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Abstract—Multi-domain data is becoming increasingly com-
mon and presents both challenges and opportunities in the data
science community. The integration of distinct data-views can
be used for exploratory data analysis, and benefit downstream
analysis including machine learning related tasks. With this in
mind, we present a novel manifold alignment method called
MALI (Manifold alignment with label information) that learns
a correspondence between two distinct domains. MALI belongs
to a middle ground between the more commonly addressed
semi-supervised manifold alignment, where some known cor-
respondences between the two domains are assumed to be
known beforehand, and the purely unsupervised case, where
no information linking both domains is available. To do this,
MALI learns the manifold structure in both domains via a
diffusion process and then leverages discrete class labels to
guide the alignment. MALI recovers a pairing and a common
representation that reveals related samples in both domains.
We show that MALI outperforms the current state-of-the-art
manifold alignment methods across multiple datasets.

Index Terms—Manifold alignment, manifold learning, semi-
supervised learning

I. INTRODUCTION

The data collection process of a given phenomena may be
affected by different sources of variability, creating seemingly
distinct domains. For instance, natural images with different
illumination, contrast or noise, may affect the classification
performance of a machine learning model previously trained
on a different domain. In biology, the modern study of
single-cell dynamics is conducted via different instruments,
conditions and modalities, raising different challenges and
opportunities [1], [2]. In many cases, the relationships between
the different domains are unknown. Hence, the fusion and
integration of multi-domain data has been extensively studied
in the data science community for supervised learning as well
as data mining and exploratory data analysis. One of the
earliest methods to do this is Canonical Correlation Analysis
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Fig. 1. Manifold alignment. Two different datasets of the same underlying
phenomena are captured in different conditions, instruments, experimental
designs, etc. Manifold alignment assumes a common latent space (grey) from
which the observations are mapped by functions f and g to the different
ambient spaces. We seek to find the underlying relationship h between
observations living in different spaces X and Y without assuming any pairing
known a priori. Instead we assume there are labeled observations for different
classes (different shapes).

(CCA), which finds a linear projection that maximizes the
correlation between the two domains [3].

In many applications, a reasonable assumption to make
is that the data collected in different domains is controlled
by a set of shared underlying modes of variation or latent
variables. The manifold assumption is also often applicable
in this case, in which the data measured in the different
domains lie on low-dimensional manifolds embedded in the
high-dimensional ambient spaces, being the result of smooth
mappings of the latent variables (see Fig. 1). With this in mind,
manifold alignment (MA) has become a common technique for
data integration. Some applications of MA include handling
different face poses and protein structure alignment ( [4], [5]),
medical images for Alzheimer’s disease classification ( [6],
[7]), multi-modal sensing images [8], graph-matching [9], and
integrating single-cell multi-omics data [10] .

Multiple MA methods have been proposed under different
prior knowledge assumptions that relate the two domains.



Methods such as CCA or multi-view diffusion maps [11] can
be categorized as supervised MA, since the data is assumed
to come in a paired fashion. More challenging scenarios arise
when partial or null a priori pairing knowledge is considered.
The purely unsupervised algorithms are designed for scenarios
where neither pairings between domains nor any other side-
information is available. As a consequence they rely solely on
the particular topology of each domain to infer inter-domain
similarities (e.g. [10], [12]–[14]).

The group of methods that leverage some sort of additional
information are often categorized as semi-supervised MA.
As a special widely studied case, several methods consider
partial correspondence information, where a few one-to-one
matching samples work as anchor points to find a consistent
alignment for the rest of the data. Some papers leverage the
graph structure of the data [15]–[18] and are closely related
to Laplacian eigenmaps [19]. Others resort to neural networks
such as the GAN-based MAGAN [20] or the autoencoder
presented in [21].

However, even partial correspondences can be expensive or
impossible to acquire. This is the case in many biological
applications where the measurement process destroys the cells,
making it impossible to measure other qualities of the exact
same cells. But, even if there are no known correspondences
between domains, we do not have to resort to unsupervised
MA if we have access to side information about the datasets
from both domains. A common source of side information,
is a set of discrete class labels [22]–[24]. For instance, cell
measurements can be labeled by experts by cell type in the
different domains. In this paper, we propose a new semi-
supervised MA algorithm called MALI (Manifold Alignment
with Label Information) that leverages the manifold structure
of the data in both domains combined with the discrete label
information to align the datasets. MALI is built upon the
widely-used manifold learning method Diffusion Maps [25]
and does not require any known corresponding points in the
different domains.

II. PROBLEM DESCRIPTION

Assume we have two datasets X = {x1, x2, . . . , xn} ∈
Rn×p and Y = {y1, y2, . . . , ym} ∈ Rm×q . We assume that
all of the points in X are labeled with discrete (i.e. class)
labels Lx = {ℓx1 , . . . , ℓxn} while the points in Y , called the
target domain, may be partially or fully labeled with discrete
labels Ly = {ℓy1, . . . , ℓyr}, with r ≤ m. The problem consists
of learning an alignment between both data manifolds by
leveraging their respective geometric structures as well as
the label knowledge available from both domains. There are
several possible ways to represent such an alignment using
MA algorithms. One way is to directly learn correspondences
between points in X and Y . A second way to represent the
alignment is to learn a shared embedding space. A third
way is to learn cross-domain similarities between points.
This information can then be leveraged to either learn direct
correspondences between the domains or to learn a shared
embedding space. The data may also be visualized using the

learned cross-domain similarities for exploratory data analysis.
We focus primarily on learning the cross-domain similarities
as they can be used to obtain either a shared embedding space
or direct correspondences.

III. MANIFOLD ALIGNMENT WITH LABEL INFORMATION
(MALI)

The basic idea behind MALI resides in finding an inter-
domain distance between xi and yj that is leveraged to recover
cross-domain relations. We start by building a similarity graph
from the data on each domain, where the weights of the edges
connecting the nodes are computed via an α-decay kernel [26]:

WX (xi, xj) =
1

2
exp

(
−||xi − xj ||α

σα
k (xi)

)
+

1

2
exp

(
−||xi − xj ||α

σα
k (xj)

)
, (1)

where α > 0 and σk(xi) is the k-nearest neighbor distance of
xi in X . The kernel WY is computed in a similar manner. The
hyperparameters α and k control the connectivity and local
geometry preservation in the graph, although most methods
are typically robust to these hyperparameters when using this
kernel [26]. For the particular experiments presented in this
work we set α = 10 and k = 10.

By row-normalizing W∗ (∗ ∈ {X ,Y}) using their cor-
responding degree matrices D∗, we obtain the respective
diffusion operators PX = D−1

X WX ∈ Rn×n and PY =
D−1

Y WY ∈ Rm×m. The diffusion operator thus represents a
probability transition matrix for the graph represented with
the kernel matrix W∗. Typically, the diffusion operator is
exponentiated P t

∗ to describe the transition probabilities among
observations after t steps in a random walk [25], [26]. Instead,
we build a time-independent similarity matrix by aggregating
the transition probabilities from every possible t-step random
walk as follows:

M∗ =

∞∑
t=1

(P∗ − 1ϕT
0 )

t = (I − (P∗ − 1ϕT
0 ))

−1 − I, (2)

where 1 is a vector of ones and ϕ0 is the stationary distribution
of the Markov chain, represented by the first left eigenvector
of P∗. Subtracting 1ϕT

0 from P∗ enables the series to converge.
This construction was previously developed in [27], and

constitutes the key quantity for the calculation of diffusion
pseudotime (DPT). The advantages of working with M instead
of P t are twofold. First, we do not need to select the hyper-
parameter t, which may be dataset dependent. Given the
nature of the problem, a cross-validation-based approach for
hyper-parameter tuning is not possible. Second, the matrix
M builds a more extensive connection across the data as it
considers the relationships between points at different scales
of random walks. This does have the effect of smoothing the
local relationships and the fine granular similarities are lost.
However, this is not a problem as MALI focuses more on
coarse similarities as we describe next.

To find inter-domain similarities, we need a new feature
representation shared by the two domains. For this purpose,



we use the label information, since it is the only available
cross-domain information we possess a priori. Therefore, we
aggregate the similarities of each observation grouped by each
of the labels as follows:

M l
∗(i, c) =

1

p∗c

∑
j∈I∗

c

M∗(i, j), (3)

where I∗
c is the set of indices in domain ∗ labeled with

class c ∈ C, with C denoting the set of all labels present
in both domains, and p∗c is the estimated prior class prob-
ability (e.g. pXc = 1

n

∑n
i=1 1{ℓxi = c} where 1{·} is the

indicator function). Normalizing by the priors p∗c accounts for
class unbalance. The matrix M l

∗ ∈ R·×|C| encodes a coarse
similarity between samples and labels. Notice that we now
have a common similarity between X and Y and the labels,
even though the datasets may have come from different spaces
with different dimensionality. This allows us to compute inter-
domain cosine distances between points xi ∈ X and yj ∈ Y:

Dij =

(
1−

⟨M l
X (i, :),M l

Y(j, :)⟩
||M l

X (i, :)||||M l
Y(j, :)||

)
. (4)

The matrix D contains the information we need for recover-
ing a matching among samples from both domains. One way
to do this is to construct an inter-domain similarity matrix T
with entries Tij = 1 if yj is the nearest neighbor of xi among
all observations in Y with respect to the distances given by (4).
A reasonable alternative is to construct a soft assignment using
k-nearest neighbors. However, in our experimental results we
found a slight edge in performance by solving an entropic
optimal transport problem [28] instead, for which D acts as
the cost matrix:

T = argmin
T∈U

⟨T,D⟩F + ϵΩ(T ). (5)

T is sometimes referred to as a coupling matrix and belongs
to the set U(a, b) = {T ∈ Rn×m

+ : T1m = a, TT 1n = b},
where a and b are vectors containing a user-defined “mass” for
each observation. Matrix T is the main quantity of interest as it
contains the coupling information among all the samples. The
entropic regularization imposed by Ω(T ) =

∑
ij Tij log(Tij)

drives the solution towards less sparse solutions.
The final step of MALI projects the data into a common

representation. One approach to do this is to project directly
into the ambient space using the barycentric projection xi 7→∑

j Tijyj . This mapping is represented by h in Figure 1.
Alternatively, a joint latent representation can be obtained after
computing a spectral embedding [19] on the cross-domain
similarity:

W =

[
µWX (1− µ)WXY

(1− µ)WT
XY µWY

]
, (6)

where µ controls the preservation of the domain specific
topology, and the off-diagonal blocks in W reproduce the
intra-domain similarities according to the assignments in T ;
i.e. WXY = (WXT + TWY). We argue this construction of
W is more beneficial than keeping only the T matrix in the

Fig. 2. Depiction of datasets. Three of the employed datasets highlighting
the differences between the domains X and Y . For the MNIST-D dataset,
X contains the original images while Y contains transformed versions of the
images. This also applies to the stl10 dataset. The helix dataset contains a
helix (X ) and a straight line (X ).

off-diagonal blocks, as was formulated in [16]. We present
evidence for this claim in the next section.

MALI differs from methods such as KEMA [23] and the
approach in [22], which directly find a latent joint representa-
tion. In contrast, MALI finds a coupling first, and then builds
a joint similarity matrix, which if needed, can be used to find
a latent joint representation.

IV. EXPERIMENTAL RESULTS

A. Experimental setting

We now compare the performance of MALI with KEMArbf
[23] and [22] which we refer to as KEMAlin since it produces
similar results to those from KEMA with a linear kernel. We
use the code provided by the authors1. We perform the com-
parisons for the three datasets described next and displayed in
Fig. 2. Helix: two one-dimensional manifolds embedded in a
3D space plus noise, where one domain is a helix and the other
a straight line. MNIST-D: one domain consists of the original
MNIST digits, while the other is generated by applying
multiple transformations including rotation, downscaling, and
Gaussian blurring (see Fig. 2). stl10: a popular dataset for
computer vision, where the first domain contains the original
images, and we generated the second by applying brightness,
gray scaling, and Gaussian blurring. We performed feature
extraction using the 512 outputs after the last convolution
layer in ResNet-18, a smaller version of the ResNet neural
network [29].

For all of these datasets, we have access to the corre-
spondences between points, although this information is not
provided to any of the algorithms. A good alignment should
map matching observations close to each other, as well as be
useful for classifying unlabeled target observations employing
the labeled source samples. The following two metrics meet

1https://github.com/dtuia/KEMA



these requirements, and have been previously employed in
[10], [30], [14].

1) Fraction of samples closer to the true match (FOS-
CTTM): Given the ground truth one-to-one correspon-
dence knowledge, this metric computes how many sam-
ples are closer to the true match after alignment, nor-
malized by the total size of the data. Then the average
error for all the samples is computed, yielding a final
score. A perfect alignment would produce a score equal
to zero.

2) Label Transfer: Using the labels of the source domain,
a 1-NN classifier is built after alignment and tested on
the target domain. The final score corresponds to the
percentage of correctly predicted labels on the target
domain.

B. Metric performance
To test the performance of the methods, it is important to

analyze their behavior for various levels of labeled data in
the target domain. In what follows, we include the scores
for two variations of MALI. MALI-S10 is obtained when the
alignment representation corresponds to the 10-dimensional
spectral embedding of the joint similarities W , while MALI-
AS is the ambient space alignment after the barycentric projec-
tion. Since the FOSCTTM metric relies on the computation
of Euclidean distances, MALI-AS scores are more likely to
suffer from the curse of dimensionality.

For now, we are restricting ourselves to a particular case
where ϵ = 0, ai = 1,∀xi ∈ X and bj = 1,∀yj ∈ Y . Given
that for the experiments in this section both domains have the
same size n = m, and we want to find a one-to-one coupling.
Thus, in this particular setting, matrix T is a zero-one matrix.

TABLE I
FOSCTTM AVERAGE SCORES OVER 10 RUNS UNDER VARIOUS

PERCENTAGES OF LABELED DATA ON THE TARGET DOMAIN.

FOSCTTM
100% 50% 5% 2% 1%

Dataset Model

Helix

KEMAlin 0.298 (4) 0.308 (4) 0.251 (4) 0.241 (4) 0.242 (4)
KEMArbf 0.137 (3) 0.130 (3) 0.131 (3) 0.116 (3) 0.130 (3)
MALI-S10 0.033 (1) 0.033 (1) 0.033 (1) 0.034 (1) 0.033 (1)
MALI-AS 0.042 (2) 0.042 (2) 0.042 (2) 0.043 (2) 0.042 (2)

MNIST-D

KEMAlin 0.334 (4) 0.333 (4) 0.352 (4) 0.378 (4) 0.330 (4)
KEMArbf 0.027 (2) 0.019 (2) 0.067 (2) 0.071 (2) 0.063 (2)
MALI-S10 0.005 (1) 0.006 (1) 0.018 (1) 0.040 (1) 0.056 (1)
MALI-AS 0.045 (3) 0.049 (3) 0.098 (3) 0.136 (3) 0.161 (3)

stl10

KEMAlin 0.123 (4) 0.119 (4) 0.147 (4) 0.129 (3) 0.142 (3)
KEMArbf 0.049 (1) 0.056 (1) 0.087 (2) 0.087 (1) 0.096 (1)
MALI-S10 0.054 (2) 0.060 (2) 0.077 (1) 0.091 (2) 0.121 (2)
MALI-AS 0.117 (3) 0.117 (3) 0.147 (3) 0.175 (4) 0.195 (4)

The FOSCTTM scores are reported in Table I. Here we see
that MALI-S10 greatly outperforms the KEMA methods on
the Helix and MNIST-D datasets across all label percentages.
For the stl10 dataset, MALI-S10 is 1st when 5% of the data
is labeled and 2nd for all other percentages, although it is not
far behind KEMArbf in most of these instances.

Table II presents the label transfer scores. In general and
in contrast with the FOSCTTM scores, we observe little

discrepancy between MALI-S10 and MALI-AS. This indicates
that indeed the curse of dimensionality affects MALI-AS in
the FOSCTTM metric, which also explains why both MALI
variants achieve closer FOSCTTM results for the 3D Helix
than in the other high-dimensional datasets.

TABLE II
LABEL TRANSFER ACCURACY AVERAGED OVER 10 RUNS UNDER VARIOUS

LEVELS OF LABELED DATA ON THE TARGET DOMAIN.

Label transfer 1-NN
100% 50% 5% 2% 1%

Dataset Model

Helix

KEMAlin 0.915 (4) 0.873 (4) 0.811 (4) 0.828 (4) 0.845 (4)
KEMArbf 0.982 (1) 0.975 (2) 0.933 (3) 0.960 (3) 0.928 (3)
MALI-S10 0.976 (2) 0.976 (1) 0.976 (1) 0.975 (1) 0.976 (1)
MALI-AS 0.971 (3) 0.971 (3) 0.971 (2) 0.972 (2) 0.973 (2)

MNIST-D

KEMAlin 0.243 (4) 0.216 (4) 0.188 (4) 0.202 (4) 0.243 (4)
KEMArbf 0.812 (3) 0.835 (3) 0.635 (3) 0.632 (3) 0.654 (3)
MALI-S10 0.918 (2) 0.913 (2) 0.844 (1) 0.781 (1) 0.714 (1)
MALI-AS 0.922 (1) 0.920 (1) 0.836 (2) 0.756 (2) 0.682 (2)

RNA-ATAC

KEMAlin 0.411 (4) 0.677 (4) 0.586 (4) 0.613 (4) 0.589 (4)
KEMArbf 0.530 (3) 0.702 (3) 0.630 (3) 0.623 (3) 0.624 (3)
MALI-S10 0.755 (2) 0.743 (2) 0.734 (2) 0.702 (2) 0.698 (1)
MALI-AS 0.780 (1) 0.771 (1) 0.736 (1) 0.711 (1) 0.695 (2)

stl10

KEMAlin 0.571 (4) 0.584 (4) 0.546 (4) 0.564 (4) 0.539 (4)
KEMArbf 0.684 (3) 0.673 (3) 0.613 (3) 0.603 (3) 0.586 (3)
MALI-S10 0.879 (1) 0.864 (1) 0.822 (1) 0.778 (1) 0.717 (1)
MALI-AS 0.858 (2) 0.848 (2) 0.766 (2) 0.690 (2) 0.636 (2)

As an example of how an embedding is produced using
MALI, we show in Figure 3 a UMAP 2-dimensional embed-
ding of the stl10 dataset using the matrix W .

Fig. 3. UMAP embedding of stl10 after MALI alignment. Samples are
colored by their class label and red lines connect the ground truth paired
images for a subset of the data. Shorter lines are indicative of a better
alignment. We also display the two images with the worst alignment score.

C. Soft assignments with entropic regularized OT

MALI is not restricted to producing one-to-one matchings as
we obtained in the previous section. In many cases, we might
be interested in finding a soft matching between domains. For
such a task, imposing an entropic regularization by setting
ϵ > 0, is a natural alternative. It forces the transport plan T
to find a dense solution instead of a sparse one. Thus, we can



interpret the learned entries of T as a soft matching between
samples in both domains.

Figure 4 exemplifies how including the entropic regular-
ization affects the solutions. Here we show on the MNIST-D
dataset how each point can be matched with multiple points
with high similarity. Using the dense T matrix to construct
the joint similarity matrix W results in a good embedding
with relatively few large errors. This is corroborated by our
metrics which show an improvement when including the
regularization. This is likely because the soft assignments
created with the entropy regularization are more robust to local
changes in the neighborhood of a given data point.

Fig. 4. Soft matchings with entropic regularization. The top-left subplot
shows the assignments from individual points in X to Y in the MNIST-
D dataset. Instead of matching in a one-to-one fashion, each point finds a
collection of matches with high similarity. Top-right, we computed a UMAP
embedding using the joint similarity matrix W built with a dense matrix T .
To represent the goodness of alignment, we highlight randomly selected red
lines connecting ground truth matches. Most of the connections are short,
with longer connections being an artifact of the UMAP algorithm. Overall,
the alignment not only looks qualitatively accurate, but as displayed in the
bottom panels, the performance metrics score better with ϵ = 0.001 than for
the unregularized case (ϵ = 0). Acc10 is the label transfer accuracy using a
10-NN classifier.

D. Unbalanced number of observations

So far, we have assumed that we have the same number of
observations for both domains, i.e., n = m. The extension
to the case n ̸= m can be handled in many ways. Here,
we present two relatively straight-forward solutions. One is
to rebalance the masses. Without loss of generality, we can
set b = a×n

m , where b and a are the individual masses
assigned uniformly to all samples in domains Y and X ,
respectively. This enables a soft assignment for some or all
of the observations in either of the domains. Figure 5 shows
an example of this.

We note that the masses can also be modified when n = m,
resulting in soft assignments for some or all the observations.
The specific problem will determine the best approach for
modifying the masses. For instance, if the data density is
lower for a given data region in one domain compared to its

Fig. 5. Left, Oversampling and density equalization via SUGAR. This
strategy allows to avoid rebalancing the masses, since we can synthetically
reproduce the n = m case. Right, assignments for a low-sampled X domain.
After rebalancing, each sample from X is assigned to multiple counterparts
in Y due to their higher mass.

counterpart in the other domain, one may consider increasing
the masses of a set of samples belonging to the low density
region.

Another simple but powerful solution to the imbalanced
problem is to oversample with density equalization via a
method such as SUGAR [31]. In this case, both domains
will be balanced with the same amount of samples and
uniform densities. And the problem is narrowed down to the
n = m case. The generated points can then be eliminated after
performing the alignment and embedding. Figure 5 shows an
example of this.

V. CONCLUSION

We presented MALI, a manifold alignment method capa-
ble of finding a common meaningful representation for two
distinct but related domains. MALI only requires side coarse
information to perform the alignment, such as discrete labels in
both domains. MALI combines the diffusion geometry of the
data alongside the labels to find inter-domain distances, which
are then used to couple the datasets via optimal transport.
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