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Abstract

We investigate both the theoretical and algo-
rithmic aspects of likelihood-based methods
for recovering a signal from multiple sets of
complex-valued measurements, referred to as
looks, affected by speckle (multiplicative) noise.
Our theoretical contributions include establishing
the first theoretical upper bound on the Mean
Squared Error (MSE) of the maximum likelihood
estimator under the deep image prior hypothesis.
Our results capture the dependence of MSE on
the number of parameters in the deep image
prior, the number of looks, the signal dimension,
and the number of measurements per look. On
the algorithmic side, we introduce the concept
of bagged Deep Image Prior (Bagged-DIP)
and integrate it with projected gradient descent.
Furthermore, we show how employing the
Newton-Schulz algorithm for calculating matrix
inverses within the iterations of projected
gradient descent reduces the computational
complexity of the algorithm. We show that this
method achieves state-of-the-art performance.
Code is available at https://github.
com/Computational-Imaging-RU/
Bagged-DIP-Speckle.

1. Introduction
One of the most fundamental and challenging issues faced
by many coherent imaging systems is the presence of
speckle noise. An imaging system with “fully-developed”
speckle noise can be modeled as

y = AXow + z. (1)
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Here, Xo = diag(xo), where xo ∈ Cn denotes the
complex-valued signal of interest. w ∈ Cn represents
speckle (or multiplicative) noise, where w1, . . . , wn are in-
dependent and identically distributed (iid) CN (0, σ2

wIn),
and finally z ∈ Cm denotes the additive noise, often caused
by the sensors, is modeled as iid CN (0, σ2

z). In this paper,
we explore the scenario where m ≤ n, allowing imaging
systems to capture higher resolution images than constrained
by the number of sensors.1

As is clear from (1), the multiplicative nature of the speckle
noise poses a challenge in extracting accurate information
from measurements, especially when the measurement ma-
trix A is ill-conditioned. To alleviate this issue, many prac-
tical systems employ a technique known as multilook or
multishot (Argenti et al., 2013; Bate et al., 2022). Instead
of taking a single measurement of the image, multilook sys-
tems capture multiple measurements, aiming for each group
of measurements to have independent speckle and additive
noise. In an L look system, the measurements captured at
look ℓ, ℓ = 1, . . . , L, can be represented as

yℓ = AXowℓ + zℓ,

where, w1, . . . ,wL ∈ Cn and z1, . . . , zL ∈ Cm denote the
indepdent speckle noise and additive noise vectors, respec-
tively. In this model, we have assumed that the measurement
kernel A remains constant across the looks. This assumption
holds true in multilooking for several imaging systems, such
as when the sensors’ locations change slightly for different
looks.

Since fully-developed noises are complex-valued Gaussian
and have uniform phases, the phase of xo cannot be re-
covered. Hence, the goal of a multilook system is to ob-
tain a precise estimate of |xo| based on the L observations
{y1, . . . ,yL}, given the measurement matrix A. (Here, | · |
denotes the element-wise absolute value operation.) There-
fore, since the phase of xo is not recoverable, in the rest of
the paper, we assume that xo is real-valued.

A standard approach for estimating xo is to minimize the
negative log-likelihood function subject to the signal struc-
ture constraint. More precisely, in a constrained-likelihood-

1Considering m < n for simpler imaging systems (with no
speckle noise) has led to the development of the fields of com-
pressed sensing and compressive phase retrieval.

1

https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle
https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle
https://github.com/Computational-Imaging-RU/Bagged-DIP-Speckle


Bagged Deep Image Prior for Recovering Images in the Presence of Speckle Noise

based approach, one aims to solve the following optimiza-
tion problem:

x̂ = argmin
x∈C

fL(x), (2)

where C represents the set encompassing all conceivable
images and fL(x) is defined as:

fL(x) = log det(B(x)) +
1

L

L∑
ℓ=1

ỹTℓ (B(x))−1ỹℓ, (3)

where

B(x) =

[
σ2
zIn + σ2

wℜ(U(x)) −σ2
wℑ(U(x))

σ2
wℑ(U(x)) σ2

zIn + σ2
wℜ(U(x))

]
,

and ỹTℓ =
[
ℜ(yTℓ ) ℑ(yTℓ )

]
, with X = diag(x) and

U(x) = AX2ĀT .

Here, ℜ(·) and ℑ(·) denote element-wise real and imaginary
parts, respectively. (Appendix B presents the derivation of
the log likelihood function and its gradient.)

It is important to note that the set C in (2) is not known
explicitly in practice. Hence, in this paper we work with
the following hypothesis that was put forward in (Ulyanov
et al., 2018; Heckel & Hand, 2018).

• Deep image prior (DIP) hypothesis (Ulyanov et al.,
2018; Heckel & Hand, 2018): Natural images can be
embedded within the range of untrained neural net-
works that have substantially fewer parameters than
the total number of pixels, and use iid noises as inputs.

Inspired by this hypothesis, we define C as the range of a
deep image prior. More specifically, we assume that for
every x ∈ C, there exists θ ∈ Rk such that x ≈ gθ(u),
where u is generated iid N (0, 1), and θ ∈ Rk denotes the
parameters of the DIP neural network. There are two main
challenges that we address:

• Theoretical challenge: Assuming that we can solve the
optimization problem (2) under the DIP hypothesis,
the following question arises: Can we theoretically
characterize the corresponding reconstruction quality?
Moreover, what is the relationship between the recon-
struction error and key parameters such as k (the num-
ber of parameters of the DIP neural network), m, n
and L? Specifically, in the scenario where the scene is
static, and we can acquire as many looks as necessary,
what is the achievable level of accuracy?

• Practical challenge: Given the challenging nature of
the likelihood and the DIP hypothesis, can we design
a computationally-efficient algorithm for solving (2)
under the DIP hypothesis?

Here is a summary of our contributions:

On the theoretical front, we establish the first theoretical
result on the performance of multilook coherent imaging
systems. These findings unveil intriguing characteristics of
such imaging systems. Notably, we demonstrate that with a
large number of looks L, these systems deliver highly pre-
cise reconstructions when m2 = O(k log n). In Section 3,
we elaborate on the innovative methodologies underpinning
our theoretical results.

On the practical side, we start with vanilla projected gradient
descent (PGD) (Lawson & Hanson, 1995), which faces two
challenges diminishing its effectiveness on this problem:

Challenge 1: As will be described in Section 4.2, in
the PGD, the signal to be projected on the range of
gθ(u) is burried in “noise”. Hence, DIPs with large
number of parameters will overfit to the noise and will
not allow the PGD algorithm to obtain a reliable esti-
mate (Heckel & Hand, 2018; Heckel & Soltanolkotabi,
2019). On the other hand, the low accuracy of simpler
DIPs becomes a bottleneck as the algorithm progresses
through iterations, limiting the overall performance.
To alleviate this issue, we propose Bagged-DIP. This
is a simple idea with roots in classical literature of en-
semble methods (Breiman, 1996). Bagged-DIP idea
enables us to use complex DIPs at every iteration and
yet obtain accurate results.

Challenge 2: As will be clarified in Section 4.1, PGD
requires the inversion of large matrices at every itera-
tion, which is a computationally challenging problem.
We alleviate this issue by using the Newton-Schulz
algorithm (Schulz, 1933), and empirically demonstrat-
ing that only one step of this algorithm is sufficient
for the PGD algorithm. This significantly reduces the
computational complexity of each iteration of PGD.

2. Related Work
Eliminating speckle noise has been extensively explored in
the literature (Lim & Nawab, 1980; Gagnon & Jouan, 1997;
Tounsi et al., 2019). Current technology relies on gathering
enough measurements to ensure the invertibility of matrix A
and subsequently inverting A to represent the measurements
in the following form: yℓ = Xwℓ+ zℓ. However, as matrix
A deviates from the identity, the elements of the vector z
become dependent. In practice, these dependencies are often
overlooked, simplifying the likelihood. This simplification
allows researchers to leverage various denoising methods,
spanning from classical low-pass filtering to application
of convolutional neural networks (Tian et al., 2020) and
transformers (Fan et al., 2022). A series of papers have
considered the impact of the measurement kernel in the
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algorithms. By using single-shot digital holography, the
authors in (Pellizzari et al., 2017; 2018) develop heuristic
method to obtain maximum a posteriori estimate of the real-
valued speckle-free object reflectance. They later extend this
method to handle multi-shot measurements and incorporate
more accurate image priors (Pellizzari et al., 2020; 2022;
Bate et al., 2022). While these methods can work with
non-identity A’s, they still require A to be well-conditioned.

Our paper is different from the existing literature, mainly
because we study scenarios where the matrix A is under-
sampled (m < n). In a few recent papers, researchers
have explored similar problems (Zhou et al., 2022; Chen
et al., 2023). The paper (Chen et al., 2023) aligns closely in
scope and approach with our work. The authors addressed a
similar problem, albeit assuming real-valued measurements
and noises, and advocated for the use of DIP-based PGD.
Addressing the concerns highlighted in the last section (fur-
ther elucidated in Section 5.2), our Bagged-DIP-based PGD
employing the Newton-Schulz algorithm significantly out-
performs (Chen et al., 2023) in both reconstruction quality
and computational complexity. We will provide more infor-
mation in our simulation studies. Furthermore, we should
emphasize that (Chen et al., 2023) did not offer any theoret-
ical results regarding the performance of DIP-based MLE.

The authors in (Zhou et al., 2022) theoretically demonstrated
the feasibility of accurate recovery of xo even for m < n
measurements. While our theoretical results build upon the
contributions of (Zhou et al., 2022), our paper extends sig-
nificantly in two key aspects: (1) We address the multilook
problem and investigate the influence of the number of looks
on our bounds. To ensure sharp bounds, especially when
L is large, we derive sharper bounds than those presented
in (Zhou et al., 2022). These require novel technical con-
tributions (such as using decoupling method) as detailed in
our proof. (2) In contrast to the use of compression codes’
codewords for the set C in (Zhou et al., 2022), we leverage
the range of a deep image prior, inspired by recent advances
in machine learning. Despite presenting new challenges in
proving our results, this approach enables us to simplify
and establish the relationship between Mean Squared Er-
ror (MSE) and problem specification parameters such as
n,m, k, L.

Given DIP’s flexibility, it has been employed for various
imaging and (blind) inverse problems, e.g., compressed sens-
ing, phase retrieval etc. (Jagatap & Hegde, 2019; Ongie et al.,
2020; Darestani & Heckel, 2021; Ravula & Dimakis, 2022;
Zhuang et al., 2022; 2023). To boost the performance of
DIP in these applications, researchers have explored several
ideas, including, introducing explicit regularization (Mataev
et al., 2019), incorporating prior on network weights by
introducing a learned regularization method into the DIP
structure (Van Veen et al., 2018), combining with pre-trained

denoisers in a Plug-and-Play fashion (Zhang et al., 2021;
Sun et al., 2021), and exploring the effect of changing DIP
structures and input noise settings to speed up DIP training
(Li et al., 2023).

Lastly, it’s important to note our work can be situated
within the realm of compressed sensing (CS) (Donoho,
2006; Candès & Wakin, 2008; Davenport et al., 2012; Bora
et al., 2017; Peng et al., 2020; Joshi et al., 2021; Nguyen
et al., 2022), where the objective is to derive high-resolution
images from lower-resolution measurements. However, no-
tably, the specific challenge of recovery in the presence of
speckle noise has not been explored in the literatures before,
except in (Zhou et al., 2022) that we discussed before.

3. Main Theoretical Result
As we described in the last section, in our theoretical work,
we consider the cases in which m < n. m can even be much
smaller than n. Furthermore, for notational simplicity, in our
theoretical work only, we assume that the measurements and
noises are real-valued.2 Hence, we work with the following
likelihood function:

x̂ = argmin
x∈C

f(x), (4)

where

f(x) = log det
(
σ2
zIm + σ2

wAX2AT
)

+
1

L

L∑
ℓ=1

yTℓ
(
σ2
zIm + σ2

wAX2AT
)−1

yℓ. (5)

Note that we omit subscript L from the likelihood as a way
to distinguish between the negative loglikelihood of real-
valued measurements from the complex-valued ones. The
following theorem is the main theoretical result of the paper.
Consider the case of no additve noise, i.e. σz = 0, and that
for all i, we have 0 < xmin ≤ xo,i ≤ xmax.

Theorem 3.1. Let the elements of the measurement matrix
Aij be iid N (0, 1). Suppose that m < n and that the
function gθ(u), as a function of θ ∈ [−1, 1]k, is Lipschitz
with Lipschitz constant 1. We have

1

n
∥x̂− xo∥22 = O

(√
k log n

m
+

n
√
k log n

m
√
Lm

)
, (6)

with probability 1 − O(e−
m
2 + e−

Ln
8 + e−k logn +

ek logn−n
2 ).

2For the complex-valued problem, since the phases of the el-
ements of xo are not recoverable, we can assume that xo is real-
valued. Even though in this case, the problem is similar to the
problem we study in this paper, given that we have to deal with
real and imaginary parts of the measurement matrices and noises,
they are notationally more involved.
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Before we discuss the proof sketch and the technical nov-
elties of our proof strategy, let us explain some of the con-
clusions that can be drawn from this theorem and provide
some intuition. As is clear in (6), there are two terms in the
MSE. One that does not change with L and the other term
that decreases with L. To understand these two terms, we
provide further explanation in the following remarks.
Remark 3.2. As the number of parameters of DIP, k, in-
creases (while keeping m,n, and L fixed), both error terms
in the upper bound of MSE grow. This aligns with intuition,
as increasing the number of parameters in gθ(u) allows the
DIP model to generate more intricate images. Consequently,
distinguishing between these diverse alternatives based on
the measurements becomes more challenging.
Remark 3.3. The main interesting feature of the second term
in the MSE, i.e. n

√
k logn

m
√
Lm

, is the fact that it grows rapidly
as a function of n. In imaging systems with only additive
noise, the growth is often logarithmic in n (Bickel et al.,
2009), contrasting with polynomial growth observed here.
This can be associated with the fact that as we increase
n, the number of speckle noise elements present in our
measurements increases as well. Hence, it is reasonable
to expect the error term to grow faster in n compared with
additive noise models. But the exact rate at which the error
increases is yet unclear. As will be clarified in the proof,
most of the upper bounds we derive are expected to be sharp
(modulo one step in which we use a union bound, and we
do not expect that union bound to loosen our upper bounds).
Hence, we believe n

√
k logn

m
√
Lm

is sharp too.
Remark 3.4. As L → ∞, the second term in the upper
bound of MSE converges to zero, and the dominant term
becomes

√
k log n/m. Note that since we are considering

a fixed matrix A accross the looks, even when L goes to
infinity, we should not expect to be able to recover xo inde-
pedent of the value of m. One heuristic way to see this is to
calculate

1

L

L∑
ℓ=1

yℓy
T
ℓ = AXo

1

L

L∑
ℓ=1

wℓw
T
ℓ XoA

T . (7)

If we heuristically apply the weak law of large numbers and
use the approximation 1

L

∑
ℓwℓw

T
ℓ ≈ I , we see that

1

L

L∑
ℓ=1

yℓy
T
ℓ ≈ AX2

oA
T .

Under these approximations, the matirx 1
L

∑
ℓ yℓy

T
ℓ pro-

vides m(m + 1)/2 (due to symmetry) linear measure-
ments of X2

o . Hence, inspired by classic results in com-
pressed sensing (Candes & Davenport, 2013), intuitively,
we expect the accurate recovery of x2

o to be possible when
m2 ≫ k log n. The first error term in MSE is negligible
when m2 ≫ k log n, which is consistent with our conclu-
sion based on the limit of 1

L

∑
ℓ yℓy

T
ℓ .

We next provide a brief sketch of the proof to highlight
the technical novelties of our proof and also to enable the
readers to navigate through the detailed proof more easily.

Proof sketch of Theorem 3.1. Let x̂o denote the minimizer
of function f defined as

f(x) = f(Σ(x)) = − log detΣ +
1

Lσ2
w

L∑
ℓ=1

Tr(Σyℓy
T
ℓ ),

(8)

with Σ = Σ(x) = (AX2AT )−1, where X = diag(x).
For the reasons that will become clear later, we consider a
δn-net3 of the set [−1, 1]k and we call the mapping of the
δn-net under g, Cn. The choice of δn will be discussed later.
Define x̃o as the closest vector in Cn to x̂o, i.e.,

x̃o = argminx∈Cn
∥x̂o − x∥.

Let X̃o = diag(x̃o). Define Σo, Σ̂o and Σ̃o, as Σo = Σ(xo),
Σ̂o = Σ(x̂o), Σ̃o = Σ(x̃o), respectively. Since x̂o is the
minimizer of (8), we have

f(Σ̂o) ≤ f(Σo). (9)

On the other hand, f can be written as f(Σ) = − log detΣ+
1

Lσ2
w

∑L
ℓ=1 Tr(ΣAXowℓw

T
ℓ XoA

T ). Let f̄(Σ) denote the
expected value of f(Σ) with respect to w1, . . . ,wℓ. It is
straightforward to show

f̄(Σ) = − log detΣ + Tr(ΣAX2
oA

T ). (10)

As a function of Σ, f̄ achieves its minimum at Σ−1
o =

AX2
oA

T . We have

f̄(Σ̃o)− f̄(Σo) = f̄(Σ̃o)− f(Σ̃o) + f(Σ̃o)− f(Σ̂o)

+ f(Σ̂o)− f(Σo) + f(Σo)− f̄(Σo)

≤ f̄(Σ̃o)− f(Σ̃o) + f(Σ̃o)− f(Σ̂o)

+ f(Σo)− f̄(Σo), (11)

where to obtain the last inequality we have used (9). The
roadmap of the rest of the proof is the following:

1. Obtaining a lower bound for f̄(Σ̃o)− f̄(Σo) in terms
of ∥x̃o − xo∥22. Note that since f̄(Σ) is a convex func-
tion of Σ and is minimized at Σo we expect to be
able to obtain such bounds. Nevertheless this is the
most challenging part of the proof, because of the rel-
atively complicated dependence of x and Σ, and the
dependence of Σ on A in addition to x. Using sharp
linear-algebraic bounds combined with the decoupling
ideas (De la Pena & Giné, 2012) enabled us to obtain
a sharp lower bound for this quantity.

3The subscript n of δn emphasizes that δn depends on n and is
very close to zero when n is large.
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2. Finding upper bounds for f̄(Σ̃o)−f(Σ̃o) and f(Σo)−
f̄(Σo). Such bounds can be obtained using standard
concentration of measure results, such as Hanson-
Wright inequality, and the concentration of singular
values of iid Gaussian random matrices.

3. Finding an upper bound for f(Σ̃o)− f(Σ̂o): note that
intuitively, we expect ∥Σ̃o − Σ̂o∥ to be small as well.
Assuming that function f is a smooth function, in the
sense that it maps nearby points to nearby points in
its range, we expect f(Σ̃o) − f(Σ̂o) to be small too.
However, note that the function f has the randomness
of w1, . . . ,wL and A. Hence, to make our heuristic
argument work, we have to first prove that with high
probability f is a nice function.

Details of the three steps is presented in Appendix A.2.

4. Main Algorithmic Contributions
4.1. Summary of Projected Gradient Descent and DIP

As discussed in Section 1, we aim to solve the optimization
problem (5) under the DIP hypothesis. A popular heuristic
for achieving this goal is using projected gradient descent
(PGD). At each iteration t, the estimate xt is updated as
follows:

xt+1 = Proj(xt − µt∇fL(x
t)), (12)

where Proj(·) projects its input onto the range of the function
gθ(u), and µt denotes the step size. The details of the
calculation of ∇fL(x

t) are outlined in Appendix B.

An outstanding question in the implementation pertains to
the nature of the projection operation Proj(·). If gθ(u), in
which θ denotes the parameters of the neural network and u
denotes the input Gaussian noise, represents the reconstruc-
tion of the DIP, during training, DIP learns to reconstruct
images by performing the following two steps:

θ̂t = argmin
θ

∥gθ(u)− (xt − µt∇fL(x
t))∥,

xt+1 = gθ̂t(u), (13)

where to obtain a local minima in the first optimization
problem, we use Adam (Kingma & Ba, 2014) . One of the
main challenges in using DIPs in PGD is that the perfor-
mance of DIP gθ(u) is affected by the structure choices,
training iterations as well as the statistical properties of
xt − µt∇fL(x

t) (Heckel & Soltanolkotabi, 2019). We will
discuss this issue in the next section.

4.2. Challenges of DIP-based PGD

In this section, we examine two primary challenges encoun-
tered by DIP-based PGD and present novel perspectives for
addressing them.
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Figure 1. PSNR (averaged over 8 images) versus iteration count is
depicted for four DIP models fitted to both clean (left panel) and
noisy images with noise level σ = 25 (right panel). The 4-layer
networks are specified as follows: Blue - kernel size=1, channels
[100, 50, 25, 10]; Orange - kernel size=3, channels same as Blue;
Green - kernel size=1, channels [128, 128, 128, 128]; Red - kernel
size=3, channels same as Green.

4.2.1. CHALLEGE 1: RIGHT CHOICE OF DIP

Designing PGD, as described in Section 4.1, is particularly
challenging when it comes to selecting the appropriate net-
work structure for DIP. Figure 1 clarifies the main reason. In
this figure, four DIP networks are used for fitting to the clean
image (left panel) and an image corrupted by the Gaussian
noise (right panel). As is clear, the sophisticated networks fit
the clean image very well. However, they are more suscep-
tible to overfitting when the image is corrupted with noise.
On the other hand, the networks with simpler structure do
not fit to the clean image well, but are less susceptible to
the noise than the sophisticated-DIPs. This issue has been
observed in previous work (Heckel & Hand, 2018; Heckel
& Soltanolkotabi, 2019).

The problem outlined above poses a challenge for the DIP-
based PGD. Note that if xt − µt∇fL(x

t) closely approxi-
mates xo, fitting a highly intricate DIP to xt − µt∇fL(x

t)
will yield an estimate that remains close to xo. Conversely,
if overly simplistic networks are employed in this sce-
nario, their final estimate may fail to closely approach
xt − µt∇fL(x

t), resulting in a low-quality estimate. In
the converse scenario, where xt − µt∇fL(x

t) is signifi-
cantly distant from xo, a complex network may overfit to
the noise. On the contrary, a simpler network, capable of
learning only fundamental features of the image, may gen-
erate an estimate that incorporates essential image features,
bringing it closer to the true image.

The above argument suggests the following approach: initi-
ate DIP-PGD with simpler networks and progressively shift
towards more complex structures as the estimate quality
improves4. However, finding the right complexity level of
the DIP for each iteration of PGD, in which the statistics of
the error in the estimate xt − µt∇fL(x

t) is not known and

4A somewhat weaker approach would be to use intricate net-
works at every iteration, but then use some regularization approach
such as early stopping to control the complexity of the estimates.
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may be image dependent, is a challenging problem. In the
next section, we propose a new approach for aliviating this
problem.

4.2.2. SOLUTION TO CHALLEGE 1: BAGGED-DIP

Our new approach is based on a classical idea in statistics
and machine learning: Bagging. Rather than finding the
right complexity level for the DIP at each iteration, which is
a computationally demanding and statistically challenging
problem, we use bagging. The idea of bagging is that in the
case of challenging estimation problems, we create several
low-bias and hopefully weakly dependent estimates (we are
overloading the phrase weakly-dependent to refer to situa-
tions in which the cross-correlations of different estimates
are not close to 1 or −1) of a quantity and then calculate
the average of those quantities to obtain a lower-variance
estimate. In order to obtain weakly dependent estimates,
a common practice in the literatire is to apply the same
learning scheme to multiple datasets, each of which is a
random perturbation of the original training set, see e.g. the
construction of random forrests.

While there are many ways to create Bagged-DIP estimates,
in this paper, we explore a few very simple estimates, leav-
ing other choices for future research. First we select a
network that is sophisticated enough to fit well to real-world
images. The details of the newtwork we use for this pa-
per can be found in Appendix C. Using the neural network
provides our initial estimate of the image from the noisy
observation. To generate a new estimate, we begin by se-
lecting an integer number k, partitioning an image of size
(H ×W ) into non-overlapping patches of sizes (hk × wk).
Independent DIPs, with the same structure as the main one,
are then employed to reconstruct each of these (hk × wk)
patches. Essentially, the estimation of the entire image in-
volves learning HW

hkwk
DIP models. By placing these HW

hkwk

patches back into their original positions, we obtain the esti-
mate of the entire image, denoted as x̌k. A crucial aspect of
this estimate is that the estimation of a pixel relies solely on
the (hk×wk) patch to which the pixel belongs and no other
pixel. By iterating this process for K different values of
(hk × wk), we derive K estimates denoted as x̌1, . . . , x̌K .
The final sought-after estimate is obtained by averaging the
individual estimates.

The estimation of a pixel in x̌k is only dependent on the
(hk×wk) patch to which the pixel belongs. As our estimates
for different values of k utilize distinct regions of the image
to derive their pixel estimates, we anticipate these estimates
to be weakly-dependent (again in the sense that the cross-
correlations are not close to 1 or −1).

4.2.3. CHALLENGE 2: MATRIX INVERSION

As shown in Appendix B, the gradient of fL(x) defined in
(2) can be written as

∂fL
∂xj

= 2xjσ
2
w

(
ã+T·,j B−1ã+·,j + ã−T·,j B−1ã−·,j

)
− 2xjσ

2
w

L

L∑
ℓ=1

[(
ã+T·,j B−1ỹℓ

)2
+
(
ã−T·,j B−1ỹℓ

)2]
, (14)

where ã+·,j =

[
ℜ(a·,j)
ℑ(a·,j)

]
, ã−·,j =

[
−ℑ(a·,j)
ℜ(a·,j)

]
, ỹℓ =[

ℜ(yℓ)
ℑ(yℓ)

]
, a·,j denotes the j-th column of matrix A. It’s

important to highlight that in each iteration of the PGD,
the matrix B changes because it depends on the current
estimate xt. This leads to the computation of the inverse
of a large matrix B ∈ R2m×2m at each iteration, posing a
considerable computational challenge and a major obstacle
in applying DIP-based PGD for this problem. In the next
section, we present a solution to address this issue.

4.2.4. SOLUTION TO CHALLENGE 2

To address the challenge mentioned in the last section, we
propose to use Newton-Schulz algorithm. Newton-Schulz,
is an iterative algorithm for obtaining a matrix inverse. The
iterations of Newton-Schulz for finding (Bt)

−1 is given by

Mk = Mk−1 +Mk−1(I −BtM
k−1), (15)

where Mk is the approximation of (Bt)−1 at iteration k.
M0 = (Bt−1)

−1. It is shown that if σmax(I −M0Bt) < 1,
the Newton-Schulz converges to B−1

t quadratically fast
(Gower & Richtárik, 2017; Stotsky, 2020).

An observation to alleviate the mentioned issue in the previ-
ous section is that, given the nature of the gradient descent,
we don’t anticipate significant changes in the matrix X2

t

from one iteration to the next. Consequently, we expect Bt
and Bt−1, as well as their inverses, to be close to each other.

Hence, instead of calculating the full inverse at iteration t+1,
we can employ the Newton-Schulz algorithm with M0 set
to (Bt)

−1 from the previous iteration. Our simulations will
show that one step of the Newton-Schulz algorithm suffices.

5. Simulation Results
5.1. Study of the Impacts of Different Modules

5.1.1. NEWTON-SCHULZ ITERATIONS

In this section, we aim to answer the following questions:
(1) Is the Newton-Schulz algorithm effective in our Bagged-
DIP-based PGD? (2) What is the minimum number of iter-
ations for the Newton-Schulz algorithm to have good per-
formance in Bagged-DIP-based PGD? (3) How does the

6
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m/n #looks Barbara Peppers House Foreman Boats Parrots Cameraman Monarch Average

12.5%
25 19.91/0.443 19.70/0.385 20.15/0.377 19.10/0.355 20.20/0.368 17.61/0.372 18.19/0.426 19.06/0.524 19.24/0.406
50 20.90/0.567 21.69/0.535 22.27/0.531 20.51/0.577 21.41/0.470 19.23/0.486 19.31/0.492 21.33/0.642 20.83/0.538

100 21.84/0.633 22.41/0.657 23.96/0.624 20.63/0.638 22.52/0.536 19.68/0.574 20.66/0.512 22.56/0.720 21.78/0.612

25%
25 23.57/0.586 23.17/0.547 24.25/0.520 23.30/0.526 22.77/0.487 21.23/0.522 21.50/0.496 23.13/0.707 22.86/0.549
50 25.38/0.689 25.12/0.691 26.84/0.652 25.12/0.681 24.50/0.601 23.37/0.636 24.30/0.642 24.93/0.785 24.95/0.672

100 26.26/0.748 26.14/0.759 28.33/0.717 26.41/0.772 25.72/0.682 24.55/0.720 26.22/0.719 26.28/0.845 26.24/0.745

50%
25 27.30/0.759 27.02/0.724 28.56/0.697 27.56/0.735 26.21/0.669 25.94/0.728 27.95/0.762 27.17/0.845 27.21/0.740
50 28.67/0.816 28.52/0.804 30.30/0.762 28.88/0.827 27.58/0.739 27.23/0.799 30.21/0.843 28.86/0.898 28.78/0.818

100 29.40/0.843 29.21/0.849 31.61/0.815 29.74/0.871 28.45/0.785 28.20/0.848 31.58/0.902 30.05/0.932 29.78/0.856

Table 1. PSNR(dB)/SSIM ↑ of 8 test images with m/n = 12.5%/25%/50%, L = 25/50/100.

computation time differ when using the Newton-Schulz al-
gorithm compared to exact inverse computation?
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iteration
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15.0

17.5

20.0
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30.0

PS
NR
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Sampling rate 50%, L=50

exact inv 5 ite
exact inv 10 ite
exact inv 20 ite
Newton-Schulz
exact inv all ite

Figure 2. Newton-Schulz approximation (red) compared with com-
puting exact inverse (purple). Blue, orange and green curves
correspond to stopping the update of the inverse after the first 5,
10, and 20 iterations respectively.

Figure 2 shows one of the simulations we ran to address the
first two questions. In this figure, we have chosen L = 50
and m/n = 0.5, and the learning rate of PGD is 0.01.
The result of Bagged-DIP-based PGD with a single step
of Newton-Schulz is virtually identical to PGD with the
exact inverse. To investigate the impact of the Newton-
Schulz algorithm further, we next checked if applying even
one step of Newton-Schulz is necessary. Hence, in three
different simulations we stopped the matrix inverse update
at iterations 5 (blue), 10 (orange), and 20 (green). As is clear
from Figure 2, a few iterations after stopping the update,
PGD starts diverging. Hence, we conclude that a single step
of the Newton-Schulz is necessary and sufficient for PGD.

To address the last question raised above, we evaluated
how much time the calculation of the gradient takes if we
use one step of the Newton-Schulz compared to the full
matrix inversion. Our results are reported in Table 2. Our
simulations are for sampling rate 50%, and number of looks
L = 50 and three different images sizes.5 As is clear the
Newton-Schulz is much faster.

Table 2. Time (in seconds) required for exact matrix inversion and
its Newton-Schulz approximation in PGD step.

Image size 32 × 32 64 × 64 128 × 128
GD w/ Newton-Schulz ∼ 7e-5 ∼ 8e-5 ∼ 1e-4
GD w/o Newton-Schulz ∼ 0.3 ∼ 1.2 ∼ 52.8

5Our algorithm still faces memory limitations on a single GPU
when processing 256× 256 images. Addressing this issue through
approaches like parallelization remains subject for future research.

In our final algorithm, if the difference between ∥xt −
xt−1∥∞ > δx, then we use the exact inverse update. δx
is set to 0.12 (please refer to Appendix C for details) in
all our simulations. Based on this updating criterion, we
observe that the exact matrix inverse is only required for the
first 2-3 iterations, and it is adaptive enough to guarantee
the convergence of PGD.

5.1.2. BAGGED-DIP

Intuitively speaking, the more weakly dependent estimates
one generate the better the average estimate will be. In the
context of DIPs, there appear to be many different ways to
create weakly dependent samples. The goal of this section
is not to explore the full-potential of Bagged-DIPs. Instead,
we aim to demonstrate that even a few weakly dependent
samples can offer noticeable improvements. Hence, unlike
the classical applications of bagging in which thousands of
bagged samples are generated, to keep the computations
managable, we have only considered three bagged estimates.
Figure 3 shows one of our simulations. More simulations
are in Appendix D.3. In this simulation we have chosen
K = 3, i.e. we have only three weakly-dependent estimates.
These estimates are constructed according to the recipe
presented in Section 4.2.2 with the following patch sizes:
h1 = w1 = 32, h2 = w2 = 64, and h3 = w3 = 128. As is
clear from the left panel of Figure 3, even with these very
few samples, Bagged-DIPs has offered between 0.5dB and
1dB over the three estimates it has combined.
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Figure 3. (Left) We compare a Bagged-DIP with three sophisti-
cated DIP estimates. (Right) We compare PGD with simple and
Bagged-DIPs across different looks on image “Cameraman”.

5.1.3. SIMPLE ARCHITECTURES VERSUS BAGGED-DIPS

So far our simulations have been focused on sophisticated
networks. Are simpler networks that trade variance for the
bias able to offer better performance? The right panel of

7
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Figure 3 compares the performance of Bagged-DIP-based
PGD with that of PGD with a simple DIP. Not only this
figure shows the major improvement that is offered by using
more complicated networks (in addition to bagging), but
also it clarifies one of the serious limitations of the sim-
ple networks. Note that as L increases, the performance
of PGD with simple DIP is not improving. In such cases,
the low-accuracy of DIP blocks the algorithm from taking
advantage of extra information offered by the new looks.
More results about the comparison between Bagged-DIP
and simple structured DIP can be found in Table 6 of Ap-
pendix D.2.

5.2. Performance of Bagged-DIP-based PGD

In this section, we offer a comprehensive simulaion study
to evaluate the performance of the Bagged-DIP-based PGD
on several images. We explore the following settings in our
simulations:

• Number of looks (L): L = 25, 50, 100.

• Undersampling rate (mn ): mn = 0.125, 0.25, 0.5.

For each combination of L and m/n, we pick one of the 8,
128× 128 images mentioned in Table 1.6 We then generate
the matrix A ∈ Cm×n by selecting the first m rows of a
matrix that is drawn from the Haar measure on the space
of orthogonal matrices. We then generate w1, . . . ,wL ∼
CN (0, 1), and for ℓ = 1, 2, . . . , L, calculate yℓ = AXowℓ.

For our implementation of Bagged-DIP-based PGD, we
have made the following choices:

• Initialization: We initialize our algorithm with x0 =
1
L

∑L
ℓ=1 |ĀTyℓ|. However, the final performance of

DIP-based PGD does not appear to depend on the ini-
tialization. (See Figure 9 in Appendix E for further
information.)

• Learning rate: We have selected a learning rate of 0.01
for the gradient desent of the likelihood, and learning
rate of 0.001 in the training of DIPs.

• Number of iterations of SGD for training DIP: The
details are presented in Table 3 in the appendix.

• Number of iterations of PGD: We run the outer loop
(gradient descent of likelihood) for 100, 200, 300 itera-
tions when m/n = 0.5, 0.25, 0.125 respectively.

The peak signal-to-noise-ratio (PSNR) and structural index
similarity (SSIM) of our reconstructions are all reported in
Table 1. Qualitative results are presented in Figure 4, and
Figure 10,11,12 of Appendix F.

6Images from the Set11 (Kulkarni et al., 2016) are chosen and
cropped to 128× 128 for computational manageability in Table 1.

There are no other existing algorithms that are applicable
in the undersampled regime (m < n) considered in this
paper. The only algorithm addressing speckle noise in ill-
conditioned and undersampled scenarios prior to our work is
the vanilla PGD proposed in (Chen et al., 2023). Although
originally designed for real-valued signals and measure-
ments, we have adapted a complex-valued version of this
algorithm, with results presented in Appendix D.2. It can
be seen that, for L = 100, L = 50, and L = 25 on average
(being averaged over m/n = 0.125, 0.25, 0.5, and across
all images) our algorithm outperforms the one presented
in (Chen et al., 2023) by 1.09 dB, 1.47 dB, and 1.27 dB,
respectively.

5.3. Sharpness of Our Theoretical Results

In this section, we compare our results with the theoretical
findings presented in Theorem 3.1. Note that the dominant
term in the MSE is the second term, i.e. n

√
k logn

m
√
Lm

. There
are two features of this term that we would like to confirm
with our simulations:

1. The decay of this term in relation to m is m3/2. Hence,
if we double m, we expect an additional decay factor of
23/2 in MSE, or a gain of 15 log 2 ≈ 4.5 dB in PSNR.
The average gain in PSNR we have observed is 3.99
dB, which is within the error bounds of the theoretical
prediction of 4.5 dB.

2. The decay of this term in terms of L is L1/2. Hence, if
we double L,we expect an additional decay factor of√
2 in the MSE, or a gain of 5 log 2 ≈ 1.5dB in PSNR.

The average gain in PSNR we have observed is 1.42
dB, which is within the error bounds of the theoretical
prediction of 1.5 dB.

5.4. Comparison with A = I Case

The goal of this section is to provide a performance com-
parison with cases where we have control over the matrix
A, allowing us to design it as a well-conditioned kernel.
Ideally, we can assume that the measurements are in the
form of yℓ = Xwℓ, i.e. A = I . In this case, the task
is transformed into classical despeckling problem. Since
there is no wide or ill-conditioned matrix A involved in
the measurment process, we expect the imaging systems to
outperform for instance the 50% downsampled examples
we presented in Table 1. Hence, the main question we aim
to address here is:

• What is the PSNR cost incurred due to the undersam-
pling of our measurement matrices?

To address this question, we do the following empirical
study: having access to the L measurements in the form of
yℓ = Xwℓ, ℓ = 1, 2, . . . , L, we create a sufficient statistic
for estimating X . The sufficient statistic is the matrix S =
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Peppers House Foreman Boats Parrots Cameraman MonarchBabara

22.41/0.657 23.96/0.624 20.63/0.638 22.52/0.536 19.68/0.574 20.66/0.512 22.56/0.72021.84/0.633

26.14/0.759 28.33/0.717 26.41/0.772 25.72/0.682 24.55/0.720 26.22/0.719 26.28/0.84526.26/0.748

29.21/0.849 31.61/0.815 29.74/0.871 28.45/0.785 28.20/0.848 31.58/0.902 30.05/0.93229.40/0.843

Figure 4. Raw images and reconstructed images from 100 looks of
12.5%, 25%, 50% downsampled complex-valued measurements.
Row 2-4 are m/n = 0.125, 0.25, 0.5 with L = 100 respectively.
The PSNR/SSIM are reported below the reconstructed images.

( 1
L

∑L
ℓ=1 yℓy

T
ℓ )

1/2. Then, this sufficient statistic is fed to
DnCNN neural network (Zhang et al., 2017a;b) (which we
term it as DnCNN-UB), and learn the network to achieve the
best denoising performance. The results of DnCNN-UB are
often between 1-3dB better than the results of our Bagged-
DIP based PGD. With the exception of the cameraman,
where our Bagged-DIP based PGD seems to be better. Note
that the 1-3dB gain is obtained for two reasons: (1) DnCNN
approach uses training data, while our Bagged-DIP-based
approach does not require any training data. (2) In DnCNN
approach, we have controlled the measurement matrix to
be very well-conditioned. Details of DnCNN experimental
settings and results can be found in Appendix D.1.

6. Conclusion
We explore the theoretical and algorithmic aspects of the
problem of signal recovery from multiple sets of measure-
ments, termed as looks, amidst the presence of speckle noise.
We established an upper bound on the MSE of such imaging
systems, effectively capturing the MSE’s dependence on the
number of measurements, image complexity, and number of
looks. Drawing inspiration from our theoretical framework,
we introduce the bagged deep image prior (Bagged-DIP)
projected gradient descent (PGD) algorithm. Through ex-
tensive experimentation, we demonstrate that our algorithm
attains state-of-the-art performance.
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Speckle noise is a prevalent issue in various imaging sys-
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oretical analyses, that is presented in this paper, offers a
promising direction to improve the performance of such
imaging systems, and in turn have a positive impact across
a wide range of application areas.
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A. Proofs of the main results
A.1. Preliminaries

Before stating the proofs, we present a few lemmas that will be used later in the proof.

Lemma A.1. Let B and C denote two n× n symmetric and invertible matrices. Then, if λi represents the ith eigenvalue of
B−1 − C−1, we have |λi| ∈ [− σmax(B−C)

σmin(B)σmin(C) ,
σmax(B−C)

σmin(B)σmin(C) ].

Proof. Suppose λi is the ith eigenvalue of B−1 − C−1. Then, there exists a norm 1 vector v ∈ Rn such that

(B−1 − C−1)v = λiv.

Multiplying both sides by B, we have
(I −BC−1)v = λiBv.

Define u = C−1v. Then, we have (C −B)u = λiBCu, or equivalently

λiu = (BC)−1(C −B)u.

Hence,

|λi| ≤
σmax(C −B)

σmin(B)σmin(C)
.

Lemma A.2. (Rudelson & Vershynin, 2010) Let the elements of an m× n (m < n) matrix A be drawn independently from
N (0, 1). Then, for any t > 0,

P(
√
n−

√
m− t ≤ σmin(A) ≤ σmax(A) ≤

√
n+

√
m+ t) ≥ 1− 2e−

t2

2 . (16)

Lemma A.3 (Concentration of χ2 (Jalali et al., 2014)). Let Z1, Z2, . . . , Zn denote a sequence of independent N (0, 1)
random variables. Then, for any t ∈ (0, 1), we have

P(
n∑
i=1

Z2
i ≤ n(1− t)) ≤ e

n
2 (t+log(1−t)).

Also, for any t > 0,

P(
n∑
i=1

Z2
i ≥ n(1 + t)) ≤ e−

n
2 (t−log(1+t)).

Define

Theorem A.4 (Hanson-Wright inequality). Let X = (X1, ..., Xn) be a random vector with independent components with
E[Xi] = 0 and ∥Xi∥Ψ2

≤ K. Let A be an n× n matrix. Then, for t > 0,

P
(
|XTAX− E[XTAX]| > t

)
≤ 2 exp

(
−cmin

(
t2

K4∥A∥2HS

,
t

K2∥A∥2

))
, (17)

where c is a constant, and ∥X∥ψ2 = inf{t > 0 : E(exp(X2/t2)) ≤ 2}.
Theorem A.5 (Decoupling of U-processes, Theorem 3.4.1. of (De la Pena & Giné, 2012)). Let X1, X2, . . . , Xn de-
note random variables with values in measurable space (S,S). Let (X̃1, X̃2, . . . , X̃n) denote an independent copy of
X1, X2, . . . , Xn. For i ̸= j let hi,j : S2 → R. Then, there exists a constant C such that for every t > 0 we have

P
(
|
∑
i ̸=j

hi,j(Xi, Xj)| > t
)
≤ CP

(
C|
∑
i ̸=j

hi,j(Xi, X̃j)| > t
)
.
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A.2. Main steps of the proof

As we discussed in Section 3, the proof has three main steps:

1. Obtaining a lower bound for f̄(Σ̃o)− f̄(Σo) in terms of ∥x̃o − xo∥22: This will be presented in Section A.2.1.

2. Finding upper bounds for f̄(Σ̃o)− f(Σ̃o) and f(Σo)− f̄(Σo): This will be presented in Section A.2.2.

3. Finding an upper bound for f(Σ̃o)− f(Σ̂o): this will be presented in Section A.2.3.

We combine these steps and finish the proof in Section A.2.4. For notational simplicty we drop the subscript of δn in our
proof. However, whenever we need the interpretation of the results we should not that δ depends on n and behaves like
O(1/n5). It becomes more clear why we have picked this choice later. Many other choices of δn will work as well.

A.2.1. OBTAINING LOWER BOUND FOR f̄(Σ̃o)− f̄(Σo)

Define ∆Σ as
∆Σ = Σ̃o − Σo,

and let λm denote the maximum eigenvalue of Σ− 1
2

o ∆ΣΣ
− 1

2
o . As the first step the following lemma obtains a lower bound

f̄(Σ̃o)− f̄(Σo) in terms of Σ̃− Σo.
Lemma A.6. (Zhou et al., 2022) For x̃ ∈ Rn and xo ∈ Rn, let X̃ = diag(x̃), Xo = diag(xo). Assume that AX̃2AT and
AX2

oA
T are both invertible, and define Σ̃ = (AX̃2AT )−1, and Σo = (AX2

oA
T )−1. Then,

f̄(Σ̃)− f̄(Σo) ≥
1

2(1 + λm)2
Tr(Σ−1

o ∆ΣΣ−1
o ∆Σ), (18)

The next step of the proof is to connect the quantity Tr(Σ−1
o ∆ΣΣ−1

o ∆Σ) appearing in (18) to the difference x̃− xo. The
subsequent lemma brings us one step closer to this goal.
Lemma A.7. (Zhou et al., 2022) Consider two m × m matrices Σ̃ = (AX̃2AT )−1 and Σ = (AX2AT )−1 and define
∆Σ = Σ̃− Σ. Then,

Tr(Σ−1∆ΣΣ−1∆Σ) ≥ x4
minλ

2
min(AAT )

x8
maxλ

4
max(AAT )

∥A(X̃2 −X2)AT ∥2HS (19)

Tr(Σ−1∆ΣΣ−1∆Σ) ≤ x4
maxλ

2
max(AAT )

x8
minλ

4
min(AAT )

∥A(X̃2 −X2)AT ∥2HS. (20)

Combining (18) and (19) enables us to obtain a lower bound for f̄(Σ̃o) − f̄(Σo) in terms of ∥A(X̃2
o − X2

o )A
T ∥2HS and

λmin(AA
T ) and λmax(AAT ). Lower bounding the quantity λ2

min(AA
T )

λ4
max(AA

T )
is straightforward. Define the event:

E4 = {
√
n− 2

√
m ≤ σmin(A) ≤ σmax(A) ≤

√
n+ 2

√
m},

From Lemma A.2, we have
P(Ec4) ≤ 2 exp(−m

2
). (21)

Hence,

P
(
λ2
min(AAT )

λ4
max(AAT )

≤ (
√
n− 2

√
m)4

(
√
n+ 2

√
m)8

)
≤ 2 exp(−m

2
). (22)

The only remaining step in obtaining the lower bound we are looking for is that, the term ∥A(X̃2
o −X2

o )A
T ∥2HS in the lower

bound is not in the form of ∥x̃o − xo∥22 yet. Hence, the final step in obtaining the lower bound is to obtain a lower bound of
the form ∥x̃o − xo∥22 for ∥A(X̃2

o −X2
o )A

T ∥2HS. Towards this goal, for γ > 0 define E1(γ) as the event that

∥A(X̃2
o −X2

o )A
T ∥2HS ≥ m(m− 1)∥x2

o − x̃2
o∥22 −m2nγ,

Our goal is to show that for an appropriate value of γ this event holds with high probability. Towards this goal we use the
following lemma:

13
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Lemma A.8. Let the elements of m× n matrix A be drawn i.i.d. N (0, 1). For any given d ∈ Rn, define D = diag(d).
Then,

P(∥ADAT ∥2HS ≤ m(m− 1)

n∑
i=1

d2i − t) ≤ 2C exp

(
−cmin

( t2

C2∥d∥4∞qm,n
,

t

C∥d∥2∞q̃m,n

))
+ 2e−

n
2 , (23)

where C and c are the constants that appeared in Lemmas A.5 and A.4, and

qm,n ≜ m2(2
√
n+

√
m)4,

q̃m,n ≜ (2
√
n+

√
m)2. (24)

The proof of this lemma uses decoupling and is presented in Section A.3.1. Using this lemma, we have

P(Ec1)
(a)

≤ 2Cek log 2k
δ exp

(
−cmin

( α̌m,nγ2

x8
max

,
β̌m,nγ

x4
max

))
+ 2ek log 2k

δ −n/2

≤ 2Cek log 2k
δ

(
e
−c α̌m,nγ2

x8
max + e

−c β̌m,nγ

x4
max

)
+ 2ek log 2k

δ −n
2

= 2Cek log 2k
δ e

− cm2γ2

C2x8
max(2+

√
m/n)4 + 2Cek log 2k

δ e
− cm2γ

Cx4
max(2+

√
m/n)2 + 2ek log 2k

δ −n/2, (25)

where

α̌m,n ≜
m4n2

C2m2(2
√
n+

√
m)4

=
m2n2

C2(2
√
n+

√
m)4

,

β̌m,n ≜
m2n

C(2
√
n+

√
m)2

. (26)

In order to obtain Inequality (a), we should first note that by a simple counting argument we conclude that |Cδ| ≤ ( 2kδ )
k

(Shalev-Shwartz & Ben-David, 2014). Hence, by combining this result, the union bound on the choice of x̃o and Lemma
A.8 we reach Inequality (a).

By setting

γ = 2C
x4
max(2 +

√
m/n)2

m
√
c

√
k log

2k

δ
, (27)

we have

∥A(X̃2
o −X2

o )A
T ∥2HS ≥ m(m− 1)

n∑
i

(x̃2
o,i − x2

o,i)
2 − C̃mn

√
k log

2k

δ

= m(m− 1)

n∑
i

(x̃o,i − xo,i)
2(x̃o,i + xo,i)

2 − C̃mn

√
k log

2k

δ

≥ 4m(m− 1)x2
min

n∑
i

(x̃o,i − xo,i)
2 − C̃mn

√
k log

2k

δ

= 4m(m− 1)x2
min∥x̃o − xo∥22 − C̃mn

√
k log

2k

δ
(28)

with probability

P(Ec1) ≤ O(e−k log k
δ + ek log k

δ −
n
2 ), (29)

In the above equations C̃ is a constant that does not depend on m,n or δ. Furthermore, in (29) we have assumed that m is
large enough (and hence γ is small enough) to make the inequality m2γ2

C2x8
max(2+

√
m/n)4

< m2γ

Cx4
max(2+

√
m/n)2

true.
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Combining (18), (19), (22), (28), and (29) we conclude the lower bound we were looking for:

f̄(Σ̃o)− f̄(Σo) ≥
Č

(1 + λm)2
(
√
n− 2

√
m)4

(
√
n+ 2

√
m)8

(
4m(m− 1)x2

min∥x̃o − xo∥22 − C̃mn

√
k log

2k

δ

)
(30)

with probability
P (Ec1 ∩ Ec4) ≥ 1−O

(
e−

m
2 + e−k log k

δ + ek log k
δ −

n
2

)
.

Our last step for the lower bound is to simplify the expression of (30). Recall that λm is defined as the maximum
eigenvalue of Σ− 1

2
o ∆ΣΣ

− 1
2

o . On the other hand, λm = ∥Σ− 1
2

o ∆ΣΣ
− 1

2
o ∥2 ≤ ∥∆Σ∥2∥Σ

− 1
2

o ∥22 = ∥∆Σ∥2∥Σ−1
o ∥2. But,

∥Σ−1
o ∥2 = ∥AX2

oA
T ∥2 ≤ x2

maxλmax(AAT ). Similarly, ∥∆Σ∥2 = ∥Σ̂o − Σo∥2 ≤ ∥Σ̂o∥2 + ∥Σo∥2 ≤ 1
∥AX2

oA
T ∥2

+

1
∥AX̂2

oA
T ∥2

≤ 2
x2
minλmin(AAT )

. So overall, λm ≤ 2x2
maxλmax(AA

T )

x2
minλmin(AAT )

, and conditioned on E4, we have

λm ≤
2x2

max(1 + 2
√
m/n)2

x2
min(1− 2

√
m/n)2

. (31)

Hence, since λm > 1, we have

(1 + λm)2 ≤
16x4

max(1 + 2
√
m/n)4

x4
min(1− 2

√
m/n)4

= O(1). (32)

Hence,

Č

(1 + λm)2
(
√
n− 2

√
m)4

(
√
n+ 2

√
m)8

=
Č

n2(1 + λm)2
(1− 2

√
m/n)4

(1 + 2
√

m/n)8
≥

ˇ̌C

n2
. (33)

In summary, there exist two absolute constants C̄ and ¯̄C such that

f̄(Σ̃o)− f̄(Σo) ≥
C̄m(m− 1)

n2
∥x̃o − xo∥22 − ¯̄C

m
√
k log 2

δ

n
(34)

with probability
P (Ec1 ∩ Ec4) ≥ 1−O

(
e−

m
2 + e−k log 1

δ + ek log k
δ −

n
2

)
.

A.2.2. FINDING UPPER BOUNDS FOR f̄(Σ̃o)− f(Σ̃o) AND f(Σo)− f̄(Σo)

Given t2 > 0 define events E2 and E3

E2(t2) = {|δf(Σo)| ≤ t2}, E3 = {|δf(Σ̃o)| ≤ t2}.

The following Lemma enables to calculate the probability of E2 ∩ E3.

Lemma A.9. Given Σ = (AX2AT )−1, let δf(Σ) = f(Σ)− f̄(Σ). Then, for t > 0, there exists a constant c independent
of m,n, xmin, and xmax, such that

P(|δf(Σ)| ≥ t|A) ≤ 2 exp

(
− cLt

2x2
max∥ATΣA∥2

min

(
1,

t

2mx2
max∥ATΣA∥2

))
.

Also, ∥ATΣA∥2 ≤ λ2
max(AA

T )

λ2
min(AA

T )x4
min

.

The proof of this lemma is presented in Section A.3.2.

Our goal is to use Lemma A.9 for obtaining P((E2 ∩ E3)c).
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First note that we have

P((E2 ∩ E3)c) = P((E2 ∩ E3)c ∩ E4) + P((E2 ∩ E3)c ∩ Ec4) ≤ P((E2 ∩ E3)c ∩ E4) + P(Ec4). (35)

Furthermore, using Lemma A.9, for t2 ≤ 2mx2
max∥ATΣA∥2,

P((E2 ∩ E3)c ∩ E4) ≤ ek log 2k
δ exp(−c3Lt

2
2/2m)

= exp((k log
2k

δ
)− c3Lt

2
2/2m). (36)

To obtain the first inequality we have used Lemma A.9 and used a union bound on all the possible choices of X̃o ∈ Cn. As

discussed before, |Cδ| ≤ ek log 2k
δ . Let t2 =

√
4mk log( 2kδ )/Lc3. Note that since we are interested in the regime that m is

much bigger than k log 2k
δ , we can conclude that t2 ≤ 2mx2

max∥ATΣA∥2. Hence,

P((E2 ∩ E3)c ∩ E4) ≤ e−k log 2k
δ . (37)

Hence, combining (35) and (37) we have

P((E2 ∩ E3)c) ≤ e−k log 2k
δ + 2e−

m
2 . (38)

In summary, we have that for t2 =
√
4mk log( 2kδ )/Lc3,

P((E2 ∩ E3)c) = O(e−k log k
δ + e−

m
2 ). (39)

A.2.3. FINDING AN UPPER BOUND FOR f(Σ̃o)− f(Σ̂o):

The following lemma help us obtain an upper bound for f(Σ̃o)− f(Σ̂o).
Lemma A.10. Assume that AX̃2

oA
T and AX̂2

oA
T are both invertible. Define ∆Σ = Σ̃o − Σ̂o. Then,

|λi(Σ̃
− 1

2
o ∆ΣΣ̃

− 1
2

o )| ∈ [0,
x2
maxλ

2
max(AAT )∥x̂2

o − x̃2
o∥∞

x4
minλ

2
min(AAT )

]. (40)

Furthermore, if all the eigenvalues of Σ̃− 1
2

o ∆ΣΣ̃
− 1

2
o fall in the range [−0.5, 0.5]. Then,

f(Σ̃o)− f(Σ̂o) ≤
x2
maxλ

2
max(AAT )∥x̂2

o − x̃2
o∥∞

x4
minλ

2
min(AAT )

(
2m+

1

Lσ2
w

L∑
ℓ=1

wT
ℓ wℓ

)
. (41)

The proof of this lemma can be found in Section A.3.3. The main objective of this section is to obtain upper bound for the
following three terms:

• 1
Lσ2

w

∑
ℓw

T
ℓ wℓ:

Consider the following event:

E5 =

{
1

Lσ2
w

L∑
ℓ=1

wT
ℓ wℓ ≥ 2n

}
It is straightforward to use Lemma A.3 to see that

P(E5) ≤ e−
Ln
8 .

Hence we conclude that

1

Lσ2
w

L∑
ℓ=1

wT
ℓ wℓ ≤ 2n. (42)

with probability
P(Ec5) ≥ 1− e−

Ln
8 . (43)

.
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• λ2
max(AA

T )

λ2
min(AA

T )
:

Based on the calculation of P(E4) in (21), it is straightforward to see that

λ2
max(AAT )

λ2
min(AAT )

≤ (
√
n+ 2

√
m)2

(
√
n− 2

√
m)2

,

with probability larger than
P(E4) ≥ 1− 2 exp(−m

2
). (44)

• ∥x̂2
o − x̃2

o∥∞: Before we start let us prove a simple claim. For every x̃ in the range of gθ(u), there exists a vector v
such that,

∥x̃− v∥2 ≤ δ.

To prove this claim, let’s assume that x̃ = gθ̃(u). Suppose that θ̂ is a vector in the δn-net of [−1, 1]kthat is closest to θ̃.
By the definition of δn-net, we have

∥θ̃ − θ̂∥2 ≤ δn.

Hence, it is straightforward to use Lipschitzness of gθ̃(u) to prove that

∥x̃− x̂∥2 ≤ δ, (45)

and
∥x̂2

o − x̃2
o∥∞ ≤ 2xmax∥x̂o − x̃o∥∞ ≤ 2xmax∥x̂o − x̃o∥2 ≤ 2xmaxδ,

Summarizing the discusions of this section, we can conclude that there exist a constant C̃ such that

|f(Σ̃o)− f(Σ̂o)| ≤ C̃nδ (46)

with probability larger than
P(E4 ∩ E5) ≥ 1−O(e−

m
2 + e−

Ln
8 ).

A.2.4. SUMMARY OF THE BOUNDS

As mentioned in (11) we have

f̄(Σ̃o)− f̄(Σo) ≤ f̄(Σ̃o)− f(Σ̃o) + f(Σ̃o)− f(Σ̂o) + f(Σo)− f̄(Σo), (47)

Furthermore, we proved the following:

• According to (34) there exist two constants C̄ and ¯̄C such that

f̄(Σ̃o)− f̄(Σo) ≥
C̄m(m− 1)

n2
∥x̃o − xo∥22 − ¯̄C

m
√
k log 2k

δ

n
(48)

with probability
P (Ec1 ∩ Ec4) ≥ 1−O

(
e−

m
2 + e−k log k

δ + ek log k
δ −

n
2

)
.

• According to the discussion of Section A.2.2, we have

|f̄(Σ̃o)− f(Σ̃o)| ≤
√
4mk log(

2k

δ
)/Lc3,

|f̄(Σo)− f(Σo)| ≤
√
4mk log(

2k

δ
)/Lc3, (49)

with probability 1−O(e−k log k
δ + e−

m
2 ).
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• According to the discussion of Section A.2.3, there exists a constant C̃ such that

|f(Σ̃o)− f(Σ̂o)| ≤ C̃nδ (50)

with probability larger than
P(E4 ∩ E5) ≥ 1−O(e−

m
2 + e−

Ln
8 ).

Combining all these three results with (47) we notice that

C̄m(m− 1)

n2
∥x̃o − xo∥22 ≤ ¯̄C

m
√

k log 2
δ

n
+ 2

√
4mk log(

2

δ
)/Lc3 + C̃nδ, (51)

with probability 1−O(e−
m
2 + e−

Ln
8 + e−k log k

δ + ek log k
δ −

n
2 ). Hence, we can conclude that

1

n
∥x̃o − xo∥22 ≤ O


√
k log k

δ

m
+

n
√
k log k

δ

m
√
Lm

+
n2δ

m2

 , (52)

with probability 1−O(e−
m
2 + e−

Ln
8 + e−k log 1

δ + ek log 1
δ−

n
2 ).

Set δ = 1
n5 , we have

1

n
∥x̃o − xo∥22 = O

(√
k log n

m
+

n
√
k log n

m
√
Lm

)
, (53)

with probability 1−O(e−
m
2 + e−

Ln
8 + e−k logn + ek logn−n

2 ).

So far, we have found an upper bound for the error between ∥x̃o − xo∥2. However, our final estimate is x̂o. Note that we
have

∥x̂o − xo∥2 ≤ ∥x̂o − x̃o∥2 + ∥x̃o − xo∥2 ≤ δ + ∥x̃o − xo∥2. (54)

Hence, we have

1

n
∥x̂o − xo∥22 = O

(√
k log n

m
+

n
√
k log n

m
√
Lm

)
, (55)

with probability 1−O(e−
m
2 + e−

Ln
8 + e−k logn + ek logn−n

2 ).

A.3. Proof of auxiliary lemmas

A.3.1. PROOF OF LEMMA A.8

Let aTi denote the ith row of matrix A. We have

∥ADAT ∥2HS =

m∑
i=1

m∑
j=1

|aTi Daj |2 ≥
m∑
i=1

∑
j ̸=i

|aTi Daj |2. (56)

Note that

E(
m∑
i=1

∑
j ̸=i

|aTi Daj |2) = m(m− 1)

n∑
i=1

d2i .

Using Theorem A.5 we conclude that there exists a constant C such that

P(|
m∑
i=1

∑
j ̸=i

|aTi Daj |2 −m(m− 1)

n∑
i=1

d2i | > t)

≤ CP(C|
m∑
i=1

∑
j ̸=i

|aTi Dãj |2 −m(m− 1)

n∑
i=1

d2i | > t)

= CP(C|
m∑
i=1

aTi D
∑
j ̸=i

ãjã
T
j Dai −m(m− 1)

n∑
i=1

d2i | > t), (57)
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where ã1, ã2, . . . , ãm denote independent copies of a1,a2, . . . ,am. Define Ã as the matrix whose rows are
ãT1 , ã

T
2 , . . . , ã

T
m . Also, let Ã\i denote the matrix that is constructed by removing the ith row of Ã. Define

F ≜

 DÃT\1Ã\1D 0 . . . 0

0 DÃT\2Ã\2D . . . 0

0 0 . . . DÃT\mÃ\mD

 .

and

vT = [aT1 ,a
T
2 , . . . ,a

T
m].

Using Theorem A.4 we have

P(C|
m∑
i=1

aTi D
∑
j ̸=i

ãjã
T
j Dai −m(m− 1)

n∑
i=1

d2i | > t | Ã)

= P(C|vTFv − EvTFv| > t | Ã)

≤ 2 exp

(
−cmin(

t2

C2∥F∥2HS
,

t

C∥F∥2
)

)
(58)

Hence, in order to obtain a more explicit upper bound, we have to find upper bounds for ∥F∥2 and ∥F∥2HS . First note that

λmax(F ) = max
i

(λmax(DÃT\iÃ\iD))

≤ λmax(DÃT ÃD) ≤ ∥d∥2∞λmax(Ã
T Ã). (59)

Similarly,

∥F∥2HS =

m∑
i=1

∥DÃT\iÃ\iD∥2HS

(a)

≤
m∑
i=1

mλ2
max(DÃT\iÃ\iD)

(b)

≤ m2∥d∥4∞λ2
max(Ã

T Ã), (60)

where Inequality (a) uses the fact that the rank of matrix DÃT\iÃ\iD is m− 1, and Inequality (b) uses (59). Finally, using
Lemma A.2 we have

P(σmax(Ã) > 2
√
n+

√
m) ≤ 2e−

n
2 , (61)

and hence

P(λmax(Ã
TA) > (2

√
n+

√
m)2) ≤ 2e−

n
2 . (62)

By combining (57) and (58) we obtain

P(|
m∑
i=1

∑
j ̸=i

|aTi Daj |2 −m(m− 1)

n∑
i=1

d2i | > t | Ã)

≤ 2CE
(
exp

(
−cmin

( t2

C2∥F∥2HS
,

t

C∥F∥2

)))
, (63)

where the expected value is with respect to the randomness in F or equivalently Ã.

Let the event E denote the event of σmax(Ã) ≤ 2
√
n +

√
m, and IE denote the indicator function of the event E . Then,
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using (63) we have

P(|
m∑
i=1

∑
j ̸=i

|aTi Daj |2 −m(m− 1)

n∑
i=1

d2i | > t)

= P({|
m∑
i=1

∑
j ̸=i

|aTi Daj |2 −m(m− 1)

n∑
i=1

d2i | > t} ∩ E)

+ P({|
m∑
i=1

∑
j ̸=i

|aTi Daj |2 −m(m− 1)

n∑
i=1

d2i | > t} ∩ Ec)

≤ E

P(|
m∑
i=1

∑
j ̸=i

|aTi Daj |2 −m(m− 1)

n∑
i=1

d2i | > t | Ã)IE

+ P(Ec)

≤ 2CE
(
exp

(
−cmin

( t2

C2∥F∥2HS
,

t

C∥F∥2

))
IE
)
+ P(Ec)

≤ 2C exp

(
−cmin

( t2

C2∥d∥4∞qm,n
,

t

C∥d∥2∞q̃m,n

))
+ 2e−

n
2 . (64)

A.3.2. PROOF OF LEMMA A.9

By definition,

δf(Σ) = f(Σ)− f̄(Σ)

=
1

Lσ2
w

L∑
ℓ=1

wT
ℓ XoA

TΣAXowℓ − Tr(ΣAX2
oA

T ). (65)

Define matrix B ∈ RLn×Ln as B = XoA
TΣAXo and B̃ as

B̃ =


B 0 · · · 0
0 B · · · 0
0 0 · · · 0
0 0 · · · B

 .

Furthermore, define
w̃⊤ = [w1,w2, . . . ,wL].

Then, by the Hanson-Wright inequality (Theorem A.4), we have

P(| 1

Lσ2
w

w̃T B̃w̃ − Tr(ΣAX2
oA

T )| > t)

≤ 2 exp
(
− cmin(

L2t2

4∥B̃∥2HS

,
Lt

2∥B̃∥2
)
)
. (66)

First note that,
∥B̃∥2 = ∥B∥2. (67)

Furthermore,

∥B̃∥2HS = LTr(B2) = L

m∑
i=1

λ2
i (B)

≤ Lmλ2
max(B) = Lm∥B∥22, (68)
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where the second equality is due to the fact that rank(B) = m. On the other hand, ∥B∥2 = ∥XoA
TΣAXo∥2 ≤

x2
max∥ATΣA∥2. Moreover,

∥ATΣA∥22 = max
u∈Rn

uTATΣAATΣAu

∥u∥22
≤ λmax(A

TA)λmax(AAT )λ2
max(Σ) (69)

But Σ = (AX2AT )−1 and X = diag(x). Therefore, λmax(Σ) = (λmin(AX2AT ))−1 ≤ (λmin(AAT )x2
min)

−1 and

∥ATΣA∥22 ≤ λmax(AAT )λmax(A
TA)

λ2
min(AAT )x4

min

.

A.3.3. PROOF OF LEMMA A.10

To prove |λi(Σ̃
− 1

2
o ∆ΣΣ̃

− 1
2

o )| ∈ [0,
x2
maxλ

2
max(AA

T )∥x̂2
o−x̃2

o∥∞
x4
minλ

2
min(AA

T )
], first note that

|λi| ≤
σmax(∆Σ)

σmin(Σ̃o)

=
σmax((AX̂2

oA
T )−1 − (AX̃2

oA
T )−1)

σmin(Σ̃o)

(a)

≤ σmax((AX̂2
oA

T )− (AX̃2
oA

T ))

σmin(Σ̃o)σmin(AX̂2
oA

T )σmin(AX̃2
oA

T )

=
σmax(AX̃2

oA
T )σmax((AX̂2

oA
T )− (AX̃2

oA
T ))

σmin(AX̂2
oA

T )σmin(AX̃2
oA

T )
.

≤ x2
maxλ

2
max(AAT )∥x̂2

o − x̃2
o∥∞

x4
minλ

2
min(AAT )

. (70)

To obtain inequality (a) we have used Lemma A.1.

To prove (41) we start with

f(Σ̂o)− f(Σ̃o) ≤ | log det(Σ̂o)− log det(Σ̃o)|+
1

Lσ2
w

|
L∑
ℓ=1

yTℓ ((AX̂2
oA

T )−1 − (AX̃2
oA

T )−1)yℓ|. (71)

We have

| log det(Σ̂o)− log det(Σ̃o)|

= | log det(I + Σ̃
− 1

2
o ∆ΣΣ̃

− 1
2

o )|

≤
n∑
i=1

| log(1 + λi(Σ̃
− 1

2
o ∆ΣΣ̃

− 1
2

o ))|

(b)

≤ 2

m∑
i=1

|λi(Σ̃
− 1

2
o ∆ΣΣ̃

− 1
2

o )|

≤ 2m
x2
maxλ

2
max(AAT )∥x̂2

o − x̃2
o∥∞

x4
minλ

2
min(AAT )

, (72)

where Inequality (b) uses the assumption that λi(Σ̃
− 1

2
o ∆ΣΣ̃

− 1
2

o ) ∈ [−0.5, 0.5] and | log(1 + x)| <= 2|x| when x ∈
[0.5,+∞).
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Furthermore, note that

1

Lσ2
w

|
L∑
ℓ=1

yTℓ ((AX̂2
oA

T )−1 − (AX̃2
oA

T )−1)yℓ|

≤ σmax((AX̂2
oA

T )−1 − (AX̃2
oA

T )−1)
1

Lσ2
w

L∑
ℓ=1

yTℓ yℓ

≤ λmax(AAT )∥x̂2
o − x̃2

o∥∞
x4
minλ

2
min(AAT )

1

Lσ2
w

L∑
ℓ=1

yTℓ yℓ

≤ λmax(AAT )∥x̂2
o − x̃2

o∥∞
Lσ2

wx
4
minλ

2
min(AAT )

L∑
ℓ=1

yTℓ yℓ

≤ x2
maxλ

2
max(AAT )∥x̂2

o − x̃2
o∥∞

Lσ2
wx

4
minλ

2
min(AAT )

L∑
ℓ=1

wT
ℓ wℓ.

B. Likelihood function and its gradient
B.1. Caculation of the likelihood function

The aim of this section is to derive the loglikelihood for our model,

yℓ = AXwℓ + zℓ, for ℓ = 1, . . . , L,

where w1,w2, . . . ,wL, and z1, z2, . . . , zL are independent and identically distributed CN (0, σ2
wIn) and CN (0, σ2

zIp)
respectively. Since the noises are indepednet across the looks, we can write the loglikelihood for one of the looks, and then
add the loglikelihoods to obtain the likelihood for all the looks. For notational simplicity, we write the measurements of one
of the looks as:

y = AXw + z

Note that y is a linear combination of two Gaussian random vectors and is hence Gaussian. Hence, by writing the real and
imaginary parts of y seperately we will have

ℜ(y) + ℑ(y) = (ℜ(AX) + iℑ(AX))(w(1) + iw(2)) + (z(1) + iz(2)),

and

ỹ ≜

[
ℜ(y)
ℑ(y)

]
∼ N

([
0
0

]
, B

)
,

where

B =

[
σ2
zIn + σ2

wℜ(AX2ĀT ) −σ2
wℑ(AX2ĀT )

σ2
wℑ(AX2ĀT ) σ2

zIn + σ2
wℜ(AX2ĀT )

]
.

Hence, the log-likelihood of our data y as a function of x is

ℓ(x) =− 1

2
log det (B)− 1

2

[
ℜ(yT ) ℑ(yT )

]
(B)

−1

[
ℜ(y)
ℑ(y)

]
+ C. (73)

Note that equation (73) is for a single look. Hence the loglikelihood of y1,y2, . . . ,yL as a function of x is:

ℓ(x) = −L

2
log det(B)− 1

2

L∑
ℓ=1

ỹTℓ B
−1ỹℓ + C, (74)

Since we would like to maximize ℓ(x) as a function of x, for notational simplicty we define the cost function fL(x) : Rn →
R:

fL(x) = log det(B) +
1

L

L∑
ℓ=1

ỹTℓ B
−1ỹℓ, (75)

that we will minimize to obtain the maximum likelihood estimate.
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B.2. Calculation of the gradient of the likelihood function

As discussed in the main text, to execute the projected gradient descent, it is necessary to compute the gradient of the
negative log-likelihood function ∂fL. The derivatives of fL with respect to each element xj of x is given by:

∂fL
∂xj

=2xjσ
2
w

([
ℜ(aT·,j) ℑ(aT·,j)

]
B−1

[
ℜ(a·,j)
ℑ(a·,j)

]
+
[
−ℑ(aT·,j) ℜ(aT·,j)

]
B−1

[
−ℑ(a·,j)
ℜ(a·,j)

])
− 2xjσ

2
w

L

L∑
ℓ=1

[([
ℜ(aT·,j) ℑ(aT·,j)

]
B−1

[
ℜ(yℓ)
ℑ(yℓ)

])2

+

([
−ℑ(aT·,j) ℜ(aT·,j)

]
B−1

[
ℜ(yℓ)
ℑ(yℓ)

])2
]

=2xjσ
2
w

(
ã+T·,j B−1ã+·,j + ã−T·,j B−1ã−·,j

)
− 2xjσ

2
w

L

L∑
ℓ=1

[(
ã+T·,j B−1ỹℓ

)2
+
(
ã−T·,j B−1ỹℓ

)2]
, (76)

where a·,j denotes the j-th column of matrix A, ã+·,j =
[
ℜ(a·,j)
ℑ(a·,j)

]
and ã−·,j =

[
−ℑ(a·,j)
ℜ(a·,j)

]
.

B.3. More simplification of the gradient

The special form of the matrix B enables us to do the calculations more efficiently. To see this point, define:

U + iV ≜
(
σ2
zIn + σ2

wAX2ĀT
)−1

,

where U, V ∈ Rm×m. These two matrices should satisfy:(
σ2
zIn + σ2

wℜ(AX2ĀT )
)
U − σ2

wℑ(AX2ĀT )V = In

σ2
wℑ(AX2ĀT )U +

(
σ2
zIn + σ2

wℜ(AX2ĀT )
)
V = 0.

These two equations imply that:

B−1 =

[
U −V
V U

]
. (77)

This simple observation, enables us to reduce the number of multiplications required for the Newton-Schulz algorithm.
More specifically, instead of requiring to multiply two 2m× 2m matrices, we can do 4 multiplications of m×m matrices.
This helps us have a factor of 2 reduction in the cost of matrix-matrix multiplication in our Newton-Schulz algorithm.

In cases the exact inverse calculation is required, again this property enables us to reduce the inversion of matrix B ∈
R2m×2m to the inversion of two m×m matrices (albeit a few m×m matrix multiplications are required as well).

Plugging (77) into (76), we obtain a simplified form for the gradient of fL(x):

∂fL
∂xj

=4xjσ
2
wℜ
(
āT·,j(U + iV )a·,j

)
− 2xjσ

2
w

L

L∑
ℓ=1

[
ℜ2
(
āT·,j(U + iV )yℓ

)
+ ℑ2

(
āT·,j(U + iV )yℓ

) ]
=4xjσ

2
wℜ
(
āT·,j(U + iV )a·,j

)
− 2xjσ

2
w

L

L∑
ℓ=1

∥∥āT·,j(U + iV )yℓ
∥∥2
2
. (78)

C. Details of our Bagged-DIP-based PGD
Algorithm 1 shows a detailed version of the final algorithm we execute for recovering images from their multilook, speckle-
corrupted, undersampled measurements. In one of the steps of the algorithm we ensure that all the pixel values of our
estimate are within the range [0, 1]. This is because we have assumed that the image pixels take values within [0, 1].

The only remaining parts of the algorithm we need to clarify are, (1) our hyperparameter choices, and (2) the implementation
details of the Bagged-DIP module. As described in the main text, in each (outer) iteration of PGD, we learn three DIPs and
then take the average of their outputs. Let us now consider one of these DIPs that is applied to one of the hk × wk patches.
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Algorithm 1 Iterative PGD algorithm
Input: {yl}Ll=1, A,x0 = 1

L

∑L
l=1 |A

Tyl|, gθ(·).
Output: Reconstructed x̂.
for t = 1, . . . , T do

[Gradient Descent Step]
if t = 1 or ∥xt − xt−1∥∞ > δx then

Calculate exact Bt = (AX2
t A

T )−1.
else

Approx B̃t = Bt−1 +Bt−1(Im −AX2
t A

TBt−1).
end if
Gradient calculation at coordinate j as∇fL(xt−1,j) using Bt or B̃t, and update xG

t,j : xG
t,j ← xt−1,j − µt∇fL(xt−1,j).

Save matrix inverse Bt or B̃t.
Truncate xG

t into range (0, 1), xG
t = clip(xG

t , 0, 1).
[Bagged-DIPs Projection Step]
Generate random image given randomly generated noise u ∼ N (0, 1) as gθ(u).
Update θt by optimizing over ∥gθ(u)− xG

t ∥22: θt ← argminθ ∥gθ(u)− xG
t ∥22 till converges.

Generate xP
t using trained gθ̂t(·) as xP

t ← gθt(u).
Obtain xt = xP

t .
end for
Reconstruct image as x̂ = xT .

Inspired by the deep decoder paper (Heckel & Hand, 2018), we construct our neural network, using four blocks: we call the
first three blocks DIP-blocks and the last one output block. The strctures of the blocks are shown in Figure 5. As is clear
from the figrue, each DIP block is composed of the following components:

• Up sample: This unit increases the hight and width of the datacube that receives by a factor of 2. To interpolate the
missing elements, it uses the simple bilinear interpolation. Hence, if the size of the image is 128× 128, then the height
and width of the input to DIP-block3 will be 64× 64, the input of DIP-Block2 will be 32× 32, and so on.

• ReLU: this module is quite standard and does not require further explanation.

• Convolution: For all our simulations we have either used 1× 1 or 3× 3 convolutions. Additionally, we provide details
on the number of channels for the data cubes entering each block in our simulations. The channel numbers are [128,
128, 128, 128] for the four blocks.

The output block is simpler than the other three blocks. It only have a 2D convolution that uses the same size as the
convolutions of the other DIP blocks. The nonlinearity used here is sigmoid, since we assume that the pixel values are
between [0, 1].

Finally, we should mention that each element of the input noise u of DIP (as described before DIP function is gθ(u)) is
generated independently from Normal distribution N (0, 1).

DIP Block-1

2D  
Conv 

Kernel 3
ReLU

Up- 
Sample 
Scale 2

DIP Block-2

2D  
Conv 

Kernel 3
ReLU

Up- 
Sample 
Scale 2

DIP Block-3

2D  
Conv 

Kernel 3
ReLU

Up- 
Sample 
Scale 2

Output Block 

2D  
Conv 

Kernel 3
Sigmoid

Figure 5. The structure of DIP and Output Blocks.

The other hyperparameters that are used in the DIP-based PGD algorithm are set in the following way: The learning rate of
the loglikelihood gradient descent step (in PGD) is set to µ = 0.01. For training the Bagged-DIPs, we use Adam (Kingma &
Ba, 2014) with the learning rate set to 0.001 and weight decay set to 0. The number of iterations used for training Bagged-
DIPs for different estimates on images are mentioned in Table 3. We run the outer loop (gradient descent of likelihood) for
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Patch size of estimates Barbara Peppers House Foreman Boats Parrots Cameraman Monarch
128 400 400 400 400 400 800 4k 800
64 300 300 300 300 300 600 2k 600
32 200 200 200 200 200 400 1k 400

Table 3. Number of iterations used in training Bagged-DIPs for different estimates.
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Figure 6. (Left) The structure of Bagged-DIPs with K estimates. (Right) Performance of fitting Bagged-DIP to clean images.

100, 200, 300 iterations when m/n = 0.5, 0.25, 0.125 respectively. For “Cameraman“ only, when m/n = 0.125, since the
convergence rate is slow, we run 800 outer iterations.

The Newton-Schulz algorithm, utilized for approximating the inverse of matrix Bt, has a quadratic convergence when the
maximum singular value σmax(I −M0Bt) < 1. Hence, ideally, if this condition does not hold, we do not want to use the
Newton-Schulz algorithm, and may prefer the exact inversion. Unfortunately, checking the condition σmax(I −M0Bt) < 1
is also computationally demanding. However, the special form of Bt enables us to have an easier heuristic evaluation of this
condition.

For our problems, we establish an empirical sufficient condition for convergence: ∥xt − xt−1∥∞ < δx, where δx is a
predetermined constant. To determine the most robust value for δx, we conducted simple experiments. We set n = 128×128
and m/n = 0.5. The sensing matrix A is generated as described in the main part of the paper (see Section 5.2). Each element
of xo is independently drawn from a uniform distribution U [0.001, 1]. Furthermore, each element of ∆xo is independently
sampled from a two-point distribution. In this distribution, the probability of the variable X being δx is equal to the
probability of X being −δx, both with a probability of 0.5, ensuring ∥∆xo∥∞ = δx. We define B as A(X +∆Xo)

2ĀT ,
and M0 as (AX2ĀT )−1. We then assess the convergence of the Newton-Schulz algorithm for calculating B−1. For various
values of δx, we ran the simulation 100 times each, recording the convergence success rate. As indicated in Table 4, the
algorithm demonstrates instability when δx ≥ 0.13. Consequently, we set δx to 0.12 in all our simulations to ensure the
reliable convergence of the Newton-Schulz algorithm.

δx convergence success rate
0.1 100%
0.11 100%
0.12 100%
0.13 38%
0.14 0%
0.15 0%

Table 4. Convergence success rate for different thresholds.

D. Additional experiments.
D.1. Comparison with classical despeckling.

We use DnCNN (Zhang et al., 2017b;a) as the neural networks for despeckling task. The DnCNN structure we use consists
of one input block, eight DnCNN block and one output block. The details are shown in Figure 7. The number of channels
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for each convolutional layer is 64.

Input Block

2D  
Conv 

Kernel 3
ReLU

DnCNN Block - 1 Output Block 

2D  
Conv 

Kernel 3

Batch 
Norm ReLU

2D  
Conv 

Kernel 3
Sigmoid

2D  
Conv 

Kernel 3

Batch 
Norm ReLU

DnCNN Block - 8

…

Figure 7. The structure of DnCNN, Input and Output Blocks.

Since there is no sensing matrix A in this simulation, we consider real-valued speckle noise w (similar to what we considered
in our theoretical work) to make the number of measurements the same (with the same number of looks), and make the
comparisons simpler. The training set we use for DnCNN is BSD400 (Martin et al., 2001), we divide the images in training
set to be 128 × 128, with stride step 32. The learning rate is 1e-4, batch size is 64, it takes 20 epochs for the training to
converge. Table 5 compares the results of this simulation, with the results of the simulation we presented in the main text for
fifty percent downsampled measurement matrix. The results of DnCNN-UB are often between 1-3dB better than the results
of our Bagged-DIPs-based PGD. With the exception of the cameraman, where our Bagged-DIPs-based PGD seems to be
better. It should be noted that the gain obtained by DnCNN here should not be only associated to the fact that the matrix A
is undersampled. There is one major difference that may be contributing to the improvements that we see in Table 5, and
that is we are also using a training set, while our DIP-based method does not use any training data.

m/n #looks Barbara Peppers House Foreman Boats Parrots Cameraman Monarch Average

50%
25 27.30/0.759 27.02/0.724 28.56/0.697 27.56/0.735 26.21/0.669 25.94/0.728 27.95/0.762 27.17/0.845 27.21/0.740
50 28.67/0.816 28.52/0.804 30.30/0.762 28.88/0.827 27.58/0.739 27.23/0.799 30.21/0.843 28.86/0.898 28.78/0.818

100 29.40/0.843 29.21/0.849 31.61/0.815 29.74/0.871 28.45/0.785 28.20/0.848 31.58/0.902 30.05/0.932 29.78/0.856

DnCNN-UB
25 28.77/0.832 29.42/0.830 29.90/0.799 31.26/0.820 28.51/0.788 28.19/0.858 28.77/0.911 29.40/0.925 29.28/0.845
50 30.30/0.873 30.93/0.868 30.92/0.832 31.54/0.859 29.87/0.839 29.07/0.888 29.84/0.925 30.63/0.940 30.40/0.878

100 32.18/0.903 32.38/0.899 32.45/0.866 34.28/0.900 31.59/0.865 29.77/0.902 29.83/0.896 31.27/0.955 31.72/0.898

Table 5. PSNR(dB)/SSIM ↑ of m/n = 50%, L = 25/50/100. DnCNN despeckling tasks are used for showing the performance gap
between our method with 50% downsampled complex valued measurements and the corresponding empirical uppper bound.

D.2. Comparison with (Chen et al., 2023)

As discussed before, a recent paper has also considered the problem of recovering an image from undersampled/ill-
conditioned measurement kernels in the presence of the speckle noise (Chen et al., 2023) and they also considered a
DIP-based approach. The goal of this section is to provide some comparison in the performance of our DIP-based method
and the one presented in (Chen et al., 2023).

While (Chen et al., 2023) considered real-valued speckle noises and measurements, we adapt their approch to the complex-
valued settings under which we have run our experiments. The results of our comparisons are presented in Table 6. As
is clear in this table (Chen et al., 2023) considered two different algorithms DIP-simple and DIP-M3. DIP-simple is the
DIP-based PGD with filter size = 1 and the number of channels were chosen as [100, 50, 25, 10]. In DIP-M3, the same DIP
was chosen. But the authors also used λ residual connection to balance the contribution from gradient descent and projection
outputs as follows:

xt = λxPt + (1− λ)xGt ,

where xPt and xGt are gradient descent and projection results respectively. Similar to the setting of that paper we consider,
where smaller λ is used when L increase, so we set the hyperparameter λ = 0.3, 0.2, 0.1 for L = 25, 50, 100.

We should note that choosing optimal λ is tricky for different m/n and L. Setting a small λ means that a large portion of
projection has been bypassed, which indicates the limit on learning capacity of simple DIP. To verify the statement that a
simple DIP has very limited learning capacity on some images, we also provide the baseline, DIP-simple, which distingushes
from DIP-M3 by setting λ = 1.0. This means we use the projection results fully from the DIP-simple, and it fails on several
tasks as we can see from Table 6, and especially the case we mention in the right panel of Figure 3.
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It’s important to highlight that Bagged-DIPs do not incorporate residual connections to bypass the projection, essentially
representing the case where λ = 1.0. Specifically, we solely rely on the projection from Bagged-DIPs. The outcomes
presented in Table 6 demonstrate the robust projection capabilities of Bagged-DIPs, leading to superior performance
compared to DIP-simple and DIP-M3.

m/n #looks DIP-simple DIP-M3 Bagged-DIPs

12.5%
25 18.03/0.336 17.81/0.316 19.24/0.406
50 19.25/0.408 18.96/0.382 20.83/0.538

100 20.15/0.497 19.94/0.464 21.78/0.612

25%
25 22.00/0.493 21.69/0.474 22.86/0.549
50 23.42/0.572 23.39/0.551 24.95/0.672

100 24.79/0.656 25.08/0.629 26.24/0.745

50%
25 25.62/0.683 26.01/0.668 27.21/0.740
50 26.81/0.749 27.81/0.733 28.78/0.818

100 27.53/0.799 29.52/0.779 29.78/0.856

Table 6. Average PSNR(dB)/SSIM ↑ comparison of baseline methods, m/n = 12.5%/25%/50%, L = 25/50/100.

D.3. Bagging performance.

We show the comparison of Bagged-DIPs with three sophisticated DIP estimates in Figure 8. In most of the test images, the
bagging of three estimates yields a performance improvement over all individual estimates. As described in the main part of
the paper, this is expected when all the estimates are low-bias and are weakly-dependent.

However, there are exceptions, such as the case of “Foreman.” In such instances, one of the estimates appears to surpass
our average estimate. This occurs when certain individual estimates are affected by large biases. While these biases are
mitigated to some extent in our average estimate, a residual portion persists, affecting the overall performance of the average
estimate. There are a few directions one can explore to resolve this issue and we leave them for future research. For instance,
we can create more bagging samples, and then use more complicated networks without worrying about the overfitting. That
will alleviate the issue of high bias that exists in a few images.

Since averaging the estimates may results in blurring issues on the image, we further quantitatively measure the sharpness
of the images by using gradient magnitude similarity deviation (GMSD) (Xue et al., 2013). Table 7 below reports PSNR,
GMSD, and SSIM of the averaged (i.e., bagged) output, and compares it against the performance achieved by individual
estimates. The test image here is Cameraman with m/n = 0.5, and L = 50. It can be observed that throughout the iterations,
the averaged output, i.e., the output of Bagged-DIP, achieves the best performance in terms of PSNR, GMSD and SSIM.

Estimate ite 5 ite 10 ite 15 ite 20 ite 25 ite 30
estimate 1 20.58/0.0793/0.684 27.72/0.0728/0.859 29.17/0.0851/0.844 29.64/0.0888/0.842 29.58/0.0905/0.838 29.62/0.0927/0.837
estimate 2 20.41/0.0825/0.660 27.64/0.0797/0.840 29.25/0.0836/0.826 29.46/0.0900/0.823 29.22/0.0957/0.813 29.06/0.1017/0.809
estimate 3 20.68/0.0851/0.644 27.76/0.0809/0.818 29.57/0.0909/0.791 29.20/0.0999/0.770 29.14/0.1014/0.765 29.02/0.1054/0.762

estimate avg 20.68/0.0788/0.683 27.95/0.0715/0.858 29.76/0.0799/0.845 30.12/0.0843/0.841 30.14/0.0875/0.838 30.00/0.0916/0.835

Table 7. PNSR(dB)/GMSD/SSIM of the reconstruction of the Cameraman at the different iterations of the PGD algorithm. estimates 1, 2
and 3 denote the estimates obtained with 32× 32, 64× 64 and 128× 128 patch sizes respectively. Estimate avg, exhibits the performance
of the averaged signal.

E. Time cost of PGD algorithm.
We provide the timing details of training the Bagged-DIPs-based PGD algorithm in Table 8. The time cost of each iteration
in PGD is affected by m/n, and the iterations needed for training Bagged-DIPs. The experiments are performed on Nvidia
RTX 6000 GPUs, and we record the time it uses accordingly for different tasks.

Bagged-DIPs training iterations 12.5% 25% 50%
200, 300, 400 ∼ 65 ∼ 75 ∼ 105
400, 600, 800 ∼ 115 ∼ 125 ∼ 155

1k, 2k, 4k ∼ 330 ∼ 340 ∼ 370

Table 8. Time (in seconds) required for each iteration of the PGD with different sampling rate and iterations for training Bagged-DIPs.

We also find that, compared with initializing x0 with fixed values, using initialization x0 = 1
L

∑L
l=1 |ĀTyl| helps improve

the convergence rate. But the final reconstructed performance does not depend on the initialization methods we compare.
The effect of input initialization in PGD algorithm is shown in Figure 9.
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Figure 8. Comparison of Bagged-DIPs and three sophisticated DIP estimates on 8 images, m/n = 0.5, L = 50.
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Figure 9. Comparison between two initializations: (1) proposed: our inititalization method; (2) half: a vector whose elements are all 0.5.

We should also underscore that there exist several straightforward computational optimizations that can enhance the runtime
of our algorithm. For instance, in our simulations, we opted for a conservative and small step size (µt) in our PGD algorithm
to ensure convergence across all scenarios and all images. By employing adaptive step sizes, one can significantly reduce
the runtime. Supporting this assertion, the results in Table 9 for the test image Barbara (m/n = 0.5, L = 50) demonstrate
that similar PSNR performance can be achieved using much larger values of µt. The required number of iterations for
these larger values is substantially smaller. For example, setting µt = 0.1 results in the algorithm converging within 5 outer
iterations, thereby reducing the runtime by a factor of 10.

Step size for PGD ite 1 ite 2 ite 3 ite 4 ite 5 ite 10 ite 20 ite 30 ite 40 ite 50
µt = 0.01 19.13 19.76 20.33 20.77 21.26 23.41 26.46 27.77 28.35 28.54
µt = 0.02 19.81 20.97 22.03 22.93 23.70 26.78 28.52 28.67 28.69 28.66
µt = 0.05 22.04 24.24 25.87 27.10 27.73 28.58 28.51 28.47 28.45 28.45
µt = 0.1 24.81 27.57 28.19 28.33 28.30 28.28 28.22 28.22 28.22 28.14

Table 9. Each row of the table displays the PSNRs of the estimates obtained at various iterations of Bagged-DIP PGD with a specific
step-size indicated in the first column.

F. Qualitative results of Bagged-DIPs-based PGD
We show the qualitative results of the Bagged-DIPs-based PGD algorithm that are reconstructed from L = 25, 50, 100
looks of 12.5, 25, 50% downsampled complex-valued measurements. Row 1-3 in Figure 10 are m/n = 0.125 with
L = 25, 50, 100 respectively, row 1-3 in Figure 11 are m/n = 0.25 with L = 25, 50, 100 respectively, row 1-3 in Figure 12
are m/n = 0.5 with L = 25, 50, 100 respectively. We also report the PSNR/SSIM under each reconstructed image.

An evident advantage observed in the reconstructed images is that utilizing bagging estimates with various patch sizes helps
alleviate the blocking issue that may arise when relying solely on a single patch size (e.g., patch size = 32). This is because
boundaries in smaller patch sizes do not necessarily align with boundaries in larger patch sizes, and aggregating estimates

28



Bagged Deep Image Prior for Recovering Images in the Presence of Speckle Noise

from different patch sizes through averaging can effectively mitigate the blocking issue. Additionally, we visualize the
reconstructed images from individual estimates and bagged estimate in Figure 13. We observe that there is no blocking issue
in the bagged estimate.

Peppers House Foreman Boats Parrots Cameraman MonarchBabara

19.70/0.385 20.15/0.377 19.10/0.355 20.20/0.368 17.61/0.372 18.19/0.426 19.06/0.52419.91/0.443

21.69/0.535 22.27/0.531 20.51/0.577 21.41/0.470 19.23/0.486 19.31/0.492 21.33/0.64220.90/0.567

22.41/0.657 23.96/0.624 20.63/0.638 22.52/0.536 19.68/0.574 20.66/0.512 22.56/0.72021.84/0.633

Figure 10. Reconstructed images from L = 25, 50, 100 looks of 12.5% downsampled complex-valued measurements. Row 1-3 are
m/n = 0.125 with L = 25, 50, 100 respectively.

Peppers House Foreman Boats Parrots Cameraman MonarchBabara

23.17/0.547 24.25/0.520 23.30/0.526 22.77/0.487 21.23/0.522 21.50/0.496 23.13/0.70723.57/0.586

25.12/0.691 26.84/0.652 25.12/0.681 24.50/0.601 23.37/0.636 24.30/0.642 24.93/0.78525.38/0.689

26.14/0.759 28.33/0.717 26.41/0.772 25.72/0.682 24.55/0.720 26.22/0.719 26.28/0.84526.26/0.748

Figure 11. Reconstructed images from L = 25, 50, 100 looks of 25% downsampled complex-valued measurements. Row 1-3 are
m/n = 0.25 with L = 25, 50, 100 respectively.
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Peppers House Foreman Boats Parrots Cameraman MonarchBabara

27.02/0.724 28.56/0.697 27.56/0.735 26.21/0.669 25.94/0.728 27.95/0.762 27.17/0.84527.30/0.759

28.52/0.804 30.30/0.762 28.88/0.827 27.58/0.739 27.23/0.799 30.21/0.843 28.86/0.89828.67/0.816

29.21/0.849 31.61/0.815 29.74/0.871 28.45/0.785 28.20/0.848 31.58/0.902 30.05/0.93229.40/0.843

Figure 12. Reconstructed images from L = 25, 50, 100 looks of 50% downsampled complex-valued measurements. Row 1-3 are
m/n = 0.5 with L = 25, 50, 100 respectively.

Figure 13. We visualize the reconstructed images Cameraman with m/n = 0.5, L = 50. From left to right: estimate 1 (patch size 32),
estimate 2 (patch size 64), estimate 3 (patch size 128), bagged estimate.
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