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Abstract

Uncertainty quantification is essential for reliable
federated graph learning, yet existing methods
struggle with decentralized and heterogeneous data.
In this work, we first extend Conformal Predic-
tion (CP), a well-established method for uncer-
tainty quantification, to federated graph learning,
formalizing conditions for CP validity under par-
tial exchangeability across distributed subgraphs.
We prove that our approach maintains rigorous
coverage guarantees even with client-specific data
distributions. Building on this foundation, we ad-
dress a key challenge in federated graph learning:
missing neighbor information, which inflates CP
set sizes and reduces efficiency. To mitigate this,
we propose a variational autoencoder (VAE)-based
architecture that reconstructs missing neighbors
while preserving data privacy. Empirical evalua-
tions on real-world datasets demonstrate the effec-
tiveness of our method: our theoretically grounded
federated training strategy reduces CP set sizes
by 15.4%, with the VAE-based reconstruction pro-
viding an additional 4.9% improvement, all while
maintaining rigorous coverage guarantees.

1 INTRODUCTION

Graph Neural Networks (GNNs) have significantly ad-
vanced graph data mining, demonstrating strong perfor-
mance across various domains, including social platforms,
e-commerce, transportation, bioinformatics, and healthcare
[Hamilton et al., 2018, Kipf and Welling, 2017, Wu et al.,
2022, Zhang et al., 2021b]. In many real-world scenarios,
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graph data is inherently distributed due to the nature of data
generation and collection processes [Zhou et al., 2020]. For
example, data from social networks, healthcare systems, and
financial institutions [Liu et al., 2019] is often generated
by multiple independent entities, leading to fragmented and
distributed graph structures. This distributed nature of graph
data poses unique challenges when training GNNs, such as
the need to address data privacy, ownership, and regulatory
constraints [Zhang et al., 2021a].

Federated Learning (FL) emerges as a solution, allowing col-
laborative model training without centralized data sharing
[McMahan et al., 2017, Kairouz et al., 2021]. FL addresses
data isolation issues and has been widely used in various ap-
plications, including computer vision and natural language
processing [Li et al., 2020]. However, applying FL to graph
data introduces unique challenges, such as incomplete node
neighborhoods and missing links across distributed sub-
graphs [Zhang et al., 2021a]. These missing connections
can degrade model performance and increase uncertainty,
underscoring the need for robust uncertainty quantification
techniques.

Conformal Prediction [Vovk et al., 2005] offers a promising
framework for producing statistically guaranteed uncertainty
estimates, providing user-specified confidence levels to con-
struct prediction sets with provable coverage guarantees.
Specifically, with a miscoverage level α ∈ (0, 1), CP uses
calibration data to generate prediction sets for new instances,
ensuring the true outcome is contained within them with
probability at least 1− α.

While CP has been explored in natural language process-
ing [Kumar et al., 2023], computer vision [Angelopoulos
et al., 2020], federated learning [Lu et al., 2023], and GNNs
[Zargarbashi et al., 2023, Huang et al., 2024], its application
in federated graph learning remains underexplored. A pri-
mary challenge is ensuring the exchangeability assumption,
critical for CP’s validity, holds in partitioned graph data,
which may not be the case due to data heterogeneity across
clients.
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Figure 1: Overview of federated conformal prediction
for graph-structured data. A simplified scenario involving
patient data distributed across three hospitals, highlighting
both intra-client (solid lines) and inter-client (dashed lines)
connections. In federated settings, inter-client links are of-
ten missing, despite their real-world presence, leading to
fragmented subgraphs. The FedGNN model optimizes a
global model through local updates on each client, while
the centralized GNN model operates on the complete graph
with all connections intact, serving as a performance bench-
mark. Missing inter-client links result in larger conformal
prediction sets, as shown by C1

α(Xtest) (prediction set from
FedGNN) and C2

α(Xtest) (prediction set from centralized
GNN), illustrating how missing links affect model uncer-
tainty.

In this paper, we investigate conformal prediction within a
federated graph learning framework, where multiple clients,
each with distinct local data distributions Pk over node-
feature-label pairs (x, y), collaboratively train a shared
global model while experiencing missing neighbor infor-
mation. Our objective is to construct prediction sets with
marginal coverage guarantees for unseen data drawn from
a global test distribution Qtest =

∑K
k=1 pkPk, where pk

denotes the mixing weight for client k. However, hetero-
geneity across the client distributions Pk can violate the
exchangeability assumption required by conformal predic-
tion, undermining the validity of coverage guarantees and
leading to larger, less informative prediction sets [Huang
et al., 2024]. This issue is further compounded by the ab-
sence of inter-client links, which limits structural context
and increases uncertainty due to incomplete neighborhood
information, as illustrated in Figure 1.

We extend the theoretical framework of partial exchange-
ability to graphs within the federated learning setting, ad-
dressing the challenges posed by data heterogeneity across
the client subgraphs. Our analysis reveals inefficiencies in
the size of the conformal prediction sets attributable to miss-
ing links. To counteract these inefficiencies, we introduce a
novel framework designed to generate missing links across
clients, thereby optimizing the size of CP sets.

Our main contributions are summarized as follows:

• We extend Conformal Prediction to federated graph set-
tings, establish the necessary conditions for CP validity
and derive theoretical statistical guarantees.

• We analyze how the absence of inter-client links in-
flates conformal prediction set sizes and propose a
method to mitigate this inefficiency through local sub-
graph completion.

• We demonstrate the effectiveness of our approach
through empirical evaluation on four benchmark
datasets, showing improved efficiency of CP in fed-
erated graph scenarios.

2 RELATED WORK

Recent advancements have applied Conformal Prediction to
graph machine learning to enhance uncertainty quantifica-
tion in GNNs. [Clarkson, 2023] improved calibration and
prediction sets for node classification in inductive learn-
ing scenarios. [Huang et al., 2024] and [Zargarbashi et al.,
2023] focused on reducing prediction set sizes, with the lat-
ter enhancing efficiency through the diffusion of node-wise
conformity scores and leveraging network homophily.

In Federated Learning, [Lu et al., 2023] extended CP tech-
niques to address data heterogeneity, providing theoretical
guarantees for uncertainty quantification in distributed set-
tings. [Zhang et al., 2021a] introduced FedSage and Fed-
Sage+, methods for training graph mining models on dis-
tributed subgraphs, tackling data heterogeneity and missing
links. [Baek et al., 2023] explored personalized weight ag-
gregation based on subgraph similarity in a personalized
subgraph FL framework. [Tan et al., 2022] proposed Fed-
Proto, which constructs prototypes from local client data
to enhance learning across subgraphs, though it does not
address privacy concerns related to sharing prototypes.

Despite these efforts, existing work does not fully address
the challenges of missing links and subgraph heterogeneity
in graph conformal settings. Our work is the first to pro-
pose a CP method specifically designed for federated graph
learning, addressing both exchangeability violations and
inefficiencies caused by missing neighbor information.

3 PRELIMINARIES

We begin by defining the preliminary concepts and notation
used throughout this paper. A summary of the key symbols
is provided in Table 1 for easy reference.

3.1 CONFORMAL PREDICTION

Conformal prediction is a framework for uncertainty quan-
tification that provides rigorous statistical guarantees. We
focus on the split conformal prediction method [Vovk et al.,



Table 1: Summary of key notation.

Symbol Description

Graphs and Federated Learning
G,V, E A graph with a set of nodes and edges.
X,Y Node features and labels.
K Total number of clients.
Gk,Vk, Ek Subgraph at client k.
Pk Data distribution at client k.
mk Training set size at client k.
nk Calibration set size at client k.

Conformal Prediction
α Target miscoverage level.
S(x, y) Non-conformity function.
sv or ski Non-conformity score for a node.
q̂α Empirical score quantile (cutoff).
Cα(x) Conformal prediction set.

Generative Model
cm Feature prototype (cluster center).
X̂ Aggregated set of all prototype features.
M Number of feature prototypes per client k.
p Percentage of new edges to add.

2005], notable for its computational efficiency. The method
defines a non-conformity measure S : X × Y → R, which
quantifies how atypical the true label y is for the input x ac-
cording to the model’s predictions. For classification tasks,
S(x, y) might be defined as 1− fy(x), where fy(x) is the
estimated probability of class y given x.

3.1.1 Quantile Calculation and Prediction Set
Construction

Using a calibration dataset Dcalib = {(xi, yi)}ni=1, we com-
pute the non-conformity scores Si = S(xi, yi) for each cal-
ibration example. The cutoff value q̂α is then determined as
the (1−α)(1+ 1

n )-th empirical quantile of these scores, i.e.,
q̂α = quantile

(
{S1, . . . , Sn}, (1− α)

(
1 + 1

n

))
. Given a

new input x, the prediction set is constructed as Cα(x) =
{y ∈ Y : S(x, y) ≤ q̂}. Under the assumption of exchange-
ability of the data, this method guarantees that the true label
y will be contained in Cα(x) with probability at least 1−α.

Adaptive Prediction Sets (APS) [Romano et al., 2020] con-
struct prediction sets by accumulating class probabilities.
Given a probabilistic classifier that outputs estimated class
probabilities f(x) = (f1(x), . . . , f|Y|(x)), where fj(x) is
the estimated probability of class j for input x, we sort
the classes in descending order to obtain a permutation π
such that fπ(1)(x) ≥ fπ(2)(x) ≥ . . . ≥ fπ(|Y|)(x). The
cumulative probability up to the k-th class is V (x, k) =∑k
j=1 fπ(j)(x). For each calibration example (xi, yi), we

compute the non-conformity score Si = V (xi, ki), where

ki is the rank of the true label yi in the sorted class prob-
abilities for xi. The cutoff value q̂ is then determined
as before. The prediction set Cα(x) includes the top k∗

classes, where k∗ = min {k : V (x, k) ≥ q̂} and Cα(x) =
{π(1), . . . , π(k∗)}. While we use APS for presenting our
main results, other scores like Regularized Adaptive Predic-
tion Sets (RAPS) and Least Ambiguous Set-Valued Classi-
fiers (LAC) are also commonly used. We provide a compara-
tive analysis of these non-conformity scores in Appendix E.

3.1.2 Evaluation Metrics

Our goal is to achieve valid marginal coverage while min-
imizing the size of the prediction sets. The inefficiency
is measured as Inefficiencyα = 1

m

∑m
j=1 |Cα(xj)|, on the

test set Dtest = {(xj , yj)}mj=1, where m denotes the num-
ber of test samples. Empirical coverage is calculated as
Coverageα = 1

m

∑m
j=1 1{yj ∈ Cα(xj)}, representing the

proportion of test examples where the true label is included
in the prediction set.

3.2 GNNS AND FEDERATED GRAPH LEARNING

GNNs effectively capture structural information and node
features in graph-structured data [Kipf and Welling, 2017].
Consider a graph G = (V, E), where V is the set of n nodes
and E is the set of edges. Each node v ∈ V is associated
with a feature vector xv ∈ Rd, forming the input matrix
X = {xv}v∈V ∈ Rn×d.

In node classification, the goal is to predict labels for nodes
by leveraging both node features and the graph topology. We
operate under a transductive learning setting where the full
graph G is available during training and testing, but test la-
bels are withheld. To enable conformal prediction, we parti-
tion the node set V into four disjoint subsets: training, valida-
tion, calibration, and test nodes, denoted as Vtrain,Vvalid,Vcal,
and Vtest, respectively.

A GNN produces node representations through a sequence
of message-passing layers. At each layer ℓ, a node u receives
messages from its neighbors v ∈ Nu, computed using a
learnable function MSG(h

(ℓ−1)
u , h

(ℓ−1)
v ), where h

(ℓ−1)
u de-

notes the embedding of node u from the previous layer.
The incoming messages are aggregated via a permutation-
invariant function AGG, and the node embedding is updated
using a learnable function UPD:

h(ℓ)
u = UPD

(
AGG

(
{MSG(h(ℓ−1)

u , h(ℓ−1)
v ) | v ∈ Nu}

)
,

h(ℓ−1)
u

)
.

The final-layer embeddings are used by a classifier to pro-
duce predictions µ(X), which are used to compute the su-
pervised loss over the training set Vtrain.



Federated Graph Neural Networks extend GNNs to settings
where graph data is distributed across multiple clients [Liu
et al., 2024]. A central server coordinates with K clients,
each holding a subgraph Gk ⊂ G. Each client independently
trains a local GNN model on its subgraph using its local
labeled nodes. After local training, model parameters θk
are transmitted to the server, which aggregates them using
Federated Averaging (FedAvg) [McMahan et al., 2017]:

θ =

K∑
k=1

mk

m
θk,

where θk denotes the parameters of the local GNN model
at client k, mk is the number of local training samples, and
m =

∑K
k=1 mk. The aggregated global model θ is then

broadcast back to clients for the next round of training. This
process enables collaborative training while preserving data
privacy, as no raw data or node features are shared between
clients.

In our framework, the FedAvg aggregation is applied to both
the GNNs used for node classification and the Variational
Graph Autoencoders (VGAEs) used for generating missing
neighbor links (Section 5.2). The shared model parameters
θ include all learnable weights in the encoder layers, en-
suring consistency across clients without exposing private
subgraph structure.

3.3 VARIATIONAL AUTOENCODERS

VAEs [Kingma and Welling, 2013] and their extension to
graph data, VGAEs [Kipf and Welling, 2016], are fundamen-
tal to our approach for generating node features and predict-
ing edges. Both methods utilize deep learning and Bayesian
inference to learn latent representations by optimizing the ev-
idence lower bound (ELBO), balancing reconstruction loss
and the Kullback-Leibler (KL) divergence between the ap-
proximate and prior distributions. The ELBO is defined as:
L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)] − DKL[qϕ(z|x)∥p(z)],
where qϕ(z|x) approximates the latent variable z, and p(z)
is the prior. In our model, VAEs generate node features,
while VGAEs learn latent representations of graph struc-
tures for the edge prediction task.

4 CHALLENGES OF CONFORMAL
PREDICTION ON FEDERATED
GRAPHS

Conformal Prediction on federated graphs faces several chal-
lenges that need to be addressed to ensure its applicability
and effectiveness in real-world applications. In this section,
we elaborate on these challenges. In Section 5, we discuss
how we address them.

Exchangeability: A significant challenge in federated graph
CP is the violation of the exchangeability principle, which
traditional CP methods rely upon [Vovk et al., 2005]. Con-
sider a federated graph learning setting where nodes of the
overall graph V are partitioned into training, validation, cal-
ibration, and test sets as Vtrain,Vvalid,Vcalib, and Vtest. These
methods presuppose that the distributions of calibration
nodes Vcalib and test nodes Vtest are exchangeable during in-
ference, meaning their joint distribution remains unchanged
when samples are permuted. This assumption breaks down
in federated graph settings for two primary reasons.

First, inherent dependencies among nodes due to their con-
nectivities violate exchangeability if the test data is not
present during training. Secondly, the distribution of graph
data across different clients in a federated setting tends to
vary, leading to non-exchangeable distributions. Specifically,
the sets Vcalib and Vtest are not exchangeable, as their respec-
tive subsets V(k)

calib and V(k′)
test may originate from distinct

clients (k ̸= k′). This variability underscores the challenges
in assuming uniform data distribution across clients. For
example, hospitals specializing in certain medical fields
might predominantly treat patients from specific demo-
graphic groups, leading to skewed data distributions. Sim-
ilarly, graph partitioning algorithms like METIS [Karypis
and Kumar, 1997], used for simulating subgraph FL sce-
narios, aim to minimize edge cuts across partitions, often
resulting in subgraphs that do not share the same data distri-
bution.

Table 2: Number of partitions (K) and its impact on miss-
ing edges (∆E) and average conformal prediction set sizes
(∆|CP |) across clients. Larger CP set sizes result from both
the local training of models and conformal predictors, as
well as the increasing number of missing links in client
subgraphs.

Dataset |E| K ∆E ∆E% ∆|CP |%

Cora 10,138
5 604 5.96% 34.7%
10 806 7.95% 43.3%
20 1,230 12.13% 48.1%

CiteSeer 7,358
5 310 4.21% 54.0%
10 608 8.26% 57.7%
20 848 11.52% 62.3%

Missing Neighbor Information: Another significant chal-
lenge in federated graph CP is the presence of missing
neighbor information across client subgraphs. Consider a
scenario where a patient visits multiple hospitals within the
same city, maintaining separate records at each location.
Due to conflicts of interest, it is impractical for hospitals
to share their patient networks, leading to incomplete edge
information in the overall graph. In simulations of federated
learning based on graph partitioning, increasing the number
of clients amplifies the number of missing links between
them, as shown in Table 2.



These missing edges, which carry critical neighborhood in-
formation, remain uncaptured by any single client subgraph.
This absence becomes particularly problematic when CP
techniques are applied to partitioned graph data, as it can im-
pair model performance and increase the size of prediction
sets due to insufficient coverage of the data’s connectivity.
Figure 2 illustrates this issue, showing how the increasing
number of missing links correlates with larger prediction
set sizes through empirical evaluation.

Given these complexities, it is necessary to demonstrate how
CP can be applied to non-exchangeable graph data and how
the inefficiency caused by missing neighbor information can
be mitigated within federated graph environments.

Figure 2: Effect of the number of clients on CP set size for
the Cora dataset.

5 METHOD

5.1 PARTIALLY EXCHANGEABLE
NON-CONFORMITY SCORES

To deploy Conformal Prediction for federated graph-
structured data under a transductive learning setting, we
need to ensure the exchangeability condition is met. We
adopt the principle of partial exchangeability, as proposed
by De Finetti [1980] and applied to non-graph-based mod-
els by Lu et al. [2023]. Specifically, we demonstrate that
non-conformity scores within each client are permutation
invariant when using a permutation-invariant GNN model
for training under the transductive setting.

Consider a graph Gk = (Vk, Ek) at client k, where Vk
denotes the set of nodes, Ek the set of edges, and each node
v ∈ Vk has a feature vector xv ∈ Rd. The dataset includes
distinct node subsets for training, validation, calibration,
and testing: Vktrain, Vkvalid, Vkcalib, and Vktest, respectively.

Assumption 1. Let S be a global non-conformity score
function learned in a federated setting, designed to be per-
mutation invariant with respect to the calibration and test
nodes within each client. For any permutation πk of client
k’s calibration and test nodes, the non-conformity scores
satisfy:

{S(xv, yv) : v ∈ Vkcalib ∪ Vktest} =

{S(xπk(v), yπk(v)) : v ∈ V
k
calib ∪ Vktest}.

Non-conformity scores obtained through GNN training sat-
isfy the above assumption because chosen GNN models
are inherently permutation invariant with respect to node
ordering. Each local GNN model accesses all node features
during training and optimizes the objective function based
solely on the training and validation nodes, which remain un-
changed under permutation of the calibration and test nodes.
Under Assumption 1, we establish the following lemma.

Lemma 1. Within the transductive learning setting, as-
suming permutation invariance in graph learning over the
unordered graph Gk = (Vk, Ek), the set of non-conformity
scores {sv}v∈Vk

calib∪Vk
test

is invariant under permutations of
the calibration and test nodes.

The proof of Lemma 1 is provided in Appendix. Lemma 1
establishes the intra-client exchangeability of calibration
and test samples for transductive node classification. Using
Lemma 1, we extend the concept of partial exchangeability
to federated graph learning.

Assume that the subgraph at client k, Gk, is sampled from a
distribution Pk. During inference, a random test node vtest,
with features and label (xvtest , yvtest), is assumed to be sam-
pled from a global distribution Qtest, which is a mixture of
the client subgraph distributions according to a probability
vector p:

Qtest =

K∑
k=1

pkPk,

which essentially states that vtest belongs to client k with
probability pk.

Definition 1 (Partial Exchangeability). Partial exchange-
ability in the context of federated learning assumes that the
non-conformity scores between a test node and the calibra-
tion nodes within the same client are exchangeable, but this
exchangeability does not necessarily extend to nodes from
different clients.

Assumption 2. Consider a calibration set {vi}nk
i=1 in client

k and a test node vtest in the same client. Under the frame-
work of partial exchangeability (Definition 1), the non-
conformity scores svtest and {svi}

nk
i=1 are assumed to be

exchangeable with probability pk, consistent with Assump-
tion 1. Therefore, vtest is partially exchangeable with all
calibration nodes within client k.

This assumption is justified by the properties of our non-
conformity score function S, which, as established under
Assumption 1, is designed to be permutation invariant within
each client’s data. This property supports the hypothesis that
within a client, the test node and calibration nodes can be
considered exchangeable in terms of their non-conformity
scores. The limitation to within-client exchangeability is



due to potential differences in data distribution across dif-
ferent clients, which Assumption 1 does not necessarily
overcome. This limitation modifies the upper bound of the
coverage guarantee, as elucidated in Theorem 1. Details of
this assumption can be found in Appendix A.2.

Theorem 1. Suppose the graph is partitioned across K
clients (i.e., K denotes the number of clients in the feder-
ated setting), with each client k ∈ [K] having nk calibra-
tion nodes. Let N =

∑K
k=1 nk and assume pk = (nk +

1)/(N + K). If the non-conformity scores are arranged
in non-decreasing order as {S(1), S(2), . . . , S(N+K)}, then
the α-quantile, q̂α, is the ⌈(1 − α)(N + K)⌉-th smallest
value in this set. Consequently, the prediction set

Cα(vtest) = {y ∈ Y | S(xvtest , y) ≤ q̂α}

is a valid conformal predictor where:

1− α ≤ P (ytest ∈ Cα(xvtest)) ≤ 1− α+
K

N +K
.

This theorem ensures that our method achieves at least (1−
α) marginal coverage. The proof is provided in Appendix
A.3.

5.2 GENERATING REPRESENTATIVE NODE
FEATURES WITH VARIATIONAL
AUTOENCODERS

To mitigate the issue of missing neighbor information in
federated graph learning, we introduce a novel approach
that utilizes VAEs to generate representative node features
within each client. These generated features are shared with
the central server and then broadcast across clients to com-
plete the local subgraphs, thereby addressing the problem
of missing links.

Each client k trains a VAE on its local node features
{xv}v∈Vk

train
⊂ Rd, aiming to capture the underlying dis-

tribution Pk of its data. The VAE consists of an encoder
qϕk

(z|x) and a decoder pθk(x|z), where z ∈ Rd′ is the
latent representation, with d′ < d. The VAE is trained by
maximizing the ELBO given in Section 3.3.

After training, each client generates reconstructed node fea-
tures by passing its original node features through the en-
coder and decoder:

zv = qϕk
(xv), x̃v = pθk(zv), ∀v ∈ Vktrain.

Next, K-Means clustering [Kodinariya et al., 2013] is ap-
plied to the reconstructed node features {x̃v} to identify Mk

cluster centers {ckm}
Mk
m=1 ⊂ Rd:

ckm =
1

|Ck
m|

∑
x̃v∈Ck

m

x̃v,

where Ck
m is the set of reconstructed node features assigned

to cluster m in client k. The number of clusters Mk is deter-
mined experimentally through hyperparameter tuning.

The cluster centers {ckm} are then used as prototype features
and shared with the central server. The server aggregates
the prototype features from all clients and broadcasts them
back to each client. This process allows clients to augment
their local subgraphs with representative node features from
other clients, effectively approximating the missing neigh-
bor information.

5.3 LINK PREDICTION WITH VGAE FOR
MISSING NEIGHBOR COMPLETION

After the generated node features are collected by the central
server and broadcast to the clients, we need to predict possi-
ble edge formations between the generated nodes and the
client subgraphs. To this end, we employ a Variational Graph
Autoencoder, effective in graph reconstruction tasks, suit-
able for our graph completion problem. The VGAE model is
trained to maximize the ELBO loss.

To ensure that our link prediction model generalizes well
across all client subgraphs, we train the VGAE in a feder-
ated setting using the FedAvg [Sun et al., 2022] algorithm.
Different client subgraphs may have varying connectivity
patterns; thus, the model needs to generalize to diverse sub-
graphs.

After training, the VGAE model is used for link prediction
between generated nodes X̂ and local subgraph nodes Xk.
For each client k, the link prediction process is as follows:

1. Compute edge probabilities between generated nodes
and local nodes: P̂ k = VGAE(X̂,Xk).

2. Select the top p% of edge probabilities to form new
edges: Ek := Ek ∪

{
(u, v) | (u, v) ∈ Topp(P̂

k)
}
.

3. Update the node set and features: Vk := Vk ∪
V̂, Xk := Xk ∪ X̂.

Here, Topp(P̂
k) denotes the set of edges corresponding

to the highest p% of predicted edge probabilities in P̂ k.
By integrating these new edges and nodes into their local
subgraphs, clients enhance their models with previously
missing neighbor information. This process is summarized
in the Algorithm provided in Appendix B.

Our complete pipeline, which combines generative recon-
struction with federated conformal prediction, can be sum-
marized in the following steps:

1. Local Prototype Generation: Each client trains a lo-
cal VAE on its node features to extract and cluster
representative feature prototypes.

2. Server Aggregation: Cluster centers (prototypes) are



Figure 3: Missing neighbor generation framework. (i) Feature Prototype Learning: We train VAEs on local subgraph
features and apply K-means clustering to obtain prototype node features. The cluster centers serve as feature prototypes,
which are sent to the central server for later broadcasting. (ii) Collaborative Training of VGAE: We train VGAE models in a
federated manner to learn generalizable connectivity patterns across client subgraphs. (iii) Missing Neighbor Completion:
The central server broadcasts the learned feature prototypes, which are then used to complete missing neighbors via the
trained VGAE model.

sent to the server, which aggregates them and broad-
casts the global set of prototypes back to all clients.

3. Collaborative Link Prediction: A VGAE is trained
via FedAvg to learn generalizable connectivity pat-
terns.

4. Local Subgraph Completion: Each client uses the
global prototypes and the trained VGAE to predict and
add missing edges to its local subgraph.

5. Federated GCN Training: A GCN model is trained
for node classification via FedAvg on the newly com-
pleted subgraphs.

6. Federated Conformal Prediction: Clients use the
global GCN and a held-out calibration set to com-
pute non-conformity scores and generate prediction
sets with a distributed quantile estimation.

6 EXPERIMENTS

We conduct experiments on four real-world datasets to
demonstrate the effectiveness of our proposed federated
conformal prediction method on graph data with varying
numbers of clients.

6.1 EXPERIMENTAL SETUP

We evaluate our method on four widely used graph datasets:
Cora, CiteSeer, PubMed [Yang et al., 2016], and Amazon
Computers [Shchur et al., 2018]. To simulate a federated
learning environment, we partition each graph into clusters
of K = 3, 5, 10, and 20 using the METIS graph partition-
ing algorithm [Karypis and Kumar, 1997], which ensures
clusters are of similar sizes and minimizes edge cuts be-
tween partitions. This partitioning introduces missing links

between subgraphs, reflecting real-world scenarios where
data is distributed across different clients with incomplete
neighbor information.

We implement two-layer local permutation-invariant GCN
models with mean pooling and employ the FedAvg algo-
rithm [McMahan et al., 2017] to train the global GNN model.
The batch size and learning rate for training local GNNs
are set to 32 and 0.01, respectively, using the Adam op-
timizer. For the VAE and VGAE, we use the official im-
plementations from the PyTorch Geometric package [Fey
and Lenssen, 2019], with hidden dimensions of size 64 and
16, respectively. The hyperparameters for percentages and
number of clusters were determined through a grid search
over p ∈ {0.5, 1, 2, 4, 6, 8, 10, 12} and M ∈ {2, 5, 10, 20}.
The VAE decoder mirrors the encoder dimensions, while
the VGAE utilizes an inner product decoder.

Each local subgraph is divided into training, calibration, and
test sets in a 20%/40%/40% ratio. 20% of the training set
is used for validation. All experiments are conducted on
NVIDIA RTX A5000-24GB GPUs.

As recommended by Lu et al. [2023], we apply tempera-
ture scaling to the conformal procedure. We average the
locally learned temperatures across clients before initiating
the federated conformal procedure.

To estimate the set-valued function Cα within our frame-
work, we compute the quantile of conformal scores {ski }

nk
i=1

for each client k ∈ [K], where each score ski = S(xki , y
k
i )

is distributed across K clients. We employ distributed quan-
tile estimation techniques, which have proven effective in
traditional federated conformal prediction settings [Lu et al.,
2023]. Specifically, we adopt quantile averaging [Luo et al.,
2016] and T-Digest [Dunning, 2021], a quantile sketching
algorithm designed for efficient online quantile estimation



Table 3: Conformal prediction (CP) set size comparison on four datasets with partition numbers K = 3, 5, 10, and 20 using
the APS non-conformity score. Set sizes are presented for confidence levels 1− α = 0.95, 0.90, and 0.80. The methods
Loc, Fed, and Gen correspond to models trained locally on each client, with standard federated averaging, and with our
generative neighbor completion framework, respectively. The corresponding standard deviations are given, averaged over 5
runs.

Cora PubMed

Model K = 3 K = 5 K = 10 K = 20 K = 3 K = 5 K = 10 K = 20

Loc (0.95) 4.97 ±0.02 5.27 ±0.02 5.53 ±0.02 5.90 ±0.02 1.94 ±0.03 1.97 ±0.03 1.98 ±0.04 2.04 ±0.01
Fed (0.95) 4.31 ±0.02 4.94 ±0.02 5.02 ±0.02 5.79 ±0.02 1.80 ±0.02 1.78 ±0.02 1.83 ±0.01 1.77 ±0.02
Gen (0.95) 4.25 ±0.02 5.09 ±0.02 4.86 ±0.02 5.40 ±0.02 1.72 ±0.02 1.78 ±0.01 1.80 ±0.02 1.69 ±0.02

Loc (0.90) 4.12 ±0.01 4.54 ±0.01 4.83 ±0.03 4.99 ±0.03 1.79 ±0.00 1.86 ±0.03 1.90 ±0.03 1.95 ±0.03
Fed (0.90) 3.34 ±0.03 4.14 ±0.03 4.32 ±0.02 4.13 ±0.01 1.61 ±0.03 1.60 ±0.01 1.68 ±0.01 1.53 ±0.02
Gen (0.90) 3.34 ±0.02 4.10 ±0.02 3.98 ±0.01 3.90 ±0.04 1.55 ±0.01 1.60 ±0.01 1.62 ±0.02 1.49 ±0.01

Loc (0.80) 3.17 ±0.01 3.77 ±0.01 3.87 ±0.02 4.14 ±0.02 1.72 ±0.01 1.78 ±0.01 1.80 ±0.01 1.69 ±0.01
Fed (0.80) 2.45 ±0.01 2.95 ±0.01 2.93 ±0.03 3.17 ±0.03 1.55 ±0.01 1.60 ±0.02 1.62 ±0.00 1.49 ±0.02
Gen (0.80) 2.51 ±0.03 2.98 ±0.05 2.92 ±0.02 2.88 ±0.03 1.41 ±0.04 1.42 ±0.01 1.45 ±0.03 1.37 ±0.03

CiteSeer Computers

Model K = 3 K = 5 K = 10 K = 20 K = 3 K = 5 K = 10 K = 20

Loc (0.95) 4.80 ±0.02 4.95 ±0.02 4.99 ±0.02 4.99 ±0.03 6.18 ±0.03 6.31 ±0.04 6.71 ±0.02 6.45 ±0.02
Fed (0.95) 3.89 ±0.04 4.12 ±0.01 4.19 ±0.04 4.42 ±0.01 5.58 ±0.03 5.96 ±0.02 4.76 ±0.03 6.10 ±0.02
Gen (0.95) 3.72 ±0.02 4.11 ±0.01 4.55 ±0.02 4.27 ±0.01 5.08 ±0.02 5.86 ±0.03 4.21 ±0.02 5.30 ±0.01

Loc (0.90) 4.14 ±0.01 4.62 ±0.01 4.73 ±0.03 4.87 ±0.03 5.27 ±0.04 5.26 ±0.04 5.66 ±0.02 5.73 ±0.03
Fed (0.90) 3.16 ±0.01 3.09 ±0.02 3.14 ±0.03 3.82 ±0.02 4.78 ±0.04 5.37 ±0.02 4.09 ±0.02 5.46 ±0.01
Gen (0.90) 2.95 ±0.02 2.96 ±0.01 3.08 ±0.02 3.65 ±0.01 4.59 ±0.03 5.09 ±0.02 3.57 ±0.01 4.69 ±0.01

Loc (0.80) 3.35 ±0.01 3.59 ±0.02 3.84 ±0.03 3.98 ±0.02 4.24 ±0.04 4.28 ±0.01 4.55 ±0.03 3.96 ±0.01
Fed (0.80) 2.45 ±0.03 2.22 ±0.02 2.17 ±0.02 2.85 ±0.01 3.60 ±0.01 4.28 ±0.03 3.39 ±0.01 4.66 ±0.03
Gen (0.80) 2.19 ±0.02 2.11 ±0.02 2.14 ±0.03 2.66 ±0.02 3.62 ±0.03 3.97 ±0.02 2.96 ±0.02 3.97 ±0.01

in distributed settings.

We present our main results using the APS non-conformity
score and quantile averaging for distributed quantile esti-
mation. APS was chosen for its robust performance, and
a detailed comparison with other non-conformity scores
(RAPS and LAC) is available in Appendix E. Similarly, our
choice of quantile averaging is supported by a comparative
study with the T-Digest method in Appendix F. We report
the average conformal prediction set sizes across clients
after local training of GNN models on each client (denoted
as Loc in Table 3). This allows us to evaluate the empiri-
cal impact of the federated conformal procedure on graph
data. The Fed entry in the table presents results from the
experimental validation of our federated conformal predic-
tion method. Results from our generative framework are
indicated as Gen.

6.2 MAIN RESULTS AND EFFICIENCY ANALYSIS

Our experimental results, presented in Table 3, consistently
demonstrate that federated training (Fed) achieves smaller
CP set sizes compared to local training (Loc). This improve-
ment is particularly pronounced as the number of clients in-
creases. For example, on the PubMed dataset with K = 20
clients at a confidence level of 1 − α = 0.95, the feder-
ated approach yields an average CP set size of 1.77± 0.02,
compared to 2.04 ± 0.01 for local training, indicating a

significant reduction in uncertainty.

Examining the trends across rows, we observe the adverse
effects of missing links on CP set sizes: as the number of
clients increases (left to right along each row), the fragmen-
tation of local graphs exacerbates uncertainty, leading to
larger CP sets. This underscores the necessity of mitigating
missing edge information in federated settings.

Averaging across datasets and client configurations, transi-
tioning from Loc to Fed yields a notable 15.4% improve-
ment in CP set sizes. This aligns with our theoretical justifi-
cation, which enables the federated application of conformal
prediction while leveraging information across clients to
counteract the impact of missing local edges.

Our missing neighbor generator (Gen) further refines the
CP set sizes across varying configurations and datasets. This
approach effectively reconstructs missing node connections,
allowing the conformal predictor to approximate its opti-
mal state, where all edges are present. For instance, in the
Computers dataset with K = 20 and a confidence level of
1−α = 0.95, Gen achieves a CP set size of 5.30±0.01, im-
proving upon both federated (6.10±0.02) and local training
(6.45± 0.02).

Overall, our neighbor completion strategy in Gen provides
an additional 4.9% improvement over Fed, cumulatively
leading to CP sets that are 19.5% smaller than those ob-
tained with Loc. This demonstrates that, despite the chal-



lenges posed by missing links in federated settings, our
approach successfully reconstructs latent structures, enhanc-
ing predictive efficiency in federated graph learning.

Figure 4: Coverage Rates for Fed (left) and Gen (right)
models across varying client numbers K on the Cora dataset.
The diagonal line represents the desired coverage rate.

6.3 COVERAGE RATES

As established in our theoretical analysis (Section 5), ap-
plying conformal prediction in federated graph learning
preserves the lower bound for CP coverage. We empiri-
cally validate this on the Cora dataset, as shown in Figure 4,
which illustrates the coverage rates across different numbers
of clients. The results confirm that our method consistently
meets the desired coverage threshold. Notably, for lower
1 − α values, the model easily satisfies the required cov-
erage, and its performance remains robust even at more
challenging miscoverage rates. This highlights the effective-
ness of CP as a reliable uncertainty quantification method
in high-stakes applications. Furthermore, incorporating our
generative model maintains the desired coverage while sig-
nificantly reducing CP set sizes, as demonstrated on the
right side of Figure 4.

6.4 PARAMETER SENSITIVITY

As shown in Figure 5, varying number of cluster centers con-
sistently improves the set size returned in the Fed setting.
However, the relationship between the number of clusters
and performance does not follow a direct correlation. We
hypothesize that due to heterogeneity in client distributions,
using a fixed M value across all clients may not always yield
the most representative feature prototypes. An adaptive ap-
proach to selecting the number of cluster centers per client
could potentially enhance performance, which we leave for
future work. For the p parameter, we observed that adding
a small number of edges to the client subgraphs generally
improves performance. However, increasing the number of
edges continues to provide benefits in many cases, suggest-
ing that the added edges may act as a form of oversmoothing,
making the model less sensitive to noise in the graphs.

Figure 5: Effect of the number of clusters (M ) and percent-
age (p) on CP set size under the three-client setting on the
PubMed dataset. All other parameters are kept constant. The
left plot shows CP set size as a function of M , while the
right plot shows CP set size as a function of p. The dotted
horizontal line represents the baseline CP set size for the
federated setting (Fed = 1.802).

7 CONCLUSION

We introduced the first framework for federated confor-
mal prediction for node classification under transductive
settings on graphs, addressing two critical challenges: the
non-exchangeability of data due to client heterogeneity, and
inefficiencies in prediction sets caused by missing inter-
client links. We established the theoretical foundations for
this problem by extending the principle of partial exchange-
ability, confirming that reliable marginal coverage guaran-
tees can be achieved. Additionally, we introduced a novel
generative model for neighbor reconstruction to address the
inefficiencies from missing links. Extensive experiments on
real-world graphs demonstrate the practical effectiveness
of our method, which maintains valid coverage guarantees
while reducing prediction set sizes by up to 19.5% compared
to local baselines. Together, these contributions establish
a new paradigm for reliable, uncertainty-aware federated
graph learning in applications ranging from healthcare net-
works to distributed social systems.
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A PARTIAL EXCHANGEABILITY PROOFS

A.1 PROOF OF LEMMA 1

Consider the unordered graph Gk = (Vk, Ek) within the permutation-invariant graph learning environment as outlined in
the conditions of Lemma 1. Assuming that the graph structure, attribute information, and node label information are fixed,
we define the nonconformity scores at nodes in Vkcalib ∪ Vktest as

{sv} = S
(
Vk, Ek, {(xv, yv)}v∈Vk

train∪Vk
valid

, {xv}v∈Vk
calib∪Vk

test

)
,

where S denotes the scoring function used to compute the nonconformity scores.

Due to the permutation invariance of the model (Assumption 1), for any permutation π of the nodes in Vkcalib ∪ Vktest, the
nonconformity scores remain unchanged. Specifically, we have

{sv} = S
(
π
(
Vk

)
, π

(
Ek

)
, {(xv, yv)}v∈Vk

train∪Vk
valid

, {xπ(v)}v∈Vk
calib∪Vk

test

)
.

Here, π
(
Vk

)
and π

(
Ek

)
denote the vertex set and edge set permuted according to π.

This invariance implies that, regardless of the permutation of nodes in Vkcalib ∪ Vktest, the computed nonconformity scores
{sv} remain the same. Therefore, the unordered set of scores {sv}v∈Vk

calib∪Vk
test

is invariant under permutations of the nodes,
confirming the lemma’s assertion about the stability and invariance of the score set in this setting.

A.2 REMARK ON ASSUMPTION 2

Under Assumption 2, the nonconformity scores {svi}vi∈Vk
calib

for client k are identically distributed and exchangeable.
Extending this set to include the score svtest = S(xvtest , yvtest), where (xvtest , yvtest) ∼ Pk (the distribution for client k), the
augmented set {svi}vi∈Vk

calib
∪ {svtest} remains identically distributed and exchangeable.

This demonstrates that svtest is equivalent in distribution to any svi in the calibration set. Therefore, the test score svtest can be
considered as an additional sample from the same distribution, affirming the IID and exchangeability conditions outlined in
Assumption 2.

A.3 PROOF OF THEOREM 1

We aim to show that under the given assumptions, the conformal prediction framework achieves the intended coverage
guarantees.

Let N =
∑K
k=1 nk be the total number of calibration nodes across all clients, where nk is the number of calibration nodes

for client k. Define pk =
nk + 1

N +K
, so that

∑K
k=1 pk = 1.
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For each client k, let mk(q) denote the number of nonconformity scores less than or equal to q among the nk + 1 scores
(including the test node), that is,

mk(q) =
∣∣{sv | sv ≤ q, v ∈ Vkcalib ∪ {vtest}

}∣∣ .
Recall that the conformal quantile q̂α is defined as the ⌈(1 − α)(N + K)⌉-th smallest nonconformity score among all
calibration scores and test scores from all clients. Thus,

K∑
k=1

mk(q̂α) = ⌈(1− α)(N +K)⌉.

Define the event E as the combined ordering of nonconformity scores within each client, that is,

E =
{
∀k ∈ [K], the nonconformity scores {ski }

nk+1
i=1 are in a fixed order

}
,

where {ski }
nk+1
i=1 are the nonconformity scores for client k, including the test score, sorted in some fixed order.

Conditioned on E , the number of scores less than or equal to q̂α, mk(q̂α), is deterministic for each client k.

Under the exchangeability assumption, the probability that the test score svtest is less than or equal to q̂α conditioned on E is

P (svtest ≤ q̂α | E) =
K∑
k=1

pk ·
mk(q̂α)

nk + 1
.

Therefore, we have

P (svtest ≤ q̂α | E) =
∑K
k=1 mk(q̂α)

N +K
=
⌈(1− α)(N +K)⌉

N +K
≥ 1− α.

Similarly, we can derive an upper bound:

P (svtest ≤ q̂α | E) ≤
∑K
k=1(mk(q̂α) + 1)

N +K
=
⌈(1− α)(N +K)⌉+K

N +K
≤ 1− α+

K

N +K
.

Thus, we have established that the coverage probability satisfies

1− α ≤ P (svtest ≤ q̂α | E) ≤ 1− α+
K

N +K
.

Since E has probability 1 (it conditions on the ordering which is always possible), the unconditional probability satisfies the
same bounds. This completes the proof that the conformal predictor maintains the desired coverage level under the partial
exchangeability and permutation invariance assumptions in the graph-structured federated learning setting.

B MODEL DETAILS AND DETAILED ALGORITHM

The subsequent sections detail the algorithms employed in our proposed methodology, encompassing node generation, edge
formation, and the application of CP to federated node classification tasks.



Algorithm 1 Federated Graph Learning with Missing Neighbor Generation and Conformal Prediction

Require: K: Number of clients
1: {(Vktrain, X

k
train, Ek)}Kk=1: Local datasets

2: Mk: Number of clusters per client
3: p%: Top percentage for edge selection
4: R: Number of federated rounds
5: Learning rates, other hyperparameters

Ensure: Prediction sets {Cα(x)} for test nodes across clients

6: Step 1: Generate prototype node features
7: for each client k = 1 to K in parallel do
8: Train VAE qϕk

(z|x), pθk(x|z)
9: Reconstruct features x̃v = pθk(qϕk

(xv))
10: Cluster {x̃v} into Mk centers {ckm}
11: Send {ckm} to the server
12: end for

13: Step 2: Aggregate and broadcast prototypes
14: Aggregate X̂ =

⋃K
k=1{ckm}

15: Broadcast X̂ to all clients

16: Step 3: Federated training of VGAE
17: Initialize global VGAE parameters Θ
18: for each round r = 1 to R do
19: for each client k = 1 to K in parallel do
20: Receive Θ
21: Train local VGAE qψk

(Z|Xk, Ek), pφk
(Ek|Z)

22: Send updated Θk to server
23: end for
24: Aggregate Θ← 1

K

∑K
k=1 Θk

25: end for

26: Step 4: Link prediction and graph update
27: for each client k = 1 to K do
28: Compute edge probabilities P̂ k = VGAEΘ(X

k, Ek)
29: Select top p% edges to form new set Êk
30: Update Ek ← Ek ∪ Êk
31: end for

32: Step 5: Federated GCN training
33: Initialize global GCN parameters θ
34: for each round r = 1 to R do
35: for each client k = 1 to K in parallel do
36: Receive θ
37: Train local GCN on (Vktrain, X

k, Ek)
38: Send updated θk to server
39: end for
40: Aggregate θ ←

∑K
k=1

nk

n θk
41: end for

42: Step 6: Federated Conformal Prediction
43: for each client k = 1 to K do
44: Use global GCN to compute predictions µ(x) and non-conformity scores
45: Tune temperature T based on validation data
46: Compute local conformal quantile qk from calibration scores and share with the server
47: end for
48: Aggregate quantiles on the server to compute global quantile q
49: Construct prediction sets Cα(x) for test data using q



B.1 SPARSITY REGULARIZATION FOR NODE FEATURE GENERATION

In addition to the standard reconstruction and KL-divergence losses in the VAE, we incorporate a sparsity regularization term
to encourage the generated node features to reflect the sparse nature of real-world graph data. This is crucial for datasets
where most node features are inherently sparse, ensuring that the latent representations and reconstructed features remain
close to the original sparse structure.

Given the latent representations z ∈ Rd′ , the sparsity regularization is applied to the encoder activations to control the
average activation levels across the latent dimensions. Let ρ̂ ∈ Rd′ denote the mean activation of the latent variables z over
all nodes, defined as:

ρ̂i =
1

|V|
∑
v∈V

zv,i, ∀i ∈ [1, d′].

We introduce a sparsity target ρ ∈ (0, 1) that specifies the desired level of activation for each latent variable. The sparsity
loss Lsparse is then defined as the Kullback-Leibler divergence between the desired activation ρ and the average activation ρ̂:

Lsparse =

d′∑
i=1

(
ρ log

ρ

ρ̂i
+ (1− ρ) log

1− ρ

1− ρ̂i

)
.

This loss term encourages the activations to stay close to the sparsity target ρ, penalizing deviations from this target. A
scaling factor β is used to adjust the contribution of this term, and the overall loss function for training the VAE becomes:

L = λrecLrec + λklLkl + βLsparse,

where Lrec is the reconstruction loss, Lkl is the KL-divergence loss, and λrec, λkl, and β are weights controlling the relative
importance of each term.

Incorporating this sparsity regularization helps ensure that the generated node features remain representative of the original
sparse input data, improving the quality and fidelity of the reconstructed features in graph-based learning tasks.

C COMPLEXITY ANALYSIS

In this section, we provide a complexity analysis of the proposed method, focusing on the communication overhead between
the clients and the central server, as well as the computational cost related to the exchange and utilization of generated node
features.

C.1 PROTOTYPE SHARING COMPLEXITY

After training the VAE, each client k identifies Mk cluster centers, representing the prototype features that will be shared
with the central server. The dimensionality of each prototype is d, and the total communication cost of sending the prototype
features from client k to the server is:

O(Mk · d).

Since there are K clients in total, the overall communication complexity for sending prototypes to the server is:

O(K ·Mk · d),

where Mk may vary across clients but is typically constant for simplicity.



C.2 SERVER AGGREGATION COMPLEXITY

The central server aggregates the prototype features from all clients, combining them into a global set of features X̂ =⋃K
k=1{ckm}. This aggregation step involves concatenating the received prototypes, which has a complexity of:

O(K ·Mk · d).

The server then broadcasts the aggregated prototypes back to all clients. The communication complexity of broadcasting the
prototypes from the server to all clients is:

O(K ·Mk · d),

assuming all clients receive the same set of (K − 1) ·Mk prototypes. Thus, the total communication cost for the prototype-
sharing phase (sending prototypes to the server and broadcasting them back) is:

O(2 ·K ·Mk · d).

C.3 FEDERATED TRAINING COMMUNICATION COMPLEXITY

During the federated training of the VGAE model, each client k sends its local model updates Θk to the central server. The
model parameters Θk are of size |Θ|, which is the same across all clients. The communication complexity for each client
sending its updated model to the server is:

O(|Θ|).

The server aggregates the model updates from all K clients, which involves summing the model parameters. The complexity
of this aggregation step is:

O(K · |Θ|).

The server then sends the updated global model back to each client, with a communication complexity of:

O(K · |Θ|),

since each client receives the full set of model parameters. Thus, the total communication complexity for one round of
federated training is:

O(2 ·K · |Θ|).

C.4 OVERALL COMMUNICATION COMPLEXITY

The overall communication complexity of the proposed method consists of two main components: (1) prototype sharing and
(2) federated training. The total communication complexity is the sum of these two components, which can be expressed as:

O(2 ·K ·Mk · d+ 2 ·K · |Θ| ·R).

This complexity scales linearly with the number of clients K, the number of prototypes Mk, the number of training epochs
R, and the size of the model |Θ|. Therefore, the communication overhead remains manageable, even as the number of clients
and the model size increase.



D DATASETS STATISTICS

We used the largest connected components of Cora, CiteSeer, PubMed [Yang et al., 2016], and Amazon Computers [Shchur
et al., 2018] datasets in the Pytorch Geometric package [Fey and Lenssen, 2019]. Dataset statistics are given in Table 4.

Table 4: Dataset statistics.

Dataset # Nodes # Edges # Features # Labels
Cora 2485 10138 2485 7
CiteSeer 2120 7358 3703 6
PubMed 19717 88648 500 3
Computers 13752 491722 767 10

E COMPARISON OF NON-CONFORMITY SCORES

Regularized Adaptive Prediction Sets (RAPS) [Angelopoulos et al., 2020] refine APS by introducing regularization to
penalize less likely labels. RAPS modifies the score function to include a regularization term, encouraging smaller prediction
sets. The score function is defined as

s(x, y) = −(ρ(x, y) + u · π(x)y + νmax(o(x, y)− k, 0))

, where ν and k are hyperparameters, and o(x, y) represents the rank of y.

Least Ambiguous Set-Valued Classifiers (LAC) [Sadinle et al., 2019]assess classification uncertainty. The classifier’s score,
s(x, y), is given by:

s(x, y) = 1− [f(x)]y

where [f(x)]y represents the score of the true label, thus quantifying the classifier’s confidence in its prediction.

Table 5 compares the CP set sizes when using APS, RAPS, and LAC as the non-conformity scores. While our proposed
generative model improves efficiency across all three, LAC consistently yields the smallest prediction sets in most scenarios.
However, a known trade-off exists between set size and coverage reliability, as noted in prior work. Our findings confirm
this trade-off: Figure 6 shows that while LAC produces tighter sets, it increasingly violates the desired 1 − α coverage
guarantee as the number of clients grows. Because APS and RAPS reliably maintain the target coverage, they are preferable
for high-stakes applications.

Table 5: CP set size comparison of non-conformity scores APS, RAPS and LAC on Cora dataset with partition number
K = 3, 5, 10 and 20. Set sizes are presented for 1− α = 0.95, 0.90, and 0.80 confidence levels. The corresponding std. are
given with an averaged set size over 10 runs.

APS RAPS LAC APS RAPS LAC

K = 3 K = 5

Fed (0.95) 4.31±0.02 2.57±0.02 1.79±0.01 4.94±0.02 2.97±0.01 2.59±0.03
Gen (0.95) 4.25±0.02 2.22±0.01 1.58±0.02 5.09±0.02 2.82±0.02 2.53±0.04

Fed (0.90) 3.34±0.03 1.85±0.01 1.19±0.01 4.14±0.03 2.33±0.02 1.64±0.02
Gen (0.90) 3.34±0.02 1.69±0.02 1.12±0.01 4.10±0.02 2.12±0.03 1.61±0.01

Fed (0.80) 2.45±0.01 1.36±0.01 1.01±0.01 2.95±0.01 1.63±0.01 1.04±0.00
Gen (0.80) 2.51±0.03 1.27±0.02 1.00±0.00 2.98±0.05 1.52±0.02 1.04±0.00

K = 10 K = 20

Fed (0.95) 5.02±0.02 3.50±0.01 3.82±0.02 5.79±0.02 5.16±0.02 5.64±0.01
Gen (0.95) 4.86±0.02 3.39±0.03 3.39±0.04 5.40±0.02 4.92±0.05 5.06±0.03

Fed (0.90) 4.32±0.02 2.61±0.01 2.06±0.01 4.13±0.01 3.78±0.01 3.37±0.00
Gen (0.90) 3.98±0.01 2.55±0.02 2.00±0.01 3.90±0.04 3.55±0.03 3.05±0.01

Fed (0.80) 2.93±0.03 1.79±0.01 1.19±0.00 3.17±0.03 2.92±0.01 2.27±0.01
Gen (0.80) 2.92±0.02 1.73±0.01 1.14±0.02 2.88±0.03 2.50±0.01 1.73±0.03



Figure 6: Coverage rates with different non-conformity scores for Fed model across varying K on the Cora dataset.

F IMPACT QUANTILE AVERAGING METHODS

In this study, we evaluated the performance of two distributed quantile estimation methods, T-Digest [Dunning, 2021]
and quantile averaging [Luo et al., 2016], with respect to their impact on conformal prediction set sizes. T-Digest is a
probabilistic data structure optimized for the estimation of quantiles in extensive and distributed datasets, facilitating
real-time analysis. Its mergeable nature enables effective aggregation of summaries across parallel, distributed systems,
ensuring statistical efficiency and scalability. As shown in Figure 7, T-Digest produces larger set sizes across various
configurations of confidence levels and number of clients. We found quantile averaging is more effective at reducing model
uncertainty.

G DIFFERENTIAL PRIVACY ANALYSIS

In our framework, we apply ϵ-δ differential privacy (DP) [Dwork et al., 2014] specifically to the node prototypes generated
by the VAE before they are shared with the server. The subsequent federated training of the downstream GCN and VGAE
models is performed without DP guarantees; therefore, we do not claim end-to-end privacy for the entire system. Thanks to
the post-processing immunity property of DP, any downstream use of the DP-protected prototypes does not degrade the
initial privacy guarantee. This section explores the integration of DP into the node generation process.

Under DP, a randomized mechanismM satisfies ϵ-δ privacy if for any two neighboring datasets D and D′, the following
holds:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ,

where ϵ > 0 controls the privacy loss and δ accounts for the probability of a privacy breach.

The node generator model is trained using the Opacus library to implement privacy-preserving stochastic gradient descent
(DP-SGD), which ensures that each client’s data is protected by clipping gradients and adding Gaussian noise. This technique
introduces an additional noise term to the training process, making it difficult for an adversary to infer individual node
features while still enabling useful feature generation. The impact of DP on model performance is explored by varying the
privacy budget ϵ and fixing δ = 10−5.



Figure 7: Comparison of T-Digest and quantile averaging methods by confidence level on Cora dataset.

G.1 PERFORMANCE WITH VARYING PRIVACY BUDGETS

We evaluate the effectiveness of our node generation method under different privacy budgets by training the Gen method
with ϵ values ranging from 1 to 25. We analyze the impact of privacy noise on the RAPS non-conformity scores for various
1− α values (ranging from 0.5 to 0.95), comparing the results against the non-private Fed and Gen methods.

Figure 8 presents the observed scores. We note that as the privacy budget decreases (i.e., smaller ϵ values), the performance
of the Gen method degrades slightly, particularly for larger 1− α values. This degradation is expected due to the additional
noise introduced by the DP mechanism, which affects the accuracy of the generated node features. However, even with
ϵ = 1, the degradation remains relatively small, demonstrating that our approach maintains robust performance under strict
privacy constraints.

Figure 8: Heatmap showing RAPS non-conformity scores for Fed and Gen methods across various ϵ-values and 1−α
values on 3 client Cora dataset.

From the results, we observe that at ϵ = 10, the privacy-preserving Gen model closely approximates the performance of the
non-private Gen method across all 1− α values. However, with stricter privacy budgets (e.g., ϵ = 1), there is a marginal
increase in non-conformity scores, indicating a slight decrease in accuracy due to the added noise. Despite this, the model
remains competitive even under the strictest privacy constraints.

Our experiments show that incorporating ϵ-δ differential privacy into the node generation process enables strong privacy
guarantees with minimal impact on performance. Even under the strictest privacy settings, the model retains its ability to
generate useful node features, as evidenced by the modest increases in RAPS non-conformity scores.
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