
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A FEDERATED GRAPH LEARNING FRAMEWORK WITH
ATTENTION MECHANISM AND CLUSTERING ALGO-
RITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

With the development of the industrial Internet of Things, graph data is also in-
creasing, but these data are held by different clients, and due to client privacy and
data security, it is impossible to integrate all the data for unified model training.
Federated graph learning can overcome this difficulty very well. It allows clients
to participate in the training of the overall model of other clients without reveal-
ing their own private data during training, thus protecting the security of clients’
private data. However, how to improve the utilization efficiency of client upload
parameters to improve the effect of model training and how to process the large
amount of initial data owned by clients is an issue that needs to be solved ur-
gently. This paper proposes a federated graph learning framework with attention
mechanism and clustering algorithm (FGLAC). First, before the client partici-
pates in training, a clustering algorithm is used to perform a simple preprocessing
operation on the large amount of data held to reduce the overall model training
burden and improve training accuracy. Then during the server’s process of aggre-
gating model parameters, through the adaptive ability of the attention mechanism,
the parameters uploaded by different clients are configured with different weights
to obtain the best weight parameters to improve the training effect of the over-
all model. In order to further verify the effectiveness of FGLAC , experimental
verification was conducted on different data sets. The results show that in most
cases, FGLAC can achieve an improvement of 2.63% - 4.03% compared to other
federated graph learning frameworks.

1 INTRODUCTION

Real world applications of graph data to depict complex relationships between elements of com-
posite objects are widespread. Examples include social networks, citation networks, biochemical
networks, and transportation networks. Unlike European data governed by structural principles,
graph data have a complex structure and contain a wealth of information. In recent years, graph data
research has been a popular topic in the academic community (Liu et al., 2022; Li et al., 2022; Wang
et al., 2022). Graph research problems include node classification (Wang et al., 2023b; Zou et al.,
2023), graph classification (Chen et al., 2023; Lei et al., 2023), and link prediction (Mi et al., 2023),
among others. This paper mainly focuses on the problem of graph classification. Given a set of
graphs, the goal of graph classification is to discover the mapping relationship between graphs and
class labels and to predict the class labels of unknown graphs. Graph classification is an essential
data mining task applicable to a variety of disciplines, for example, molecular graphs are classified
in cheminformatics to determine the mutagenicity, toxicity, and anticancer activity of compound
molecules (Veličković, 2023; Ji et al., 2023); protein networks are classified in bioinformatics to
determine whether a protein is an enzyme and whether it has therapeutic potential for a particular
disease(Yin et al., 2023; Zheng et al., 2023). From this perspective, graph classification research is
extremely important.

With the rapid development of the Industrial Internet of Things(IIoT), there are more and more graph
data in the network environment, and how to process these data has become extremely important.
Since the graph neural network can learn the node representation of the non-signature from the graph
structure, it has become a hot method for processing graph data in the field of machine learning (Xiao

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

et al., 2023; Yu et al., 2023; Zhang et al., 2023). The traditional Graph Neural Network(GNN) needs
to collect the overall model to aggregate parameters during training (Liu et al., 2023; Yao et al.,
2023). However, in IIoT, a large amount of graphic data is owned by different holders, and it is very
difficult to integrate all the graphic data. At the same time, due to privacy protection issues in IIoT,
a large number of graphic Uniform loading of data for training on GNN is not allowed. This has
become a major problem in the application of GNN in IIoT.

As a new distributed machine learning paradigm, federated learning (FL) enables clients to train
a globally shared or personalized model in a decentralized manner (Gupta & Gupta, 2023), while
not contributing their local data. This property allows FL to be applied to graph data to alleviate
data isolation problems and keep each client owning graph data safely. Federated Graph Learning
(FGL) is an extension of federated learning on graph neural networks (Fu et al., 2022; Qi et al.,
2023; Wang et al., 2023a). It allows the client to train the local model according to the subgraph it
owns, and upload the trained parameters to the central server at the same time. The server aggregates
the received parameters through the set aggregation rules and then distributes the processed data to
the clients participating in the training. After the client receives the parameters, it updates its local
model. This process is iterated until the model converges completely.

Most of the traditional federated graph learning paradigms use FedAvg (McMahan et al., 2017)
when the server aggregates client parameters. The client participating in the training uses the initial-
ized global model parameters to initialize the local model. Multiple rounds of gradient descent and
multiple updates to the parameters ensue; the client then transmits the parameters of the local model
to the server, and the central server aggregates the local model parameters into global model param-
eters through a weighted average aggregation strategy (Fu et al., 2023; Silva et al., 2023; Ghimire
et al., 2023). FedAvg can implement distributed GNN model training very well, but he does not con-
sider the weight impact of different client local parameters on all client model training, that is, in the
actual federated graph learning process, the data uploaded by each client Parameters have different
influences; how to achieve different degrees of learning of parameters of different clients according
to different weights when the server performs parameter aggregation. And in IIoT, the number of
local data sets owned by the client is very large. If the data is not processed and directly trained on
the model, it may be expensive. At the same time, unprocessed data sets may have a certain impact
on the training effect, which is something that the traditional federated graph learning paradigm has
not considered.

In order to resolve the aforementioned issues, this paper proposes a federated graph learning frame-
work that uses a clustering algorithm to preprocess client local data and uses an attention mechanism
to assign different weights to the local parameters of different clients. FGLAC first allows the client
to use a clustering algorithm to perform a preprocessing operation on the data set it owns before
training the model based on local data, so as to better process downstream tasks. At the same time,
in the process of aggregating local parameters of the client by the central server, adaptive atten-
tion parameters are added. After the server receives the local aggregation parameters from different
clients, it assigns different aggregation weights to different local parameters according to the dif-
ferent training effects of the clients, and obtains a global parameter that is most suitable for all
clients participating in the training. This is used to improve the local model training accuracy of the
client, thereby improving the training effect of the overall framework. The following are the primary
contributions of this paper:

• Before performing local model training, the client uses a clustering algorithm to perform
a preprocessing operation on its own data set, and uses the preprocessed information as
auxiliary information for downstream task execution. This can decrease the overall training
burden and enhance model training’s effectiveness.

• In the process of local parameter aggregation uploaded by the central server to the client,
the attention mechanism assigns different aggregation weights to the uploaded parameters
according to the good or bad training effect of different clients, to get a global parameter
that is most suitable for the target client and drive the overall training effect.

• Through a large number of experiments and experimental results, it is shown that FGLAC

can have a better training effect than the traditional federated graph learning framework.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 GRAPH SELF-ATTENTION MECHANISM

Graph self-attention mechanism: The idea of attention first appeared in the field of computer vision,
trying to reduce the computational complexity of image processing while improving performance
by introducing a model that only focuses on a specific region of the image rather than the entire
image(Xia et al., 2022; Cui et al., 2022; Cheng et al., 2023). Through the continuous improvement
of attention technology, it can be popular in various tasks, such as text classification(Ahmed et al.,
2022), image description(Ding et al., 2023), sentiment analysis(Peng et al., 2023), speech recogni-
tion(Zeyer et al., 2023) and so on. With the continuous development of technology, graph-structured
data continues to appear in different neighborhoods. Much useful information can be obtained from
graph-structured data by representing data as a graph, which captures entities (i.e., nodes) and the
relationships between them (i.e., edges). However, in the real world, graph-structured data may con-
tain a lot of complex information and may also contain a lot of irrelevant noise information, which
makes it difficult to effectively process graph-structured data. An effective way to solve this prob-
lem is to add ”attention” to the research on the number of graph structures(Wu et al., 2023; Ahmad
et al., 2023; Fan et al., 2023). The attention mechanism enables the model to concentrate on the
task-relevant portions of graph-structured data, thereby improving its decision-making.

2.2 CLUSTERING ALGORITHM

Clustering Algorithm: The spectral clustering algorithm is an algorithm for clustering that is founded
on the theory of spectral graphs. It is predominantly divided into two classes: iterative spectral
clustering algorithms and multi-path spectral clustering algorithms, respectively, based on the SM
algorithm (Shi & Malik, 2000) and the NJW algorithm (Ng et al., 2001) to represent. The concept
of spectral graph partitioning inspired the concept of a spectral clustering algorithm. In accor-
dance with sample similarity, spectral clustering generates an undirected weighted graph. Consider
the sample points to be the graph’s vertices, and the weight of the edge between them to be their
similarity. The spectral graph division of an undirected weighted graph divides it into multiple sub-
graphs, which corresponds to the clustering procedure of the clustering algorithm. For spectral graph
partitioning, the choice of graph partitioning criteria will have a direct impact on the partitioning out-
comes. Typical graph partitioning criteria consist of canonical cut sets, minimum cut sets, average
cut sets, and proportional cut sets, among others (Pang et al., 2018). In contrast to spectral graph
partitioning, the spectral clustering technique takes the continuous relaxation form of the problem
into consideration and transforms the graph segmentation issue into a spectral decomposition issue
related to locating similarity matrices (Mei et al., 2023). In the federated graph classification task,
the amount of data required for federated learning is very large. If the client does not preprocess the
data locally, the amount of communication and calculation for the entire federated learning system
will be huge. The spectral clustering algorithm can handle graph-structured data very well (Klus &
Djurdjevac Conrad, 2023; El Hajjar et al., 2022), and federated graph learning itself is a distributed
learning method, which is also a very suitable application field for the spectral clustering algorithm.

3 METHODOLOGY

3.1 OVERVIEW

The FGLAC framework proposed in this article uses the spectral clustering algorithm to preprocess
the graph mechanism data owned by the client before the client participates in federated training and
performs clustering according to the specified clustering range to provide good Input data, improve
the efficiency and communication performance of federated graph learning, and reduce communi-
cation overhead. Secondly, in server aggregation, through the self-adaptive attention mechanism,
different proportion weights are assigned to the parameters uploaded by different clients, and a set
of specific weight parameters is saved for each client, improving the client model. At the same time,
it can also affect the global model training of federated graph learning. The example diagrams of
FGLAC are shown in Fig. 1 and 2, where Fig. 1 is the preprocessing of the data by the spectral
clustering algorithm and Fig. 2 is the process of federated learning. The algorithmic process of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

FGLAC is shown in Algorithm 1. Table 1 shows the meaning of each variable used in the algorithm
1.

Table 1: Notations & Explanations
Notations Explanations

K Number of participating enterprises
C Collection of training customers,where C = {C1, C2, ..., Ck}
D Training data collection,where D = {D1, D2, ..., Dk}
G The quantity of global iterations
L The quantity of local iterations
S Server
Z Global parameters
zk Local parameters of client Ck performing

training tasks on dataset Dk

W Similarity matrix
D Degree matrix
L Laplacian matrix

Initial Graph Structure Dataset Similarity Matrix

Degree
Matrix

Laplacian matrix

K-Means

Cluster Class

C1

C2

C3

Figure 1: The initial data set is preprocessed using a spectral clustering algorithm.

Figure 2: Federated graph learning framework with attention mechanism and spectral
clustering.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 A Federated Graph Learning Framework With Attention Mechanism and Spectral
Clustering
Input: C,D,G,L,S,Z,z,L(z)
Output: Final Global parameter Z

1: Initialize G,L,Z,z;
2: # Local dataset preprocessing
3: Calculate the similarity matrix W by (1);
4: Calculate the degree matrix D by (3);
5: Calculate the Laplacian matrix L by (4) using W and D;
6: Use (6,7) for clustering operations;
7: for g = 1 to G do
8: # Training for local model
9: for each Ck ∈ C in parallel do

10: From server S download global parameter Z;
11: for l = 1 to L do
12: Classification by (13 or 15) training data set;
13: Calculate the loss Lk(z)on Dk;
14: Update local parameter zk(g,l+1);
15: end for
16: Update loss Lk(z) and parameter zk(g,L) from Ck to S;
17: end for
18: # Global aggregation
19: Receive model parameters z from clients participating in training;
20: Distribute the global parameter Zg;
21: end for
22: return Z;

3.2 DATA PREPROCESSING

In this article, the spectral clustering algorithm is utilized as a data preprocessing strategy, so in this
section, how to use the spectral clustering algorithm to implement the data preprocessing function
is described in detail. The idea underlying the spectral clustering algorithm is to take into account
every point of data in space, and to connect these points with edges. Edges between points that are
far away have low weights, and edges between points that are close have high weights. In this paper,
each sub-graph in the data set is regarded as a point in the space, and all the graphs are clustered
by the spectral clustering algorithm through a false edge. Given a data set G = {g1, g2, ..., gn}, the
specific operation is as follows.

The initial step is to create the similarity matrixW , where the Euclidean distance is used to calculate
the distance between two sample points. Utilize the KNN algorithm for traversing every one of the
sample points and select the k nearest points as neighbors for each of the samples, only wij > 0
between the k points closest to the sample, and wij only if the two points are k neighbors to each
other. Specifically, it can be expressed as:

wij = wji =

{
0 gi /∈ KNN(gj) or gj /∈ KNN(gi)

exp(− ||gi−gj ||22
2ψ2) gi ∈ KNN(gj) and gj ∈ KNN(gi)

(1)

Where, ||gi − gj ||22 is the Euclidean distance between two sample points, ψ is the scale parameter,
and W changes with the value of ψ.

Next is to construct a degree matrixD. In this work, for two sample points gi and gj with correlation,
wij > 0, and for two sample points gi and gj without correlation, wij = 0. Therefore, for any
sample point gi in the set, its degree di can be defined as the sum of all weights associated with it,
namely:

di =

n∑
j=1

wij (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Using a definition of the degree of each sample point, a degree matrix D can be obtained, which is
a matrix of diagonals, and only the primary diagonal has values, corresponding to the degree of the
ith point in the ith row, which can be expressed as:

D =

d1 · · · · · ·
· · · d2 · · ·
...

...
. . .

· · · · · · dn

 (3)

The similarity matrix W and degree matrix D constructed above can be used to construct the Lapla-
cian and standardized Laplacian matrix. Specifically, it can be expressed as:

L = D −W (4)

L̃ = D− 1
2LD− 1

2 = D− 1
2 (D −W)D− 1

2 = I − W̃ (5)

where L is the Laplacian matrix and L̃ is the normalized Laplacian matrix. Compute the eigenvalues
of L̃ and arrange them from smallest to largest, calculate the eigenvectors of the first k eigenvalues,
and form the k eigenvectors into a matrix U = {u1, u2, u3, ..., uk}, U ∈ Rn∗k to create a new
solution space. Use K − means algorithm for clustering on the new solution space, let xi ∈ Rk

be the vector of i-th row , where i ∈ (1, 2, ..., n), U = X = {x1, x2, ..., xn} , then the objective
function can be expressed as:

d(X,Ci) =

√√√√ d∑
j=1

(Xj − Cij)
2 (6)

Where, X is the data object, Ci is the ith clustering center, d is the data object’s dimension, and Xj

and Cij are the jth attribute values of X and Cj , respectively. The formula for calculating the sum
of squared errors for the entire dataset is:

SSE =

k∑
i=1

∑
X∈Ci

|d(X,Ci)|2 (7)

Where, k represents the number of clusters, and the magnitude of SSE shows the clustering result’s
quality. Then the clustering results are mapped back to the space of the original solution, which is
used as the input of the graph classification task.

3.3 FEDERAL ATTENTION

In the traditional server aggregation process, most of the aggregation uses FedAvg or FedProx,
which does not take into account that the parameters uploaded by some clients have a greater impact
on the aggregation of the server, while the parameters uploaded by some clients have less influence.
Suppose three clients are participating in federated graph training, each client has a set of graph
structure data Gi = (gi1,gi2, ..., gin), the client obtains a set of parameters Zi through local train-
ing, and then uploads the parameters to the central server for aggregation. In this paper, the server
uses the attention mechanism to aggregate the parameters uploaded by the client and assigns dif-
ferent weights to the parameters uploaded by each client according to the contribution to the server
aggregation through the attention mechanism. The objective function can be expressed as:

Attention(ci, cj) =
exp(LeakyReLU(aT [Wci||Wcj]))∑

k∈Ni
exp(LeakyRuLU(aT [Wci||Wck]))

(8)

Where, ci and cj represent the feature vectors of the current client and another client, respectively.
W is the learnable weight matrix used to map the input features into the attention space. [Wci||Wcj]
means to connect the parameters uploaded by the client into a new feature vector, where || means
the connection operation of the vector. a is a learnable parameter vector for computing attention

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

weights. Ni represents the set of other clients except client ci. A set of different attention weights
can be obtained through the formula 8. For each client, this paper uses different weight coefficients
to aggregate the parameters uploaded by the current client and other clients. Assuming that for the
client set C = (C1, C2, C3), the uploaded parameter sets are Z1, Z2, Z3 respectively, the objective
function can be expressed as:

ZC = αZ1 + βZ2 + δZ3 (9)

Where, α, β, and δ are a set of weight parameters calculated by different clients acting as target
clients through formula 8. By assigning different weight parameters, the parameters uploaded by the
client that contribute more to the client aggregation can occupy a larger proportion of the aggregation
process. The advantage of this is that the trained client may adjust different weight parameters to
drive poorly trained clients to achieve better training of the global model. During each iteration of the
federation, the client will aggregate different parameters through this method, and then redistribute
them to the clients participating in the training, and the clients will conduct a new round of training
according to the new parameters received. This process has been iterated until the global model
converges.

At the same time, the server will also save the parameters uploaded by each client, so that there are
clients in the same group of clients that have not participated in the federation training. At this time,
the client can update the parameters of the training of other clients in the same group to the clients
that did not participate in the training, so that the clients that did not participate in the training can
also be affected by the training parameters of other clients.

4 EXPERMENTS

This section only analyzes the results of 4.1 Graph Classification, 4.2 Ablation Experiments, and 4.3
Comparison between Distributed Training and Centralized Training. The Experiment Setup (such as
Datasets, Baselines, Implementation Details) are shown in Appendix A.3, Performance Comparison
in A.4, Visualization in A.5, and Attention Parameter Analysis in A.6.

4.1 GRAPH CLASSIFICATION

Table 2: Graph classification results (%). (Index: Accuracy, F1 Bold: best.)
Datasets Type Index GCN-FedAvg SAGE-FedAvg GCN-FedProx SAGE-FedProx FGLAC

MUTAG

balance-no-overlap Accuracy 86.48 81.58 84.21 84.21 86.84
F1 84.41 76.97 80.81 78.16 83.55

unbalance-no-overlap Accuracy 78.95 76.32 78.95 73.68 81.58
F1 70.88 62.62 72.86 50.52 75.44

balance-overlap Accuracy 81.58 73.68 81.58 78.95 84.21
F1 76.97 42.42 75.44 70.88 80.81

unbalance-overlap Accuracy 84.21 84.21 84.21 84.21 86.84
F1 81.73 81.73 78.16 73.73 79.23

ENZYMES

balance-no-overlap Accuracy 41.67 35.00 42.50 35.00 43.33
F1 41.83 31.88 40.70 38.85 42.15

unbalance-no-overlap Accuracy 36.67 38.33 44.17 38.33 44.17
F1 33.67 37.95 41.03 36.36 41.03

balance-overlap Accuracy 40.83 37.50 42.50 40.00 45.00
F1 37.78 37.26 39.91 39.18 44.70

unbalance-overlap Accuracy 37.50 35.00 36.67 37.50 37.50
F1 34.62 32.99 35.65 36.73 33.50

PROTEINS

balance-no-overlap Accuracy 72.65 69.64 73.21 69.64 75.00
F1 70.66 68.84 73.00 67.30 73.33

unbalance-no-overlap Accuracy 70.85 69.64 75.00 71.43 75.00
F1 67.86 69.63 69.52 71.39 74.97

balance-overlap Accuracy 72.20 71.43 76.79 74.11 78.57
F1 69.79 71.42 76.60 71.65 77.87

unbalance-overlap Accuracy 70.40 73.21 76.79 78.57 78.57
F1 67.84 72.66 76.17 78.12 78.12

The performance evaluation of FGLAC on the federated graph classification task on the above three
datasets is shown in Table 2. In this work, the classification tasks of three clients and one central
server are simulated. During the experiments, each dataset is divided into four cases for training as
described in subsection 4.1.1 to test the classification performance of FGLAC . Based on the above
results, it can be concluded that:

• The FGLAC framework shows relatively good experimental results on most datasets,
which shows the effectiveness of adding a spectral clustering algorithm and attention mech-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

anism in the process of federated graph learning. First, the client can use the spectral
clustering algorithm to preprocess its local data to relieve the pressure of communication.
Secondly, the server uses the attention mechanism when aggregation, and can use the client
parameters with better training effect to drive the poorer training effect client.

• Compared with the traditional federated graph learning, the FGLAC proposed in this paper
has a good performance improvement in the results, which meets the expected effect. Even
in the worst case, all client training effects are the same, and FGLAC will degenerate into
FedAvg without affecting the overall training results. However, once the training results of
some clients are slightly better, FGLAC can use the better training parameters to optimize
the overall training results.

• In FGLAC , when the client uses the attention mechanism to aggregate parameters, all
attention parameters are learned by themselves, and the parameters used for aggregation
are constantly adjusted through each round of iterations. The experimental results and
related theories prove that the self-learned attention parameter improves the aggregation
effect of the server and does not have a negative impact on the overall training. Even in the
worst case, FGLAC uses consistent parameters that convert to FedAvg.

4.2 ABLATION EXPERIMENT

In order to further verify the influence of the spectral clustering algorithm and attention mechanism
on the overall training in FGLAC , ablation experiments are performed on FGLAC in this subsec-
tion. Compared with the traditional GCN-based FedAvg federated graph learning algorithm, the
small data set MUTAG is used as the test sample, and Accuracy is used as the indicator to compare
the two situations of unbalance-no-overlap and balance-overlap. The specific results are depicted in
Fig. 3 and Fig. 4 shows.

(a) FGLAC − C (b) FGLAC −A (c) FGLAC

Figure 3: Ablation experiment in unbalance-no-overlap environment.

(a) FGLAC − C (b) FGLAC −A (c) FGLAC

Figure 4: Ablation experiment in balance-overlap environment.

In this paper, the FGLAC framework is split into three categories, namely, removal of client nodes
for preprocessing data using spectral clustering algorithms (FGLAC − C), removal of servers for
parameter clustering using the attention mechanism (FGLAC − A), and the complete FGLAC for
ablation experiments. Fig. 3 and Fig. 4 are the comparisons between the three FGLAC frameworks

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

with Accuracy as the index and the traditional GCN-based FedAvg federation algorithm in the case
of unbalance-no-overlap and balance-overlap, respectively. It can be seen from Fig. 3 (a) and Fig.
4 (a) that although the client aggregates the parameters using the attention mechanism, the server
will appear when the parameters are aggregated because the data is not preprocessed before training.
The case where the effect is relatively poor. This may be because the training effect of some clients
is relatively poor. As a result, in the process of server aggregation, clients with poor training effects
will have a negative impact on the overall training result. From Fig. 3 (b) and Fig. 4 (b), it is
evident that although the training results have been improved to a certain extent, the improvement
is not great. This is because the client directly performs data preprocessing before training, and
the server does not assign larger weights to clients with better training results during aggregation,
resulting in better-trained clients failing to drive the overall training results. Fig. 3 (c) and Fig.4 (c)
are comparisons of three FGLAC frameworks.

4.3 COMPARISON BETWEEN DISTRIBUTED TRAINING AND CENTRALIZED TRAINING

To further verify the effectiveness of FGLAC , in this subsection, three clients and one server are
used for verification. Two of the clients participate in federated training, and one client uses local
data sets for centralized training. Specifically, client 1 uses its training parameters for centralized
training, and clients 2 and 3 perform federated training. Taking the small data set MUTAG as the test
sample and Accuracy as the test index, the tests are carried out in the cases of balance-no-overlap
and unbalance-no-overlap respectively, as shown in Fig. 5.

(a) balance-no-overlap-global (b) balance-no-overlap-private

(c) unbalance-no-overlap-global (d) unbalance-no-overlap-private

Figure 5: Comparison between distributed training and centralized training.

In Fig. 5, (a) and (b) are the training results of the three clients on the overall data and the rest of
the private data in the case of balance-no-overlap, and (c) and (d) is in the case of unbalance-no-
overlap, the training results of the three clients on the overall data and the rest of the private data.
Through (a) and (c), it can be concluded that in the process of overall data training, because the
client participating in the training can use the server to obtain the training parameters of the other
clients, it can obtain good training in the whole training process effect. However, client 1 can only
use its training parameters to train the overall data. Although it can learn some parameters through
its continuous iteration, the final training result is also poor. Similarly, there will be similar training

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

results on other private datasets. This shows that FGLAC can not only bring better training accuracy
than the traditional federated graph learning framework but also shows that FGLAC also has certain
advantages for centralized model training.

5 CONSLUSION

In this article, a federated graph learning framework with attention mechanism and clustering algo-
rithm is investigated, and its effectiveness is demonstrated through extensive experiments. In order
to realize the framework, this paper first of all is to uses the spectral clustering algorithm to carry
out a preprocessing operation on the local data held by the client before the client training, and at
the same time, in the aggregation process of the server, the use of the attention method to designate
different aggregation weights to various clients, to improve the training effect of the overall model.
In order to better verify FGLAC , this paper also divides the data set used for testing into four situa-
tions, making it closer to the situation in the real world. The experimental findings demonstrate that
FGLAC will have a good improvement effect to a certain extent.

REFERENCES

Waqar Ahmad, Hilal Tayara, and Kil To Chong. Attention-based graph neural network for molecular
solubility prediction. ACS omega, 8(3):3236–3244, 2023.

Usman Ahmed, Jerry Chun-Wei Lin, and Gautam Srivastava. Social media multiaspect detection by
using unsupervised deep active attention. IEEE transactions on computational social systems, 10
(4):2137–2145, 2022.

Jinyin Chen, Haiyang Xiong, Haibin Zheng, Dunjie Zhang, Jian Zhang, Mingwei Jia, and Yi Liu.
Egc2: Enhanced graph classification with easy graph compression. Information Sciences, 629:
376–397, 2023.

Gong Cheng, Pujian Lai, Decheng Gao, and Junwei Han. Class attention network for image recog-
nition. Science China Information Sciences, 66(3):132105, 2023.

Yutao Cui, Cheng Jiang, Limin Wang, and Gangshan Wu. Mixformer: End-to-end tracking with
iterative mixed attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 13608–13618, 2022.

Yao Ding, Zhili Zhang, Xiaofeng Zhao, Danfeng Hong, Wei Cai, Nengjun Yang, and Bei Wang.
Multi-scale receptive fields: Graph attention neural network for hyperspectral image classifica-
tion. Expert Systems with Applications, 223:119858, 2023.

Sally El Hajjar, Fadi Dornaika, and Fahed Abdallah. One-step multi-view spectral clustering with
cluster label correlation graph. Information Sciences, 592:97–111, 2022.

Shenghang Fan, Guanjun Liu, and Jian Li. A heterogeneous graph neural network with attribute
enhancement and structure-aware attention. IEEE Transactions on Computational Social Systems,
11(1):829–838, 2023.

Dongqi Fu, Wenxuan Bao, Ross Maciejewski, Hanghang Tong, and Jingrui He. Privacy-preserving
graph machine learning from data to computation: A survey. ACM SIGKDD Explorations
Newsletter, 25(1):54–72, 2023.

Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, and Jundong Li. Federated graph machine
learning: A survey of concepts, techniques, and applications. SIGKDD Explor. Newsl., 24(2):
32–47, dec 2022. ISSN 1931-0145. doi: 10.1145/3575637.3575644. URL https://doi.
org/10.1145/3575637.3575644.

Ashutosh Ghimire, Ahmad Nasser Asiri, Brian Hildebrand, and Fathi Amsaad. Implementation of
secure and privacy-aware ai hardware using distributed federated learning. In 2023 IEEE 16th
Dallas Circuits and Systems Conference (DCAS), pp. 1–6. IEEE, 2023.

10

https://doi.org/10.1145/3575637.3575644
https://doi.org/10.1145/3575637.3575644

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Rajni Gupta and Juhi Gupta. Federated learning using game strategies: State-of-the-art and future
trends. Computer Networks, 225:109650, 2023. ISSN 1389-1286. doi: https://doi.org/10.1016/j.
comnet.2023.109650. URL https://www.sciencedirect.com/science/article/
pii/S1389128623000956.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Ying Ji, Guojia Wan, Yibing Zhan, and Bo Du. Metapath-fused heterogeneous graph network for
molecular property prediction. Information Sciences, 629:155–168, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Stefan Klus and Nataša Djurdjevac Conrad. Koopman-based spectral clustering of directed and
time-evolving graphs. Journal of Nonlinear Science, 33(1):8, 2023.

Baiying Lei, Yun Zhu, Shuangzhi Yu, Huoyou Hu, Yanwu Xu, Guanghui Yue, Tianfu Wang, Cheng
Zhao, Shaobin Chen, Peng Yang, et al. Multi-scale enhanced graph convolutional network for
mild cognitive impairment detection. Pattern Recognition, 134:109106, 2023.

Ranran Li, Zhaowei Liu, Yuanqing Ma, Dong Yang, and Shuaijie Sun. Internet financial fraud
detection based on graph learning. IEEE Transactions on Computational Social Systems, 10(3):
1394–1401, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Zhaowei Liu, Dong Yang, Shenqiang Wang, and Hang Su. Adaptive multi-channel bayesian graph
attention network for iot transaction security. Digital Communications and Networks, 2022.

Zhaowei Liu, Dong Yang, Yingjie Wang, Mingjie Lu, and Ranran Li. Egnn: Graph structure learning
based on evolutionary computation helps more in graph neural networks. Applied Soft Computing,
pp. 110040, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Yanying Mei, Zhenwen Ren, Bin Wu, Tao Yang, and Yanhua Shao. Multi-order similarity learning
for multi-view spectral clustering. Pattern Recognition, 137:109264, 2023.

Chuizheng Meng, Sirisha Rambhatla, and Yan Liu. Cross-node federated graph neural network
for spatio-temporal data modeling. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pp. 1202–1211, 2021.

Qiao Mi, Xiaoming Wang, and Yaguang Lin. A double attention graph network for link prediction
on temporal graph. Applied Soft Computing, 136:110059, 2023. ISSN 1568-4946. doi: https://doi.
org/10.1016/j.asoc.2023.110059. URL https://www.sciencedirect.com/science/
article/pii/S1568494623000777.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

Yanwei Pang, Jin Xie, Feiping Nie, and Xuelong Li. Spectral clustering by joint spectral embedding
and spectral rotation. IEEE transactions on cybernetics, 50(1):247–258, 2018.

Guoqin Peng, Kunyuan Zhao, Hao Zhang, Dan Xu, and Xiangzhen Kong. Temporal relative trans-
former encoding cooperating with channel attention for eeg emotion analysis. Computers in
Biology and Medicine, 154:106537, 2023.

Tao Qi, Lingqiang Chen, Guanghui Li, Yijing Li, and Chenshu Wang. Fedagcn: A traffic flow pre-
diction framework based on federated learning and asynchronous graph convolutional network.
Applied Soft Computing, 138:110175, 2023.

11

https://www.sciencedirect.com/science/article/pii/S1389128623000956
https://www.sciencedirect.com/science/article/pii/S1389128623000956
https://www.sciencedirect.com/science/article/pii/S1568494623000777
https://www.sciencedirect.com/science/article/pii/S1568494623000777

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
pattern analysis and machine intelligence, 22(8):888–905, 2000.

Paula Raissa Silva, João Vinagre, and Joao Gama. Towards federated learning: An overview of
methods and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery, 13(2):e1486, 2023.

Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang. Federated learning
on non-iid graphs via structural knowledge sharing. In Proceedings of the AAAI conference on
artificial intelligence, volume 37, pp. 9953–9961, 2023.

Petar Veličković. Everything is connected: Graph neural networks. Current Opinion in Structural
Biology, 79:102538, 2023.

Chunnan Wang, Bozhou Chen, Geng Li, and Hongzhi Wang. Automated graph neural network
search under federated learning framework. IEEE Transactions on Knowledge and Data Engi-
neering, 35(10):9959–9972, 2023a.

Kefan Wang, Jing An, Mengchu Zhou, Zhe Shi, Xudong Shi, and Qi Kang. Minority-weighted
graph neural network for imbalanced node classification in social networks of internet of people.
IEEE Internet of Things Journal, 10(1):330–340, 2023b. doi: 10.1109/JIOT.2022.3200964.

Yixian Wang, Zhaowei Liu, Jindong Xu, and Weiqing Yan. Heterogeneous network representation
learning approach for ethereum identity identification. IEEE Transactions on Computational
Social Systems, 10(3):890–899, 2022.

Yang Wu, Liang Hu, and Yu Wang. Signed attention based graph neural network for graphs with
heterophily. Neurocomputing, pp. 126731, 2023.

Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. Vision transformer with de-
formable attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4794–4803, 2022.

Jian Xiao, Zhuoran Wang, Jinhui He, and Guohui Yuan. A graph neural network based deep rein-
forcement learning algorithm for multi-agent leader-follower flocking. Information Sciences, 641:
119074, 2023. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2023.119074. URL https:
//www.sciencedirect.com/science/article/pii/S002002552300659X.

Han Xie, Jing Ma, Li Xiong, and Carl Yang. Federated graph classification over non-iid graphs.
Advances in Neural Information Processing Systems, 34:18839–18852, 2021.

Jiepeng Yao, Yi Ling, Peichen Hou, Zhongyi Wang, and Lan Huang. A graph neural network
model for deciphering the biological mechanisms of plant electrical signal classification. Ap-
plied Soft Computing, 137:110153, 2023. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.
2023.110153. URL https://www.sciencedirect.com/science/article/pii/
S1568494623001710.

Nan Yin, Li Shen, Mengzhu Wang, Xiao Luo, Zhigang Luo, and Dacheng Tao. Omg: Towards
effective graph classification against label noise. IEEE Transactions on Knowledge and Data
Engineering, 35(12):12873–12886, 2023.

Bin Yu, Hengjie Xie, and Zeshui Xu. Pn-gcn: Positive-negative graph convolution neural
network in information system to classification. Information Sciences, 632:411–423, 2023.
ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2023.03.013. URL https://www.
sciencedirect.com/science/article/pii/S0020025523003079.

Albert Zeyer, Robin Schmitt, Wei Zhou, Ralf Schlüter, and Hermann Ney. Monotonic segmental
attention for automatic speech recognition. In 2022 IEEE Spoken Language Technology Workshop
(SLT), pp. 229–236. IEEE, 2023.

Peiliang Zhang, Jiatao Chen, Chao Che, Liang Zhang, Bo Jin, and Yongjun Zhu. Iea-gnn: Anchor-
aware graph neural network fused with information entropy for node classification and link
prediction. Information Sciences, 634:665–676, 2023. ISSN 0020-0255. doi: https://doi.
org/10.1016/j.ins.2023.03.022. URL https://www.sciencedirect.com/science/
article/pii/S0020025523003171.

12

https://www.sciencedirect.com/science/article/pii/S002002552300659X
https://www.sciencedirect.com/science/article/pii/S002002552300659X
https://www.sciencedirect.com/science/article/pii/S1568494623001710
https://www.sciencedirect.com/science/article/pii/S1568494623001710
https://www.sciencedirect.com/science/article/pii/S0020025523003079
https://www.sciencedirect.com/science/article/pii/S0020025523003079
https://www.sciencedirect.com/science/article/pii/S0020025523003171
https://www.sciencedirect.com/science/article/pii/S0020025523003171

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xuebin Zheng, Bingxin Zhou, Ming Li, Yu Guang Wang, and Junbin Gao. Mathnet: Haar-like
wavelet multiresolution analysis for graph representation learning. Knowledge-Based Systems,
273:110609, 2023.

Minhao Zou, Zhongxue Gan, Ruizhi Cao, Chun Guan, and Siyang Leng. Similarity-navigated graph
neural networks for node classification. Information Sciences, 633:41–69, 2023. ISSN 0020-0255.
doi: https://doi.org/10.1016/j.ins.2023.03.057. URL https://www.sciencedirect.
com/science/article/pii/S0020025523003493.

A APPENDIX

You may include other additional sections here.

A.1 PROBLEM STATEMENT

Federated graph learning can be categorized into three groups: inter-graph federated learning (Xie
et al., 2021), intra-graph federated learning (Tan et al., 2023), and graph-structured federated learn-
ing (Meng et al., 2021). This paper emphasizes on the classification of graphs, so the primary
research is federated graph learning.

Inter-graph federated learning is a common learning method for federated graph learning in which
each client sample is graph-structured data and the global model performs graph-level tasks. Each
client holds a confidential dataset Dk, which contains multiple graphs Gi and corresponding labels
yi. Due to industry competition and privacy issues in the industrial Internet, data sharing cannot be
directly performed, but it can be realized under the framework of inter-graph federated learning. In
this case, Dk = (G

(k)
i , y

(k)
i), the global model of the graph neural network can be expressed as:

ŷ
(k)
i = H(X

(k)
i , A

(k)
i ,W) (10)

Where, X(k)
i and A(k)

i represent the features and adjacency matrix of the ith graph in the data set of
the jth client, respectively, and ŷ represents the output.

The aggregation of the central server takes FedAvg as an example, and the objective function can be
expressed as:

minw
Nk

N

∑K

k=1
fk(W) (11)

fk(W) =
1

Nk

∑Nk

i=1
L(H(X

(k)
i , A

(k)
i ,W)) (12)

Where, fk(W) is the local objective function, L is the global loss function, and Nk represents the
number of all nodes in the data set of the kth client.

A.2 CLIENT MODEL

This paper mainly focuses on the task of graph classification, that is, each client has a set of graph
structure data. First, the spectral clustering explained in Section 3.2 is used to preprocess the data,
and the parameters are sent to the server for local model training aggregation. The server returns the
aggregated parameters to the client participating in the training through the attention mechanism in
Section 3.3, and the client performs update training according to the received parameters to achieve
a better global training effect. Therefore, two common GNN models are used in the model training
phase of the client: GCN and Graph SAGE.

Specifically, GCN follows the strategy of neighborhood aggregation, that is, iteratively updates the
representation of a node by aggregating its neighborhood representation and the information of the
node itself. The L+ 1th layer aggregation rules of GCN can be expressed as:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (13)

13

https://www.sciencedirect.com/science/article/pii/S0020025523003493
https://www.sciencedirect.com/science/article/pii/S0020025523003493

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Where, H(l) is the representation matrix of nodes in layer l, W (l) is the trainable parameter matrix,
Ã = A + IN is the adjacency matrix containing self-connections, and σ is the nonlinear activation
function.

Graph SAGE randomly samples the neighbors of each node in the graph and obtains the node repre-
sentation by aggregating neighbor information. In this paper, the Graph SAGE pooling aggregation
strategy is adopted. The Lthlayer aggregation rules of Graph SAGE can be expressed as:

AGGREGATEpool
k = max({σ(Wpoolh

k
ui + b),

∀ui ∈ N(v)})
(14)

Where, the feature of node v is expressed as hkv , AGGREGATEpool
k = max({σ(Wpoolh

k
ui +

b),∀ui ∈ N(v)}) is the feature of neighbor node ui, and N(v) is the set of neighbor nodes of node
v. Wpool and b are the parameters of the model, used for linear transformation and bias, and σ is the
activation function. For the results of all neighbor nodes ui, take the maximum value on the feature
dimension.

In section 3.2, this paper uses the spectral clustering algorithm to preprocess the data set and also
obtains some parameters, so these parameters can be directly used in the local model training. For
example, for GCN, the spectral clustering algorithm has obtained the similarity matrixW and degree
matrix D for the data set, and these two parameters can be directly used when the GCN model
is aggregated. But for the Graph SAGE model, there is one thing that needs to be changed. In
the original formula, Graph SAGE samples and aggregates the neighbor nodes of the target node.
However, after preprocessing by the spectral clustering algorithm, the information of other nodes
belonging to the same cluster as the target node can be obtained, which will have a better impact
than the initial neighbor nodes. The changed objective function can be expressed as:

AGGREGATEpool
k = max({σ(Wpoolh

k
ui + b),

∀ui ∈ Ncluster(v)})
(15)

Where, Ncluster(v) means that the spectral clustering algorithm divides the node set in the cluster
to which node v belongs, rather than the set of adjacent nodes of node v.

A.3 EXPERIMENT SETUP

A.3.1 DATASETS

This work verifies the proposed FGLAC framework on three open datasets, namely the chemical
compound domain, and biological protein domain. The first is to process the data set and use differ-
ent division mechanisms to divide the data set to different clients for training. Table 3 summarizes
the relevant statistics of the dataset.

Table 3: Synopsis of datasets.
Field Datasets Graph number Graph category Average number of nodes Number of node labels

Chemical Compound MUTAG 188 2 17.7 7

Biological Protein ENZYMES 600 6 32.6 2
PROTEINS 1,113 2 39.1 3

In a chemical compound dataset, each graph usually represents a compound, the nodes in the graph
represent atoms, and the edges represent the real chemical bonds between atoms.

• The MUTAG data set is comprised of 188 chemical compound structure diagrams with
labels categorized as mutagenic or non-mutagenic. The graph’s nodes represent atoms,
whereas the node labels represent the categories of atoms.

In the biological protein data set, each graph usually represents the high-level structure of a protein.
The nodes in the graph represent an amino acid molecule, which represents the structural proxim-
ity between amino acid molecules. When the distance between amino acids is less than a certain
threshold, the distance between nodes There are edges in between.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• ENZYMES is a data set of protein tertiary structures containing 600 enzymes. Each graph
represents a protein structure, and the labels on the graphs correspond to the six enzymes’
hierarchical categories.

• The 1113 graphs in the PROTEINS dataset represent proteins, and their labels are divided
into two categories, representing enzymes and non-enzymes, respectively. Nodes are the
secondary structure of proteins.

To better verify the effectiveness of the FGLAC framework, this paper processes the dataset into
four test data, namely: balance-no-overlap, unbalance-no-overlap, balance-overlap, and unbalance-
overlap. FGLAC is compared with existing methods under four different data storage situations.

A.3.2 BASELINE

In order to more accurately assess the efficacy of FGLAC , it is compared with four baselines for fed-
erated graph learning, including GCN-based FedAvg, SAGE-based FedAvg, GCN-based FedProx,
and SAGE-based FedProx. The final results are compared with the four indicators of Accuracy, F1,
Precision, and Recall.

• GCN(Kipf & Welling, 2016): When training the local model, consider the attributes of the
node itself and the attributes of the adjacent nodes of the node to obtain the feature vector
of the node.

• SAGE(Hamilton et al., 2017): This model contains sampling and aggregation. First, the
connection information between nodes is utilized to sample neighbors, and then the infor-
mation of adjacent nodes is continuously aggregated using multi-layer aggregation func-
tions.

• FedAvg(McMahan et al., 2017): The central server of the framework aggregates local
model parameters into global model parameters through weighted average aggregation.

• FedProx(Li et al., 2020): This framework introduces a regularization term to counteract the
bias between global and local models by introducing a difference term between the local
objective function and the global model during local training. By adjusting the hyperpa-
rameters of the regularization term, FedProx accomplishes a balance between the accuracy
of the global model and the accuracy of the local model.

A.3.3 IMPLEMENTATION

All experiments are performed on a GPU server equipped with two NVIDIA GeForce RTX 3090
GPUs and 12th Gen Intel(R) Core (TM) i9-12900K 24-core processors. The versions of Python and
PyTorch are 3.8.0 and 1.11.0, respectively.

The size of the hidden layer of all models is 32, and the split of the data set is 82, 80% of which is
used for model training and 20% for model testing; batch size is set to 32, and the round of federated
training number is 30 rounds, and the epochs of each round are set to 70; the SGD optimizer with
weight decay of 1e-4 is used, and the learning rate is 0.01. The data privacy protection mechanism
is differential privacy.

A.4 PERFORMANCE COMPARISON

In this section, the data set MUTAG is taken as an example, and the GCN-based FedAvg and SAGE-
based FedProx algorithms are used as comparison objects to compare the performance of FGLAC .
The specific results are shown in Fig. 6. In this comparison experiment, the MUTAG data set is
divided into four situations according to Section 4.1.1, and the indicators include four types, namely
Accuracy, F1, Precision, and Recall. From the figure, it can be concluded that FGLAC is in the
leading edge in most of the metrics in the four cases, which indicates that the method proposed in
this paper is well optimized for the graph classification task of federated learning and improves the
overall classification accuracy. This is because before the client participates in training, it first uses
the spectral clustering algorithm to perform certain preprocessing operations on its local data set

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

so that it can reduce the pressure on server aggregation when participating in federated learning.
At the same time, when the server aggregates, by using the attention mechanism to operate, it can
maximize the training parameters of the client with a better training effect to drive the client with a
poorer training effect, thereby improving the overall training results.

(a) balance-no-overlap (b) unbalance-no-overlap

(c) balance-overlap (d) unbalance-overlap

Figure 6: Comparison of FGLAC and traditional federated graph learning.

A.5 VISUALIZATION

This section takes the MUTAG dataset as an example to perform low-dimensional vector visualiza-
tion tasks. It also compares FGLAC with traditional GCN-based federated graph learning to further
verify the performance of FGLAC . Briefly, using the node embedding vectors on the hidden layer
of the last iteration of each server aggregation, the high dimensional node embeddings are trans-
formed into low dimensional representations using the t − SNE algorithm, while the plt.show()
method is used to display the results visually. The specific results are shown in Fig. 7.

This visualization task also divides the dataset into four cases for comparison, where Fig. 7(a)
and (b) are in the balance-no-overlap case, (c) and (d) are in the unbalance-no-overlap case, and
Fig. 7(e) and (f) are in the balance-overlap case, (g) and (h) are in the unbalance-overlap case.
As can be seen in the figure, the performance of traditional federated graph learning is not always
satisfactory in the four cases. This is because traditional federated graph learning simply aggregates
the parameters uploaded by the client without considering the influence of the client with better
training results on the overall training effect, and also the client is trained using the most primitive
dataset without further processing of the local dataset. FGLAC performs better in visualizing the
results of the task, and the classification results are more accurate. At the same time, the nodes of
different categories are closer to each other, although some points are in the set of other points, but
there is no overlapping phenomenon that is very obvious.

A.6 ATTENTION PARAMETER ANALYSIS

In order to further verify the influence of attention parameters on the overall model training during
the FGLAC server aggregation process, this section also simulates the learning process of three

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) GCN-Fedavg (b) FGLAC

(c) GCN-Fedavg (d) FGLAC

(e) GCN-Fedavg (f) FGLAC

(g) GCN-Fedavg (h) FGLAC

Figure 7: Visualization analysis of FGLAC and GCN-Fedavg under different conditions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

clients and one server and analyzes the changes of different client parameters in four cases. The
specific result is shown in the Fig. 8.

(a) balance-no-overlap (b) unbalance-no-overlap

(c) balance-overlap (d) unbalance-overlap

Figure 8: Analysis of attention aggregation parameters of each client under different condi-
tions.

It is evident from the figure that the server uses different weights for different clients during ag-
gregation, instead of performing average weighted aggregation like traditional federated learning.
Throughout the procedure of aggregation, the server will assign different weights to different clients
for their training effects according to the attention mechanism, which has the advantage of enabling
the clients with better training results to occupy larger weights, bringing a positive impact on the
overall training of the model. At the same time, for clients with poor training effects, the server will
assign smaller weights to these clients during the aggregation process, reducing the negative impact
on the overall model training. Through the proof of the above section, this mechanism is effective
and can indeed improve the training effect of the model. Even with the same training effect on all
clients, FGLAC degenerates into FedAvg.

18

	Introduction
	Related Work
	Graph self-attention mechanism
	Clustering Algorithm

	Methodology
	Overview
	Data Preprocessing
	Federal Attention

	Experments
	Graph Classification
	Ablation Experiment
	Comparison between Distributed Training and Centralized Training

	Conslusion
	Appendix
	Problem Statement
	Client Model
	Experiment Setup
	Datasets
	Baseline
	Implementation

	Performance Comparison
	Visualization
	Attention Parameter Analysis

