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Abstract

Recent work has applied differential privacy (DP) to adapt large language models
(LLMs) for sensitive applications, offering theoretical guarantees. However, its
practical effectiveness remains unclear, partly due to LLM pretraining, where
overlaps and interdependencies with adaptation data can undermine privacy despite
DP efforts. To analyze this issue in practice, we investigate privacy risks under
DP adaptations in LLMs using state-of-the-art attacks such as robust membership
inference and canary data extraction. We benchmark these risks by systematically
varying the adaptation data distribution, from exact overlaps with pretraining data,
through in-distribution (IID) cases, to entirely out-of-distribution (OOD) examples.
Additionally, we evaluate how different adaptation methods and different privacy
regimes impact the vulnerability. Our results show that distribution shifts strongly
influence privacy vulnerability: the closer the adaptation data is to the pretraining
distribution, the higher the practical privacy risk at the same theoretical guarantee,
even without direct data overlap. We find that parameter-efficient fine-tuning
methods, such as LoRA, achieve the highest empirical privacy protection for OOD
data. Our benchmark identifies key factors for achieving practical privacy in DP
LLM adaptation, providing actionable insights for deploying customized models in
sensitive settings. Looking forward, we propose a structured framework for holistic
privacy assessment beyond adaptation privacy, to identify and evaluate risks across
LLMs’ full pretrain-adapt pipeline.

1 Introduction

The use of pretrained large language models (LLMs) for sensitive downstream tasks, such as medical
decision making, has grown rapidly [25, 12} 49]. To offer protection for the private data used to
adapt the LLMs to these sensitive tasks, differential privacy (DP) [L6, [17]] has emerged as a gold
standard [53} 154} 30,113} 133]. However, adapting a pretrained LLM with DP may not always provide
the anticipated privacy protections [48]]. The challenge arises from potential overlap or complex
interdependencies between data used to pretrain the LLMs and the adaptation dataset. The problem is
exacerbated by the fact that for most LLMs, their pretraining datasets are not disclosed [35, 39} 46],
rendering a structured reasoning of the interdependencies with the private adaptation data impossible.

While prior work has investigated privacy risks stemming from LLM pretraining [10} 9]], post-hoc
leakage in non-private adaptations [S8]], or auditing DP adaptations via synthetic canaries [36], we
still lack a structured understanding of the empirical privacy risks of DP adaptations. This is a
critical gap. Without a clear understanding of the practical risks, LLM practitioners are left with little
guidance on how to privately apply LLMs in privacy-sensitive settings, including critical questions
like: which adaptation method to use, what pretrained model is best given the private adaptation data
distribution, and what privacy levels will be protective enough.
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Figure 1: Setup for Privacy Auditing of DP-LLM Adaptations. We perform our audits based
on the privately adapted LLM’s output, either by using RMIA [8] as the strongest state-of-the-art
membership inference attack, or by relying on data extraction attacks. For the latter, we include
canary data into the adaptation set and measure its exposure.

To close this gap, we conduct a comprehensive benchmark evaluation that sheds light on the empirical
leakage introduced by DP adaptations. We evaluate a wide range of private adaptation strategies,
including full and last-layer DP fine-tuning [30]], parameter-efficient fine-tuning (PEFT) methods
such as DP-LoRA [21}54], DP-Prefix Tuning [31], as well as DP prompting schemes [13]. To assess
leakage, we focus on the Robust Membership Inference Attack (RMIA) [56], which represents the
strongest state-of-the-art threat model for auditing LLM privacy, and complement this with data
extraction attacks [47,7,16] to evaluate more severe forms of information leakage. A general overview
of privacy auditing for adapted LLMs is provided in Figure[I]

We systematically analyze a spectrum of possible distributions for the adaptation data with respect
to the pretraining data—ranging from data perfectly overlapping with the pretraining data, over IID
scenarios, to entirely OOD examples—to understand the possible privacy implications for all setups.
Our benchmark spans six datasets drawn from diverse domains, four adaptation methods, and six
pretrained LLMs of different sizes and architectures, enabling comprehensive comparisons across
setups. We further analyze a broad spectrum of privacy regimes from no privacy to high privacy,
enabling structured reasoning about the resulting risks. Our study is guided by a central question:
What are the empirical privacy risks for the adaptation data that result from DP adaptations?

Looking ahead, we highlight the need to jointly audit privacy risks from pretraining and adaptation
and their interplay, as LLMs may leak information from either stage. To address this, we propose
a new structured framework for holistic privacy assessment across the full pretrain-adapt pipeline.
It defines four key audit stages: (1) pretraining, (2) adaptation, (3) their joint interaction, and (4)
post-adaptation auditing of pretraining. To formally ground these audits and make them instantiatable,
we redefine each stage’s membership inference game [52,[23]]. We hope this formalization and our
practical insights from the benchmark will guide researchers in developing future assessments and
help practitioners deploy customized LLMs responsibly in sensitive domains.

2 Background and Related Work

Differential Privacy. The mathematical framework of DP [[16] formalizes the intuition that privacy
guarantees can be obtained when a randomized mechanism M executed on two neighboring datasets
D, D’ that differ in only one data point, yields roughly the same result, i.e.,

Pr[M(D) € S] < e -Pr[M(D') € S] + 4. (1)

The privacy parameter € specifies how much the result can differ, and ¢ is the probability of failure to
meet that guarantee. There are two canonical algorithms to implement DP guarantees in machine
learning (ML): DPSGD (Differentially Private Stochastic Gradient Descent) algorithm [2]], which
extends standard stochastic gradient descent with clipping and noising gradients, and PATE (Private
Aggregation of Teacher Ensembles) 37, 138], which is an inference time algorithm that privately
transfers knowledge from an ensemble of teachers to a public student model.
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Private Adaptations of LLMs. LLMs are pretrained on extensive amounts of public data, followed
by adaptations to private downstream tasks. The existing methods for private LLM adaptations fall
into two categories: (1) private tuning methods, such as PrivateLoRA [54] or PromptDPSGD [13]],
that rely on access to the LLM gradients and are based on the DPSGD algorithm, and (2) private
in-context learning (ICL) methods, such as DP-ICL [31] or PromptPATE [13], which require only
API (black-box) access to the LLM and are based on PATE. See Appendix [A.T]for details.

Membership Inference Attacks. A membership inference attack (MIA) [44} 56 43| 8] aims to
determine whether a specific data point can be identified as part of a model’s training set. This
approach plays a crucial role in applications ranging from privacy assurance [45] to identifying
protected or copyrighted content embedded in pretraining data [41]. While most MIA research has
focused on supervised learning settings [8]], new advancements reveal their broader relevance. Duan
et al. [14] revealed a discrete-prompt-based MIA, disclosing vulnerabilities in proprietary LLMs like
GPT-3, which risk leaking private information through prompt-based queries [13]]. See Appendix [A.2]
for an in-depth discussion of the existing attacks.

Canary Exposure and Data Extraction Attacks. An alternative to membership inference attacks
(MIAs) for evaluating privacy leakage in machine learning models is to measure the exposure

of training data. Given a universe of candidates U/ and an attacker’s ranking Z by likelihood of
membership, the exposure of a target sample z € U/ is defined as:

exposure(z, Z) = log, |U| — log,(rank(z; 2)). )
This score is maximal when z is ranked most likely and zero when ranked least likely. In a comple-
mentary vein, extractability quantifies how readily a model emits a secret string when prompted. A
suffix s is said to be extractable with k tokens of context if there exists some prefix p of length £ such
that, under greedy decoding, the model outputs s immediately following p. When s is sufficiently
long and random, its extractability serves as a practical metric of memorization in LLMs. Further
discussion appears in Appendix

Benchmarking Privacy Vulnerabilities. Zhu et al. [58] introduced PrivAuditor, which systematically
and empirically evaluates the privacy leakage from LLM adaptations. In contrast to our work, they
focus on non-private adaptations only. Li et al. [27] evaluated the privacy leakage of private LLMs
adaptations through empirical privacy attacks, such as data extraction, MIAs, and embedding-level
privacy attacks. This benchmark focuses mostly on tradeoffs between privacy and utility, highlighting
the complexity of balancing them. Contrary to our work, this work does not explore the relationship
between the pretraining data and the fine-tuning one. LLM-PBE [28|] empirically evaluates privacy
risks throughout the LLM lifecycle, including pretraining, fine-tuning, and querying. Zhou et al. [57]]
investigated potential data leakage across widely used software engineering benchmarks.

3 Experimental Setup

We begin by detailing the setup used for our benchmark. Further details are presented in Appendix [B]

Models and Pretraining Data. Our work primarily focuses on the Pythia family of models trained
on the Pile dataset [18]], and the GPT-Neo family [4]. To benchmark the effects over various model
sizes, we use Pythia 1.4B, Pythia 1B, Pythia 410M, Pythia 160M, Pythia 70M, GPT Neo 1.3B, and
GPT Neo 125 M. The Pile dataset [[18] is an 800GB collection of diverse English-language datasets,
including text from sources such as books, academic papers, or source code repositories. In all cases
where a specific model is not explicitly mentioned, we use Pythia 1B as the default model.

Adaptation Datasets. We categorize the datasets used in our experiments into in-distribution (IID)
and out-of-distribution (OOD), depending on their relationship to the pretraining data. IID datasets
come from the same distribution as the pretraining data, and we identify two cases: one with a full
overlap between pretraining and adaptation data, where we use data directly from the pretraining
set for the adaptations, and one with no overlap, where the data is sourced from the corresponding
validation set from the pretraining distribution. We focus on the following Pile subsets for the IID
datasets: BookCorpus2, GitHub, and Enron Emails [24]. In contrast, OOD datasets are derived from
a different distribution and do not overlap with pretraining data. Thereby, we choose SAMSum [19]],
and GermanWiki [1]]. We elaborate more in Appendix [B.T.

Adaptation Methods. We evaluate different types of adaptations, including fine-tuning of all model
parameters [30], or the last layer (i.e., the head) and PEFT methods, such as LoRA [21|54] and Prefix
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Tuning [31}13]. Considering a Pythia 1B model, we train 1B parameters for Full Fine-Tuning, 1M
for LoRA, 130M for Prefix Tuning, and 100M for last-layer (Head) Fine-Tuning. Since membership
inference success is highly dependent on the train-test gap, for a fair comparison of the privacy
leakage, we ensure similar evaluation perplexities, in particular, similar validation loss values at the
end of the adaptation’s training for specific datasets across adaptation methods, see Appendix [B.2.

Membership Inference. For membership inference, we rely on the strongest state-of-the-art attack,
namely RMIA (Robust Membership Inference Attack) [56]]. We use its offline version because it is
computationally effective and does not require training customized reference models for each targeted
sample (as in the online version of the attack). We also leverage a single reference model for our
experiments, as the authors show strong MIA performance even with a single reference model. We
consider different types of reference models. Unless explicitly stated, we focus on using a “shadow”
model (adaptation), in our case Pythia 1B, which is trained in the same way as the target model,
but on a different split of the same fine-tuning data. We also evaluate the Reference method [7]],
which calibrates the target model’s loss using a reference model, and compare against Min-K% as
a reference-less baseline attack. As with RMIA, we report the best AUC from a grid search over
Min-K%’s parameter K. See Appendix [B.4 for a detailed description of the setup.

Canary Exposure and Data Extraction Attacks. To evaluate memorization, we insert adversarial
canaries into a small portion of the adaptation data and estimate their exposure using two approx-
imation methods: sampling and distribution modeling. Both approaches perform similarly when
using 256 non-member canaries, and we adopt sampling for efficiency. Moreover, when considering
k-extractable memorization, we set kK = 10 tokens. A detailed description of the data extraction setup
is provided in Appendix [B.5.

4 Benchmark design and experiments

To address our benchmark’s central question—What are the empirical privacy risks to adaptation
data under DP adaptations >—we break it down into five concrete research questions.

4.1 RQI1: How does the relationship (overlapping, IID, OOD) between adaptation and
pretraining datasets impact data privacy?

Motivation. The pretrain-adapt paradigm uses LLMs pretrained on large public datasets, which are
then adapted to smaller, often sensitive, private datasets using DP methods. While DP offers formal
guarantees, its practical effectiveness under the pretrain-adapt paradigm remains unclear—particularly
how the relationship and interplay between adaptation and pretraining data (e.g., overlapping, IID, or
OOD) influences actual privacy leakage.

Summary of Findings. Our results show that (1) privacy risks increase when the adaptation data
distribution is closer to the pretraining data, even if there is no direct overlap. (2) Surprisingly, IID
data from the pretraining validation set leaks as much as directly overlapping data, underscoring
distributional closeness as the main driver of risk.

Detailed Results. We present our main results in Table|1|and Table[2] We focus our discussion on
Pythia-1B, and further expand it for the other models in Appendix [C.I. They show that the average
AUC is generally higher in IID settings than OOD in all attacks and adaptations. For instance, looking
at RMIA (shadow) using € = 8, we observe that the average AUC is between 0.7 and 0.9 in the IID
setting, while it is between 0.63 and 0.87 for the OOD setting. More detailed analyses for different
attack setups and more privacy regimes are depicted in Appendix We also identify distributional
closeness as a key risk factor, as overlapping data leaks similarly to IID. Moreover, our results indicate
that under both a strong attack and in more practical scenarios, moderate privacy regimes (e.g., € = 8)
still present a real threat of privacy leakage from IID. On the other hand, under this regime, privacy
leakage from the OOD is mostly observed with a strong attack. Moreover, in Appendix Figure
shows over the training epochs the Overlap (Train) and IID data (Val) privacy leakage, and further
highlights a similar privacy leakage between Overlap and IID data across the whole training run. We
also analyze the impact of subset characteristics on privacy leakage in Appendix[C.3] and we discover
that the pretraining dataset size and complexity influence the privacy leakage in the training datasets.
We observe that privacy leakage increases with both the size and complexity of the subsets. Larger
datasets produce more IID results than smaller subsets, further validating our findings.
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Table 1: Membership Inference for OOD Adaptations. We audit only the adaptations and assume
the same pretrained LLM is used for all adaptations. We present the AUC scores obtained with RMIA
MIAs for the Pythia 1B model adapted on different datasets with € € {0.1, 8, co}.

Dataset SAMSum GermanWiki Average
MIA Adaptation e=00e=8e=0.1llc=00e=8ec=0.1c=00e=8¢e=0.1
Prefix Tuning 1.00  0.62 0.63 1.00  0.64 0.61 1.00  0.63  0.62
LoRA 086 0.69 050 1.00 059  0.66 093 064 058
RMIA (shadow) Full Fine-Tune 1.00 082 0.62 1.00 071 055 1.00  0.77 059
Head Fine-Tune 1.00  0.98 0.62 1.00 0.76 0.70 1.00  0.87 0.66
Average 097 078 0.59 1.00  0.67 0.63 098 073  0.61
Prefix Tuning 093 050 0.5I 092 050 0.50 092 050 050
LoRA 051 051 051 082 051 051 0.66 051 051
Reference (Pythia 1B)|Full Fine-Tune 094 051 051 099 051 050 096 051 051
Head Fine-Tune 097 052 051 0.98 0.51 0.50 0.97 0.51 0.50
Average 084 051 051 093 051 0.50 088 051 051

Table 2: Membership Inference for in-distribution (IID) Adaptations using the setup from Table

Dataset;  Bookcorpus2 Val Bookcorpus2 Train Github Val Enron Val Average
MIA Adaptation e=oc0e=8ec=01lle=c0e=8ec=01llc=0c0e=8e=0.1lc=0c0e=8e=0.1le=00e=8¢e=0.1
Prefix Tuning 1.00  0.89  0.56 1.00 090 0.55 1.00 093  0.63 1.00 0.88 0.58 1.00 090 0.58
LoRA 1.00 070  0.52 100 069 053 1.00 074 0.52 1.00 073 052 1.00 071 052
RMIA (shadow) Full Fine-Tune 1.00 075 0.77 .00 075 0.76 1.00  0.78  0.80 .00 091  0.66 1.00 080 075
Head Fine-Tune 1.00 072 073 1.00 072 0.72 1.00 080 0.74 1.00 057  0.65 1.00. 070 0.71
Average 1.00 077 0.65 100 076  0.64 1.00 081 0.67 1.00 077  0.60 1.00 078  0.64
Prefix Tuning 093 056 052 097 0357 050 097 053 051 097 054 050 096 055 051
LoRA 0.89 052 052 097 051 051 092 051 050 097 055 051 094 052 051
Reference (Pythia 1B)|Full Fine-Tune 1.00 054 052 1.00 054 052 099 054 052 098 059 0.0 099 055 051
Head Fine-Tune 098 057 052 1.00  0.56 0.51 099 066 050 099 054 050 099 0.58 0.51
Average 095 055 052 098 055 051 097 056 051 098 055 050 097 055 051

4.2 RQ2: Which DP adaptation method is the most protective?

Motivation. It is known that the type of adaptation has a significant impact on the utility of the
final model [S8]. However, different adaptations might also offer disparate empirical protection at the
same formal privacy guarantee, motivating our empirical comparison.

Summary of Findings. While LoRA provides much better empirical privacy protection in non-
private settings compared to other adaptations, the differences become more subtle under the DP
regime. Despite this, LoRA consistently achieves a relatively low AUC, whereas the other adaptations
show varying trends depending on the dataset or privacy budget.

Detailed Results. Specifically, as shown in Table[l]for OQD datasets with € = 8, the most vulnerable
adaptations are Full and Head Fine-Tune. On the other hand, for IID data, the strongest protection
provides Head Fine-Tune, which is marginally better LoORA. With stronger privacy guarantees, LoORA
is the most private for OOD datasets with an AUC score of 0.58, thus slightly better than Full
Fine-Tune. On the other hand, while adapting to the IID dataset, LoRA outperforms other adaptations.
Notably, Full Fine-Tune and Head Fine-Tune show much lower privacy protection in these settings.

4.3 RQ3: Are the same adaptations robust against data extraction?

Motivation. Data extraction attacks are even more severe than MIAs. Therefore, it is crucial to
evaluate the protectiveness of DP adaptations against this stronger threat.

Summary of Findings. We find that Prefix Tuning is the most vulnerable adaptation method in this
setting. On the other hand, LoRA and Head Fine-Tune in both cases, with and without DP guarantees
exhibit resistance against data extraction.

Detailed Results. We report detailed results in Appendix|C.2. In particular, Table|17|and Table|18]
show that for € = 0.1 the exposure is around 1.44, therefore, close to random guessing. We also
noticed a limited influence on the choice of the canary prefix type. Moreover, the adversarial prefix is
the main source of privacy leaks, with the interaction between the prefix and the individual sample
playing a smaller role, see Figure[9]in Appendix [C.5.

4.4 RQ4: How important is the attacker’s knowledge of the pretrained model?

Motivation. The attacker’s knowledge of the pretrained model plays a crucial role in the success of
MIAs, as it enables them to select more relevant reference models and non-member data for training,
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Figure 2: IID data is more susceptible to leakage using the pretrained base model than OOD
data. We compare the effectiveness of performing RMIA on fully fine-tuned Pythia 1B withe = 8
with different pretrained models as reference models.

which is one of the main challenges of MIAs [50, |8]. We investigate various setups, including an
attacker who has access to a shadow model from the same pretraining distribution as the adapted
LLM, a similar model, and no access to external models. This helps us characterize the landscape of
potential real-world risks and setups.

Summary of Findings. MIAs’ performance highly depends on the attacker’s knowledge of the
target model and pretraining data. In particular, RMIA performs best when a shadow model shares
architecture, initialization weights, and training data distribution. Meanwhile, MIAs’ effectiveness
rapidly deteriorates as shadow models are trained on different distributions or architectures. Partic-
ularly, we observe that when a shadow model trained on the same distribution of the target model
is available, using the pretrained model is the second-best choice, followed by models of the same
family and similar size.

Detailed Results. To simulate attackers with various background knowledge, in this setting, we
also consider other “shadow” models: Pythia 14M, Pythia 160M, Pythia 1B, Pythia 2.8B [3]], GPT-
neox [4], OLMo-1B [20], and GPT-2 [40]. The MIA performance is close to random for private
adaptations with € = 8. Furthermore, as shown in Figure|2] while the MIA’s performance for Pythia
1B is higher on IID data, the choice of reference model has little effect when attacking models adapted
on OOD data, even with architectural differences between the model and the reference model i.e.,
GPT-Neo 1.3B and OLMo 1B. Moreover, as in the other case, Figure 1] (in Appendix [D) shows that
the privacy leakage is similar between IID and the corresponding overlapping data. We show further
experiments in Appendix [D!

4.5 RQS5: How does adaptation change the pretraining dataset vulnerability?

Motivation. DP adaptations only guarantee protection for the adaptation dataset. Yet, adapting
the model to other data, while introducing noise, can also affect the pretraining leakage. This is an
important aspect to study, as also pretraining data can be private [48], e.g., private conversations
with ChatGPT used to improve the models, or emails used to pretrain Gemini. Therefore, we also
empirically investigate how adapting pretrained LLMs affects the leakage of pretraining data.

Summary of Findings. Our findings show that the choice of adaptation method impacts the
privacy of pretraining data. Specifically, our evaluation shows that Prefix Tuning reduces the leakage
of memorized pretraining data from adapted language models, especially in high-privacy settings.
However, for the other adaptations, this effect is negligible, and the adapted model retain most of the
pretraining memorization.

Detailed Results. We evaluate the effect of OOD and IID adaptation data on the leakage of
memorized pretraining data from the adapted LLM. Specifically, as we show in Figure [3, Prefix
Tuning significantly reduces leakage, particularly in high-privacy regimes. For the other adaptation
methods, the number of memorized samples often remains above 460 samples. For Prefix Tuning, the
number of memorized samples is often lower than 460 and goes down to around 430 with € = 0.1,
thus suggesting that adaptation partially mitigates the pretraining memorization.
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Figure 3: Fewer memorized samples after prefix tuning. There are fewer verbatim generations
of training samples after the prefix tuning, especially for small € values. We present the number of
memorized samples from the Pile that remain memorized after adapting Pythia 1B on Bookcorpus2
val and SAMSum datasets. The evaluation was done for e = {0.1, 1, 3, 8, 50, 100, co}. We present
the x-axis using a log scale.

5 Discussion of our Results

Our findings reveal a complex interplay between pretraining and adaptation data. This significantly
affects the privacy risks under DP adaptations. Below, we discuss the implications of these findings
when adapting pretrained LLMs to sensitive domains using DP.

Disparate Leakage Based on Distribution. Our results demonstrate that the distributional closeness
between pretraining and adaptation data is a key factor influencing empirical privacy leakage under
DP. Adaptations using IID data—data from the same distribution but not seen during pretraining—
consistently showed the highest vulnerability. This presents a fundamental trade-oft: while adapting
a model already pretrained on similar data is often beneficial for utility, it simultaneously increases
privacy risk.

Disparate Leakage Based on Adaptation Method. We also observe that not all DP adaptation
methods offer equal protection, even when enforcing the same formal level guarantee, expressed
in the same . This aligns with earlier findings in the non-private regime, where privacy-utility
trade-offs differ across methods [58]]. In our experiments, LoRA appeared most consistently robust
against privacy attacks, while Prefix Tuning showed the least vulnerability to extraction attacks.
These differences are highly relevant for practice: in addition to choosing methods that optimize
downstream performance, practitioners should also consider empirical privacy leakage. The attacks
we use in this paper offer a way to assess and understand such risks under realistic conditions.

Choosing a Privacy Regime. We find that in moderate privacy regimes, e.g., ¢ = 8, sensitive
adaptation data still experiences significant practical vulnerability against both MIAs and data
extraction attacks. This highlights the necessity to perform private LLM adaptations in the high-
privacy regime, i.e., with low € to achieve practical protection.

Reliance on Accurate Shadow Model. We show that attackers gain a substantial advantage when
they have access to the original pretrained LLM used during adaptation. Shadow models instantiated
with the same pretrained model as the adapted LLM’s base consistently achieved higher attack
success. This is especially concerning given the rise of adapting publicly available LLMs, which
makes strong shadow models easily accessible to adversaries. These findings further underscore the
need for stringent privacy settings in DP adaptations.

Towards a Holistic Privacy Auditing for LLMs Our results suggest that privacy assessments
should not treat pretraining and adaptation in isolation. The strong interdependence between these
stages demands holistic analysis. Motivated by this insight, we introduce a structured framework in
the next section that formalizes how privacy assessments and audits under the pretrain-adapt paradigm
should be conducted. We hope this framework encourages the development of privacy assessment
methods that match the complexity of modern private LLM pipelines.
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6 Towards Holistic Privacy Audits under the Pretrain-Adapt Learning
Paradigm

6.1 From Stages to Adversary Game under Pretrain-Adapt Privacy Auditing

While our understanding of empirical privacy risks has grown, we recognize the need to go further
and adopt more nuanced approaches to tackle privacy risks posed during the adaptation of LL.Ms.
Therefore, we formalize a framework to assess privacy risks holistically for LLMs and their pretrain-
adapt paradigm. In total, we identify four different stages of auditing that need to be considered
(see Figure d) under the pretrain-adapt paradigm, namely (1) audit pretraining, (2) audit adaptations,
(3) joint audit of pretraining and adaptations, and (4) post-adaptation auditing of the pretraining, as
shown in Figure E Based on them, we formalize how to instantiate these audits and contrast them
with standard privacy auditing. Privacy audits can be modeled as an adversarial game G [52} 23]
where the main task is to guess if a given data point « was in a model’s training set or not. This
game can, therefore, also be referred to as the membership inference game. We define the adversarial
game G analogous to the one for standard ML, yet take two datasets, S the pretraining data, and D
the adaptation data into account. Additionally, we denote the pretraining procedure by 7" and the
adaptation procedure by T7”. We mark the deviations to the original game in blue.

1. The challenger samples a & {0,1} and b & {0,1} (where a and b are binary variables)
. The challenger trains a model <l S , 0o, where S=Sifa= 0, otherwise S=SuU {z}

2

3. The challenger adapts 6 such that ¢’ & D, where D = D if b = 0, otherwise D = D U {z}
4. The challenger sends 6’ to the attacker
5

. The attacker guesses @, b+ A(6,0', x)

Whether the attacker has to guess both a, b and what background knowledge they have, i.e., whether
they get access to both 6 and 6’ depends on the auditing stage. We detail the attacker’s background
knowledge and guesses—formulated as hypotheses with a null hypothesis Hy and an alternative
hypothesis H 4—for the four auditing stages from our taxonomy.

(1) Auditing pretraining resembles standard ML auditing, targeting privacy leakage from pretrained
models. Differences arise from larger datasets and models, limiting both DP protection efficacy [10]
and applicability of auditing techniques like MIA [15]. In this setting, the challenger releases the
pretrained model 6 to the attacker. The attacker’s goal is to correctly guess whether  was in the
pretraining data S. Their guesses a, are over the random variable a.

Hy:a=0 Hpy:a=1

(2) Auditing adaptation a new pretrain-adapt paradigm aspect, detects adaptation dataset leakage
from adapted LLMs. The key differentiating factor of privacy audits in standard ML is using a
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pretrained model that the adaptations are trained on instead of a random initialization. We assume
the same pretrained model is used for all the considered adaptations in an adaptation audit. In this
setting, the challenger releases only the adapted model &’ to the attacker. The attacker does not know

whether x € S or not and considers only the adaptation. Their guesses b, are, hence, over the random
variable b.

Hy:b=0 Hjy:b=1
(3) Joint auditing evaluates combined leakage from both pretraining and adaptation datasets in
the adapted LLM. Typical privacy preservation involves non-DP-trained LLMs with DP-trained

adaptations. In this setting, the challenger releases both the pretrained model 6 and the adapted 6’ to
the attacker. Depending on the attacker’s background knowledge, we consider three possible cases

The attacker knows that the target sample x is
either in both (pretraining and adaptation sets) or
neither of them and guesses (a, b).

The attacker knows that The attacker knows that
x ¢ S and guesses b. 2 € S and guesses b.

Hp : (a,b) = (0,0) Hy : (a,b) =(0,1) | Ho: (a,b) =(1,0) Hy :(a,b) =(1,1) Hy : (a,b) = (0,0) Hy : (a,b) = (1,1)

(4) Post-Adaptation Auditing evaluates how the (private) adaptations influence the potential protec-
tion of the data points used for pretraining, which is usually conducted without any formal guarantees.
Changes to the model behavior induced through adaptations or noise added during their training
might influence the effective exposure of pretraining data from model predictions. In this setting, the
challenger releases both the pretrained 6 and the adapted 6’. It is known that the target sample z is
not in D and the attacker guesses a.

Ho:(a,b) = (0,0)  Ha: (a,b) = (1,0)

In essence, auditing pretraining considers only the pretraining itself. Similarly, auditing the adap-
tations considers the adaptations themselves. On the other hand, the joint adaptation reasons about
both pretraining and adaptation sets. Finally, the post-adaptation auditing is only for the pretraining
set, but the applied adaptation influences the auditing.

6.2 Practical Application of Holistic Audits

Our new perspective on the pretrain-adapt paradigm gives both practitioners and researchers clearer
insights into each threat model’s risks. Formalizing the auditing setup supports systematic reasoning
about privacy risks, thus clarifying the guarantees that different methods need to provide. Therefore,
our formalization allows for creating a unified interface for measuring privacy leakage, regardless of
whether its source is pretraining or adaptation data. Moreover, our work demonstrates that looking
at pretraining and adaptation components separately can lead to a false impression of privacy. The
connection between these stages affects privacy leakage, which makes comprehensive auditing
essential within pretrain-adapt paradigm. We believe that developing and sharing tools that support all
privacy assessment stages, from threat modeling and risk quantification to mitigation, will empower
the research community to more effectively define risks and allow for the reduction of privacy risks
1n practice.

7 Conclusions

In this work, we benchmark the practical privacy risks that arise under DP adaptations of LLMs within
the pretrain-adapt paradigm. Our comprehensive empirical analysis confirms the theoretical concern
that pretraining significantly amplifies the privacy risks associated with the adaptation data. We find
that the closeness of adaptation and pretraining data distributions plays a critical role: even in the
absence of overlap, higher distributional similarity results in increased privacy leakage. Additionally,
we observe that the choice of adaptation method impacts privacy leakage, with PEFT methods, such
as LoRA, offering significantly lower privacy risks while maintaining strong utility. Furthermore, we
show Prefix Tuning can reduce the leakage of pretraining data, likely due to the added input noise
during private adaptation. Our findings highlight the need for stringent DP constraints (e.g., € < 0.1)
to mitigate privacy risks in LLM adaptations effectively. It also motivates the need for holistic privacy
assessments under the pretrain-adapt paradigm and takes the first step towards it by formalizing such
an assessment over the different stages. This work lays a foundational framework for future research
efforts aimed at safeguarding privacy within the pretrain-adapt paradigm.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]
Justification: Section []explains in detail each contribution.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made in the
paper.

* The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Appendix [J]discuss the limitations of the work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to violations of
these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and how

they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA|
Justification: Our work does not include any theoretical results.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.
* All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide a detailed description of the experimental settings in Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived well by the
reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

» While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either
be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide the code in the supplemental material, and will release the code used for
all the experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.
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Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.

» While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

* The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized versions (if

applicable).

Providing as much information as possible in supplemental material (appended to the paper) is

recommended, but including URLS to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Appendix [B]describe the setup in details, and Appendix [B.3]describe the hyperpa-
rameter selection.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail that is
necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We do not report error bars due to the high computational cost of replicating our
experiments. Each model adaptation at different scales and architectures requires substantial
resources, and multiple runs for statistical validation would greatly increase the overall cost.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error of the

mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).
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* If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [Yes]
Justification: We describe the most computationally expensive steps in Appendix [B.7.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The authors fully comply with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a deviation
from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration due
to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impact of our work in Appendix [[.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact or
why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses (e.g.,
disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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» If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: Our research relies on publicly available models and datasets, presenting no signifi-
cant risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: Our code includes no source code or binary files from external libraries. Therefore,
there are no concerns regarding permissions or license inclusion. We use only open-source datasets
and models, all of which are properly cited in the paper.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.
* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service of
that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package should
be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

» If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a code base along with documentation. In Appendix |[B| we provide a
detailed description of the used datasets, models, adaptations and hyperparameters.

Guidelines:

* The answer NA means that the paper does not release new assets.

35


paperswithcode.com/datasets

1041
1042
1043
1044
1045
1046
1047
1048

1049
1050
1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1062

1063
1064
1065
1066

1067

1068

1069

1070

1071
1072
1073
1074
1075
1076
1077
1078
1079

1080

1081
1082
1083
1084

1085

1086
1087

1088

1089
1090
1091
1092

14.

15.

16.

» Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

* The paper should discuss whether and how consent was obtained from people whose asset is
used.

* At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?

Answer: [NA|

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.
* We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.
For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LL.Ms were not used for the impact of the core methodology, scientific rigor, or

originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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