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Abstract

Score-based generative models, grounded in SDEs, excel in producing high-quality data but
suffer from slow sampling due to the extensive nonlinear computations required for itera-
tive score function evaluations. We propose an innovative approach that integrates score-
based reverse SDEs with kernel methods, leveraging the derivative reproducing property
of reproducing kernel Hilbert spaces (RKHS) to efficiently approximate the eigenfunctions
and eigenvalues of the Fokker-Planck operator. This enables data generation through linear
combinations of eigenfunctions, transforming computationally intensive nonlinear operations
into efficient linear ones, thereby significantly reducing computational overhead. Notably,
our experimental results demonstrate remarkable progress: despite a slight reduction in
sample diversity, the sampling time for a single image on the CIFAR-10 dataset is reduced
to an impressive 0.29 seconds, marking a substantial advancement in efficiency. This work
introduces novel theoretical and practical tools for generative modeling, establishing a robust
foundation for real-time applications.

1 Introduction

Generative modeling constitutes a foundational pillar of contemporary machine learning, enabling transfor-
mative applications in domains such as image synthesis, audio generation, and scientific data simulation
(Goodfellow et al., 2014). Among the diverse approaches, diffusion generative models have emerged as
a robust paradigm, delivering exceptional sample quality and tractable likelihood estimates (Dhariwal &
Nichol, 2021; Kingma et al., 2021). These models, encompassing denoising diffusion probabilistic models
(DDPM) (Ho et al., 2020) and score matching techniques based on Langevin dynamics (SMLD) (Song &
Ermon, 2019), perturb data with noise and learn to reverse this process to achieve generative outcomes.
The seminal work by Song et al. (2021) unified these methodologies within a stochastic differential equation
(SDE) framework, wherein a forward SDE transforms data into noise, and a reverse SDE, guided by neural
network-estimated scores (∇x log pt(x)), reconstructs the data. This framework, which includes variance-
exploding (VE) and variance-preserving (VP) SDEs, has established benchmarks on datasets like CIFAR-10,
achieving high-quality data generation (Song et al., 2021).

Despite their exceptional quality, score-based SDE models encounter a critical limitation: prolonged sampling
times attributable to iterative nonlinear score function evaluations. The reverse SDE necessitates hundreds
to thousands of neural network evaluations, yielding sampling durations of several seconds per image on
datasets like CIFAR-10 (Song et al., 2021). This computational bottleneck restricts their applicability in
real-time scenarios, such as interactive synthesis or on-device generation.

Recent advancements have propelled generative modeling forward. Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2020) diminish sampling steps through deterministic sampling, while Latent Diffusion
Models (Rombach et al., 2022) transfer computations to a compressed latent space, reducing costs. Efficient
numerical solvers, such as DPM-Solver (Lu et al., 2022), optimize SDE integration, and Flow Matching
(Lipman et al., 2023) streamlines training and sampling via continuous-time flows. Additionally, knowledge
distillation techniques (Luhman & Luhman, 2021; Salimans & Ho, 2022) condense multi-step diffusion into
fewer steps, enhancing efficiency. However, methods like DDIM, DPM-Solver, and predictor-corrector sam-
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plers (Song et al., 2021) often entail trade-offs in quality or demand intricate tuning. Furthermore, despite
the proven efficiency of kernel-based operator analysis in dynamical systems, its application to address the
sampling challenges of generative modeling remains unexplored, highlighting a gap for high-quality, rapid
sampling solutions.

Concurrently, operator theory from mathematical physics, particularly the Fokker-Planck operator, offers
powerful tools for analyzing stochastic systems by modeling probability density evolution through eigen-
functions (Pavliotis, 2014). Kernel-based methods within reproducing kernel Hilbert spaces (RKHS) provide
efficient approximations of these eigenfunctions (Klus et al., 2020), with recent applications in modeling
chaotic systems (Darcy & Hamzi, 2024) and nonlinear dynamics (Baddoo et al., 2022), though their poten-
tial in generative modeling has yet to be tapped.

The primary objective of this research is to substantially reduce the sampling time of score-based SDE gen-
erative models while preserving competitive generation quality. We accomplish this by applying operator
theory, specifically the eigenanalysis of the Fokker-Planck operator, to the reverse SDE process. By em-
ploying kernel-based methods in the RKHS, we approximate the operator’s eigenfunctions and eigenvalues,
facilitating fast linear sample generation that circumvents iterative nonlinear computations. This approach
synergizes the high-quality generation capabilities of score-based models with the efficiency required for
real-time applications.

To address the sampling inefficiency in score-based generative models, we propose a novel framework
that accelerates data generation by leveraging operator theory. Our method integrates the reverse-time
SDE framework with kernel-based techniques to approximate the spectral decomposition of the associated
Fokker–Planck operator in an RKHS. This decomposition yields a set of eigenfunctions that serve as building
blocks for modeling the time evolution of the data distribution. By expressing the probability density as a
linear combination of these eigenfunctions, our approach replaces the costly iterative sampling procedures
with efficient linear operations. The framework is guided by a pre-trained score function, and its kernel-based
formulation enables effective handling of high-dimensional data. This allows us to retain the high generative
quality of diffusion models while dramatically improving sampling efficiency.

Our main contributions are:

Novel generative modeling framework: We present an innovative framework that seamlessly integrates
score-based reverse stochastic differential equations (SDEs) with kernel-based Fokker-Planck eigenanalysis,
harnessing operator theory to accelerate diffusion-based generative modeling. By approximating the eigen-
functions and eigenvalues of the Fokker-Planck operator within a reproducing kernel Hilbert space (RKHS),
our method efficiently estimates the probability density function, bypassing the computationally intensive
iterative SDE solving required in traditional score-based models (Song et al., 2021). This approach bridges
the superior generative quality of score-based methods with the analytical efficiency of operator-based tech-
niques, providing a fresh perspective on generative modeling.

Fast sampling algorithm: We develop a rapid sampling algorithm that generates samples via linear com-
binations of Fokker-Planck eigenfunctions, delivering substantial speedups over conventional SDE samplers.
This method significantly reduces single-image sampling times on CIFAR-10, enhancing computational effi-
ciency while maintaining the core generative capabilities of diffusion models.

Generalizable approach: Our framework is highly adaptable, extendable to a broad range of SDE-based
generative models, and paves the way for efficient generative modeling advancements. By leveraging operator
theory and RKHS, it accommodates diverse diffusion processes, such as variance-exploding and variance-
preserving SDEs, and holds potential for application to latent diffusion models (Rombach et al., 2022).
Offering a robust theoretical foundation and practical algorithm, our work facilitates real-time generative
applications, such as interactive image synthesis, and encourages further exploration of operator-based meth-
ods in generative modeling.

The paper is organized as follows: Section 2 surveys related work, Section 3 describes our proposed method,
Section 4 reports experimental results, and Section 5 concludes.
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2 Related Work

2.1 Score-Based SDE Models

Score-based generative models, unified by Song et al. (2021), model data generation as a continuous diffusion
process, generalizing DDPM (Ho et al., 2020) and SMLD (Song & Ermon, 2019). A forward SDE perturbs
data into noise over t ∈ [0, T ]:

dx = f(x, t)dt + g(t)dw, (1)
where f(x, t) = [f1, f2, . . . , fd]⊤ is the drift, g(t) the diffusion coefficient, and w a Wiener process. The
reverse SDE, derived from the forward SDE via time-reversal (Anderson, 1982), runs from t = T to t = 0 to
generate samples:

dx =
[
f(x, t) − g(t)2∇x log pt(x)

]
dt + g(t)dw, (2)

where pt denotes the probability density function at time t, ∇x log pt(x) is the score function and w is a
reverse-time Wiener process. Since the score ∇x log pt(x) is unknown, it is approximated by a neural network
sθ(x, t):

θ∗ = arg min
θ

Et

{
λ(t)Ex(0)Ex(t)|x(0)

[∥∥sθ(x(t), t) − ∇x(t) log p0t(x(t)|x(0))
∥∥2

2

]}
, (3)

where λ(t) weights the loss, often set as λ(t) ∝ 1/E
[∥∥∇x(t) log p0t(x(t)|x(0))

∥∥2
2

]
. Sampling discretizes the

reverse SDE using predictor-corrector (PC) methods, iterating for i = N, . . . , 1:

xi−1 = xi +
[
f(xi, ti) − g(ti)2sθ(xi, ti)

]
∆t + g(ti)

√
∆tzi, (4)

followed by Langevin MCMC corrections, where zi ∼ N (0, I). Alternatively, a probability flow ODE:

dx =
[
f(x, t) − 1

2g(t)2sθ(x, t)
]

dt, (5)

enables deterministic sampling. Variants include variance-exploding (VE) SDE with growing variance and
variance-preserving (VP) SDE with fixed variance (Song & Ermon, 2020).

2.2 Kernel-Based Approximation of the Koopman Generator

Kernel-based methods, as proposed by Klus et al. (2020), enable efficient approximation of the Koopman gen-
erator’s eigendecomposition for stochastic dynamical systems. For a system governed by the SDE equation 1,
the Koopman generator L acts on an observable function h : Rd → R as:

Lh =
d∑

i=1
fi(x, t) ∂h

∂xi
+ 1

2

d∑
i=1

d∑
j=1

g(t)2 ∂2h

∂xi∂xj
, (6)

The eigendecomposition of the Koopman generator, given by Lφℓ = λℓφℓ, yields eigenvalues λℓ and eigen-
functions φℓ, capturing the system’s long-term dynamics through its spectral properties.
Definition 1. Let Rd be the state space and H a space of functions f : Rd → R. Then, H is a reproducing
kernel Hilbert space (RKHS) with inner product ⟨·, ·⟩H if a kernel k : Rd × Rd → R exists such that:

(i) ⟨f, k(x, ·)⟩H = f(x) for all f ∈ H and x ∈ Rd,

(ii) H = span{k(x, ·) | x ∈ Rd}.

The RKHS, defined by a kernel k(x, x′), uses the feature mapping ϕ(x) = k(x, ·) to approximate L’s eigen-
decomposition, where k(xm, xr) = ⟨ϕ(xm), ϕ(xr)⟩H. Given data {xm}M

m=1 ∼ pt(x), let ϕm(·) = k(xm, ·).
Gram matrices are constructed:

[G0]mr = ⟨ϕm, ϕr⟩H, [G2]mr = ⟨Lϕm, ϕr⟩H, (7)

where ⟨Lϕm, ϕr⟩H applies equation 6 to ϕm in the RKHS inner product. Solving the generalized eigenvalue
problem G2uℓ = λℓG0uℓ yields approximations λ̂ℓ and φ̂ℓ(x) =

∑M
m=1 uℓ,mϕm(x). With sufficient data,

φ̂ℓ → φℓ (Klus et al., 2020).
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3 Proposed Method

3.1 Fokker-Planck Operator Eigendecomposition

The Fokker-Planck operator L∗ is adjoint to the Koopman generator L equation 6. It models the evolution
of a probability density function pt(x) ∈ L1(Rd) for the SDE equation 1:

L∗pt = −
d∑

i=1

∂

∂xi
[fi(x, t)pt] + 1

2

d∑
i=1

d∑
j=1

∂2

∂xixj

[
g(t)2pt

]
. (8)

The eigendecomposition L∗φℓ = λℓφℓ yields eigenvalues λℓ and eigenfunctions φℓ, characterizing density
evolution. Given data {xm}M

m=1 ∼ pt(x), we construct Gram matrices G0 and G2 from the Koopman
generator L’s eigendecomposition in the RKHS H. By the adjoint property ⟨Lh, j⟩H = ⟨h, L∗j⟩H (Pavliotis,
2014), we derive L∗’s eigendecomposition via transposed matrices:

[G⊤
0 ]mr = [G0]rm, [G⊤

2 ]mr = [G2]rm, (9)

solving G⊤
2 uℓ = λℓG

⊤
0 uℓ to obtain L∗’s eigenvalues λℓ and eigenfunctions φℓ(x).

3.2 Probability Density Estimation

We first train a score-based SDE model sθ(x, t), obtained as described in Section 2.1 via equation 3, to define
the reverse SDE capable of generating new data samples. For clarity and without loss of rigor, we denote
this reverse SDE as:

dx = h(x, t)dt + g(t)dw, (10)
where h(x, t) = f(x, t)−g(t)2sθ(x, t) is the drift term, incorporating the score function sθ(x, t) ≈ ∇x log pt(x),
g(t) is the diffusion coefficient, and w is a standard Wiener process in reverse time. The evolution of the
probability density pt(x) for this SDE is governed by the Fokker-Planck equation:

∂pt

∂t
= L∗pt, (11)

where L∗ is the Fokker-Planck operator.

Using the method in Section 3.1, we obtain the eigenvalues λℓ and eigenfunctions φℓ(x) =∑M
m=1 uℓ,mk(xm, x) of the Fokker-Planck operator L∗ in the RKHS H defined by the Gaussian kernel

k(x, x′) = exp
(

− ∥x−x′∥2

2ζ2

)
with bandwidth ζ.

The spectral properties of L∗ allow us to represent the probability density as a linear combination of its
eigenfunctions. We formalize this in the following theorem.
Theorem 1. Let L∗ be the Fokker-Planck operator associated with the reverse SDE equation 10, with eigen-
values λℓ and eigenfunctions φℓ ∈ H satisfying L∗φℓ = λℓφℓ in the RKHS H. The probability density pt(x)
at time t ∈ [0, T ] can be expressed as:

pt(x) =
∞∑

ℓ=1
cℓ(T )eλℓ(t−T )φℓ(x), (12)

where the coefficients cℓ(T ) = ⟨pT , φℓ⟩H are the projections of the initial density pT (x) onto the eigenfunctions
in the RKHS inner product.

Proof. Since L∗ is a linear operator on the RKHS H, its eigenfunctions {φℓ} form a complete basis as shown
in the definition 1. The initial density pT (x) ∈ H can be expanded as pT (x) =

∑∞
ℓ=1 cℓ(T )φℓ(x), where

the coefficients are given by the RKHS inner product cℓ(T ) = ⟨pT , φℓ⟩H. The solution to the Fokker-Planck
equation equation 11 is pt(x) = eL∗(t−T )pT (x). Applying the operator to the expansion:

eL∗(t−T )pT (x) =
∞∑

ℓ=1
cℓ(T )eL∗(t−T )φℓ(x) =

∞∑
ℓ=1

cℓ(T )eλℓ(t−T )φℓ(x).
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Thus, pt(x) =
∑∞

ℓ=1 cℓ(T )eλℓ(t−T )φℓ(x), completing the proof.

To estimate pt(x), we approximate the initial density pT (x), typically a known prior distribution (e.g.,
N (0, σ2

maxI) for VE SDEs or N (0, I) for VP SDEs). Using data points {yn}N
n=1 ∼ pT , we employ kernel

density estimation in the RKHS H to obtain:

p̂T (x) = 1
N

N∑
n=1

k(x, yn). (13)

The initial coefficients cℓ(T ) are computed by projecting p̂T (x) onto the eigenfunctions in the RKHS inner
product:

cℓ(T ) = ⟨p̂T , φℓ⟩H ≈ 1
N

N∑
n=1

φℓ(yn). (14)

The density at t = 0 is approximated by truncating to the L dominant eigenfunctions (those with the largest
Re(λℓ)):

p̂0(x) =
L∑

ℓ=1
cℓ(T )e−λℓT φℓ(x). (15)

This density p̂0(x) approximates the data distribution and serves as the basis for fast sampling, as described
in the subsequent section. The trained score function sθ(x, t), used to define h(x, t) in equation 10, ensures
that the Fokker-Planck operator L∗ captures the reverse SDE dynamics, enabling precise density estimation.
Remark 1. The accuracy of p̂0(x) depends on the kernel bandwidth ζ, the number of eigenfunctions L,
and the size of the training data M . A smaller ζ enhances resolution but risks overfitting, while a larger L
improves approximation at the cost of increased computation. Similarly, a larger M typically improves the
precision of the density estimation by better capturing the underlying distribution, but excessively large M
increases the computational cost of the eigenvalue decomposition and may lead to numerical instability, as
analyzed in Klus et al. (2020). Cross-validation techniques (McGibbon & Pande, 2015) can optimize these
hyperparameters.

3.3 Sampling

Having estimated the probability density p̂0(x) of the data distribution using the spectral representation in
Section 3.2, we now describe a method to generate new samples efficiently. Instead of relying on iterative
numerical solvers for the reverse SDE equation 10, as in traditional Predictor-Corrector (PC) sampling (Song
et al., 2021), we leverage the analytical form of p̂0(x) to compute a new score function and apply only the
Corrector component of the PC sampler. This approach exploits the availability of the density at t = 0,
eliminating the need for the Predictor step, which involves solving the SDE over continuous time.

To sample from p̂0(x), we first compute the score, defined as the gradient of the log-probability density
∇x log p̂0(x)

∇x log p̂0(x) = ∇xp̂0(x)
p̂0(x) =

∑L
ℓ=1 cℓ(T )e−λℓT ∇xφℓ(x)∑L

ℓ=1 cℓ(T )e−λℓT φℓ(x)
, (16)

where the gradient of the eigenfunction is:

∇xφℓ(x) =
M∑

m=1
uℓ,m∇xk(xm, x) =

M∑
m=1

uℓ,m

(
−x − xm

ζ2

)
k(xm, x), (17)

using the derivative of the Gaussian kernel ∇xk(xm, x) = − x−xm

ζ2 k(xm, x).

With the score ∇x log p̂0(x), we employ the Corrector-only component of the PC sampler from Song et al.
(2021), specifically annealed Langevin dynamics, to generate samples. Starting from an initial sample x(0)

0 ,
we iterate:

x(j+1)
0 = x(j)

0 + ϵ∇x log p̂0(x(j)
0 ) +

√
2ϵzj , j = 0, 1, . . . , J − 1, (18)
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where ϵ > 0 is the step size, zj ∼ N (0, I) is standard Gaussian noise, and J is the number of iterations.

The sampling procedure is summarized in Algorithm 1.

Algorithm 1 Fast Sampling via Score-Based Langevin Dynamics
Require: Estimated density p̂0(x) from equation 15, eigenfunctions φℓ(x), coefficients cℓ(T )e−λℓT , step size

ϵ, number of iterations J .
1: Initialize x(0)

0 .
2: for j = 0 to J − 1 do

3: Compute score ∇x log p̂0(x(j)
0 ) =

∑L

ℓ=1
cℓ(T )e−λℓT ∇xφℓ(x(j)

0 )∑L

ℓ=1
cℓ(T )e−λℓT φℓ(x(j)

0 )
using equation 16 and equation 17.

4: Sample zj ∼ N (0, I).
5: Update x(j+1)

0 = x(j)
0 + ϵ∇x log p̂0(x(j)

0 ) +
√

2ϵzj .
6: end for
7: return x(J−1)

0 .

Our method significantly speeds up the sampling process by eliminating the predictor step and using only
the corrector component of a standard predictor-corrector (PC) sampler. While PC sampling involves
O(N2 ·Mnn) nonlinear neural network evaluations (N ≈ 1000, where Mnn denotes the network cost per step),
our method performs O(N · L · M) operations consisting entirely of linear vector and matrix computations,
where N is the number of Langevin iterations, L is the number of eigenfunctions, and M is the number
of reference data points. The proposed approach improves computational efficiency by replacing repeated
nonlinear score function evaluations with linear combinations of kernel-based eigenfunctions.
Remark 2. The quality of generated samples depends on the accuracy of ∇x log p̂0(x), which is sensitive
to the truncation parameter L and kernel bandwidth ζ. Errors in density estimation may lead to biased
scores, potentially degrading sample quality compared to SDE-based methods. Increasing J or tuning ϵ via
signal-to-noise ratio optimization (Song et al., 2021) can mitigate these effects.

4 Experiments

We conduct experiments to evaluate the proposed fast sampling method, which leverages kernel-based Fokker-
Planck eigenanalysis to accelerate score-based generative modeling. Our primary goal is to compare the sam-
pling efficiency and generation quality of our method against the original predictor-corrector (PC) sampling
approach from Song et al. (2021). Additionally, we analyze the impact of the number of data points M on
performance. All experiments are implemented in PyTorch and run on an NVIDIA RTX 3090Ti GPU.

4.1 Comparison with Original Methods

We evaluate our fast sampling method on the CIFAR-10 dataset. We use two score-based models from Song
et al. (2021): DDPM++ cont. with VP SDE and NCSN++ cont. with VE SDE, trained with continuous-
time objectives equation 3.

For baselines, we use the PC1000 samplers from Song et al. (2021) with 1000 discretization steps. Our
method employs a Gaussian kernel k with bandwidth ζ = 22, selected via cross-validation (McGibbon &
Pande, 2015) for constructing the Gram matrices equation 7. We use M = 2000 training data points and
select L = 5 eigenfunctions based on the dominant eigenvalues of the Fokker-Planck operator. Due to
the eigenfunction-based sampling method’s tendency to concentrate samples around high-density regions,
resulting in limited diversity within samples generated from a single set of eigenfunctions, we computed 250
different sets of eigen-decompositions, each generating 200 images, to produce a total of 50,000 samples.
Generation quality is measured by Fréchet Inception Distance (FID) and Inception Scores (IS) over 50,000
samples, and sampling efficiency by time for 1 and 100 images.

For sampling, we use Corrector-only Langevin dynamics with step size ϵ = 0.5 and J = 1000 iterations.
Notably, when generating new data via Langevin dynamics, we adopt a smaller bandwidth ζsample = 5 < ζ
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for the kernel in the score computation equation 16. This adjustment is motivated by the finding that a
smaller bandwidth enhances the retention of fine-grained details in the generated images, resulting in better
visual quality. A reduced ζsample increases the kernel’s sensitivity to local variations, enabling it to better
capture intricate structures within the data distribution. However, this heightened sensitivity can lead to
numerical instability in the score computation, particularly when p̂0(x) approaches zero, potentially causing
computational errors such as NaN values. To address this, we introduce a noise scale parameter η into the
Langevin dynamics update:

x(j+1)
0 = x(j)

0 + ϵ∇x log p̂0(x(j)
0 ) + η

√
2ϵzj .

By setting η = 0.2, we scale down the magnitude of the stochastic term, stabilizing the sampling process
and preventing numerical overflow while preserving the benefits of a smaller bandwidth.

Furthermore, our experiments revealed that initializing the Langevin dynamics from the standard normal
distribution N (0, I), a common practice in score-based generative models, often results in mode collapse
when using our eigenfunction-based generation approach. This manifests as generated images converging
to nearly identical samples, failing to reflect the diversity of the underlying data distribution. To mitigate
this, we initialize the sampling process with solid-color images of varying hues. These initial images are
generated by uniformly sampling random RGB values and scaling them to match the dataset’s pixel range.
This strategy provides a diverse set of starting points, encouraging the Langevin dynamics to explore distinct
regions of the data manifold and effectively alleviating mode collapse.

Table 1 presents the performance of our proposed fast sampling method compared to the original PC1000
sampler on CIFAR-10. Our method aims to achieve significant speedups by replacing iterative SDE solving
with linear operations based on Fokker-Planck eigenfunctions.

Table 1: CIFAR-10 sample time cost and quality.

Model and Method Time
(1 image, s)

Time
(100 images, s) FID IS

DDPM++ cont. (VP, PC1000) 35.93 176.77 2.41 9.68
NCSN++ cont. (VE, PC1000) 75.85 381.32 2.20 9.89
Ours (VP-based) 0.30 16.08 43.95 8.33
Ours (VE-based) 0.29 15.97 42.03 8.34

Our proposed fast sampling method, utilizing Fokker-Planck eigenfunctions and Corrector-only Langevin
dynamics, achieves remarkable efficiency gains on CIFAR-10 compared to the PC1000 samplers from Song
et al. (2021). For the VE-based NCSN++ cont. model, single-image sampling time drops from 75.85
seconds to 0.29 seconds (261.6x speedup), and 100-image sampling time reduces from 381.32 seconds to
15.97 seconds (23.9x speedup). For the VP-based DDPM++ cont. model, sampling times decrease from
35.93 seconds to 0.30 seconds (119.8x speedup) for one image and from 176.77 seconds to 16.08 seconds
(11.0x speedup) for 100 images. However, generation quality declines, with FID scores rising from 2.20
to 42.03 for VE-based and from 2.41 to 43.95 for VP-based methods, indicating reduced sample diversity
(Heusel et al., 2017). Similarly, the IS drops from 9.89 to 8.34 for VE-based and from 9.68 to 8.33 for VP-
based methods, reflecting a moderate degradation in sample quality. These results underscore our method’s
computational advantages but highlight challenges in maintaining high-fidelity outputs. Figure 1 showcases
100 samples from our VE-based and VP-based methods, illustrating their visual quality. Future work will
focus on refining eigenfunction approximations and optimizing kernel parameters to improve FID and IS
while preserving efficiency.

4.2 Ablation Study

4.2.1 Effect of Training Data Size

To investigate the impact of the number of training data points M on generation quality and sampling
efficiency, we conduct an ablation study using the VE-based NCSN++ cont. model on CIFAR-10. We
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(a) 100 samples from VE-based method. (b) 100 samples from VP-based method.

Figure 1: Generated samples on CIFAR-10 using our fast sampling method, arranged in 10x10 grids.

vary M ∈ {500, 1000, 2000, 3000, 5000}, keeping all other hyperparameters identical to those used in the
VE-based method in Subsection 4.1, including the Gaussian kernel bandwidth, number of eigenfunctions,
Langevin iterations, step size, and noise scale. FID is computed over 50,000 samples, and we report sampling
times for generating a single image and 100 images to assess computational overhead. Results are shown in
Table 2.

Table 2: Ablation study on the impact of M for VE-based sampling on CIFAR-10.

M FID IS Time (1 image, s) Time (100 images, s)
500 24.58 8.19 0.29 4.16
1000 33.91 8.33 0.29 8.22
2000 42.03 8.34 0.29 15.97
3000 52.29 7.76 0.40 24.12
5000 65.97 7.43 0.55 40.21

Table 2 reveals a non-monotonic relationship between M and generation metrics, highlighting a trade-off
between sample diversity, quality, and computational cost. Our method generates 50,000 samples using 250
feature groups, each derived from M randomly sampled data points. For M = 500 to 2000, the IS rises
slightly from 8.19 to 8.34, indicating improved sample quality due to more precise density and score function
estimation via Gram matrices equation 7. Conversely, FID increases from 24.58 to 42.03, reflecting reduced
sample diversity. This trend stems from the random selection of M data points: smaller M introduces
greater variability across feature groups, enhancing dataset-level diversity, whereas larger M concentrates
samples around dominant data modes, reducing diversity and worsening FID (Heusel et al., 2017). Beyond
M = 2000, IS declines to 7.43 at M = 5000, suggesting degraded sample quality due to overfitting in
the kernel-based eigendecomposition, which overemphasizes high-density regions and fails to capture the
full distribution (Klus et al., 2020). These results suggest that moderate M values (e.g., 500–1000) offer
a favorable balance of diversity, quality, and efficiency, while our choice of M = 2000 in Subsection 4.1
prioritizes quality for practical applications. Future work could explore dynamic M selection to optimize
this trade-off.
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4.2.2 Effect of Number of Dynamic Modes

In this subsection, we examine how the number of retained dynamic modes L, i.e., the number of eigenfunc-
tions used in the spectral expansion equation 15, affects the performance of our generative model. Retaining
more modes may provide a richer representation of the underlying density, potentially improving generation
quality. However, increasing L also introduces greater computational overhead and the risk of amplifying
noisy or less informative components of the spectrum.

To isolate the impact of L, we fix the number of training data points at M = 2000, which was used in
Subsection 4.1. All other hyperparameters remain consistent, including the Gaussian kernel bandwidth,
Langevin step size, number of iterations, and noise scale. We evaluate L ∈ {1, 3, 5, 10, 20}, measuring FID,
IS, and wall-clock time for generating 1 and 100 images. Results are summarized in Table 3.

Table 3: Ablation study on the effect of L on VE-based sampling on CIFAR-10.

L FID IS Time (1 image, s) Time (100 images, s)
1 43.73 8.20 0.31 15.92
3 44.08 8.13 0.31 16.09
5 42.03 8.34 0.29 15.97
10 44.43 8.18 0.30 16.04
20 44.32 8.12 0.33 16.07
50 44.31 8.12 0.31 17.15
100 43.99 8.10 0.35 16.14

From Table 3, we observe that varying the number of retained dynamic modes L has a relatively limited effect
on generation performance. Across all tested values from L = 1 to L = 100, both FID and IS remain within
a narrow band, with no clear improvement trend as L increases. Although the best numerical performance
occurs at L = 5, the differences across settings are marginal—less than 2 points in FID and about 0.2 in
IS—indicating that generation quality is largely robust to the choice of L.

This stability suggests that the dominant structural information of the data distribution is already captured
by the leading few eigenfunctions. In kernel-based eigendecomposition, it is common for the spectrum to
decay rapidly, with most of the meaningful variation encoded in the top modes. Therefore, expanding the
spectral basis beyond a small number of components (e.g., L > 5) contributes little additional expressive
power and may even introduce redundant or noisy modes.

Moreover, sampling time remains nearly constant across all values of L, with single-image generation fluctu-
ating between 0.29 and 0.35 seconds. This confirms that the overall runtime is primarily driven by Langevin
dynamics and kernel evaluations, rather than the number of eigenfunctions used.

These results imply that our method is computationally efficient and numerically stable even with a small
spectral basis. Using only a few dynamic modes is sufficient for approximating the data density and generat-
ing samples of competitive quality. This property not only reduces memory and computational requirements
but also simplifies hyperparameter selection in practical deployments.

4.3 Initialization-Driven Generation

In this subsection, we investigate whether and to what extent the initial state used in Langevin dynamics
influences the output of our kernel-based generative model. While standard score-based diffusion models typ-
ically initialize from an isotropic Gaussian distribution, our method permits arbitrary initialization, making
it possible to study how structured inputs may affect generation.

To this end, we replace the standard Gaussian initialization with synthetic images that contain simple
patterns, such as colored blocks, edges, or silhouette-like shapes. All other settings remain the same as in
Section 4.2.1, including the use of M = 5000 training samples. Only the initial sample x(0)

0 is modified.
Representative outcomes are shown in Figure 2.
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We find that the degree to which initialization influences the generated sample is variable and generally
unpredictable. In some cases, the initialization appears to guide the output toward a similar color distribution
or spatial layout, while in other cases—even with comparable initial patterns—the resulting samples resemble
typical outputs from the learned distribution, showing little relation to the input. This inconsistency suggests
that while the initialization can have an observable impact, the model lacks robustness in preserving or
propagating input structure through the sampling process.

Overall, these findings indicate that the generation process is sensitive to initialization but lacks reliable
controllability. The influence of the initial state depends not only on the structure of the input but also
on its alignment with high-probability regions under the learned density and the inherent randomness in
Langevin dynamics. This highlights a limitation of the current kernel-based framework and motivates future
work on incorporating structured priors, conditioning mechanisms, or constraint-aware dynamics to achieve
more controllable generation.

Figure 2: Initialization-driven generation. Each column shows an initialization (top) and the corresponding
generated sample (bottom). The top two rows present examples where the initialization has a noticeable
influence on the output, while the bottom two rows show cases where the initial structure is largely overridden
during sampling.

5 Conclusion

This work introduces a transformative framework for accelerating score-based generative models grounded
in SDEs, achieving a significant leap in sampling efficiency while advancing the theoretical underpinnings

10
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of diffusion-based generative modeling. By integrating kernel-based Fokker-Planck eigenanalysis within an
RKHS, our approach redefines the sampling process, replacing computationally intensive iterative SDE
solvers with linear operations derived from the operator’s eigenfunctions. This innovation enables unprece-
dented speedups, reducing single-image sampling times on CIFAR-10 to approximately 0.29 seconds, a
100–260x improvement over traditional predictor-corrector methods. The framework’s ability to estimate
probability density functions via eigenfunction expansions offers a novel analytical perspective, bridging
operator theory from mathematical physics with modern generative modeling. Furthermore, our method’s
adaptability to both variance-preserving and variance-exploding SDEs underscores its generality, paving the
way for applications across diverse diffusion models, including latent diffusion and flow-based approaches.
The proposed fast sampling algorithm, leveraging Corrector-only Langevin dynamics with strategic initial-
ization and noise scaling, provides a practical tool for real-time generative tasks, such as interactive image
synthesis and on-device generation, thereby broadening the accessibility of high-quality generative models.

Despite these advances, our approach exhibits limitations in sample diversity and quality, as evidenced by
elevated FID and reduced IS scores compared to baseline methods. These challenges stem from the sensitivity
of eigenfunction approximations to hyperparameters and the potential for overfitting in density estimation
with large data subsets. Future work will focus on enhancing density estimation accuracy through adaptive
kernel bandwidth selection and exploring hybrid sampling strategies that combine our linear framework with
iterative refinements to boost sample fidelity. Additionally, extending the framework to higher-dimensional
or multimodal datasets and integrating it with latent diffusion models could further amplify its impact,
fostering scalable and efficient generative modeling solutions for real-world applications.
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