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ABSTRACT

Recent advances in open-vocabulary object detection focus primarily on two as-
pects: scaling up datasets and leveraging contrastive learning to align language and
vision modalities. However, these approaches often neglect internal consistency
within a single modality, particularly when background or environmental changes
occur. This lack of consistency leads to a performance drop because the model
struggles to detect the same object in different scenes, which reveals a robustness
gap. To address this issue, we introduce Contextual Consistency Learning (CCL), a
novel framework that integrates two key strategies: Contextual Bootstrapped Data
Generation (CBDG) and Contextual Consistency Loss (CCLoss). CBDG functions
as a data generation mechanism, producing images that contain the same objects
across diverse backgrounds. This is essential because existing datasets alone do
not support our CCL framework. The CCLoss further enforces the invariance
of object features despite environmental changes, thereby improving the model’s
robustness in different scenes. These strategies collectively form a unified frame-
work for ensuring contextual consistency within the same modality. Our method
achieves state-of-the-art performance, surpassing previous approaches by +16.3
AP on OmniLabel and +14.9 AP on D3. These results demonstrate the importance
of enforcing intra-modal consistency, significantly enhancing model generalization
in diverse environments. Data, code and models will be made publicly available.

1 INTRODUCTION

Object detection has made significant strides in recent years. However, two advanced tasks based
on this technology continue to present considerable challenges: open-vocabulary object detection
(OVOD) and descriptive textual object detection, such as referring expression comprehension (REC)
and visual grounding (VG). Open-vocabulary object detection aims to detect previously unseen
objects in dynamic environments. Recent works Dou et al. (2022); Gu et al. (2021); Li et al. (2022b);
Lin et al. (2022); Minderer et al. (2023); Zhao et al. (2022); Jin et al. (2024); Zang et al. (2024) have
advanced training strategies for such tasks, others Kamath et al. (2021); Kuo et al. (2022); Minderer
et al. (2022); Subramanian et al. (2022) have focused on enhancing model architectures. In parallel,
tasks involving referring expressions and visual grounding, which require detecting objects based on
complex natural language descriptions, have shown advances in training methodologies Xie et al.
(2025); Chen et al. (2025); Zong et al. (2025); Lin et al. (2024); Peng et al. (2023), architectural
improvements Yin et al. (2025); Lin et al. (2023); You et al. (2023) and the use of the capabilities of
large models Shen et al. (2025); Xuan et al. (2024); Zhan et al. (2024).

Despite these advancements, there is still a crucial gap in addressing the internal consistency within
each input image and query. We identify an issue in existing models Dou et al. (2022); Li et al. (2022b;
2023a): the features of the same object tend to vary significantly across different scenes, which
indicates that current models may overfit to specific training backgrounds. This inconsistency not
only affects the detection stability but might also degrade the model’s generalization ability, raising
an important question: Can we obtain object features that are robust to environmental changes?
To validate this, we construct the D3

BC test set by applying background replacement to the original
D3 dataset. Detailed in Section 4.3, baseline methods suffer notable performance drops under this
setting, highlighting their limited robustness to contextual changes. In contrast, our method maintains
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(a) (b) (c)

Figure 1: Performance and robustness comparison of different methods. (a) Our approach, with
Contextual Consistency Learning, achieves the best overall results, reaching a normalized score of 1
in all metrics. (b,c) Benchmark backgrounds are altered to test robustness. Tested on D3

BC, baseline
methods degrade, while ours remains stable. See Section 4.3 for details.

performance comparable to that on the original benchmark. As shown in Figure 1, our experimental
results demonstrate that addressing this issue significantly improves model performance.

To address this issue, we propose the CCL framework that enforces invariance of object features
across different scenes, as shown in Figure 2. However, existing datasets exhibit a notable limitation:
they lack comprehensive data pairs that depict the same object in diverse contextual settings. This
data gap is crucial because CCL requires models to encounter and learn from variations of the same
object in different environments or scenarios. Without such diverse representations, models struggle
to generalize under varying real-world conditions. To overcome this limitation, we introduce CBDG,
which first increases the number of categories and then leverages SAM Kirillov et al. (2023) and
the Stable Diffusion model Rombach et al. (2022) to generate data pairs across different scenes
while ensuring consistent foreground objects, thus improving both category variation and background
diversity in training data.

Our experimental results demonstrate significant improvements on two challenging benchmarks,
D3 Xie et al. (2023) and OmniLabel Schulter et al. (2023), achieving +16.3 AP on OmniLabel
and +14.9 AP on D3. The proposed CBDG and CCLoss are complementary components that
collectively form a robust training paradigm. Specifically, the CBDG improves feature learning
through diverse scene-object compositions, while the CCLoss ensures robust feature representation
across varying backgrounds. Furthermore, our approach is fundamentally model-agnostic, enabling
seamless integration into a wide range of existing architectures, such as Dou et al. (2022); Li et al.
(2022b), with consistent performance gains across different frameworks.

In summary, the contributions are as follows.

• This study identifies an issue where object features are highly susceptible to environmental changes,
leading to potential overfitting and poor generalization to unseen scenarios.

• To ensure feature robustness to context changes, we propose CCL, which enforces object consis-
tency across backgrounds via CBDG and CCLoss.

• Our method is simple, efficient, and model-agnostic, imposing no additional inference overhead
while consistently delivering performance improvements across diverse datasets and models.
Moreover, despite working with a much smaller subset of the original dataset, we achieve state-of-
the-art results on two descriptive open-vocabulary detection benchmarks.

2 RELATED WORK

Vision language localization tasks. Open-vocabulary object detection (OVOD) aims to enable
models to recognize novel objects or unseen categories during inference Gu et al. (2021); Minderer
et al. (2023); Zareian et al. (2021); Du et al. (2022) , extending beyond traditional categorical
detection. However, this ability is typically limited to detecting object categories based on labels,
rather than understanding long descriptions. In contrast, referring expression comprehension (REC)
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Figure 2: Overview of our approach. CBDG generates Dj via Categorical Augmentation, Background
Generation and Background Replacement. CCL training uses Dj with CCLoss added to total loss.

involves understanding and localizing objects in an image based on natural language descriptions that
refer to specific instances of objects Yu et al. (2016); Wu et al. (2020); Mao et al. (2016), making it
inherently more flexible and context-aware. While OVOD and REC both address the challenge of
understanding objects in images, we focus on simultaneously handling novel categories and complex
natural language descriptions. We opt for described object detection (DOD) Xie et al. (2023) and
OmniLabel Schulter et al. (2023) as robust solutions to these challenges, as they incorporate both the
recognition of novel categories and the understanding of intricate descriptions.

Diffusion models for scenario generation. Stable Diffusion Rombach et al. (2022) marks a shift
in text-to-image synthesis by operating in a compressed latent space using iterative denoising. Unlike
GANs Goodfellow et al. (2014); Mirza & Osindero (2014) or VAEs Kingma et al. (2013); Van
Den Oord et al. (2017) that generate images in pixel space, it uses a VAE to encode images into
low-dimensional latents, allowing efficient training and high-resolution output. Guided by a pre-
trained CLIP text encoder, the model aligns generated images with complex textual descriptions,
from concrete objects to abstract scenes.

Recent diffusion-based methods have shown strong performance in image inpainting, enabling object
and scene editing via text or spatial inputs. GLIDE Nichol et al. (2021) enables text-guided object
replacement while preserving scene consistency, and GLIGEN Li et al. (2023b) extends this by
incorporating bounding boxes for more precise control over object placement. For background
replacement, IAM Yu et al. (2023) integrates segmentation with diffusion to regenerate regions based
on textual prompts. Despite their effectiveness, these methods often suffer from boundary artifacts
due to over-smoothing during denoising. We evaluate GLIDE, IAM, and Stable Diffusion Rombach
et al. (2022) in CBDG and ultimately choose Stable Diffusion for background generation.

Cross-modal object detection models. With the advancement of multimodal vision language
models, such as CLIP Radford et al. (2021) and ALIGN Jia et al. (2021), the development of
methods that integrate vision and language to address visual recognition tasks has emerged as a
prominent trend. GLIP Li et al. (2022b), based on CLIP Radford et al. (2021), leverages free-form
language supervision during training and frames object detection as visual localization, constructing
a foundation for semantically enriched pre-trained models. Building on this, FIBER Dou et al. (2022)
employs a two-stage training approach, transitioning from coarse-grained to fine-grained, enhancing
the adaptability of the pre-trained model to a broad spectrum of downstream tasks at both image-level
and region-level. In our work, we use GLIP Li et al. (2022b) and FIBER Dou et al. (2022) as baseline
models and incorporate our CCL method to validate the experimental results.

3 METHOD

3.1 OVERVIEW

We introduce CCL, a novel framework designed to address the challenge of maintaining detection and
grounding consistency when models encounter diverse and unseen object categories across varying
contextual backgrounds. To achieve this goal, we address two fundamental aspects of the problem:
the lack of appropriate training data and the need for effective consistency-preserving mechanisms.

In Section 3.2, we describe our CBDG pipeline, which leverages advanced segmentation and gen-
erative models to create a rich and varied dataset. This data preparation process is specifically
designed to support our consistency learning objectives. Following this, in Section 3.3, we detail our
CCLoss formulation, which ensures that the model learns to maintain object identity across different
backgrounds.
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Figure 3: CBDG Pipeline. We use ChatGPT to generate background prompts for a diffusion model,
enabling diverse background synthesis. For single-class images, CBDG augments object categories
before background replacement. For multi-class images, CBDG replaces only the background.

3.2 CONTEXTUAL BOOTSTRAPPED DATA GENERATION

Current open-set visual grounding methods struggle to maintain robustness across diverse real-
world scenarios, particularly when objects appear in unfamiliar contextual settings. This limitation
stems from a fundamental data scarcity: existing datasets rarely capture the full spectrum of object-
background interactions, leading to biased model performance. To overcome this, we propose
a multistage data augmentation framework that synthesizes diverse and realistic object-context
compositions by combining SAM-based object manipulation with text-guided background generation,
as shown in Figure 3. Our method constructs a compositionally diverse joint dataset Dj that mitigates
common inpainting artifacts and improves model generalization.

Categorical augmentation. In our approach, we use the Flickr30k Entities visual grounding
dataset Plummer et al. (2015) alongside a subset of the Objects365 object detection dataset Shao
et al. (2019) to create a combined training dataset. The selected subset of Objects365 tends to contain
images dominated by a few categories, with multiple instances of that category present. Details are
discussed in Supplementary Section D.3 and Section D.5.

For images with a single object, we aim to enhance the diversity of object categories within each
image by introducing objects from different categories while maintaining spatial and contextual
coherence. To achieve this, we leverage the SAM model Kirillov et al. (2023) to extract precise
objects Oi and the corresponding position (xo, yo) for each image I , where i means the category
ID to which the object belongs. The object masks allow us to identify individual objects and their
spatial locations. Based on these masks, we randomly select objects Oi/∈C from other images within
the same subset but belonging to different categories, where C represents the category set. Then
these objects are positioned in the current image at carefully chosen locations. Specifically, we define
P = {(x1, y1), (x2, y2), ..., (xN , yN )} the potential placement position set for the new object, N is
the number of candidate locations. From these positions, we randomly select (x, y) ∈ P\(xo, yo)
that does not overlap with the existing objects in the image, ensuring a clean and non-interfering
insertion of the new object. This process of placement can be formalized as:

Augmentation : (xok , yok) ∈ P\(xo, yo), ok ∈ Oi/∈C , (1)

where k represents the category of selected object, (xok , yok) denotes the position randomly chosen
from the set of candidate locations according to the above rule. After categorical augmentation, the
original image I becomes I ′.

In scenarios where no suitable empty position is available, such as when the current image contains
large objects or a large number of dispersed objects, which results in limited available space, we
adopt a resizing strategy. In these cases, we reduce the size of the new object to 1/α of its original
size and attempt to place it again, where α is a scaling factor. This process is repeated until an empty
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Figure 4: Four groups of images are shown, each composed of four sub-images: the leftmost sub-
image in every group is the original, while the remaining three display background replacements.

placement area is found or the number of resizing attempts exceeds a threshold NR. If resizing
attempts fail to find a suitable location, we abandon the current image and instead select another image
to enhance the diversity of object categories, thus ensuring a broader range of category representation
in the final dataset.

Background generation. With more object categories added, the foreground dataset now includes
images with varied labels and their corresponding bounding boxes. To reduce model overfitting and
improve generalization, we next generate diverse background images, placing the same objects in
different scenes. Image inpainting methods Nichol et al. (2021); Li et al. (2023b); Yu et al. (2023)
often struggle with blurred edges and backgrounds that still reflect foreground features, making
realistic scene changes difficult (see Supplementary Section B.6). To avoid these issues, we use a
simpler alternative that better separates foreground from background.

Instead of relying on limited original image content, we generate new and simple backgrounds
directly. Using a Large Language Model (LLM) Brown et al. (2020), denoted as G, we create text
prompts in three categories: Seasonal, Sky, and Natural Landscape, to ensure variety and relevance.
Details of these prompts are provided in Supplementary Section D.1. These prompts are input into
Stable Diffusion D Rombach et al. (2022), which generates matching background images. This
method allows us to build a diverse, context-aware background dataset without the limitations of
inpainting:

Generation : b = D(t′), t′ = G(t), (2)
where t ∈ {Seasonal, Sky, Natural Landscape}, t′ is the background description generated by
ChatGPT, and b represents the background image generated by stable Diffusion, which constitutes
the background dataset Dbg . We further analyze the diversity of generated scenes in Supplementary
Section B.4 and Section D.4.

Background replacement. At this stage, we have both the generated background dataset Dbg

and the foreground dataset Dfg with various object categories. To create new image variations,
we randomly select background images for each foreground image. Using the bounding boxes,
we extract foreground objects with the SAM model S Kirillov et al. (2023). The post-processing
techniques are detailed in Supplementary Section D.2. These objects and their spatial layout are kept
unchanged. After isolating the foreground, we replace the original background with a selected one,
generating multiple new images per original. The foreground stays the same, while the backgrounds
vary, producing diverse scenes with consistent object content. The replacement process is defined as:

Replacement : I∗ = S(I ′, bbox)⊕ b, b ∈ Dbg, (3)

where bbox represents the bounding boxes of objects in the image I ′ after categorical augmentation,
⊕ denotes the composition of foreground and background, I∗ represents the image with replaced
background.

CBDG enables us to significantly augment the dataset with diverse background settings while
maintaining the integrity of the foreground objects, providing a more robust foundation for training
our model. As shown in Figure 4, after CBDG, for each original image, several additional images are
generated with replaced backgrounds. This results in a total of K images per original, all sharing the
same foreground objects, but differing in their backgrounds. K represents the batch size used during
training. Alternative data generation schemes are also compared, see Supplementary Section B.3.
The augmented images are then utilized for the subsequent consistency constraints in our approach.
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Figure 5: CCL Framework. Visual and textual features are encoded, with regional features pooled
into CAAF. Consistency loss is applied within each modality.

3.3 CONTEXTUAL CONSISTENCY LOSS

Given that after CBDG, we now have access to a dataset Dj in which each group of images shares
the same foreground object but varies in background. We introduce the Contextual Consistency Loss
(CCLoss), a novel training objective designed to enforce representation invariance for the same object
category across varying contextual environments. As illustrated in Figure 5, our method uses CCLoss
to maintain the consistency of foreground object representations across different backgrounds. By
constructing training batches that contain instances of the same object under different contextual
settings, CCLoss encourages the model to focus on semantically meaningful foreground features
rather than background-dependent or spurious cues. This section elaborates on the underlying model
architecture, the detailed formulation of consistency loss, and its integration into the overall training
objective.

Model architecture. We employ a language-based object detector Li et al. (2022b); Dou et al. (2022)
as the backbone for feature extraction and object detection, taking advantage of its strong capability
in bridging vision and language representations. Specifically, images and textual descriptions are
first encoded to obtain their respective feature embeddings, ensuring a comprehensive understanding
of both modalities. These extracted features are subsequently processed through a Feature Pyramid
Network (FPN), which effectively refines and integrates multiscale representations, thereby enhancing
detection performance across various object sizes and contexts. To further improve localization
accuracy, the refined image features are then passed on to DynamicHead, a dedicated module designed
to predict a set of candidate regions where objects are most likely to be located. This hierarchical and
adaptive processing pipeline ensures robust and efficient object detection.

Consistency loss. During the training phase, we organize each batch by grouping images that share
identical foreground objects but exhibit diverse background settings. This arrangement enables the
computation of the CCLoss function, which serves as a critical mechanism for training the model to
preserve invariant representations of foreground objects across varying contextual environments.

The total loss function, as depicted in Eq. 4, comprises three fundamental components: localization
loss, classification loss, and contextual consistency loss (Lcons). Each of these components contributes
to optimizing the model performance in different aspects: precise object localization, accurate
category classification, and robust feature representation that maintains foreground consistency
irrespective of background variations. The first two components of the loss function are detailed in
GLIP Li et al. (2022b). The integration of these loss terms ensures a balanced optimization process
that addresses discriminative and invariant feature learning.

L = Lcls + Lloc + Lcons, (4)

Eq. 5 provides the formulation of CCLoss. CCLoss combines the text and image modality losses
with weighting factors. λT and λI are weighting parameters to balance the loss contributions in the
text and the image modality.

Lcons = λT · LT + λI · LI, (5)

For image features obtained from the image encoder, we first perform a pooling operation on them
to obtain the Context-Aware Aggregated Feature (CAAF), denoted as f , followed by applying a
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consistency loss among the CAAF. Given a batch with C categories and K images, the contrastive
loss for the vision modality is defined as:

LI = −
1

CK

C∑
c=1

K∑
k=1

log
exp

(
sim(fck, fc)/τ

)
C∑

c′=1

K∑
k′=1

exp
(
sim(fck, fc′k′)/τ

) , (6)

where fck is the k-th image feature of the c-th category. fc′k′ is the k′-th image feature of the c′-th
category. fc is the centroid of the image features for the c-th category, calculated as the mean of the
K image features. sim(·, ·) is cosine similarity. τ is the temperature parameter.

Similarly, for text features, we implement a contrastive learning objective that promotes feature
clustering within the same category while enforcing separation among different categories. However,
the application of this text contrastive loss is contingent upon the baseline architecture: When using
FIBER as the baseline, where cross-modal interactions between image and text encoders are enabled,
we fully utilize this loss term. In contrast, when employing GLIP as the baseline, which processes
image and text modalities independently, we effectively disable this component by setting its weight
λT to zero. Given a batch with C categories and K images, the contrastive loss for the text modality
is defined as:

LT = − 1

CK

C∑
c=1

K∑
k=1

log
exp

(
sim(tck, tc)/τ

)
C∑

c′=1

K∑
k′=1

exp
(
sim(tck, tc′k′)/τ

) , (7)

where tck is the k-th text feature of the c-th category. tc′k′ is the k′-th text feature of the c′-th
category. tc is the centroid of the text features for the c-th category, calculated as the mean of the K
text features. The design of our CCLoss follows a progressive evolution, with the detailed process
provided in Supplementary Section B.7.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

Training setup. To evaluate the generalizability of our proposed method, we use two baseline
models, GLIP Li et al. (2022b) and FIBER Dou et al. (2022). These models serve as benchmarks
for comparison. The datasets used to train the baseline models are 1) Objects365 (O365) Shao et al.
(2019) and 2) GoldG, including Flickr30K Plummer et al. (2015), VG Caption Krishna et al. (2017),
and GQA Hudson & Manning (2019), which together contain 0.8 million images, providing a diverse
and large-scale training set.

In contrast, for our method, we work with a smaller subset of the original dataset, with only 0.25
million images as the initial joint dataset for CBDG. Specifically, we incorporate the Flickr30k
Entities Plummer et al. (2015) dataset along with only 0.22M images of the Objects365 dataset Shao
et al. (2019), which is much smaller than the full dataset used for the baselines.

We generate three main categories of background images in CBDG: seasonal, sky, and natural
landscape. In total, we have 13,185 unique descriptions, resulting in 144,654 generated images. The
breakdown of categories and the corresponding number of images is as follows: seasonal (3387
descriptions, 48,156 images), sky (3399 descriptions, 48,210 images), and natural landscape (3399
descriptions, 48,288 images).

For training, we use publicly available pre-trained model checkpoints of both GLIP Li et al. (2022b)
and FIBER Dou et al. (2022). These pre-trained weights serve as the starting point for fine-tuning.
We fine-tune the model for one epoch on our dataset Dj . After this fine-tuning process, we obtain
the final results, which demonstrate the effectiveness of our method when applied to a smaller
and more constrained dataset. The implementation details and computational cost can be found in
Supplementary Section A. We report the choice and tuning of hyperparameters in Supplementary
Section B.1.

Benchmark selection. We choose OmniLabel Schulter et al. (2023) and D3 Xie et al. (2023)
as benchmark evaluation methods, both of which use Average Precision (AP) as the evaluation
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Table 1: Performance of our method compared with SOTA methods.

OmniLabel D3

Method AP AP-c AP-d AP-dP AP-dS AP-dM AP-dL FULL PRES ABS

Detic Zhou et al. (2022) 8.0 15.6 5.4 8.0 5.7 5.4 6.2 - - -
OFA-DOD Xie et al. (2023) - - - - - - - 21.6 23.7 15.4

RelationLLM-L Xie et al. (2025) - - - - - - - 24.3 24.6 23.4
GN-GLIP Zhao et al. (2024) 22.2 27.2 18.8 29.0 - - - 21.4 20.6 23.7

GN-FIBER Zhao et al. (2024) 28.1 32.1 25.1 36.5 - - - 26.0 25.2 28.1
ROD-MLLM Yin et al. (2025) - - 25.3 30.9 31.8 24.5 21.0 29.7 30.0 28.7
Real-Model Chen et al. (2025) - - 36.5 52.1 54.4 33.2 25.5 34.1 34.4 33.2

GLIP-T Li et al. (2022b) 19.3 23.6 16.4 25.8 29.4 14.8 8.2 19.1 18.3 21.5
+ours 32.2 36.1 28.8 39.8 43.3 26.5 17.6 30.0 29.2 32.3

FIBER-B Dou et al. (2022) 25.7 30.3 22.3 34.8 38.6 19.5 12.4 22.7 21.5 26.0
+ours 42.0 44.1 39.2 50.8 53.7 38.2 32.3 37.6 37.2 38.8

metric. The reason we select these two benchmarks is that they not only provide object category
labels but also include a rich diversity of textual descriptions, which place a greater emphasis on
the model’s ability to understand and interpret language. This aspect makes these benchmarks
particularly valuable for evaluating the model’s performance in tasks involving both visual and
linguistic information. Compared to other REC Yu et al. (2016); Wu et al. (2020); Mao et al.
(2016) and OVOD Gupta et al. (2019); Chen et al. (2015); Krasin et al. (2017) benchmarks, D3 Xie
et al. (2023) and OmniLabel Schulter et al. (2023) offer a broader evaluation of object detection
capabilities. These benchmarks include negative samples and more precisely defined bounding boxes
corresponding to textual descriptions, which can refer to zero, one, or multiple objects in the image.
This makes the tasks more challenging and forces the model to effectively localize and recognize
objects based on a range of different descriptions and contexts, offering a more comprehensive test of
its generalization and performance in diverse scenarios.

4.2 COMPARISON WITH SOTA METHODS

Table 1 presents a comparison between our method and the current SOTA methods on the Omni-
Label Schulter et al. (2023) and D3 Xie et al. (2023) benchmarks. The first column lists various
model methods, followed by seven columns representing the seven AP metrics on OmniLabel. These
metrics include: plain categories (AP-c) and free-form descriptions (AP-d). AP-dP evaluates only
positive descriptions. AP-dS/M/L assess descriptions of varying lengths (up to 3 words, 4-8 words,
and more than 8 words). The last three columns represent the AP metrics on D3: FULL, PRES, and
ABS, which evaluate all descriptions, only presence descriptions, and only absence descriptions,
respectively.

We use GLIP-T Li et al. (2022b) and FIBER-B Dou et al. (2022) as baselines and fine-tune them
on our method. With the integration of our proposed CCL method, significant improvements
are observed across multiple benchmarks. Specifically, when applied to the FIBER baseline, the
method achieves a notable increase of +16.3 AP on the OmniLabel benchmark and +14.9 AP on
the D3 benchmark. Similarly, when implemented with the GLIP baseline, our method demonstrates
consistent performance gains, achieving +12.9 AP on the OmniLabel benchmark and +10.9 AP on the
D3 benchmark. These results underscore the effectiveness of our approach in improving contextual
understanding and consistency across diverse datasets. We further evaluate our method on phrase
grounding tasks to demonstrate broader applicability (see Supplementary Section B.5).

4.3 ROBUSTNESS EVALUATION UNDER BACKGROUND VARIATIONS

To quantitatively assess the robustness of open-vocabulary detection (OVD) models under environ-
mental and background variations, we introduce a new experiment setup derived from the D3 dataset.
For each of the 10,578 original images in D3, we generate three additional variants by replacing
the background using the CBDG method proposed in this work. These new background images are
generated independently of the training data, ensuring no overlap or information leakage. The result-
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Table 2: Performance comparison on
D3

BC benchmark across different mod-
els and settings.

D3
BC

Method FULL PRES ABS

GLIP-T 16.8 15.8 20.4
+ours 29.6 28.9 31.9

FIBER-B 20.1 18.7 24.7
+ours 33.1 32.8 34.0

Table 3: Ablation study of contextual bootstrapped data
generation and CCLoss.

OmniLabel D3

Method AP AP-c AP-d FULL PRES ABS

GLIP-T 19.3 23.6 16.4 19.1 18.3 21.5
+data 24.8 29.2 21.8 23.2 22.5 25.3
+ours 32.2 36.1 28.8 30.0 29.2 32.3

FIBER-B 25.7 30.3 22.3 22.7 21.5 26.0
+data 32.7 35.8 29.6 29.1 28.3 31.2
+ours 42.0 44.1 39.2 37.6 37.2 38.8

ing dataset, termed D3
BC, consists of the original images and their background-altered counterparts,

totaling 42,312 samples. We evaluate two representative baseline models, GLIP-T and FIBER-B, on
both D3 and D3

BC, and further examine their performance when enhanced with our proposed CCL
method. This yields four experimental settings. As summarized in Table 2, both baselines exhibit
substantial performance degradation on D3

BC, revealing their susceptibility to background shifts.
However, models incorporating our CCL approach demonstrate significantly improved robustness
with much smaller performance drops. These results highlight the effectiveness of CCL in improving
model resilience to environmental variations. Moreover, this experiment suggests that our method
maintains robustness not only under background shifts but also across different domains.

4.4 ABLATION STUDY ON CBDG AND CCLOSS

Given that our method is fundamentally grounded in consistency and incorporates a certain degree
of data generation, we perform a series of ablation experiments to evaluate the contribution of
each individual component. In particular, we conduct two distinct experimental setups to assess
the impact of both CBDG and CCLoss. The first experiment introduces CBDG to the baseline
model, followed by fine-tuning the model for one epoch on Dj . To ensure a fair comparison, we
keep the training parameters consistent with those used in the baseline experiment. The second
experiment represents our complete experimental setup, adding CBDG and CCLoss to the baseline
model and fine-tuning the model for one epoch. As shown in Table 3, both CBDG and CCLoss play
an essential role in enhancing the model’s performance. CBDG increases the diversity of training
data, improving the model’s robustness across varying conditions. Meanwhile, the CCLoss reinforces
object consistency across different contexts, ensuring that the model can reliably detect and localize
objects regardless of their surrounding environment. The combined effects of these two components
contribute significantly to the observed performance improvements. We further analyze the impact of
dataset scale in Supplementary Section B.2.

5 CONCLUSION

Summary. We propose Contextual Consistency Learning (CCL) to tackle inconsistent object
feature representation in descriptive open-vocabulary object detection. CCL combines Contextual
Bootstrapped Data Generation (CBDG) and Contextual Consistency Loss (CCLoss). CBDG uses
SAM and Stable Diffusion to generate diverse scene-object compositions, while CCLoss enforces
feature invariance across backgrounds. Despite using significantly less data, CCL improves model
performance. It is model-agnostic, incurs no inference overhead, and integrates easily into existing
architectures. Our work underscores the importance of intra-modal consistency for robust object
detection in dynamic environments, paving the way for future extensions to broader vision-language
tasks and large-scale models.

Limitation & Future work. Due to the inherent limitations of SAM, segmentation errors or
under-segmentation may occur when extracting foreground objects in our CBDG. Although our
post-processing techniques effectively mitigate these issues and achieve SOTA performance, further
research is needed to completely eliminate such problems and further enhance performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, private or sensitive data, or applications that may cause
direct harm. All datasets used in this study are publicly available and widely adopted in the research
community. Our method focuses on improving robustness in object detection by generating synthetic
background variations, which does not introduce new ethical concerns. We have taken care to avoid
reinforcing social biases, and the proposed framework is intended solely for academic research.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. All implementation
details, including network architectures, training schedules, and hyperparameters, are described in
the main paper and supplement. The datasets used are publicly available, and we provide detailed
descriptions of preprocessing steps in the supplementary materials. Furthermore, the theoretical
formulation of our loss function is fully detailed in Supplementary Section B.7, with proofs and
additional derivations provided in the supplement. As mentioned in the abstract, data, code and
models will be made publicly available.

USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models (LLMs) solely to assist with the polishing of English writing, such as im-
proving grammar, clarity, and readability. In addition, using a Large Language Model (LLM) Brown
et al. (2020), we generate prompts that are subsequently fed into Stable Diffusion Rombach et al.
(2022) to synthesize background images for our experiments. No part of the research design, ex-
perimental implementation, data analysis, or result interpretation relied on LLMs. All scientific
contributions, ideas, and experiments are conceived and conducted entirely by the authors.
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