our results show that (1) privacy risks increase when the adaptation data155

distribution is closer to the pretraining data, even if there is no direct overlap. (2) Surprisingly, IID156

data from the pretraining validation set leaks as much as directly overlapping data, underscoring157

distributional closeness as the main driver of risk.158

Detailed Results. We present our main results in Table 1 and Table 2. We focus our discussion on159

Pythia-1B, and further expand it for the other models in Appendix C.1. They show that the average160

AUC is generally higher in IID settings than OOD in all attacks and adaptations. For instance, looking161

at RMIA (shadow) using ε = 8, we observe that the average AUC is between 0.7 and 0.9 in the IID162

setting, while it is between 0.63 and 0.87 for the OOD setting. More detailed analyses for different163

attack setups and more privacy regimes are depicted in Appendix C.1. We also identify distributional164

closeness as a key risk factor, as overlapping data leaks similarly to IID. Moreover, our results indicate165

that under both a strong attack and in more practical scenarios, moderate privacy regimes (e.g., ε = 8)166

still present a real threat of privacy leakage from IID. On the other hand, under this regime, privacy167

leakage from the OOD is mostly observed with a strong attack. Moreover, in Appendix C.4, Figure 8168

shows over the training epochs the Overlap (Train) and IID data (Val) privacy leakage, and further169

highlights a similar privacy leakage between Overlap and IID data across the whole training run. We170

also analyze the impact of subset characteristics on privacy leakage in Appendix C.3, and we discover171

that the pretraining dataset size and complexity influence the privacy leakage in the training datasets.172

We observe that privacy leakage increases with both the size and complexity of the subsets. Larger173

datasets produce more IID results than smaller subsets, further validating our findings.174
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Table 1: Membership Inference for OOD Adaptations. We audit only the adaptations and assume
the same pretrained LLM is used for all adaptations. We present the AUC scores obtained with RMIA
MIAs for the Pythia 1B model adapted on different datasets with ε → {0.1, 8,↔}.

Adaptation
Dataset SAMSum GermanWiki Average

MIA ε = ↑ ε = 8 ε = 0.1 ε = ↑ ε = 8 ε = 0.1 ε = ↑ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.62 0.63 1.00 0.64 0.61 1.00 0.63 0.62
LoRA 0.86 0.69 0.50 1.00 0.59 0.66 0.93 0.64 0.58
Full Fine-Tune 1.00 0.82 0.62 1.00 0.71 0.55 1.00 0.77 0.59
Head Fine-Tune 1.00 0.98 0.62 1.00 0.76 0.70 1.00 0.87 0.66
Average 0.97 0.78 0.59 1.00 0.67 0.63 0.98 0.73 0.61

Reference (Pythia 1B)

Prefix Tuning 0.93 0.50 0.51 0.92 0.50 0.50 0.92 0.50 0.50
LoRA 0.51 0.51 0.51 0.82 0.51 0.51 0.66 0.51 0.51
Full Fine-Tune 0.94 0.51 0.51 0.99 0.51 0.50 0.96 0.51 0.51
Head Fine-Tune 0.97 0.52 0.51 0.98 0.51 0.50 0.97 0.51 0.50
Average 0.84 0.51 0.51 0.93 0.51 0.50 0.88 0.51 0.51

Table 2: Membership Inference for in-distribution (IID) Adaptations using the setup from Table 1.

Adaptation
Dataset Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val Average

MIA ε = ↑ ε = 8 ε = 0.1 ε = ↑ ε = 8 ε = 0.1 ε = ↑ ε = 8 ε = 0.1 ε = ↑ ε = 8 ε = 0.1 ε = ↑ ε = 8 ε = 0.1

RMIA (shadow)

Prefix Tuning 1.00 0.89 0.56 1.00 0.90 0.55 1.00 0.93 0.63 1.00 0.88 0.58 1.00 0.90 0.58
LoRA 1.00 0.70 0.52 1.00 0.69 0.53 1.00 0.74 0.52 1.00 0.73 0.52 1.00 0.71 0.52
Full Fine-Tune 1.00 0.75 0.77 1.00 0.75 0.76 1.00 0.78 0.80 1.00 0.91 0.66 1.00 0.80 0.75
Head Fine-Tune 1.00 0.72 0.73 1.00 0.72 0.72 1.00 0.80 0.74 1.00 0.57 0.65 1.00 0.70 0.71
Average 1.00 0.77 0.65 1.00 0.76 0.64 1.00 0.81 0.67 1.00 0.77 0.60 1.00 0.78 0.64

Reference (Pythia 1B)

Prefix Tuning 0.93 0.56 0.52 0.97 0.57 0.50 0.97 0.53 0.51 0.97 0.54 0.50 0.96 0.55 0.51
LoRA 0.89 0.52 0.52 0.97 0.51 0.51 0.92 0.51 0.50 0.97 0.55 0.51 0.94 0.52 0.51
Full Fine-Tune 1.00 0.54 0.52 1.00 0.54 0.52 0.99 0.54 0.52 0.98 0.59 0.50 0.99 0.55 0.51
Head Fine-Tune 0.98 0.57 0.52 1.00 0.56 0.51 0.99 0.66 0.50 0.99 0.54 0.50 0.99 0.58 0.51
Average 0.95 0.55 0.52 0.98 0.55 0.51 0.97 0.56 0.51 0.98 0.55 0.50 0.97 0.55 0.51

4.2 RQ2: Which DP adaptation method is the most protective?175

Motivation. It is known that the type of adaptation has a significant impact on the utility of the176

final model [58]. However, different adaptations might also offer disparate empirical protection at the177

same formal privacy guarantee, motivating our empirical comparison.178

Summary of Findings. While LoRA provides much better empirical privacy protection in non-179

private settings compared to other adaptations, the differences become more subtle under the DP180

regime. Despite this, LoRA consistently achieves a relatively low AUC, whereas the other adaptations181

show varying trends depending on the dataset or privacy budget.182

Detailed Results. Specifically, as shown in Table 1 for OOD datasets with ε = 8, the most vulnerable183

adaptations are Full and Head Fine-Tune. On the other hand, for IID data, the strongest protection184

provides Head Fine-Tune, which is marginally better LoRA. With stronger privacy guarantees, LoRA185

is the most private for OOD datasets with an AUC score of 0.58, thus slightly better than Full186

Fine-Tune. On the other hand, while adapting to the IID dataset, LoRA outperforms other adaptations.187

Notably, Full Fine-Tune and Head Fine-Tune show much lower privacy protection in these settings.188

4.3 RQ3: Are the same adaptations robust against data extraction?189

Motivation. Data extraction attacks are even more severe than MIAs. Therefore, it is crucial to190

evaluate the protectiveness of DP adaptations against this stronger threat.191

Summary of Findings. We find that Prefix Tuning is the most vulnerable adaptation method in this192

setting. On the other hand, LoRA and Head Fine-Tune in both cases, with and without DP guarantees193

exhibit resistance against data extraction.194

Detailed Results. We report detailed results in Appendix C.2. In particular, Table 17 and Table 18195

show that for ε = 0.1 the exposure is around 1.44, therefore, close to random guessing. We also196

noticed a limited influence on the choice of the canary prefix type. Moreover, the adversarial prefix is197

the main source of privacy leaks, with the interaction between the prefix and the individual sample198

playing a smaller role, see Figure 9 in Appendix C.5.199

4.4 RQ4: How important is the attacker’s knowledge of the pretrained model?200

Motivation. The attacker’s knowledge of the pretrained model plays a crucial role in the success of201

MIAs, as it enables them to select more relevant reference models and non-member data for training,202
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Figure 2: IID data is more susceptible to leakage using the pretrained base model than OOD
data. We compare the effectiveness of performing RMIA on fully fine-tuned Pythia 1B with ε = 8
with different pretrained models as reference models.

which is one of the main challenges of MIAs [50, 8]. We investigate various setups, including an203

attacker who has access to a shadow model from the same pretraining distribution as the adapted204

LLM, a similar model, and no access to external models. This helps us characterize the landscape of205

potential real-world risks and setups.206

Summary of Findings. MIAs’ performance highly depends on the attacker’s knowledge of the207

target model and pretraining data. In particular, RMIA performs best when a shadow model shares208

architecture, initialization weights, and training data distribution. Meanwhile, MIAs’ effectiveness209

rapidly deteriorates as shadow models are trained on different distributions or architectures. Partic-210

ularly, we observe that when a shadow model trained on the same distribution of the target model211

is available, using the pretrained model is the second-best choice, followed by models of the same212

family and similar size.213

Detailed Results. To simulate attackers with various background knowledge, in this setting, we214

also consider other “shadow” models: Pythia 14M, Pythia 160M, Pythia 1B, Pythia 2.8B [3], GPT-215

neox [4], OLMo-1B [20], and GPT-2 [40]. The MIA performance is close to random for private216

adaptations with ε = 8. Furthermore, as shown in Figure 2, while the MIA’s performance for Pythia217

1B is higher on IID data, the choice of reference model has little effect when attacking models adapted218

on OOD data, even with architectural differences between the model and the reference model i.e.,219

GPT-Neo 1.3B and OLMo 1B. Moreover, as in the other case, Figure 11 (in Appendix D) shows that220

the privacy leakage is similar between IID and the corresponding overlapping data. We show further221

experiments in Appendix D.222

4.5 RQ5: How does adaptation change the pretraining dataset vulnerability?223

Motivation. DP adaptations only guarantee protection for the adaptation dataset. Yet, adapting224

the model to other data, while introducing noise, can also affect the pretraining leakage. This is an225

important aspect to study, as also pretraining data can be private [48], e.g., private conversations226

with ChatGPT used to improve the models, or emails used to pretrain Gemini. Therefore, we also227

empirically investigate how adapting pretrained LLMs affects the leakage of pretraining data.228

Summary of Findings. Our findings show that the choice of adaptation method impacts the229

privacy of pretraining data. Specifically, our evaluation shows that Prefix Tuning reduces the leakage230

of memorized pretraining data from adapted language models, especially in high-privacy settings.231

However, for the other adaptations, this effect is negligible, and the adapted model retain most of the232

pretraining memorization.233

Detailed Results. We evaluate the effect of OOD and IID adaptation data on the leakage of234

memorized pretraining data from the adapted LLM. Specifically, as we show in Figure 3, Prefix235

Tuning significantly reduces leakage, particularly in high-privacy regimes. For the other adaptation236

methods, the number of memorized samples often remains above 460 samples. For Prefix Tuning, the237

number of memorized samples is often lower than 460 and goes down to around 430 with ε = 0.1,238

thus suggesting that adaptation partially mitigates the pretraining memorization.239
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(a) Bookcorpus2 Val (b) SAMSum

Figure 3: Fewer memorized samples after prefix tuning. There are fewer verbatim generations
of training samples after the prefix tuning, especially for small ε values. We present the number of
memorized samples from the Pile that remain memorized after adapting Pythia 1B on Bookcorpus2
val and SAMSum datasets. The evaluation was done for ε = {0.1, 1, 3, 8, 50, 100,↔}. We present
the x-axis using a log scale.

5 Discussion of our Results240

Our findings reveal a complex interplay between pretraining and adaptation data. This significantly241

affects the privacy risks under DP adaptations. Below, we discuss the implications of these findings242

when adapting pretrained LLMs to sensitive domains using DP.243

Disparate Leakage Based on Distribution. Our results demonstrate that the distributional closeness244

between pretraining and adaptation data is a key factor influencing empirical privacy leakage under245

DP. Adaptations using IID data—data from the same distribution but not seen during pretraining—246

consistently showed the highest vulnerability. This presents a fundamental trade-off: while adapting247

a model already pretrained on similar data is often beneficial for utility, it simultaneously increases248

privacy risk.249

Disparate Leakage Based on Adaptation Method. We also observe that not all DP adaptation250

methods offer equal protection, even when enforcing the same formal level guarantee, expressed251

in the same ε. This aligns with earlier findings in the non-private regime, where privacy-utility252

trade-offs differ across methods [58]. In our experiments, LoRA appeared most consistently robust253

against privacy attacks, while Prefix Tuning showed the least vulnerability to extraction attacks.254

These differences are highly relevant for practice: in addition to choosing methods that optimize255

downstream performance, practitioners should also consider empirical privacy leakage. The attacks256

we use in this paper offer a way to assess and understand such risks under realistic conditions.257

Choosing a Privacy Regime. We find that in moderate privacy regimes, e.g., ε = 8, sensitive258

adaptation data still experiences significant practical vulnerability against both MIAs and data259

extraction attacks. This highlights the necessity to perform private LLM adaptations in the high-260

privacy regime, i.e., with low ε to achieve practical protection.261

Reliance on Accurate Shadow Model. We show that attackers gain a substantial advantage when262

they have access to the original pretrained LLM used during adaptation. Shadow models instantiated263

with the same pretrained model as the adapted LLM’s base consistently achieved higher attack264

success. This is especially concerning given the rise of adapting publicly available LLMs, which265

makes strong shadow models easily accessible to adversaries. These findings further underscore the266

need for stringent privacy settings in DP adaptations.267

Towards a Holistic Privacy Auditing for LLMs Our results suggest that privacy assessments268

should not treat pretraining and adaptation in isolation. The strong interdependence between these269

stages demands holistic analysis. Motivated by this insight, we introduce a structured framework in270

the next section that formalizes how privacy assessments and audits under the pretrain-adapt paradigm271

should be conducted. We hope this framework encourages the development of privacy assessment272

methods that match the complexity of modern private LLM pipelines.273
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Figure 4: Stages of Auditing. We analyze four
stages of auditing: 1 Audit Pretraining, 2 Au-
dit Adaptations, 3 Joint Auditing of Pretraining
and Adaptations, 4 Post-Adaptation Auditing
of the Pretraining.

S
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Pretraining Data S
and  S′ = S ∪ {𝑥}

Adaptation Data D
and D′ = D ∪ {𝑥}
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Figure 5: Setup for Joint Adaptation audit-
ing (3). We consider different datasets for pre-
training and adaptation, distinguishing it from
standard ML privacy auditing [34, 55] by consid-
ering pretraining data.

6 Towards Holistic Privacy Audits under the Pretrain-Adapt Learning274

Paradigm275

6.1 From Stages to Adversary Game under Pretrain-Adapt Privacy Auditing276

While our understanding of empirical privacy risks has grown, we recognize the need to go further277

and adopt more nuanced approaches to tackle privacy risks posed during the adaptation of LLMs.278

Therefore, we formalize a framework to assess privacy risks holistically for LLMs and their pretrain-279

adapt paradigm. In total, we identify four different stages of auditing that need to be considered280

(see Figure 4) under the pretrain-adapt paradigm, namely (1) audit pretraining, (2) audit adaptations,281

(3) joint audit of pretraining and adaptations, and (4) post-adaptation auditing of the pretraining, as282

shown in Figure 4. Based on them, we formalize how to instantiate these audits and contrast them283

with standard privacy auditing. Privacy audits can be modeled as an adversarial game G [52, 23]284

where the main task is to guess if a given data point x was in a model’s training set or not. This285

game can, therefore, also be referred to as the membership inference game. We define the adversarial286

game G analogous to the one for standard ML, yet take two datasets, S the pretraining data, and D287

the adaptation data into account. Additionally, we denote the pretraining procedure by T and the288

adaptation procedure by T
→. We mark the deviations to the original game in blue.289

1. The challenger samples a R↗↓ {0, 1} and b
R↗↓ {0, 1} (where a and b are binary variables)290

2. The challenger trains a model ϑ T↗↓ S̃, ϑ0, where S̃ = S if a = 0, otherwise S̃ = S ↘ {x}291

3. The challenger adapts ϑ such that ϑ→ T’↗↓ D̃, where D̃ = D if b = 0, otherwise D̃ = D ↘ {x}292

4. The challenger sends ϑ→ to the attacker293

5. The attacker guesses â, b̂ ↗ A(ϑ, ϑ→, x)294

Whether the attacker has to guess both â, b̂ and what background knowledge they have, i.e., whether295

they get access to both ϑ and ϑ
→ depends on the auditing stage. We detail the attacker’s background296

knowledge and guesses—formulated as hypotheses with a null hypothesis H0 and an alternative297

hypothesis HA—for the four auditing stages from our taxonomy.298

(1) Auditing pretraining resembles standard ML auditing, targeting privacy leakage from pretrained299

models. Differences arise from larger datasets and models, limiting both DP protection efficacy [10]300

and applicability of auditing techniques like MIA [15]. In this setting, the challenger releases the301

pretrained model ϑ to the attacker. The attacker’s goal is to correctly guess whether x was in the302

pretraining data S. Their guesses â, are over the random variable a.303

H0 : a = 0 HA : a = 1

(2) Auditing adaptation a new pretrain-adapt paradigm aspect, detects adaptation dataset leakage304

from adapted LLMs. The key differentiating factor of privacy audits in standard ML is using a305
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pretrained model that the adaptations are trained on instead of a random initialization. We assume306

the same pretrained model is used for all the considered adaptations in an adaptation audit. In this307

setting, the challenger releases only the adapted model ϑ→ to the attacker. The attacker does not know308

whether x → S or not and considers only the adaptation. Their guesses b̂, are, hence, over the random309

variable b.310

H0 : b = 0 HA : b = 1

(3) Joint auditing evaluates combined leakage from both pretraining and adaptation datasets in311

the adapted LLM. Typical privacy preservation involves non-DP-trained LLMs with DP-trained312

adaptations. In this setting, the challenger releases both the pretrained model ϑ and the adapted ϑ
→ to313

the attacker. Depending on the attacker’s background knowledge, we consider three possible cases314

The attacker knows that
x /→ S and guesses b.

The attacker knows that
x → S and guesses b.

The attacker knows that the target sample x is
either in both (pretraining and adaptation sets) or

neither of them and guesses (a, b).

H0 : (a, b) = (0, 0) HA : (a, b) = (0, 1) H0 : (a, b) = (1, 0) HA : (a, b) = (1, 1) H0 : (a, b) = (0, 0) HA : (a, b) = (1, 1)

(4) Post-Adaptation Auditing evaluates how the (private) adaptations influence the potential protec-315

tion of the data points used for pretraining, which is usually conducted without any formal guarantees.316

Changes to the model behavior induced through adaptations or noise added during their training317

might influence the effective exposure of pretraining data from model predictions. In this setting, the318

challenger releases both the pretrained ϑ and the adapted ϑ
→. It is known that the target sample x is319

not in D and the attacker guesses a.320

H0 : (a, b) = (0, 0) HA : (a, b) = (1, 0)

In essence, auditing pretraining considers only the pretraining itself. Similarly, auditing the adap-321

tations considers the adaptations themselves. On the other hand, the joint adaptation reasons about322

both pretraining and adaptation sets. Finally, the post-adaptation auditing is only for the pretraining323

set, but the applied adaptation influences the auditing.324

6.2 Practical Application of Holistic Audits325

Our new perspective on the pretrain-adapt paradigm gives both practitioners and researchers clearer326

insights into each threat model’s risks. Formalizing the auditing setup supports systematic reasoning327

about privacy risks, thus clarifying the guarantees that different methods need to provide. Therefore,328

our formalization allows for creating a unified interface for measuring privacy leakage, regardless of329

whether its source is pretraining or adaptation data. Moreover, our work demonstrates that looking330

at pretraining and adaptation components separately can lead to a false impression of privacy. The331

connection between these stages affects privacy leakage, which makes comprehensive auditing332

essential within pretrain-adapt paradigm. We believe that developing and sharing tools that support all333

privacy assessment stages, from threat modeling and risk quantification to mitigation, will empower334

the research community to more effectively define risks and allow for the reduction of privacy risks335

in practice.336

7 Conclusions337

In this work, we benchmark the practical privacy risks that arise under DP adaptations of LLMs within338

the pretrain-adapt paradigm. Our comprehensive empirical analysis confirms the theoretical concern339

that pretraining significantly amplifies the privacy risks associated with the adaptation data. We find340

that the closeness of adaptation and pretraining data distributions plays a critical role: even in the341

absence of overlap, higher distributional similarity results in increased privacy leakage. Additionally,342

we observe that the choice of adaptation method impacts privacy leakage, with PEFT methods, such343

as LoRA, offering significantly lower privacy risks while maintaining strong utility. Furthermore, we344

show Prefix Tuning can reduce the leakage of pretraining data, likely due to the added input noise345

during private adaptation. Our findings highlight the need for stringent DP constraints (e.g., ε < 0.1)346

to mitigate privacy risks in LLM adaptations effectively. It also motivates the need for holistic privacy347

assessments under the pretrain-adapt paradigm and takes the first step towards it by formalizing such348

an assessment over the different stages. This work lays a foundational framework for future research349

efforts aimed at safeguarding privacy within the pretrain-adapt paradigm.350
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impacts of the work performed?970
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