

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSISTENCY BEYOND CONTRAST: ENHANCING OPEN- VOCABULARY OBJECT DETECTION ROBUST- NESS VIA CONTEXTUAL CONSISTENCY LEARNING

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in open-vocabulary object detection focus primarily on two aspects: scaling up datasets and leveraging contrastive learning to align language and vision modalities. However, these approaches often neglect internal consistency within a single modality, particularly when background or environmental changes occur. This lack of consistency leads to a performance drop because the model struggles to detect the same object in different scenes, which reveals a robustness gap. To address this issue, we introduce Contextual Consistency Learning (CCL), a novel framework that integrates two key strategies: Contextual Bootstrapped Data Generation (CBDG) and Contextual Consistency Loss (CCLoss). CBDG functions as a data generation mechanism, producing images that contain the same objects across diverse backgrounds. This is essential because existing datasets alone do not support our CCL framework. The CLLoss further enforces the invariance of object features despite environmental changes, thereby improving the model's robustness in different scenes. These strategies collectively form a unified framework for ensuring contextual consistency within the same modality. Our method achieves state-of-the-art performance, surpassing previous approaches by +16.3 AP on OmniLabel and +14.9 AP on D^3 . These results demonstrate the importance of enforcing intra-modal consistency, significantly enhancing model generalization in diverse environments. Data, code and models will be made publicly available.

1 INTRODUCTION

Object detection has made significant strides in recent years. However, two advanced tasks based on this technology continue to present considerable challenges: open-vocabulary object detection (OVOD) and descriptive textual object detection, such as referring expression comprehension (REC) and visual grounding (VG). Open-vocabulary object detection aims to detect previously unseen objects in dynamic environments. Recent works Dou et al. (2022); Gu et al. (2021); Li et al. (2022b); Lin et al. (2022); Minderer et al. (2023); Zhao et al. (2022); Jin et al. (2024); Zang et al. (2024) have advanced training strategies for such tasks, others Kamath et al. (2021); Kuo et al. (2022); Minderer et al. (2022); Subramanian et al. (2022) have focused on enhancing model architectures. In parallel, tasks involving referring expressions and visual grounding, which require detecting objects based on complex natural language descriptions, have shown advances in training methodologies Xie et al. (2025); Chen et al. (2025); Zong et al. (2025); Lin et al. (2024); Peng et al. (2023), architectural improvements Yin et al. (2025); Lin et al. (2023); You et al. (2023) and the use of the capabilities of large models Shen et al. (2025); Xuan et al. (2024); Zhan et al. (2024).

Despite these advancements, there is still a crucial gap in addressing the internal consistency within each input image and query. We identify an issue in existing models Dou et al. (2022); Li et al. (2022b; 2023a): the features of the same object tend to vary significantly across different scenes, which indicates that current models may overfit to specific training backgrounds. This inconsistency not only affects the detection stability but might also degrade the model's generalization ability, raising an important question: *Can we obtain object features that are robust to environmental changes?* To validate this, we construct the D_{BC}^3 test set by applying background replacement to the original D^3 dataset. Detailed in Section 4.3, baseline methods suffer notable performance drops under this setting, highlighting their limited robustness to contextual changes. In contrast, our method maintains

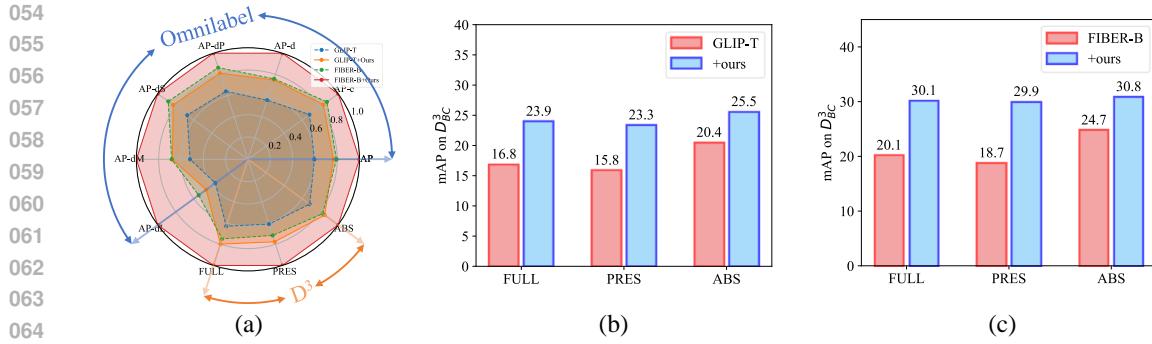


Figure 1: Performance and robustness comparison of different methods. (a) Our approach, with Contextual Consistency Learning, achieves the best overall results, reaching a normalized score of 1 in all metrics. (b,c) Benchmark backgrounds are altered to test robustness. Tested on D^3_{BC} , baseline methods degrade, while ours remains stable. See Section 4.3 for details.

performance comparable to that on the original benchmark. As shown in Figure 1, our experimental results demonstrate that addressing this issue significantly improves model performance.

To address this issue, we propose the CCL framework that enforces invariance of object features across different scenes, as shown in Figure 2. However, existing datasets exhibit a notable limitation: they lack comprehensive data pairs that depict the same object in diverse contextual settings. This data gap is crucial because CCL requires models to encounter and learn from variations of the same object in different environments or scenarios. Without such diverse representations, models struggle to generalize under varying real-world conditions. To overcome this limitation, we introduce CBDG, which first increases the number of categories and then leverages SAM Kirillov et al. (2023) and the Stable Diffusion model Rombach et al. (2022) to generate data pairs across different scenes while ensuring consistent foreground objects, thus improving both category variation and background diversity in training data.

Our experimental results demonstrate significant improvements on two challenging benchmarks, D^3 Xie et al. (2023) and OmniLabel Schulter et al. (2023), achieving +16.3 AP on OmniLabel and +14.9 AP on D^3 . The proposed CBDG and CCLoss are complementary components that collectively form a robust training paradigm. Specifically, the CBDG improves feature learning through diverse scene-object compositions, while the CCLoss ensures robust feature representation across varying backgrounds. Furthermore, our approach is fundamentally model-agnostic, enabling seamless integration into a wide range of existing architectures, such as Dou et al. (2022); Li et al. (2022b), with consistent performance gains across different frameworks.

In summary, the contributions are as follows.

- This study identifies an issue where object features are highly susceptible to environmental changes, leading to potential overfitting and poor generalization to unseen scenarios.
- To ensure feature robustness to context changes, we propose CCL, which enforces object consistency across backgrounds via CBDG and CCLoss.
- Our method is simple, efficient, and model-agnostic, imposing no additional inference overhead while consistently delivering performance improvements across diverse datasets and models. Moreover, despite working with a much smaller subset of the original dataset, we achieve state-of-the-art results on two descriptive open-vocabulary detection benchmarks.

2 RELATED WORK

Vision language localization tasks. Open-vocabulary object detection (OVOD) aims to enable models to recognize novel objects or unseen categories during inference Gu et al. (2021); Minderer et al. (2023); Zareian et al. (2021); Du et al. (2022), extending beyond traditional categorical detection. However, this ability is typically limited to detecting object categories based on labels, rather than understanding long descriptions. In contrast, referring expression comprehension (REC)

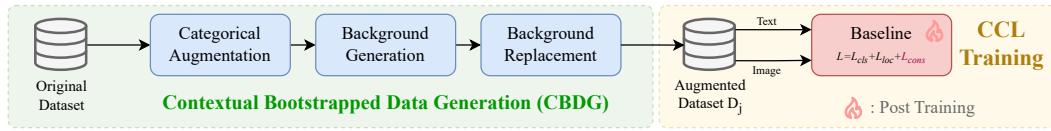


Figure 2: Overview of our approach. CBDG generates D_j via Categorical Augmentation, Background Generation and Background Replacement. CCL training uses D_j with CCLoss added to total loss.

involves understanding and localizing objects in an image based on natural language descriptions that refer to specific instances of objects Yu et al. (2016); Wu et al. (2020); Mao et al. (2016), making it inherently more flexible and context-aware. While OVOD and REC both address the challenge of understanding objects in images, we focus on simultaneously handling novel categories and complex natural language descriptions. We opt for described object detection (DOD) Xie et al. (2023) and OmniLabel Schulter et al. (2023) as robust solutions to these challenges, as they incorporate both the recognition of novel categories and the understanding of intricate descriptions.

Diffusion models for scenario generation. Stable Diffusion Rombach et al. (2022) marks a shift in text-to-image synthesis by operating in a compressed latent space using iterative denoising. Unlike GANs Goodfellow et al. (2014); Mirza & Osindero (2014) or VAEs Kingma et al. (2013); Van Den Oord et al. (2017) that generate images in pixel space, it uses a VAE to encode images into low-dimensional latents, allowing efficient training and high-resolution output. Guided by a pre-trained CLIP text encoder, the model aligns generated images with complex textual descriptions, from concrete objects to abstract scenes.

Recent diffusion-based methods have shown strong performance in image inpainting, enabling object and scene editing via text or spatial inputs. GLIDE Nichol et al. (2021) enables text-guided object replacement while preserving scene consistency, and GLIGEN Li et al. (2023b) extends this by incorporating bounding boxes for more precise control over object placement. For background replacement, IAM Yu et al. (2023) integrates segmentation with diffusion to regenerate regions based on textual prompts. Despite their effectiveness, these methods often suffer from boundary artifacts due to over-smoothing during denoising. We evaluate GLIDE, IAM, and Stable Diffusion Rombach et al. (2022) in CBDG and ultimately choose Stable Diffusion for background generation.

Cross-modal object detection models. With the advancement of multimodal vision language models, such as CLIP Radford et al. (2021) and ALIGN Jia et al. (2021), the development of methods that integrate vision and language to address visual recognition tasks has emerged as a prominent trend. GLIP Li et al. (2022b), based on CLIP Radford et al. (2021), leverages free-form language supervision during training and frames object detection as visual localization, constructing a foundation for semantically enriched pre-trained models. Building on this, FIBER Dou et al. (2022) employs a two-stage training approach, transitioning from coarse-grained to fine-grained, enhancing the adaptability of the pre-trained model to a broad spectrum of downstream tasks at both image-level and region-level. In our work, we use GLIP Li et al. (2022b) and FIBER Dou et al. (2022) as baseline models and incorporate our CCL method to validate the experimental results.

3 METHOD

3.1 OVERVIEW

We introduce CCL, a novel framework designed to address the challenge of maintaining detection and grounding consistency when models encounter diverse and unseen object categories across varying contextual backgrounds. To achieve this goal, we address two fundamental aspects of the problem: the lack of appropriate training data and the need for effective consistency-preserving mechanisms.

In Section 3.2, we describe our CBDG pipeline, which leverages advanced segmentation and generative models to create a rich and varied dataset. This data preparation process is specifically designed to support our consistency learning objectives. Following this, in Section 3.3, we detail our CCLoss formulation, which ensures that the model learns to maintain object identity across different backgrounds.

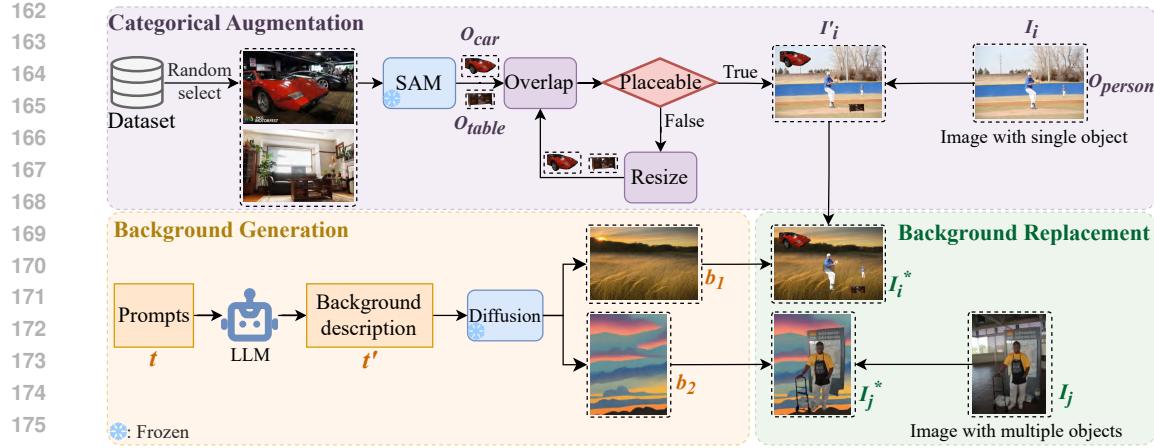


Figure 3: CBDG Pipeline. We use ChatGPT to generate background prompts for a diffusion model, enabling diverse background synthesis. For single-class images, CBDG augments object categories before background replacement. For multi-class images, CBDG replaces only the background.

3.2 CONTEXTUAL BOOTSTRAPPED DATA GENERATION

Current open-set visual grounding methods struggle to maintain robustness across diverse real-world scenarios, particularly when objects appear in unfamiliar contextual settings. This limitation stems from a fundamental data scarcity: existing datasets rarely capture the full spectrum of object-background interactions, leading to biased model performance. To overcome this, we propose a multistage data augmentation framework that synthesizes diverse and realistic object-context compositions by combining SAM-based object manipulation with text-guided background generation, as shown in Figure 3. Our method constructs a compositionally diverse joint dataset D_j that mitigates common inpainting artifacts and improves model generalization.

Categorical augmentation. In our approach, we use the Flickr30k Entities visual grounding dataset Plummer et al. (2015) alongside a subset of the Objects365 object detection dataset Shao et al. (2019) to create a combined training dataset. The selected subset of Objects365 tends to contain images dominated by a few categories, with multiple instances of that category present. Details are discussed in Supplementary Section D.3 and Section D.5.

For images with a single object, we aim to enhance the diversity of object categories within each image by introducing objects from different categories while maintaining spatial and contextual coherence. To achieve this, we leverage the SAM model Kirillov et al. (2023) to extract precise objects O_i and the corresponding position (x_o, y_o) for each image I , where i means the category ID to which the object belongs. The object masks allow us to identify individual objects and their spatial locations. Based on these masks, we randomly select objects $O_{i \notin C}$ from other images within the same subset but belonging to different categories, where C represents the category set. Then these objects are positioned in the current image at carefully chosen locations. Specifically, we define $P = \{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$ the potential placement position set for the new object, N is the number of candidate locations. From these positions, we randomly select $(x, y) \in P \setminus (x_o, y_o)$ that does not overlap with the existing objects in the image, ensuring a clean and non-interfering insertion of the new object. This process of placement can be formalized as:

$$\text{Augmentation} : (x_{o_k}, y_{o_k}) \in P \setminus (x_o, y_o), o_k \in O_{i \notin C}, \quad (1)$$

where k represents the category of selected object, (x_{o_k}, y_{o_k}) denotes the position randomly chosen from the set of candidate locations according to the above rule. After categorical augmentation, the original image I becomes I' .

In scenarios where no suitable empty position is available, such as when the current image contains large objects or a large number of dispersed objects, which results in limited available space, we adopt a resizing strategy. In these cases, we reduce the size of the new object to $1/\alpha$ of its original size and attempt to place it again, where α is a scaling factor. This process is repeated until an empty

Figure 4: Four groups of images are shown, each composed of four sub-images: the leftmost sub-image in every group is the original, while the remaining three display background replacements.

placement area is found or the number of resizing attempts exceeds a threshold N_R . If resizing attempts fail to find a suitable location, we abandon the current image and instead select another image to enhance the diversity of object categories, thus ensuring a broader range of category representation in the final dataset.

Background generation. With more object categories added, the foreground dataset now includes images with varied labels and their corresponding bounding boxes. To reduce model overfitting and improve generalization, we next generate diverse background images, placing the same objects in different scenes. Image inpainting methods Nichol et al. (2021); Li et al. (2023b); Yu et al. (2023) often struggle with blurred edges and backgrounds that still reflect foreground features, making realistic scene changes difficult (see Supplementary Section B.6). To avoid these issues, we use a simpler alternative that better separates foreground from background.

Instead of relying on limited original image content, we generate new and simple backgrounds directly. Using a Large Language Model (LLM) Brown et al. (2020), denoted as \mathcal{G} , we create text prompts in three categories: *Seasonal, Sky, and Natural Landscape*, to ensure variety and relevance. Details of these prompts are provided in Supplementary Section D.1. These prompts are input into Stable Diffusion \mathcal{D} Rombach et al. (2022), which generates matching background images. This method allows us to build a diverse, context-aware background dataset without the limitations of inpainting:

$$\text{Generation} : b = \mathcal{D}(t'), t' = \mathcal{G}(t), \quad (2)$$

where $t \in \{\text{Seasonal, Sky, Natural Landscape}\}$, t' is the background description generated by ChatGPT, and b represents the background image generated by stable Diffusion, which constitutes the background dataset D_{bg} . We further analyze the diversity of generated scenes in Supplementary Section B.4 and Section D.4.

Background replacement. At this stage, we have both the generated background dataset D_{bg} and the foreground dataset D_{fg} with various object categories. To create new image variations, we randomly select background images for each foreground image. Using the bounding boxes, we extract foreground objects with the SAM model \mathcal{S} Kirillov et al. (2023). The post-processing techniques are detailed in Supplementary Section D.2. These objects and their spatial layout are kept unchanged. After isolating the foreground, we replace the original background with a selected one, generating multiple new images per original. The foreground stays the same, while the backgrounds vary, producing diverse scenes with consistent object content. The replacement process is defined as:

$$\text{Replacement} : I^* = \mathcal{S}(I', bbox) \oplus b, b \in D_{bg}, \quad (3)$$

where $bbox$ represents the bounding boxes of objects in the image I' after categorical augmentation, \oplus denotes the composition of foreground and background, I^* represents the image with replaced background.

CBDG enables us to significantly augment the dataset with diverse background settings while maintaining the integrity of the foreground objects, providing a more robust foundation for training our model. As shown in Figure 4, after CBDG, for each original image, several additional images are generated with replaced backgrounds. This results in a total of K images per original, all sharing the same foreground objects, but differing in their backgrounds. K represents the batch size used during training. Alternative data generation schemes are also compared, see Supplementary Section B.3. The augmented images are then utilized for the subsequent consistency constraints in our approach.

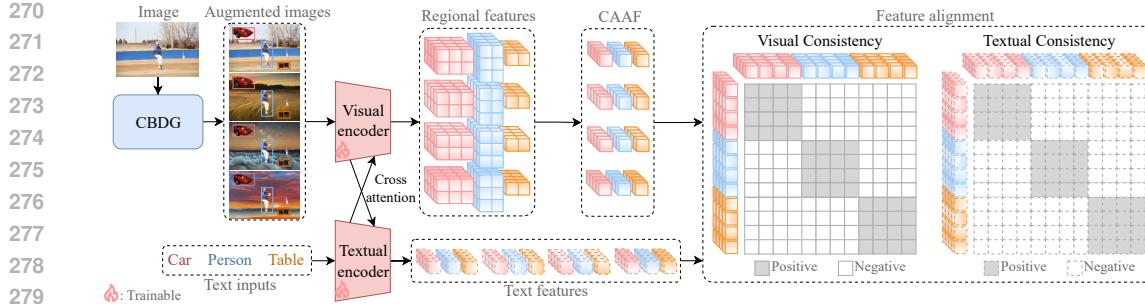


Figure 5: CCL Framework. Visual and textual features are encoded, with regional features pooled into CAAF. Consistency loss is applied within each modality.

3.3 CONTEXTUAL CONSISTENCY LOSS

Given that after CBDG, we now have access to a dataset D_j in which each group of images shares the same foreground object but varies in background. We introduce the Contextual Consistency Loss (CCLoss), a novel training objective designed to enforce representation invariance for the same object category across varying contextual environments. As illustrated in Figure 5, our method uses CCLoss to maintain the consistency of foreground object representations across different backgrounds. By constructing training batches that contain instances of the same object under different contextual settings, CCLoss encourages the model to focus on semantically meaningful foreground features rather than background-dependent or spurious cues. This section elaborates on the underlying model architecture, the detailed formulation of consistency loss, and its integration into the overall training objective.

Model architecture. We employ a language-based object detector Li et al. (2022b); Dou et al. (2022) as the backbone for feature extraction and object detection, taking advantage of its strong capability in bridging vision and language representations. Specifically, images and textual descriptions are first encoded to obtain their respective feature embeddings, ensuring a comprehensive understanding of both modalities. These extracted features are subsequently processed through a Feature Pyramid Network (FPN), which effectively refines and integrates multiscale representations, thereby enhancing detection performance across various object sizes and contexts. To further improve localization accuracy, the refined image features are then passed on to DynamicHead, a dedicated module designed to predict a set of candidate regions where objects are most likely to be located. This hierarchical and adaptive processing pipeline ensures robust and efficient object detection.

Consistency loss. During the training phase, we organize each batch by grouping images that share identical foreground objects but exhibit diverse background settings. This arrangement enables the computation of the CCLoss function, which serves as a critical mechanism for training the model to preserve invariant representations of foreground objects across varying contextual environments.

The total loss function, as depicted in Eq. 4, comprises three fundamental components: localization loss, classification loss, and contextual consistency loss ($\mathcal{L}_{\text{cons}}$). Each of these components contributes to optimizing the model performance in different aspects: precise object localization, accurate category classification, and robust feature representation that maintains foreground consistency irrespective of background variations. The first two components of the loss function are detailed in GLIP Li et al. (2022b). The integration of these loss terms ensures a balanced optimization process that addresses discriminative and invariant feature learning.

$$\mathcal{L} = \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{loc}} + \mathcal{L}_{\text{cons}}, \quad (4)$$

Eq. 5 provides the formulation of CCLoss. CCLoss combines the text and image modality losses with weighting factors. λ_T and λ_I are weighting parameters to balance the loss contributions in the text and the image modality.

$$\mathcal{L}_{\text{cons}} = \lambda_T \cdot \mathcal{L}_T + \lambda_I \cdot \mathcal{L}_I, \quad (5)$$

For image features obtained from the image encoder, we first perform a pooling operation on them to obtain the Context-Aware Aggregated Feature (CAAFF), denoted as f , followed by applying a

324 consistency loss among the CAAF. Given a batch with C categories and K images, the contrastive
 325 loss for the vision modality is defined as:

$$327 \quad \mathcal{L}_I = -\frac{1}{CK} \sum_{c=1}^C \sum_{k=1}^K \log \frac{\exp(\text{sim}(\mathbf{f}_{ck}, \mathbf{f}_c)/\tau)}{\sum_{c'=1}^C \sum_{k'=1}^K \exp(\text{sim}(\mathbf{f}_{ck}, \mathbf{f}_{c'k'})/\tau)}, \quad (6)$$

330 where \mathbf{f}_{ck} is the k -th image feature of the c -th category. $\mathbf{f}_{c'k'}$ is the k' -th image feature of the c' -th
 331 category. \mathbf{f}_c is the centroid of the image features for the c -th category, calculated as the mean of the
 332 K image features. $\text{sim}(\cdot, \cdot)$ is cosine similarity. τ is the temperature parameter.
 333

334 Similarly, for text features, we implement a contrastive learning objective that promotes feature
 335 clustering within the same category while enforcing separation among different categories. However,
 336 the application of this text contrastive loss is contingent upon the baseline architecture: When using
 337 FIBER as the baseline, where cross-modal interactions between image and text encoders are enabled,
 338 we fully utilize this loss term. In contrast, when employing GLIP as the baseline, which processes
 339 image and text modalities independently, we effectively disable this component by setting its weight
 340 λ_T to zero. Given a batch with C categories and K images, the contrastive loss for the text modality
 341 is defined as:

$$341 \quad \mathcal{L}_T = -\frac{1}{CK} \sum_{c=1}^C \sum_{k=1}^K \log \frac{\exp(\text{sim}(\mathbf{t}_{ck}, \mathbf{t}_c)/\tau)}{\sum_{c'=1}^C \sum_{k'=1}^K \exp(\text{sim}(\mathbf{t}_{ck}, \mathbf{t}_{c'k'})/\tau)}, \quad (7)$$

345 where \mathbf{t}_{ck} is the k -th text feature of the c -th category. $\mathbf{t}_{c'k'}$ is the k' -th text feature of the c' -th
 346 category. \mathbf{t}_c is the centroid of the text features for the c -th category, calculated as the mean of the K
 347 text features. The design of our CCLoss follows a progressive evolution, with the detailed process
 348 provided in Supplementary Section B.7.
 349

350 4 EXPERIMENTS

352 4.1 EXPERIMENTAL DESIGN

354 **Training setup.** To evaluate the generalizability of our proposed method, we use two baseline
 355 models, GLIP Li et al. (2022b) and FIBER Dou et al. (2022). These models serve as benchmarks
 356 for comparison. The datasets used to train the baseline models are 1) Objects365 (O365) Shao et al.
 357 (2019) and 2) GoldG, including Flickr30K Plummer et al. (2015), VG Caption Krishna et al. (2017),
 358 and GQA Hudson & Manning (2019), which together contain 0.8 million images, providing a diverse
 359 and large-scale training set.

360 In contrast, for our method, we work with a smaller subset of the original dataset, with only 0.25
 361 million images as the initial joint dataset for CBDG. Specifically, we incorporate the Flickr30k
 362 Entities Plummer et al. (2015) dataset along with only 0.22M images of the Objects365 dataset Shao
 363 et al. (2019), which is much smaller than the full dataset used for the baselines.

364 We generate three main categories of background images in CBDG: seasonal, sky, and natural
 365 landscape. In total, we have 13,185 unique descriptions, resulting in 144,654 generated images. The
 366 breakdown of categories and the corresponding number of images is as follows: seasonal (3387
 367 descriptions, 48,156 images), sky (3399 descriptions, 48,210 images), and natural landscape (3399
 368 descriptions, 48,288 images).

369 For training, we use publicly available pre-trained model checkpoints of both GLIP Li et al. (2022b)
 370 and FIBER Dou et al. (2022). These pre-trained weights serve as the starting point for fine-tuning.
 371 We fine-tune the model for one epoch on our dataset D_j . After this fine-tuning process, we obtain
 372 the final results, which demonstrate the effectiveness of our method when applied to a smaller
 373 and more constrained dataset. The implementation details and computational cost can be found in
 374 Supplementary Section A. We report the choice and tuning of hyperparameters in Supplementary
 375 Section B.1.

376 **Benchmark selection.** We choose OmniLabel Schulter et al. (2023) and D^3 Xie et al. (2023)
 377 as benchmark evaluation methods, both of which use Average Precision (AP) as the evaluation

378
379
380 Table 1: Performance of our method compared with SOTA methods.
381
382

383 Method	384 OmniLabel							385 D^3		
	386 AP	387 AP-c	388 AP-d	389 AP-dP	390 AP-dS	391 AP-dM	392 AP-dL	393 FULL	394 PRES	395 ABS
Detic Zhou et al. (2022)	8.0	15.6	5.4	8.0	5.7	5.4	6.2	-	-	-
OFA-DOD Xie et al. (2023)	-	-	-	-	-	-	-	21.6	23.7	15.4
RelationLLM-L Xie et al. (2025)	-	-	-	-	-	-	-	24.3	24.6	23.4
GN-GLIP Zhao et al. (2024)	22.2	27.2	18.8	29.0	-	-	-	21.4	20.6	23.7
GN-FIBER Zhao et al. (2024)	28.1	32.1	25.1	36.5	-	-	-	26.0	25.2	28.1
ROD-MLLM Yin et al. (2025)	-	-	25.3	30.9	31.8	24.5	21.0	29.7	30.0	28.7
Real-Model Chen et al. (2025)	-	-	36.5	52.1	54.4	33.2	25.5	34.1	34.4	33.2
GLIP-T Li et al. (2022b) +ours	19.3	23.6	16.4	25.8	29.4	14.8	8.2	19.1	18.3	21.5
FIBER-B Dou et al. (2022) +ours	25.7	30.3	22.3	34.8	38.6	19.5	12.4	22.7	21.5	26.0
	42.0	44.1	39.2	50.8	53.7	38.2	32.3	37.6	37.2	38.8

396 metric. The reason we select these two benchmarks is that they not only provide object category
397 labels but also include a rich diversity of textual descriptions, which place a greater emphasis on
398 the model’s ability to understand and interpret language. This aspect makes these benchmarks
399 particularly valuable for evaluating the model’s performance in tasks involving both visual and
400 linguistic information. Compared to other REC Yu et al. (2016); Wu et al. (2020); Mao et al.
401 (2016) and OVOD Gupta et al. (2019); Chen et al. (2015); Krasin et al. (2017) benchmarks, D^3 Xie
402 et al. (2023) and OmniLabel Schulter et al. (2023) offer a broader evaluation of object detection
403 capabilities. These benchmarks include negative samples and more precisely defined bounding boxes
404 corresponding to textual descriptions, which can refer to zero, one, or multiple objects in the image.
405 This makes the tasks more challenging and forces the model to effectively localize and recognize
406 objects based on a range of different descriptions and contexts, offering a more comprehensive test of
407 its generalization and performance in diverse scenarios.

4.2 COMPARISON WITH SOTA METHODS

408 Table 1 presents a comparison between our method and the current SOTA methods on the Omni-
409 Label Schulter et al. (2023) and D^3 Xie et al. (2023) benchmarks. The first column lists various
410 model methods, followed by seven columns representing the seven AP metrics on OmniLabel. These
411 metrics include: plain categories (AP-c) and free-form descriptions (AP-d). AP-dP evaluates only
412 positive descriptions. AP-dS/M/L assess descriptions of varying lengths (up to 3 words, 4-8 words,
413 and more than 8 words). The last three columns represent the AP metrics on D^3 : FULL, PRES, and
414 ABS, which evaluate all descriptions, only presence descriptions, and only absence descriptions,
415 respectively.

416 We use GLIP-T Li et al. (2022b) and FIBER-B Dou et al. (2022) as baselines and fine-tune them
417 on our method. With the integration of our proposed CCL method, significant improvements
418 are observed across multiple benchmarks. Specifically, when applied to the FIBER baseline, the
419 method achieves a notable increase of +16.3 AP on the OmniLabel benchmark and +14.9 AP on
420 the D^3 benchmark. Similarly, when implemented with the GLIP baseline, our method demonstrates
421 consistent performance gains, achieving +12.9 AP on the OmniLabel benchmark and +10.9 AP on the
422 D^3 benchmark. These results underscore the effectiveness of our approach in improving contextual
423 understanding and consistency across diverse datasets. We further evaluate our method on phrase
424 grounding tasks to demonstrate broader applicability (see Supplementary Section B.5).

4.3 ROBUSTNESS EVALUATION UNDER BACKGROUND VARIATIONS

425 To quantitatively assess the robustness of open-vocabulary detection (OVD) models under environ-
426 mental and background variations, we introduce a new experiment setup derived from the D^3 dataset.
427 For each of the 10,578 original images in D^3 , we generate three additional variants by replacing
428 the background using the CBDG method proposed in this work. These new background images are
429 generated independently of the training data, ensuring no overlap or information leakage. The result-

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
227

486 ETHICS STATEMENT
487488 This work does not involve human subjects, private or sensitive data, or applications that may cause
489 direct harm. All datasets used in this study are publicly available and widely adopted in the research
490 community. Our method focuses on improving robustness in object detection by generating synthetic
491 background variations, which does not introduce new ethical concerns. We have taken care to avoid
492 reinforcing social biases, and the proposed framework is intended solely for academic research.
493494 REPRODUCIBILITY STATEMENT
495496 We have made significant efforts to ensure the reproducibility of our results. All implementation
497 details, including network architectures, training schedules, and hyperparameters, are described in
498 the main paper and supplement. The datasets used are publicly available, and we provide detailed
499 descriptions of preprocessing steps in the supplementary materials. Furthermore, the theoretical
500 formulation of our loss function is fully detailed in Supplementary Section B.7, with proofs and
501 additional derivations provided in the supplement. As mentioned in the abstract, data, code and
502 models will be made publicly available.
503504 USE OF LARGE LANGUAGE MODELS (LLMs)
505506 We use large language models (LLMs) solely to assist with the polishing of English writing, such as im-
507 proving grammar, clarity, and readability. In addition, using a Large Language Model (LLM) Brown
508 et al. (2020), we generate prompts that are subsequently fed into Stable Diffusion Rombach et al.
509 (2022) to synthesize background images for our experiments. No part of the research design, ex-
510 perimental implementation, data analysis, or result interpretation relied on LLMs. All scientific
511 contributions, ideas, and experiments are conceived and conducted entirely by the authors.
512513 REFERENCES
514515 Malik Javed Akhtar, Rabbia Mahum, Faisal Shafique Butt, Rashid Amin, Ahmed M El-Sherbeeny,
516 Seongkwan Mark Lee, and Sarang Shaikh. A robust framework for object detection in a traffic
517 surveillance system. *Electronics*, 11(21):3425, 2022.518 Codruta O Ancuti, Cosmin Ancuti, and Radu Timofte. Nh-haze: An image dehazing benchmark with
519 non-homogeneous hazy and haze-free images. In *Proceedings of the IEEE/CVF conference on*
520 *computer vision and pattern recognition workshops*, pp. 444–445, 2020.521 Muhammad Awais, Weiming Zhuang, Lingjuan Lyu, and Sung-Ho Bae. Frod: Robust object detection
522 for free. *CoRR*, 2023.524 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
525 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
526 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.527 Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
528 C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. *arXiv preprint*
529 *arXiv:1504.00325*, 2015.531 Yuming Chen, Jiangyan Feng, Haodong Zhang, Lijun Gong, Feng Zhu, Rui Zhao, Qibin Hou, Ming-
532 Ming Cheng, and Yibing Song. Re-aligning language to visual objects with an agentic workflow.
533 *arXiv preprint arXiv:2503.23508*, 2025.534 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
535 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban
536 scene understanding. In *Proceedings of the IEEE conference on computer vision and pattern*
537 *recognition*, pp. 3213–3223, 2016.538
539 Yuxiong Ding, Ming Zhang, Jia Pan, Jinxing Hu, and Xiaowei Luo. Robust object detection in
extreme construction conditions. *Automation in Construction*, 165:105487, 2024.

540 Zi-Yi Dou, Aishwarya Kamath, Zhe Gan, Pengchuan Zhang, Jianfeng Wang, Linjie Li, Zicheng Liu,
 541 Ce Liu, Yann LeCun, Nanyun Peng, et al. Coarse-to-fine vision-language pre-training with fusion
 542 in the backbone. *Advances in neural information processing systems*, 35:32942–32956, 2022.

543

544 Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt for
 545 open-vocabulary object detection with vision-language model. In *Proceedings of the IEEE/CVF*
 546 *conference on computer vision and pattern recognition*, pp. 14084–14093, 2022.

547

548 Qi Fan, Mattia Segu, Yu-Wing Tai, Fisher Yu, Chi-Keung Tang, Bernt Schiele, and Dengxin Dai.
 549 Towards robust object detection invariant to real-world domain shifts. In *The Eleventh International*
 550 *Conference on Learning Representations (ICLR 2023)*. OpenReview, 2023.

551

552 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 553 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *Advances in neural information*
 554 *processing systems*, 27, 2014.

555

556 Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a scene into geometric and
 557 semantically consistent regions. In *2009 IEEE 12th international conference on computer vision*,
 558 pp. 1–8. IEEE, 2009.

559

560 Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
 561 and language knowledge distillation. *arXiv preprint arXiv:2104.13921*, 2021.

562

563 Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
 564 segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 565 *recognition*, pp. 5356–5364, 2019.

566

567 Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 568 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer*
 569 *vision and pattern recognition*, pp. 6700–6709, 2019.

570

571 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
 572 Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
 573 noisy text supervision. In *International conference on machine learning*, pp. 4904–4916. PMLR,
 574 2021.

575

576 Sheng Jin, Xueying Jiang, Jiaxing Huang, Lewei Lu, and Shijian Lu. Llms meet vlms: Boost open
 577 vocabulary object detection with fine-grained descriptors. *arXiv preprint arXiv:2402.04630*, 2024.

578

579 Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas Carion.
 580 Mdetr-modulated detection for end-to-end multi-modal understanding. In *Proceedings of the*
 581 *IEEE/CVF international conference on computer vision*, pp. 1780–1790, 2021.

582

583 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

584

585 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 586 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings*
 587 *of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

588

589 Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami Abu-El-Haija, Alina Kuznetsova,
 590 Hassan Rom, Jasper Uijlings, Stefan Popov, Andreas Veit, et al. Openimages: A public dataset for
 591 large-scale multi-label and multi-class image classification. *Dataset available from https://github.*
 592 *com/openimages*, 2(3):18, 2017.

593

594 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 595 Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
 596 and vision using crowdsourced dense image annotations. *International journal of computer vision*,
 597 123:32–73, 2017.

598

599 Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and Anelia Angelova. F-vlm: Open-vocabulary
 600 object detection upon frozen vision and language models. *arXiv preprint arXiv:2209.15639*, 2022.

601

602 Yejun Lee and Jaejun Yoo. Improving contrail detection via diffusion-based data augmentation
 603 framework. *age*, 8000:12000, 2025.

594 Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
 595 Benchmarking single-image dehazing and beyond. *IEEE transactions on image processing*, 28(1):
 596 492–505, 2018.

597

598 Jizhizi Li, Jing Zhang, Stephen J Maybank, and Dacheng Tao. Bridging composite and real: towards
 599 end-to-end deep image matting. *International Journal of Computer Vision*, 130(2):246–266, 2022a.

600 Liunian Li, Zi-Yi Dou, Nanyun Peng, and Kai-Wei Chang. Desco: Learning object recognition with
 601 rich language descriptions. *Advances in Neural Information Processing Systems*, 36:37511–37526,
 602 2023a.

603

604 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
 605 Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-
 606 training. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 607 pp. 10965–10975, 2022b.

608 Yuheng Li, Haotian Liu, Qingsheng Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li,
 609 and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. In *Proceedings of the*
 610 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 22511–22521, 2023b.

611

612 Chuang Lin, Peize Sun, Yi Jiang, Ping Luo, Lizhen Qu, Gholamreza Haffari, Zehuan Yuan, and
 613 Jianfei Cai. Learning object-language alignments for open-vocabulary object detection. *arXiv*
 614 *preprint arXiv:2211.14843*, 2022.

615 Chuang Lin, Yi Jiang, Lizhen Qu, Zehuan Yuan, and Jianfei Cai. Generative region-language
 616 pre-training for open-ended object detection. In *Proceedings of the IEEE/CVF Conference on*
 617 *Computer Vision and Pattern Recognition*, pp. 13958–13968, 2024.

618

619 Ziyi Lin, Chris Liu, Renrui Zhang, Peng Gao, Longtian Qiu, Han Xiao, Han Qiu, Chen Lin, Wenqi
 620 Shao, Keqin Chen, et al. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
 621 multi-modal large language models. *arXiv preprint arXiv:2311.07575*, 2023.

622 Chengxin Liu, Kewei Wang, Hao Lu, Zhiguo Cao, and Ziming Zhang. Robust object detection with
 623 inaccurate bounding boxes. In *European Conference on Computer Vision*, pp. 53–69. Springer,
 624 2022.

625

626 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 627 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 628 open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer, 2024.

629

630 Nesma Talaat Abbas Mahmoud, Indrek Virro, AGM Zaman, Tormi Lillerand, Wai Tik Chan, Olga
 631 Liivapuu, Kallol Roy, and Jüri Olt. Robust object detection under smooth perturbations in precision
 632 agriculture. *AgriEngineering*, 6(4):4570–4584, 2024.

633

634 Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
 635 Generation and comprehension of unambiguous object descriptions. In *Proceedings of the IEEE*
 636 *conference on computer vision and pattern recognition*, pp. 11–20, 2016.

637

638 Ze-Yu Mi and Yu-Bin Yang. Add: Attribution-driven data augmentation framework for boosting im-
 639 age super-resolution. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 640 pp. 23101–23110, 2025.

641

642 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
 643 Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple
 644 open-vocabulary object detection. In *European conference on computer vision*, pp. 728–755.
 645 Springer, 2022.

646

647 Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection.
 648 *Advances in Neural Information Processing Systems*, 36:72983–73007, 2023.

649

650 Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. *arXiv preprint*
 651 *arXiv:1411.1784*, 2014.

648 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 649 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 650 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

651

652 Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu
 653 Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv preprint*
 654 *arXiv:2306.14824*, 2023.

655 Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and
 656 Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer
 657 image-to-sentence models. In *Proceedings of the IEEE international conference on computer*
 658 *vision*, pp. 2641–2649, 2015.

659 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 660 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 661 models from natural language supervision. In *International conference on machine learning*, pp.
 662 8748–8763. PMLR, 2021.

663

664 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 665 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 666 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

667

668 Samuel Schulter, Yumin Suh, Konstantinos M Dafnis, Zhixing Zhang, Shiyu Zhao, Dimitris Metaxas,
 669 et al. Omnilabel: A challenging benchmark for language-based object detection. In *Proceedings of
 670 the IEEE/CVF International Conference on Computer Vision*, pp. 11953–11962, 2023.

671

672 Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
 673 Sun. Objects365: A large-scale, high-quality dataset for object detection. In *Proceedings of the
 674 IEEE/CVF international conference on computer vision*, pp. 8430–8439, 2019.

675

676 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 677 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 678 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.

679

680 Sanjay Subramanian, William Merrill, Trevor Darrell, Matt Gardner, Sameer Singh, and Anna
 681 Rohrbach. Reclip: A strong zero-shot baseline for referring expression comprehension. *arXiv
 682 preprint arXiv:2204.05991*, 2022.

683

684 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in
 685 neural information processing systems*, 30, 2017.

686

687 Anh-Khoa Nguyen Vu, Quoc-Truong Truong, Vinh-Tiep Nguyen, Thanh Duc Ngo, Thanh-Toan Do,
 688 and Tam V Nguyen. Multi-perspective data augmentation for few-shot object detection. *arXiv
 689 preprint arXiv:2502.18195*, 2025.

690

691 Chenyun Wu, Zhe Lin, Scott Cohen, Trung Bui, and Subhransu Maji. Phrasicut: Language-based
 692 image segmentation in the wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 693 and Pattern Recognition*, pp. 10216–10225, 2020.

694

695 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 696 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on
 697 computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

698

699 Chi Xie, Zhao Zhang, Yixuan Wu, Feng Zhu, Rui Zhao, and Shuang Liang. Described object
 700 detection: Liberating object detection with flexible expressions. *Advances in Neural Information
 701 Processing Systems*, 36:79095–79107, 2023.

702

703 Chi Xie, Shuang Liang, Jie Li, Zhao Zhang, Feng Zhu, Rui Zhao, and Yichen Wei. Relationlmm:
 704 Large multimodal model as open and versatile visual relationship generalist. *IEEE Transactions
 705 on Pattern Analysis and Machine Intelligence*, 2025.

706

707 Shiyu Xuan, Qingpei Guo, Ming Yang, and Shiliang Zhang. Pink: Unveiling the power of referential
 708 comprehension for multi-modal llms. In *Proceedings of the IEEE/CVF Conference on Computer
 709 Vision and Pattern Recognition*, pp. 13838–13848, 2024.

702 Heng Yin, Yuqiang Ren, Ke Yan, Shouhong Ding, and Yongtao Hao. Rod-mllm: Towards more
 703 reliable object detection in multimodal large language models. In *Proceedings of the Computer*
 704 *Vision and Pattern Recognition Conference*, pp. 14358–14368, 2025.

705 Haoxuan You, Haotian Zhang, Zhe Gan, Xianzhi Du, Bowen Zhang, Zirui Wang, Liangliang Cao,
 706 Shih-Fu Chang, and Yinfei Yang. Ferret: Refer and ground anything anywhere at any granularity.
 707 *arXiv preprint arXiv:2310.07704*, 2023.

708 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
 709 in referring expressions. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,*
 710 *The Netherlands, October 11–14, 2016, Proceedings, Part II 14*, pp. 69–85. Springer, 2016.

711 Tao Yu, Runseong Feng, Ruoyu Feng, Jinning Liu, Xin Jin, Wenjun Zeng, and Zhibo Chen. Inpaint
 712 anything: Segment anything meets image inpainting. *arXiv preprint arXiv:2304.06790*, 2023.

713 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 714 Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceedings*
 715 *of the IEEE/CVF international conference on computer vision*, pp. 6023–6032, 2019.

716 Yuhang Zang, Wei Li, Jun Han, Kaiyang Zhou, and Chen Change Loy. Contextual object detection
 717 with multimodal large language models. *International Journal of Computer Vision*, pp. 1–19, 2024.

718 Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object
 719 detection using captions. In *Proceedings of the IEEE/CVF conference on computer vision and*
 720 *pattern recognition*, pp. 14393–14402, 2021.

721 Yufei Zhan, Yousong Zhu, Zhiyang Chen, Fan Yang, Ming Tang, and Jinqiao Wang. Griffon: Spelling
 722 out all object locations at any granularity with large language models. In *European Conference on*
 723 *Computer Vision*, pp. 405–422. Springer, 2024.

724 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 725 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

726 Shiyu Zhao, Zhixing Zhang, Samuel Schulter, Long Zhao, BG Vijay Kumar, Anastasis Stathopoulos,
 727 Manmohan Chandraker, and Dimitris N Metaxas. Exploiting unlabeled data with vision and
 728 language models for object detection. In *European conference on computer vision*, pp. 159–175.
 729 Springer, 2022.

730 Shiyu Zhao, Long Zhao, Yumin Suh, Dimitris N Metaxas, Manmohan Chandraker, Samuel Schulter,
 731 et al. Generating enhanced negatives for training language-based object detectors. In *Proceedings*
 732 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13592–13602,
 733 2024.

734 Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan Misra. Detecting twenty-
 735 thousand classes using image-level supervision. In *European conference on computer vision*, pp.
 736 350–368. Springer, 2022.

737 Yongshuo Zong, Qin Zhang, Dongsheng An, Zhihua Li, Xiang Xu, Linghan Xu, Zhuowen Tu, Yifan
 738 Xing, and Onkar Dabeer. Ground-v: Teaching vlms to ground complex instructions in pixels. In
 739 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 24635–24645, 2025.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755