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ABSTRACT

The sharpest known high probability excess risk bounds are up to O (1/n) for em-
pirical risk minimization and projected gradient descent via algorithmic stability
(Klochkov & Zhivotovskiy, 2021). In this paper, we show that high probability
excess risk bounds of order up to O

(
1/n2

)
are possible. We discuss how high

probability excess risk bounds reach O
(
1/n2

)
under strong convexity, smooth-

ness and Lipschitz continuity assumptions for empirical risk minimization, pro-
jected gradient descent and stochastic gradient descent. Besides, to the best of
our knowledge, our high probability results on the generalization gap measured
by gradients for nonconvex problems are also the sharpest.

1 INTRODUCTION

Algorithmic stability is a fundamental concept in learning theory (Bousquet & Elisseeff, 2002),
which can be traced back to the foundational works of Vapnik & Chervonenkis (1974) and has a
deep connection with learnability (Rakhlin et al., 2005; Shalev-Shwartz et al., 2010; Shalev-Shwartz
& Ben-David, 2014). Simply speaking, we say that an algorithm is stable if a change in a single
example in the training dataset leads to only a minor change in the output model. Stability often
provides theoretical upper bounds on generalization error. The study of the relationship between
stability and generalization enables us to theoretically understand and better control the behavior of
the algorithm.

While providing in-expectation generalization error bounds through stability arguments is relatively
straightforward, deriving high probability bounds presents a more significant challenge. However,
these high probability bounds are crucial for understanding the robustness of optimization algo-
rithms, as highlighted by recent works (Feldman & Vondrak, 2019; Bousquet et al., 2020; Klochkov
& Zhivotovskiy, 2021). In practical scenarios, where we often train models a limited number of
times, high probability bounds offer more informative insights than their in-expectation counterparts.
Therefore, this paper focuses on improving high probability risk bounds through an exploration of
algorithmic stability.

Let us start with some standard notations. We have a set of independent and identically distributed
observations S = {z1, . . . , zn} sampled from a probability measure ρ defined on a sample space
Z := X × Y . Based on the training set S, our goal is to build a model h : X 7→ Y for prediction,
where the model is determined by parameter w from parameter space W ⊂ Rd. The performance of
a model w on an example z can be quantified by a loss function f(w; z), where f : W ×Z 7→ R+.
Then the population risk and the empirical risk of w ∈ W , respectively as

F (w) := Ez [f(w; z)] , FS(w) :=
1

n

n∑
i=1

f(w; zi),

where Ez denotes the expectation w.r.t. z. Let w∗ ∈ argminw∈W F (w) be the model with the
minimal population risk in W and let A(S) be the output of a (possibly randomized) algorithm A on
the dataset S. Traditional generalization analysis aims to bound the generalization error F (A(S))−
FS(A(S)) w.r.t the algorithm A and the dataset S. Based on the technique developed by Feldman
& Vondrak (2018; 2019), Bousquet et al. (2020) provide the sharpest high probability bounds of
O (L/

√
n), where the loss function f(·, ·) is bounded by L. No matter how stable the algorithm is,
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the high probability generalization bound will not be smaller than O (L/
√
n). This is sampling error

term scaling as O (1/
√
n) that controls the generalization error (Klochkov & Zhivotovskiy, 2021).

A frequently used alternative to generalization bounds, that can avoid the sampling error, are the
excess risk bounds. The excess risk of algorithm A with respect to the dataset S is defined as
F (A(S)) − F (w∗). This is crucial, as it can be decomposed into an optimization term and a gen-
eralization term (Klochkov & Zhivotovskiy, 2021). To establish a bound on the excess risk, it is
necessary to take into account both the generalization error and the optimization error. Recently,
Klochkov & Zhivotovskiy (2021) developed the results in Bousquet et al. (2020) and provided the
best high probability excess risk bounds of order up to O (log n/n) for empirical risk minimization
(ERM) and projected gradient descent (PGD) algorithms via algorithmic stability. Since then, nu-
merous of papers, for example (Yuan & Li, 2023; 2024), extended their results to various settings
within their method. However, all the excess risk upper bounds derived from their method can not
be smaller than O (log n/n). Considering this, we would like to have a question:

Can algorithmic stability provide high probability excess risk bounds with the rate beyond O(1/n)?

The main results of this paper answer this question positively. To address this question, this paper
technically provides a tighter generalization error bound of the gradients, based on which, we build
the relationship between algorithmic stability and excess risk bounds. We also establish the first
high probability excess risk bounds that are dimension-free with the rate O

(
1/n2

)
for ERM, PGD

and stochastic gradient descent (SGD).

Our contributions can be summarized as follows:

• We provide sharper high probability upper bounds for the generalization gap between the
population risk and the empirical risk of gradients in general nonconvex settings. Currently,
there is only one work (Fan & Lei, 2024) that investigates the high-probability generaliza-
tion error bounds of gradients in nonconvex problems using algorithmic stability, which
establishes an upper bound of O (M/

√
n), where M denotes the maximum gradient of

loss functions value. In contrast, this paper provides tighter results. Our coefficient be-
fore 1/

√
n depends on the variance of the gradients of the loss functions under the model

optimized by algorithm A. As is well known, optimization algorithms typically yield pa-
rameters that approach the optimal solution, which significantly reduces the term compared
to the maximum gradient.

• We build the relationship between algorithmic stability and excess risk bounds. Our results
can provide a more granular analysis dependent on optimal parameters. Compared to ex-
isting work (Klochkov & Zhivotovskiy, 2021), we can achieve the excess risk bounds with
the rate of O

(
1/n2

)
under specific conditions. Under the same algorithmic stability, our

results also perform tighter. To the best of our knowledge, these are the first dimension-free
results with the order O

(
1/n2

)
in high probability risk bounds via algorithmic stability.

• Using our method, we derive the first dimension-free high probability excess risk bounds
of O

(
1/n2

)
for ERM, PGD, and SGD, addressing an open problem posed in Xu & Zeevi

(2024). While they achieved O
(
1/n2

)
excess risk bounds on ERM and GD algorithms

through uniform convergence, their approach requires that the sample size satisfies n =
Ω(d). In contrast, we successfully obtain O

(
1/n2

)
bounds that do not depend on the

dimensionality using algorithmic stability.

2 RELATED WORK

Algorithmic stability is a classical approach in generalization analysis, which can be traced back to
the foundational works of (Vapnik & Chervonenkis, 1974). It gave the generalization bound by ana-
lyzing the sensitivity of a particular learning algorithm when changing one data point in the dataset.
Modern method of stability analysis was established by Bousquet & Elisseeff (2002), where they
presented an important concept called uniform stability. Since then, a lot of works based on uniform
stability have emerged. On one hand, generalization bounds with algorithmic stability have been
significantly improved by Feldman & Vondrak (2018; 2019); Bousquet et al. (2020); Klochkov &
Zhivotovskiy (2021). On the other hand, different algorithmic stability measures such as uniform
argument stability (Liu et al., 2017; Bassily et al., 2020), uniform stability in gradients (Lei, 2023;
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Fan & Lei, 2024), on average stability (Shalev-Shwartz et al., 2010; Kuzborskij & Lampert, 2018),
hypothesis stability (Bousquet & Elisseeff, 2002; Charles & Papailiopoulos, 2018), hypothesis set
stability (Foster et al., 2019), pointwise uniform stability (Fan & Lei, 2024), PAC-Bayesian stabil-
ity (Li et al., 2020), locally elastic stability (Deng et al., 2021), and collective stability (London
et al., 2016) have been developed. Most of them provided the connection on stability and gener-
alization in expectation. Bousquet & Elisseeff (2002); Elisseeff et al. (2005); Feldman & Vondrak
(2018; 2019); Bousquet et al. (2020); Klochkov & Zhivotovskiy (2021); Yuan & Li (2023; 2024);
Fan & Lei (2024) considered high probability bounds. In this paper, we further develop the theory
of stability and generalization by pushing the boundaries of stability analysis. We seek to determine
how tight the stability performance bounds can be. To address this issue, we firstly provide stability
bounds with the order O

(
1/n2

)
.

3 STABILITY AND GENERALIZATION

In this section, we develop a novel concentration inequality which provides p-moment bound for
sums of vector-valued functions. For a real-valued random variable Y , the Lp-norm of Y is defined
by ∥Y ∥p := (E[|Y |p])

1
p . Similarly, let ∥·∥ denote the norm in a Hilbert space H. For a random vari-

able X taking values in a Hilbert space, the Lp-norm of X is defined by ∥∥X∥∥p := (E [∥X∥p])
1
p .

3.1 A MOMENT BOUND FOR SUMS OF VECTOR-VALUED FUNCTIONS

Here we present our sharper moment bound for sums of vector-valued functions of n independent
variables.
Theorem 1. Let Z = (Z1, . . . , Zn) be a vector of independent random variables each taking values
in Z , and let g1, . . . ,gn be some functions: gi : Zn 7→ H such that the following holds for any
i ∈ [n]:

• ∥E[gi(Z)|Zi]∥ ≤ G a.s.

• E
[
gi(Z)|Z[n]\{i}

]
= 0 a.s.,

• gi satisfies the bounded difference property with β, namely, for any i = 1, . . . , n, the following
inequality holds

sup
z1,...,zn,z′

j

∥gi(z1, . . . , zj−1, zj , zj+1, . . . , zn)− gi(z1, . . . , zj−1, z
′
j , zj+1, . . . , zn)∥ ≤ β. (1)

Then, for any p ≥ 2, we have∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√
2p+ 1)

√
nG+ 4× 2

1
2p

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .

Remark 1. We start to compare with existing results. The proof is motivated by Bousquet et al.
(2020); Klochkov & Zhivotovskiy (2021). Yuan & Li (2023; 2024) have also explored several
related problems based on this approach. However, all of them focus specifically on upper bounds
for sums of real-valued functions. The result most closely related to Theorem 1 is provided by Fan
& Lei (2024). Under the same assumptions, Fan & Lei (2024) established the following inequality1∥∥∥∥∥

∥∥∥∥∥
n∑

i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√
2 + 1)

√
npG+ 4(

√
2 + 1)npβ ⌈log2 n⌉ . (2)

It is easy to verify that our result is tighter than result provided by Fan & Lei (2024) for both the
first and second term. Comparing Theorem 1 with (2), the larger p is, the tighter our result is relative
to (2). In the worst case, when p = 2, the constant of our first term is 0.879 times tighter than (2),
and the constant of our second term is 0.634 times tighter than (2). This is because we derive the
optimal Marcinkiewicz-Zygmund’s inequality for random variables taking values in a Hilbert space
in the proof.

1They assume n = 2k, k ∈ N. Here we give the version of their result with general n.
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Although Theorem 1 seems to the constant-level improvement, considering that this theorem has
other broad applications, we report this result as well. On the other hand, the proof was challeng-
ing, as it involved establishing the best constant in Marcinkiewicz-Zygmund’s inequality for random
variables taking values in a Hilbert space, which has its foundations in Khintchine-Kahane’s inequal-
ity. To prove the best constant, we utilized Stirling’s formula for the Gamma function to construct
appropriate functions, establishing both upper and lower bounds. Then using Mean Value Theorem,
this approach ultimately led to the convergence of the constant as p approaches infinity.

3.2 SHARPER GENERALIZATION BOUNDS IN GRADIENTS

In this subsection, we come to the generalization bound in gradients. Let w∗ ∈ argminw∈W F (w)
be the model with the minimal population risk in W and w∗(S) ∈ argminw∈W FS(w) be the
model with the minimal empirical risk w.r.t. dataset S. Let ∥ · ∥2 denote the Euclidean norm and
∇g(w) denote a subgradient of g at w. We denote S = {z1, . . . , zn} to be a set of independent
random variables each taking values in Z and S′ = {z′1, . . . , z′n} be its independent copy. For any
i ∈ [n], define S(i) = {zi, . . . , zi−1, z

′
i, zi+1, . . . , zn} be a dataset replacing the i-th sample in S

with another i.i.d. sample z′i.

We introduce some basic definitions here, and we want to emphasize that our main Theorem 2 and
Theorem 3 do not need smoothness assumption and Polyak-Lojasiewicz condition, indicating their
potential applications within the nonconvex problems as well.
Definition 1. Let f : W 7→ R. Let M,γ, µ > 0.

• We say f is M -Lipschitz if

|f(w)− f(w′)| ≤ M∥w −w′∥,∀w,w′ ∈ W.

• We say f is γ-smooth if

∥∇f(w)−∇f(w′)∥2 ≤ γ∥w −w′∥2, ∀w,w′ ∈ W.

• Let f∗ = minw∈W f(w). We say f satisfies the Polyak-Lojasiewicz (PL) condition with
parameter µ > 0 on W if

f(w)− f∗ ≤ 1

2µ
∥∇f(w)∥22, ∀w ∈ W.

Then we define uniform stability in gradients.
Definition 2 (Uniform Stability in Gradients). Let A be a randomized algorithm. We say A is
β-uniformly-stable in gradients if for all neighboring datasets S, S(i), we have

sup
z

∥∥∥∇f(A(S); z)−∇f(A(S(i)); z)
∥∥∥
2
≤ β. (3)

Remark 2. Gradient-based stability was firstly introduced by Lei (2023); Fan & Lei (2024) to de-
scribe the generalization performance for nonconvex problems. In nonconvex problems, we can
only find a local minimizer by optimization algorithms which may be far away from the global
minimizer. Instead, the convergence of ∥∇FS(A(S))∥2 was often studied in the optimization
community (Ghadimi & Lan, 2013; Foster et al., 2018). Since the population risk of gradients
∥∇F (A(S))∥2 can be decomposed as the convergence of ∥∇FS(A(S))∥2 and the generalization
gap ∥∇F (A(S))−∇FS(A(S))∥2, the generalization analysis of ∥∇F (A(S))−∇FS(A(S))∥2 is
not only useful in the derivations presented in this paper, but it is also crucial in nonconvex problems.
This generalization gap can be achieved by uniform stability in gradients.
Theorem 2 (Generalization via Stability in Gradients). Assume for any z, f(·, z) is M -Lipschitz.
If A is β-uniformly-stable in gradients, then for any δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ

∥∇F (A(S))−∇FS(A(S))∥2

≤2β +
4M

(
1 + e

√
2 log (e/δ)

)
√
n

+ 8× 2
1
4 (
√
2 + 1)

√
eβ ⌈log2 n⌉ log (e/δ).
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Remark 3. Theorem 2 is a direct application via Theorem 1 where we denote the vector func-
tions gi(S) = Ez′

i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
and find that gi(S) satisfies all the

assumptions in Theorem 1. As a comparison, (Fan & Lei, 2024, Theorem 3) also developed high
probability bounds under same assumptions, but our bounds are sharper since our moment inequal-
ity for sums of vector-valued functions are tighter as we have discussed in Remark 1. However,
both Theorem 2 and Fan & Lei (2024) do not address the issue of the coefficient O (1/

√
n) being

dependent on M , which leads to a relationship with the maximum value of the gradients. Next, we
derive sharper generalization bound of gradients under same assumptions.

Theorem 3 (Sharper Generalization via Stability in Gradients). Assume for any z, f(·, z) is M -
Lipschitz. If A is β-uniformly-stable in gradients, then for any δ ∈ (0, 1), the following inequality
holds with probability at least 1− δ

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
4EZ [∥∇f(A(S);Z)∥22] log 6

δ

n
+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

Remark 4. We begin by comparing our work with existing work. Note that the factor in both
Theorem 2 and (Fan & Lei, 2024, Theorem 3) before 1/

√
n is O

(
M
√
log (e/δ)

)
, which depends

on the max value of gradients M . However, under the same assumptions, the factor in Theorem
3 before 1/

√
n is O

(√
EZ [∥∇f(A(S);Z)∥22] log 1/δ + β log(1/δ)

)
, not involving the possibly

large term M . EZ [∥∇f(A(S);Z)∥2] can be interpreted as the variance of the gradients of the loss
functions under the model optimized by algorithm A. As is known, optimization algorithms often
provide parameters approaching the optimal solution, which make the term EZ [∥∇f(A(S);Z)∥22]
much more smaller than M .

We want to emphasize that Theorem 3 addresses the relationship between algorithmic stability and
generalization bounds in nonconvex settings, providing a bound that depends on the variance of
the population risk of gradients rather than the maximum gradient M . Although our primary focus
is not on the latter aspect of nonconvex settings. In fact, exploring high-probability stability for
specific algorithms in nonconvex setting is indeed challenging. Current methods, such as those
based on Bassily et al. (2020); Lei (2023), show that random algorithms under nonconvex smooth
assumptions are O(T/n)-stable. However, this bound becomes less meaningful when the number
of iterations exceeds n. We believe that further investigation into algorithm stability in nonconvex
scenarios is valuable and worthy of exploration.

Here we give the proof sketch of Theorem 3, which is motivated by the analysis in Klochkov &
Zhivotovskiy (2021). The key idea is to build vector functions qi(S) = hi(S) − ES{zi}[hi(S)]

where we define vector functions hi(S) = Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
. These

functions satisfy all the assumptions in Theorem 1 and ensure the factor M in Theorem 1 to 0. Then
the term O(1/

√
n) can be eliminated. Note that Eulidean norm of a vector being equal to 0 does

not necessarily imply that the vector itself is 0. The distinction between them added complexity to
the proof. Our proof required constructing vector functions to satisfy all assumptions in Theorem 1.
Moreover, ensuring the factor M in Theorem 1 approaches 0 added a unique challenge. Utilizing
the self-bounded property for vector functions also needs to consider the difference between vector’s
Eulidean norm being 0 and the vector itself being 0.

Besides, we introduce strong growth condition (SGC) here solely to clarify that Theorem 3 is tighter
compared to Theorem 2. We only suppose this condition holds in Proposition 1.

Definition 3 (Strong Growth Condition). We say SGC holds if

EZ

[
∥∇f(w;Z)∥22

]
≤ ρ∥∇F (w)∥22.

Remark 5. There has been some related work that takes SGC into assumption Solodov (1998);
Vaswani et al. (2019); Lei (2023). Vaswani et al. (2019) has proved that the squared-hinge loss with
linearly separable data and finite support features satisfies the SGC.

5
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Proposition 1 (SGC case). Let assumptions in Theorem 3 hold and suppose SGC holds. Then for
any δ > 0, with probability at least 1− δ, we have

∥∇F (A(S))∥ ≲ (1 + η)∥∇FS(A(S))∥+ 1 + η

η

(
M

n
log

1

δ
+ β log n log

1

δ

)
.

Remark 6. Proposition 1 build a connection between the population gradient error and the empir-
ical gradient error under Lipschitz, nonconvex, nonsmooth and SGC case. When the algorithm is
stable enough which means that β = O(1/n), and performs well, the empirical risk of the gradient
||∇FS(A(S))||2 can be zero. This implies that the population risk of gradients ||∇FS(A(S))||2 can
achieve O(1/n). This result from Proposition 1 also helps to understand why Theorem 3 provides
a better bound compared to Theorem 2. Specifically, using the inequality

√
ab ≤ ηa + 1

η b in the
context of Theorem 3 allows us to derive Proposition 1. On the other hand, Theorem 2, combined
with SGC and the assumption ||∇FS(A(S))||2 = 0, β = O(1/n), can only achieve a bound of
O(1/

√
n) at best.

Remark 7. Finally, we claim a significant improvement over the results using uniform convergence,
addressing an open problem posed by Xu & Zeevi (2024), namely achieving a bound of the same
order that is independent of the dimension d. Uniform convergence is another popular tool in sta-
tistical learning theory for generalization analysis and best high probability bounds (Xu & Zeevi,
2024) based on uniform convergence is

∥∇F (A(S))−∇FS(A(S))∥2

≲

√
EZ [∇∥f(w∗;Z)∥22] log(1/δ)

n
+

log(1/δ)

n
+max

{
∥A(S)−w∗∥2,

1

n

}(√
d

n
+

d

n

)
,

(4)

which is the optimal result when we only consider the order of n. Uniform convergence results are
related to the dimension d, which are unacceptable in high-dimensional learning problems. Note that
(4) requires an additional smoothness-type assumption. As a comparison, when f is γ-smoothness,
our result in Theorem 3 can be easily derived as

∥∇F (A(S))−∇FS(A(S))∥2

≲β log n log(1/δ) +
log(1/δ)

n
+

√
EZ [∇∥f(w∗;Z)∥22] log(1/δ)

n
+ ∥A(S)−w∗∥

√
log(1/δ)

n
.

Above inequality also holds in nonconvex problems and implies that when the uniformly stable
in gradients parameter β is smaller than 1/

√
n, our bound is tighter than (4) and is dimension

independent.

3.3 SHARPER EXCESS RISK BOUNDS

In this subsection, we proceed to introduce the PL condition, deriving the sharper excess risk bounds.
Theorem 4. Let assumptions in Theorem 3 hold. Suppose the function f is γ-smooth and the
population risk F satisfies the PL condition with parameter µ. w∗ is the projection of A(S) onto

the solution set argminw∈W F (w). Then for any δ ∈ (0, 1), when n ≥ 16γ2 log 6
δ

µ2 , with probability
at least 1− δ, we have

F (A(S))− F (w∗) ≲ ∥∇FS(A(S))∥22 +
F (w∗) log (1/δ)

n
+

log2(1/δ)

n2
+ β2 log2 n log2(1/δ).

Remark 8. Before explaining Theorem 4, I firstly introduce that the analysis of stability generaliza-
tion consists of two parts: (a) the relationship between algorithmic stability and risk bounds, and (b)
the stability of a specific algorithm. When analyzing the stability of particular algorithms, we often
involve optimization analysis, especially when considering excess risk bounds. Theorem 4 focuses
on the first part.

Theorem 4 implies that excess risk can be bound by the optimization gradient error ∥∇FS(A(S))∥2
and uniform stability in gradients β. Note that the assumption F (w∗) = O(1/n) is common and can
be found in Srebro et al. (2010); Lei & Ying (2020); Liu et al. (2018); Zhang et al. (2017); Zhang
& Zhou (2019). This is natural since F (w∗) is the minimal population risk. On the other hand,
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we can derive that under µ-strongly convex and γ-smooth assumptions for the objective function
f , uniform stability in gradients can be bounded of order O(1/n) for ERM and PGD. Thus high
probability excess risk can be bounded of order up to O

(
1/n2

)
under these common assumptions

via algorithmic stability.

Comparing with current best related work (Klochkov & Zhivotovskiy, 2021), they only need the as-
sumption of bounded loss function for the relationship between algorithmic stability and risk bounds.
However, Our results provide a more granular analysis dependent on optimal parameters. On one
hand, when the algorithm’s stability β = O(1/

√
n) the upper bound, according to Klochkov & Zhiv-

otovskiy (2021), can at most reach the order of 1/
√
n due to the algorithm’s stability constraints.

In contrast, our result shows that even under the assumption that F (w∗) = O(1), treating F (w∗)
as a constant, we can achieve an order of O(1/n). On the other hand, their result is insensitive to
the stability parameter being smaller than O(1/n) and their best rates can only up to O(1/n). Our
results can be up to O(1/n2) under some specific assumptions. We will discuss in Section 4.

Although we involve extra smoothness and PL condition assumptions, these assumptions are also
common in optimization community and analyzing the stability of algorithms. For example,
Klochkov & Zhivotovskiy (2021) introduced assumptions of strong convexity and smoothness in
their study of the stability and optimization results of the PGD algorithm. However, their method
did not fully leverage these assumptions when establishing the relationship between algorithmic sta-
bility and risk bounds. This is the fundamental reason why our results outperform theirs without
introducing additional assumptions. Our work can fully utilize these assumptions.

4 APPLICATION

In this section, we analysis stochastic convex optimization with strongly convex losses. The most
common setting is where at each round, the learner gets information on f through a stochastic
gradient oracle (Rakhlin et al., 2012). To derive uniform stability in gradients for algorithms, we
firstly introduce the strongly convex assumption.
Definition 4. We say f is µ-strongly convex if

f(w) ≥ f(w′) + ⟨w −w′,∇f(w′)⟩+ µ

2
∥w −w′∥22, ∀w,w′ ∈ W.

4.1 EMPIRICAL RISK MINIMIZER

Empirical risk minimizer is one of the classical approaches for solving stochastic optimization (also
referred to as sample average approximation (SAA)) in machine learning community. The fol-
lowing lemma shows the uniform stability in gradient for ERM under µ-strongly convexity and
γ-smoothness assumptions.
Lemma 1 (Stability of ERM). Suppose the objective function f is M -Lipschitz, µ-strongly-convex
and γ-smooth. Let ŵ∗(S(i)) be the ERM of FS(i)(w) that denotes the empirical risk on the samples
S(i) = {z1, ..., z′i, ..., zn} and ŵ∗(S) be the ERM of FS(w) on the samples S = {z1, ..., zi, ..., zn}.
For any S(i) and S, there holds the following uniform stability bound of ERM:

∀z ∈ Z,
∥∥∥∇f(ŵ∗(S(i)); z)−∇f(ŵ∗(S); z)

∥∥∥
2
≤ 4Mγ

nµ
.

Then, we present the application of our main sharper Theorem 3. In the strongly convex and smooth
case, we provide a up to O

(
1/n2

)
high probability excess risk guarantee valid for any algorithms

depending on the optimal population error F (w∗).
Theorem 5. Let assumptions in Theorem 4 and Lemma 1 hold. Suppose the function f is nonnega-
tive. Then for any δ ∈ (0, 1), when n ≥ 16γ2 log 6

δ

µ2 , with probability at least 1− δ, we have

F (ŵ∗(S))− F (w∗) ≲
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

Remark 9. Theorem 5 shows that when the objective function f is µ-strongly convex, γ-smooth
and nonnegative, high probability risk bounds can even up to O

(
1/n2

)
for ERM. The most re-

lated work to ours is Zhang et al. (2017). They also obtain the O
(
1/n2

)
-type bounds for ERM by
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uniform convergence of gradients approach under the same assumptions. However, they need the
sample number n = Ω(γd/µ), which is related to the dimension d. Our risk bounds are dimen-
sion independent and only require the sample number n = Ω(γ2/µ2). Comparing with Klochkov
& Zhivotovskiy (2021), we add two assumptions, smoothness and F (w∗) = O(1/n), the later of
which is a common assumption towards sharper risk bounds (Srebro et al., 2010; Lei & Ying, 2020;
Liu et al., 2018; Zhang et al., 2017; Zhang & Zhou, 2019), but our bounds are also tighter, from
O(1/n) to O

(
1/n2

)
.

Our results are asymptotically optimal, which aligns with existing theories. According to the clas-
sical asymptotic theory, under some local regularity assumptions, when n → ∞, it is shown in the
asymptotic statistics monographs Van der Vaart (2000) that

√
n(ŵ∗(S)−w∗)

ρ−→ N (0,H−1QH−1), (5)

where ŵ∗(S) denotes the ERM algorithm, H = ∇2F (w∗), Q is the covariance matrix of the
loss gradient at w∗ (also called Fisher’s information matrix): Q = E[∇f(w∗; z)∇f(w∗; z)T ] (AT

denotes the transpose of a matrix A), and
ρ−→ means convergence in distribution. The second-order

Taylor expansion of the population risk around w∗ then allows to derive the same asymptotic law
for the scaled excess risk 2n(F (ŵ∗(S))− F (w∗)). Under suitable conditions, this asymptotic rate
is usually theoretically optimal van der Vaart (1989). For example, when f(w; z) is a negative log-
likelihood, this asymptotic rate matches the Hajek-LeCam asymptotic minimax lower bound Hájek
(1972); Le Cam et al. (1972). We then analysis the result in Theorem 5. In the proof of Theorem
4, before we use the self-bounded smoothness property ∥∇f(w∗; z)∥2 ≤ 4γf(w∗; z), we get the
following result for Theorem 5

F (ŵ∗(S))− F (w∗) ≲
E[∥∇f(w∗; z)∥2] log(1/δ)

µn
+

log2(1/δ)

n2
.

Our result is the finite sample version of the asymptotic rate (5), which characterizes the criti-
cal sample size sufficient to enter this “asymptotic regime”. This is because the excess risk error
F (ŵ∗(S))−F (w∗) can be approximated by the quadratic form (ŵ∗(S)−w∗)TH(ŵ∗(S)−w∗).
1/µ is a natural proxy for the inverse Hessian H−1, and E[∥∇f(w∗; z)∥2] is a natural proxy for
Fisher’s information matrix Q. Furthermore, when discussing sample complexity, Xu & Zeevi
(2024) constructed a simple linear model to demonstrate the constant-level optimality of the sample
complexity lower bound Ω(dβ2/µ2) under such conditions. Our theorem further reveals, through
the use of stability methods, that this complexity lower bound can be independent of the dimension-
ality d.

4.2 PROJECTED GRADIENT DESCENT

Note that when the objective function f is strongly convex and smooth, the optimization error can
be ignored. However, the generalization analysis method proposed by Klochkov & Zhivotovskiy
(2021) does not use smoothness assumption, which only derive high probability excess risk bound
of order O(1/n) after T = O(log n) steps under strongly convex and smooth assumptions. In
this subsection, we provide sharper risk bound under the same iteration steps, which is because our
generalization analysis also fully utilized the smooth assumptions. Here we introduce the procedure
of the PGD algorithm.

Let w1 ∈ Rd be an initial point and {ηt}t be a sequence of positive step sizes. PGD updates
parameters by

wt+1 = ΠW (wt − ηt∇FS (wt)) ,

where ∇FS(wt) denotes a subgradient of F w.r.t. wt and ΠW is the projection operator onto W .
Lemma 2 (Stability of Gradient Descent). Suppose the objective function f is M -Lipschitz, µ-
strongly-convex and γ-smooth. Let w′

t be the output of FS(i)(w) on t-th iteration on the samples
S(i) = {z1, ..., z′i, ..., zn} in running PGD, and wt be the output of FS(w) on t-th iteration on the
samples S = {z1, ..., zi, ..., zn} in running PGD. Let the constant step size ηt = 1/γ. For any S(i)

and S, there holds the following uniform stability bound of PGD:

∀z ∈ Z,
∥∥∇f(wi

t; z)−∇f(wt; z)
∥∥
2
≤ 2Mγ

nµ
.
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Remark 10. The derivations of Feldman & Vondrak (2019) in Section 4.1.2 (See also Hardt et al.
(2016) in Section 3.4) imply that if the objective function f is γ-smooth in addition to µ-strongly
convexity and M -Lipschitz property, then PGD with the constant step size η = 1/γ is

(
2M
nµ

)
-

uniformly argument stable for any number of steps, which means that PGD is
(

2Mγ
nµ

)
-uniformly-

stable in gradients regardless of iteration steps.
Theorem 6. Let assumptions in Theorem 4 and Lemma 1 hold. Suppose the function f is nonneg-
ative. Let {wt}t be the sequence produced by PGD with ηt = 1/γ. Then for any δ ∈ (0, 1), when

n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ, we have

F (wT+1)− F (w∗) ≲

(
1− µ

γ

)2T

+
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

Furthermore, assume F (w∗) = O( 1n ) and let T ≍ log n, we have

F (wT+1)− F (w∗) ≲
log2 n log2(1/δ)

n2
.

Remark 11. Theorem 6 shows that under the same assumptions as Klochkov & Zhivo-
tovskiy (2021), our bound is O

(
F (w∗) log(1/δ)

n + log2 n log2(1/δ)
n2

)
. Comparing with their bound

O
(

logn log(1/δ)
n

)
, we are sharper because F (w∗) is the minimal population risk, which is a com-

mon assumption towards sharper risk bounds (Srebro et al., 2010; Lei & Ying, 2020; Liu et al.,
2018; Zhang et al., 2017; Zhang & Zhou, 2019). We use this assumption to demonstrate that under
low-noise conditions, our bounds can achieve the tightest possible rate of O(1/n2).

4.3 STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent optimization algorithm has been widely used in machine learning due to
its simplicity in implementation, low memory requirement and low computational complexity per
iteration, as well as good practical behavior. We provide the excess risk bounds for SGD using our
method in this subsection. Here we introduce the procedure of the standard SGD algorithm.

Let w1 ∈ Rd be an initial point and {ηt}t be a sequence of positive step sizes. SGD updates
parameters by

wt+1 = ΠW (wt − ηt∇f (wt; zit)) ,

where ∇f(wt; zit) denotes a subgradient of f w.r.t. wt and it is independently drawn from the
uniform distribution over [n] := {1, 2, . . . , n}.
Lemma 3 (Stability of SGD). Suppose the objective function f is M -Lipschitz, µ-strongly-convex
and γ-smooth. Let wi

t be the output of FS(i)(w) on t-th iteration on the samples S(i) =
{z1, ..., z′i, ..., zn} in running PGD and and wt be the output of FS(w) on t-th iteration on the
samples S = {z1, ..., zi, ..., zn} in running SGD. For any S(i) and S, there holds the following
uniform stability bound of SGD:∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ
, ∀z ∈ Z,

where ϵopt(wt) = FS(wt)− FS(ŵ
∗(S)) and ŵ∗(S) is the ERM of FS(w).

Next, we introduce a necessary assumption in stochastic optimization theory.
Assumption 1. Assume the existence of σ > 0 satisfying

Eit [∥∇f(wt; zit)−∇FS(wt)∥22] ≤ σ2, ∀t ∈ N, (6)

where Eit denotes the expectation w.r.t. it.
Remark 12. Assumption 1 is a standard assumption from the stochastic optimization theory (Ne-
mirovski et al., 2009; Ghadimi & Lan, 2013; Ghadimi et al., 2016; Kuzborskij & Lampert, 2018;
Zhou et al., 2018; Bottou et al., 2018; Lei & Tang, 2021), which essentially bounds the variance of
the stochastic gradients for dataset S.
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Theorem 7. Let assumptions in Theorem 4 and Lemma 3 hold. Suppose Assumption 1 holds and
the objective function f is nonnegative. Let {wt}t be the sequence produced by SGD with ηt =

η1t
−θ, θ ∈ (0, 1) and η1 < 1

2γ . Then for any δ ∈ (0, 1), when n ≥ 16γ2 log 6
δ

µ2 , with probability at
least 1− δ, we have(

T∑
t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

=


O
(

log2 n log3(1/δ)
T−θ

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ < 1/2

O
(

log2 n log3(1/δ)

T− 1
2

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ = 1/2

O
(

log2 n log3(1/δ)
T θ−1

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ > 1/2.

Remark 13. When θ < 1/2, we take T ≍ n2/θ. When θ = 1/2, we take T ≍ n4 and when
θ > 1/2, we set T ≍ n2/(1−θ). Then according to Theorem 7, the population risk of gradient
is bounded by O

(
log2 n log3(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
. When F (w∗) = O(1/n), we can reach the

O(1/n2) bounds. If we only need the O(1/n) results, we can loose the assumptions as follows.
Assume F (w∗) = O(1) and when θ < 1/2, we take T ≍ n1/θ. When θ = 1/2, we take T ≍ n2

and when θ > 1/2, we set T ≍ n1/(1−θ). To the best of our knowledge, both O(1/n2) and O(1/n)
bounds are the first high probability population gradient bound ∥∇F (wt)∥2 for SGD via algorithmic
stability.
Theorem 8. Let Assumptions in Theorem 3 and Lemma 3 hold. Suppose Assumption 1 holds and
the function f is nonnegative. Let {wt}t be the sequence produced by SGD with ηt =

2
µ(t+t0)

such

that t0 ≥ max
{

4γ
µ , 1

}
. Then for any δ > 0, when n ≥ 16γ2 log 6

δ

µ2 , with probability at least 1 − δ,
we have

F (wT+1)− F (w∗) = O

(
⌈log2 n⌉

2 log T log5(1/δ)

T

)
+O

(
⌈log2 n⌉

2 log2(1/δ)

n2
+

F (w∗) log(1/δ)

n

)
.

Furthermore, assume T ≍ n2 and F (w∗) = O( 1n ), we have

F (wT+1)− F (w∗) = O

(
log4 n log5(1/δ)

n2

)
.

Remark 14. Theorem 8 implies that high probability risk bounds for SGD optimization algorithm
can be up to O(1/n2) and the rate is dimension-free in high-dimensional learning problems. We
compare Theorem 8 with most related work. For algorithmic stability, high probability risk bounds
in Fan & Lei (2024) is up to O(1/n) when choosing optimal iterate number T for SGD optimization
algorithm. To the best of knowledge, we are faster than all the existing bounds. When T ≍ n and
F (w∗) = O(1), our bound is O(1/n), which is also the sharpest hight probability bound under
T ≍ n iterations. For comparison, there are two results in stability analysis that are similar to ours.
One is the O(1/n) result when T = n Lei & Ying (2020), but it pertains to the expected version and
also needs F (w∗) = 0. The high-probability version is significantly more challenging. Currently,
the best result under the high-probability version is also O(1/n) (Li & Liu, 2021), but Li & Liu
(2021) requires T = n2 iterations.

5 CONCLUSION

In this paper, we improve a p-moment concentration inequality for sums of vector-valued functions.
By carefully constructing functions, we apply this moment concentration to derive sharper gener-
alization bounds in gradients in nonconvex problems, which can further be used to obtain sharper
high probability excess risk bounds for stable optimization algorithms. In application, we study three
common algorithms: ERM, PGD, SGD. To the best of our knowledge, we provide the sharpest high
probability dimension independent O(1/n2)-type for these algorithms. Comparisons with existing
work can be found in Table 1 in Appendix.
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Table 1: Summary of high probability excess risk bounds. All conclusions herein assume Lipschitz
continuity, and all SGD algorithms presuppose bounded variance of the gradients; therefore, these
two assumptions are omitted in the table. Abbreviations: uniform convergence → UC, algorithmic
stability → AS, strongly convex → SC, low noice → LN, Polyak-Lojasiewicz condition → PL.

Reference Algorithm Method Assumptions Sample Size Bounds

Zhang et al. (2017) ERM UC Smooth, SC, LN Ω
(

γd
µ

)
O
(

1
n2

)
Xu & Zeevi (2024)

ERM UC Smooth, PL, LN Ω
(

γ2d
µ2

)
O
(

1
n2

)
PGD UC Smooth, PL, LN Ω

(
γ2d
µ2

)
O
(

1
n2

)
Li & Liu (2021) SGD

UC Smooth, PL, LN Ω
(

γ2d
µ2

)
O
(

1
n2

)
AS Smooth, SC - O

(
1
n

)
Klochkov & Zhivotovskiy ERM AS SC - O

(
1
n

)
(2021) PGD AS Smooth, SC - O

(
1
n

)
This work

ERM AS Smooth, SC, LN Ω
(

γ2

µ2

)
O
(

1
n2

)
PGD AS Smooth, SC, LN Ω

(
γ2

µ2

)
O
(

1
n2

)
SGD AS Smooth, SC, LN Ω

(
γ2

µ2

)
O
(

1
n2

)
A ADDITIONAL DEFINITIONS AND LEMMATA

Lemma 4 (Equivalence of tails and moments for random vectors (Bassily et al., 2020)). Let X be a
random variable with

∥X∥p ≤ √
pa+ pb

for some a, b ≥ 0 and for any p ≥ 2. Then for any δ ∈ (0, 1) we have, with probability at least
1− δ,

|X| ≤ e

(
a

√
log
(e
δ

)
+ b log

e

δ

)
.

Lemma 5 (Vector Bernstein’s inequality (Pinelis, 1994; Smale & Zhou, 2007)). Let {Xi}ni=1 be a
sequence of i.i.d. random variables taking values in a real separable Hilbert space. Assume that
E[Xi] = µ, E[∥Xi − µ∥2] = σ2, and ∥Xi∥ ≤ M , ∀1 ≤ i ≤ n, then for all δ ∈ (0, 1), with
probability at least 1− δ we have∥∥∥∥∥ 1n

n∑
i=1

Xi − µ

∥∥∥∥∥ ≤

√
2σ2 log( 2δ )

n
+

M log 2
δ

n
.

Definition 5 (Weakly self-Bounded Function). Assume that a, b > 0. A function f : Zn 7→ [0,+∞)
is said to be (a, b)-weakly self-bounded if there exist functions fi : Zn−1 7→ [0,+∞) that satisfies
for all Zn ∈ Zn,

n∑
i=1

(fi(Z
n)− f(Zn))2 ≤ af(Zn) + b.

Lemma 6 ((Klochkov & Zhivotovskiy, 2021)). Suppose that z1, . . . , zn are independent random
variables and the function f : Zn 7→ [0,+∞) is (a, b)-weakly self-bounded and the corresponding
function fi satisfy fi(Z

n) ≥ f(Zn) for ∀i ∈ [n] and any Zn ∈ Zn. Then, for any t > 0,

Pr(Ef(z1, . . . , zn) ≥ f(z1, . . . , zn) + t) ≤ exp

(
− t2

2aEf(z1, . . . , zn) + 2b

)
.

Definition 6. A Rademacher random variable is a Bernoulli variable that takes values ±1 with
probability 1

2 each.
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B SUMMARY OF OUR HIGH PROBABILITY EXCESS RISK BOUNDS.

Our high probability excess risk bounds can be summarized in Table 1.

C PROOFS OF SECTION 3

C.1 PROOFS OF SUBSECTION 3.1

The proof of Theorem 1 is motivated by Bousquet et al. (2020), which need the Marcinkiewicz-
Zygmund’s inequality for random variables taking values in a Hilbert space and the McDiarmid’s
inequality for vector-valued functions.

Firstly, we derive the optimal constants in the Marcinkiewicz-Zygmund’s inequality for random
variables taking values in a Hilbert space.
Lemma 7 (Marcinkiewicz-Zygmund’s Inequality for Random Variables Taking Values in a Hilbert
Space). Let X1, . . . ,Xn be random variables taking values in a Hilbert space with E[Xi] = 0 for
all i ∈ [n]. Then for p ≥ 2 we have∥∥∥∥∥

∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2 · 2
1
2p

√
np

e

(
1

n

n∑
i=1

∥∥∥ ∥Xi∥
∥∥∥p
p

) 1
p

.

Remark 15. Comparing with Marcinkiewicz-Zygmund’s inequality given by Fan & Lei (2024), we
provide best constants. Next, we give the proof of Lemma 7.

The Marcinkiewicz-Zygmund’s inequality can be proved by using its connection to Khintchine-
Kahane’s inequality. Thus, we introduce the best constants in Khintchine-Kahane’s inequality for
random variables taking values from a Hilbert space here.
Lemma 8 (Best constants in Khintchine-Kahane’s inequality in Hilbert space (Latała &
Oleszkiewicz, 1994; Luo & Zhang, 2020)). For all p ∈ [2,∞) and for all choices of Hilbert space
H, finite sets of vectors Xi, . . . ,Xn ∈ X ∈ H, and independent Rademacher variables r1, . . . , rn,[

E

∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p] 1

p

≤ Cp ·

[
n∑

i=1

∥Xi∥2
] 1

2

,

where Cp = 2
1
2

{
Γ( p+1

2 )√
π

} 1
p

.

Proof of Lemma 7. The symmetrization argument goes as follows: Let (r1, . . . , rn) be i.i.d. with
P(ri = 1) = P(ri = −1) = 1/2 and besides such that r1, . . . , rn and (X1, . . . ,Xn) are indepen-
dent. Then by independence and symmetry, according to Lemma 1.2.6 of De la Pena & Giné (2012),
conditioning on (X1, . . . ,Xn) yields

E

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p]

= 2pE

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p]

≤2pE

[
E

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p ∣∣∣∣∣X1, . . . ,Xn

]]
. (7)

As for the conditional expectation in (7), notice that by independence

E

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p ∣∣∣∣∣X1 = x1, . . . ,Xn = xn

]
= E

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p]

(8)

According to Lemma 8, for vn-almost every x1, . . . ,xn ∈ Xn, where vn := P ◦ (X1, . . . ,Xn)
−1

denotes the distribution of (X1, . . . ,Xn), we have[
E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p]

≤ C ·

[
n∑

i=1

∥xi∥2
] p

2

, (9)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where C = 2
p
2
Γ( p+1

2 )√
π

and C is optimal. This means that for any constant C ′ such that[
E

∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p]

≤ C ′ ·

[
n∑

i=1

∥xi∥2
] p

2

, (10)

for all n ∈ N and for each collection of vectors x1, . . . ,xn, it follows that C ′ ≥ C.

From (8) and (9), we can infer that

E

[∥∥∥∥∥
n∑

i=1

riXi

∥∥∥∥∥
p ∣∣∣∣∣X1 = x1, . . . ,Xn = xn

]
≤ C ·

[
n∑

i=1

∥Xi∥2
] p

2

.

Taking expectations in the above inequalities and (7) yield that

E

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p]

≤ C · E

[
n∑

i=1

∥Xi∥2
] p

2

. (11)

To see optimality let the above statement hold for some constants C ′ in place of C. Then if we
choose Xi := xiri, 1 ≤ i ≤ n with arbitrary reals vectors x1, . . . ,xn, it follows that

E

[∥∥∥∥∥
n∑

i=1

rixi

∥∥∥∥∥
p]

≤ C ′ · E

[
n∑

i=1

∥xi∥2
] p

2

,

whence we can conclude from (10) that C ′ ≥ C. Thus we obtain that C ′ = C.

Notice that by Holder’s inequality[
n∑

i=1

∥Xi∥2
] p

2

≤ np/2−1
n∑

i=1

∥Xi∥p. (12)

Plugging (12) into (11), we have

E

[∥∥∥∥∥
n∑

i=1

Xi

∥∥∥∥∥
p]

≤ C · 2pnp/2−1 · E

[
n∑

i=1

∥Xi∥p
]
,

where C = 2
p
2
Γ( p+1

2 )√
π

is a constant.

Next, we use the following form of Stirling’s formula for the Gamma-function, which follows from
(6.1.5), (6.1.15) and (6.1.38) in Davis (1972) to bound the constant C. For every x > 0, there exists
a µ(x) ∈ (0, 1/(12x)) such that

Γ(x) =
√
2πxx−1/2e−xeµ(x).

Thus

C = 2
p
2
Γ
(
p+1
2

)
√
π

= g(p)
√
2e−p/2pp/2,

with g(p) =
(
1 + 1

p

)p/2
ev(p)−1/2, where 0 < v(p) < 1/(6(p+ 1)). By Taylor’s formula we have

that

log(1 + x) =
∞∑

m=1

1

m
(−1)m−1xm, ∀x ∈ (−1, 1],

and that for every k ∈ N0

2k∑
m=1

1

m
(−1)m−1xm ≤ log(1 + x) ≤

2k+1∑
m=1

1

m
(−1)m−1xm,∀x ≥ 0.
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Therefor we obtain with k = 1 that

log g(p) =
p

2
log(1 +

1

p
) + v(p)− 1

2
≤ − 1

4p
+

1

6p2
+

1

6(p+ 1)
≤ − 1

18p
,

where the last equality follows from elementary calculus. Similarly,

log g(p) =
p

2
log(1 +

1

p
) + v(p)− 1

2
≥ − 1

4p
+ v(p) ≥ − 1

4p
,

Thus, we have

e−
1
4p

√
2e−p/2pp/2 < C < e−

1
18p

√
2e−p/2pp/2,

which implies that C is strictly smaller than
√
2e−p/2pp/2 for all p ≥ 2.

Since C = 1
g(p)

√
2e−p/2pp/2 and g(p) ≥ e−

1
4p , we can obtain that the relative error between C

and
√
2e−p/2pp/2 is equal to

1

g(p)
− 1 ≤ e−

1
4p − 1 ≤ 1

4p
e

1
4p

using Mean Value Theorem. This implies that the corresponding relative errors between C and√
2e−p/2pp/2 converge to zero as p tends to infinity.

The proof is complete.

Then we introduce the McDiarmid’s inequality for vector-valued functions. We firstly consider
real-valued functions, which follows from the standard tail-bound of McDiarmid’s inequality and
Proposition 2.5.2 in Vershynin (2018).
Lemma 9 (McDiarmid’s Inequality for real-valued functions). Let Zi, . . . , Zn be independent
random variables, and f : Zn 7→ R such that the following inequality holds for any
zi, . . . , zi−1, zi+1, . . . , zn

sup
zi,z′

i

|f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| ≤ β,

Then for any p > 1 we have

∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥p ≤
√
2pnβ.

To derive the McDiarmid’s inequality for vector-valued functions, we need the expected distance
between f(Z1, . . . , Zn) and its expectation.
Lemma 10 ((Rivasplata et al., 2018)). Let Zi, . . . , Zn be independent random variables, and f :
Zn 7→ H is a function into a Hilbert space H such that the following inequality holds for any
zi, . . . , zi−1, zi+1, . . . , zn

sup
zi,z′

i

∥f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)∥ ≤ β,

Then we have

E [∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥] ≤
√
nβ.

Now, we can easily derive the p-norm McDiarmid’s inequality for vector-valued functions which
refines from Fan & Lei (2024) with better constants.
Lemma 11 (McDiarmid’s inequality for vector-valued functions). Let Zi, . . . , Zn be independent
random variables, and f : Zn 7→ H is a function into a Hilbert space H such that the following
inequality holds for any zi, . . . , zi−1, zi+1, . . . , zn

sup
zi,z′

i

∥f(z1, . . . , zi−1, zi, zi+1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)∥ ≤ β, (13)

Then for any p > 1 we have

∥∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥∥p ≤ (
√
2p+ 1)

√
nβ.
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Proof of Lemma 11. Define a real-valued function h : Zn 7→ R as

h(z1, . . . , zn) = ∥f(z1, . . . , zn)− E[f(Z1, . . . , Zn)]∥.

We notice that this function satisfies the increment condition. For any i and
z1, . . . , zi−1, zi+1, . . . , zn, we have

sup
zi,z

′
i

|h(z1, . . . , zi−1, zi, zi+1, . . . , zn)− h(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)|

= sup
zi,z

′
i

|∥f(z1, . . . , zn)− E[f(Z1, . . . , Zn)]∥ − ∥f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)− E[f(Z1, . . . , Zn)]∥|

≤ sup
zi,z

′
i

|∥f(z1, . . . , zn)− f(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)∥ ≤ β.

Therefore, we can apply Lemma 9 to the real-valued function h and derive the following inequality

∥h(Z1, . . . , Zn)− E[h(Z1, . . . , Zn)]∥p ≤
√
2pnβ.

According to Lemma 10, we know the following inequality E[h(Z1, . . . , Zn)] ≤
√
nβ. Combing

the above two inequalities together and we can derive the following inequality

∥∥f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn)∥∥p
≤∥h(Z1, . . . , Zn)− E[h(Z1, . . . , Zn)]∥p + ∥E[h(Z1, . . . , Zn)]∥p
≤(
√

2p+ 1)
√
nβ.

The proof is complete.

Proof of Theorem 1. For g(Z1, . . . , Zn) and A ⊂ [n], we write ∥∥g∥∥p(ZA) = (E [∥f∥p ZA])
1
p .

Without loss of generality, we suppose that n = 2k. Otherwise, we can add extra functions equal to
zero, increasing the number of therms by at most two times.

Consider a sequence of partitions P0, . . . ,Pk with P0 = {{i} : i ∈ [n]},Pk with Pn = {[n]}, and
to get Pl from Pl+1 we split each subset in Pl+1 into two equal parts. We have

P0 = {{1}, . . . , {2k}}, P1 = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}, Pk = {{1, . . . , 2k}}.

We have |Pl| = 2k−l and |P | = 2l for each P ∈ Pl. For each i ∈ [n] and l = 0, . . . , k, denote by
P l(i) ∈ Pl the only set from Pl that contains i. In particular, P 0(i) = {i} and PK(i) = [n].

For each i ∈ [n] and every l = 0, . . . , k consider the random variables

gl
i = gl

i(Zi, Z[n]\P l(i)) = E[gi|Zi, Z[n]\P l(i)],

i.e. conditioned on zi and all the variables that are not in the same set as Zi in the partition Pl. In
particular, g0

i = gi and gk
i = E[gi|Zi]. We can write a telescopic sum for each i ∈ [n],

gi − E[gi|Zi] =

k−1∑
l=1

gl
i − gl+1

i .

Then, by the triangle inequality∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

E[gi|Zi]

∥∥∥∥∥
∥∥∥∥∥
p

+

k−1∑
l=0

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gl
i − gl+1

i

∥∥∥∥∥
∥∥∥∥∥
p

. (14)

To bound the first term, since ∥E[gi|Zi]∥ ≤ G, we can check that the vector-valued function
f(Z1, . . . , Zn) =

∑n
i=1 E[gi|Zi] satisfies (13) with β = 2G, and E[E[gi|Zi]] = 0, applying Lemma

11 with β = 2G, we have ∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

E[gi|Zi]

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√

2p+ 1)
√
nG. (15)
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Then we start to bound the second term of the right hand side of (14). Observe that

gl+1
i (Zi, Z[n]\P l+1(i)) = E

[
gl
i(Zi, Z[n]\P l(i))

∣∣Zi, Z[n]\P l+1(i)

]
,

where the expectation is taken with respect to the variables Zj , j ∈ P l+1(i)\P l(i). Changing any
Zj would change gl

i by β. Therefore, we apply Lemma 11 with f = gl
i where there are 2l random

variables and obtain a uniform bound∥∥∥∥gl
i − gl+1

i

∥∥∥∥
p
(Zi, Z[n]\P l+1(i)) ≤ (

√
2p+ 1)

√
2lβ, ∀p ≥ 2,

Taking integration over (Zi, Z[n]\P l+1(i)), we have
∥∥∥∥gl

i − gl+1
i

∥∥∥∥
p
≤ (

√
2p+ 1)

√
2lβ as well.

Next, we turn to the sum
∑

i∈P l gl
i − gl+1

i for any P l ∈ Pl. Since gl
i − gl+1

i for i ∈ P l depends
only on Zi, Z[n]\P l , the terms are independent and zero mean conditioned on Z[n]\P l . Applying
Lemma 7, we have for any p ≥ 2,∥∥∥∥∥∥

∥∥∥∥∥∥
∑
i∈P l

gl
i − gl+1

i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

p

(Z[n]\P l) ≤

(
2 · 2

1
2p

√
2lp

e

)p
1

2l

∑
i∈P l

∥∥∥∥gl
i − gl+1

i

∥∥∥∥p
p
(Z[n]\P l).

Integrating with respect to (Z[n]\P l) and using
∥∥∥∥gl

i − gl+1
i

∥∥∥∥
p
≤ (

√
2p+ 1)

√
2lβ, we have∥∥∥∥∥∥

∥∥∥∥∥∥
∑
i∈P l

gl
i − gl+1

i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

≤

(
2 · 2

1
2p

√
2lp

e

)
1

2l
× 2l(

√
2p+ 1)

√
2lβ

=21+
1
2p

(√
p

e

)
(
√

2p+ 1)2lβ.

Then using triangle inequality over all sets P l ∈ Pl, we have∥∥∥∥∥∥
∥∥∥∥∥∥
∑
i∈[n]

gl
i − gl+1

i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

≤
∑

P l∈Pl

∥∥∥∥∥∥
∥∥∥∥∥∥
∑
i∈P l

gl
i − gl+1

i

∥∥∥∥∥∥
∥∥∥∥∥∥
p

≤2k−l × 21+
1
2p

(√
p

e

)
(
√
2p+ 1)2lβ

≤21+
1
2p

(√
p

e

)
(
√

2p+ 1)2kβ.

Recall that 2k ≤ n due to the possible extension of the sample. Then we have

k−1∑
l=0

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gl
i − gi+1

i

∥∥∥∥∥
∥∥∥∥∥
p

≤ 22+
1
2p

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .

We can plug the above bound together with (15) into (14), to derive the following inequality∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi

∥∥∥∥∥
∥∥∥∥∥
p

≤ 2(
√
2p+ 1)

√
nG+ 22+

1
2p

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .

The proof is completed.

C.2 PROOFS OF SUBSECTION 3.2

Proof of Theorem 2. Let S = {z1, . . . , zn} be a set of independent random variables each taking
values in Z and S′ = {z′1, . . . , z′n} be its independent copy. For any i ∈ [n], define S(i) =
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{zi, . . . , zi−1, z
′
i, zi+1, . . . , zn} be a dataset replacing the i-th sample in S with another i.i.d. sample

z′i. Then we can firstly write the following decomposition

n∇F (A(S))− n∇FS(A(S))

=

n∑
i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi).

We denote that gi(S) = Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
, thus we have

∥n∇F (A(S))− n∇FS(A(S))∥2

=

∥∥∥∥∥
n∑

i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi)

∥∥∥∥∥
2

≤ 2nβ +

∥∥∥∥∥
n∑

i=1

gi(S)

∥∥∥∥∥
2

,

(16)

where the inequality holds from the definition of uniform stability in gradients.

According to our assumptions, we get ∥gi(S)∥2 ≤ 2M and

Ezi [gi(S)] = EziEz′
i

[
EZ

[
∇f(A(S(i));Z)

]
−∇f(A(S(i)); zi)

]
= Ez′

i

[
EZ

[
∇f(A(S(i));Z)

]
− Ezi

[
∇f(A(S(i)); zi)

]]
= 0,

where this equality holds from the fact that zi and Z follow from the same distribution. For any
i ∈ [n], any j ̸= i and any z′′j , we have∥∥gi(z1, . . . , zj−1, zj , zj+1, . . . , zn)− gi(z1, . . . , zj−1, z

′′
j , zj+1, . . . , zn)

∥∥
2

≤
∥∥∥Ez′i

[
EZ

[
∇f(A(S(i));Z)

]
−∇f(A(S(i)); zi)

]
− Ez′i

[
EZ

[
∇f(A(S

(i)
j );Z)

]
−∇f(A(S

(i)
j ); zi)

]∥∥∥
2

≤
∥∥∥Ez′i

[
EZ

[
∇f(A(S(i));Z)−∇f(A(S

(i)
j );Z)

]]∥∥∥
2
+

∥∥∥Ez′i

[
EZ

[
∇f(A(S(i));Z)

]
−∇f(A(S

(i)
j ); zi)

]∥∥∥
2

≤2β,

where S(i) = {zi, . . . , zi−1, z
′
i, zi+1, . . . , zn}. Thus, we have verified that three conditions in

Theorem 1 are satisfied for gi(S). We have the following result for any p > 2∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

gi(S)

∥∥∥∥∥
∥∥∥∥∥
p

≤ 4(
√
2p+ 1)

√
nM + 8× 2

1
4

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉ .

We can combine the above inequality and (16) to derive the following inequality

n ∥∥∇F (A(S))− n∇FS(A(S))∥∥p

≤2nβ + 4(
√
2p+ 1)

√
nM + 8× 2

1
4

(√
p

e

)
(
√
2p+ 1)nβ ⌈log2 n⌉ .
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According to Lemma 4 for any δ ∈ (0, 1), with probability at least 1− δ, we have

n∥∇F (A(S))−∇FS(A(S))∥2

≤2nβ + 4
√
nM + 8× 2

3
4
√
enβ ⌈log2 n⌉ log (e/δ) + (4e

√
2nM + 8× 2

1
4
√
enβ ⌈log2 n⌉)

√
log e/δ.

This implies that

∥∇F (A(S))−∇FS(A(S))∥2

≤2β +
4M

(
1 + e

√
2 log (e/δ)

)
√
n

+ 8× 2
1
4 (
√
2 + 1)

√
eβ ⌈log2 n⌉ log (e/δ).

The proof is completed.

Proof of Theorem 3. We can firstly write the following decomposition

n∇F (A(S))− n∇FS(A(S))

=

n∑
i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi).

We denote that hi(S) = Ez′
i

[
EZ

[
∇f(A(S(i)), Z)

]
−∇f(A(S(i)), zi)

]
, we have

n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

hi(S)

=

n∑
i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi),

which implies that ∥∥∥∥∥n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

hi(S)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

EZ

[
∇f(A(S);Z)]− Ez′

i

[
∇f(A(S(i)), Z)

]]
+

n∑
i=1

Ez′
i

[
∇f(A(S(i)), zi)

]
−

n∑
i=1

∇f(A(S), zi)

∥∥∥∥∥
2

≤ 2nβ,

(17)

where the inequality holds from the definition of uniform stability in gradients.

Then, for any i = 1, . . . , n, we define qi(S) = hi(S) − ES{zi}[hi(S)]. It is easy to verify that
ES\{zi}[qi(S)] = 0 and Ezi [hi(S)] = Ezi [qi(S)] − EziES\{zi}[qi(S)] = 0 − 0 = 0. Also, for
any j ∈ [n] with j ̸= i and z′′j ∈ Z , we have the following inequality

∥qi(S)− qi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2

≤∥hi(S)− hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2

+ ∥ES\{zi}[hi(S)]− ES\{zi}[hi(1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)]∥2.
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For the first term ∥hi(S)−hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2, it can be bounded by 2β according

to the definition of uniform stability. Similar result holds for the second term ∥ES\{zi}[hi(S)] −
ES\{zi}[hi(z1, . . . , zj−1, z

′′
j , zj+1, . . . , zn)]∥2 according to the uniform stability. By a combina-

tion of the above analysis, we get ∥qi(S) − qi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2 ≤ ∥hi(S) −

hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)∥2 ≤ 4β.

Thus, we have verified that three conditions in Theorem 1 are satisfied for qi(S). We have the
following result for any p ≥ 2∥∥∥∥∥

∥∥∥∥∥
n∑

i=1

qi(S)

∥∥∥∥∥
∥∥∥∥∥
p

≤ 24+
1
4

(√
p

e

)
(
√
2p+ 1)nβ ⌈log2 n⌉ . (18)

Furthermore, we can derive that

n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

hi(S) +

n∑
i=1

qi(S)

=n∇F (A(S))− n∇FS(A(S))−
n∑

i=1

ES\{zi}[hi(S)]

=n∇F (A(S))− n∇FS(A(S))− nES′ [∇F (A(S′))] + nES [∇F (A(S))].

Due to the i.i.d. property between S and S′, we know that ES′ [∇F (A(S′))] = ES [∇F (A(S))].
Thus, combined above equality, (17) and (18), we have

∥∥n∇F (A(S))− n∇FS(A(S))− nES [∇F (A(S))] + nES′ [∇FS(A(S′))]∥∥p

≤

∥∥∥∥∥
∥∥∥∥∥n∇F (A(S))− n∇FS(A(S))−

n∑
i=1

hi(S)

∥∥∥∥∥
∥∥∥∥∥
p

+

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

hi(S)− nES [∇F (A(S))] + nES′FS [A(S′)]

∥∥∥∥∥
∥∥∥∥∥
p

=

∥∥∥∥∥
∥∥∥∥∥n∇F (A(S))− n∇FS(A(S))−

n∑
i=1

hi(S)

∥∥∥∥∥
∥∥∥∥∥
p

+

∥∥∥∥∥
∥∥∥∥∥

n∑
i=1

qi(S)

∥∥∥∥∥
∥∥∥∥∥
p

≤2nβ + 24+
1
4

(√
p

e

)
(
√

2p+ 1)nβ ⌈log2 n⌉

≤16× 2
3
4

(√
1

e

)
pnβ ⌈log2 n⌉+ 32

(√
1

e

)
√
pnβ ⌈log2 n⌉ .

According to Lemma 4 for any δ ∈ (0, 1), with probability at least 1− δ/3, we have

∥∇F (A(S))−∇FS(A(S))∥2
≤∥ES′ [∇FS(A(S′))]− ES [∇F (A(S))]∥2

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

(19)

Next, we need to bound the term ∥ES′ [∇FS(A(S′))] − ES [∇F (A(S))]∥2. There holds that
∥ESES′ [∇FS(A(S′))]∥2 = ∥ES [∇F (A(S))]∥2. Then, by the Bernstein inequality in Lemma 5,
we obtain the following inequality with probability at least 1− δ/3,

∥∥ES′ [∇FS(A(S′))]− ES [∇F (A(S))]
∥∥
2
≤

√
2Ezi [∥ES′∇f(A(S′); zi)∥22] log 6

δ

n
+

M log 6
δ

n
. (20)

Then using Jensen’s inequality, we have

Ezi [∥ES′∇f(A(S′); zi)∥22] ≤ EziES′∥∇f(A(S′); zi)∥22
=EZES′∥∇f(A(S′);Z)∥22 = EZES∥∇f(A(S);Z)∥22.

(21)
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Combing (19), (20) with (21), we finally obtain that with probability at least 1− 2δ/3,

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
2EZES∥∇f(A(S);Z)∥22 log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

(22)

Next, since S = {zi, . . . , zn}, we define p = p(z1, . . . , zn) = EZ [∥∇f(A(S);Z)∥22] and pi =
pi(z1, . . . , zn) = supzi∈Z p(zi, . . . , zn). So there holds pi ≥ p for any i = 1, . . . , n and any
{z1, . . . , zn} ∈ Zn. Also, there holds that

n∑
i=1

(pi − p)2

=

n∑
i=1

(
sup
zi∈Z

EZ [∥∇f(A(S′);Z)∥22]− EZ [∥∇f(A(S);Z)∥22]
)2

≤
n∑

i=1

(
EZ

[
sup
zi∈Z

∥∇f(A(S′);Z)∥22 − ∥∇f(A(S);Z)∥22
])2

=

n∑
i=1

(
EZ

[(
sup
zi∈Z

∥∇f(A(S′);Z)∥2 − ∥∇f(A(S);Z)∥2
)(

sup
zi∈Z

∥∇f(A(S′);Z)∥2 + ∥∇f(A(S);Z)∥2
)])2

≤
n∑

i=1

β2

(
EZ

[
∥∇f(A(S);Z)∥2 + sup

zi∈Z
∥∇f(A(S);Z)∥2

])2

≤nβ2 (2EZ [∥∇f(A(S);Z)∥2 + β])2

≤8nβ2p+ 2nβ4,
(23)

where the first inequality follows from the Jensen’s inequality. The second and third inequalities
follow from the definition of uniform stability in gradients. The last inequality holds from that
(a+ b)2 ≤ 2a2 + 2b2.

From (23), we know that p is (8nβ2, 2nβ4) weakly self-bounded. Thus, by Lemma 6, we obtain
that with probability at least 1− δ/3,

EZES [∥∇f(A(S);Z)∥22]− EZ [∥∇f(A(S);Z)∥22]

≤
√
(16nβ2ESEZ [∥∇f(A(S);Z)∥22] + 4nβ4) log(3/δ)

=

√
(ESEZ [∥∇f(A(S);Z)∥22] +

1

4
β2)16nβ2 log(3/δ)

≤1

2
(ESEZ [∥∇f(A(S);Z)∥22] +

1

4
β2) + 8nβ2 log(3/δ),

where the last inequality follows from that
√
ab ≤ a+b

2 for all a, b > 0. Thus, we have

EZES [∥∇f(A(S);Z)∥22] ≤ 2EZ [∥∇f(A(S);Z)∥22] +
1

4
β2 + 16nβ2 log(3/δ). (24)

Substituting (24) into (22), we finally obtain that with probability at least 1− δ

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
2
(
2EZ [∥∇f(A(S);Z)∥22] + 1

4β
2 + 16nβ2 log(3/δ)

)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

(25)
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According to inequality
√
a+ b =

√
a +

√
b for any a, b > 0, with probability at least 1 − δ, we

have

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
4EZ [∥∇f(A(S);Z)∥22] log 6

δ

n
+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

The proof is complete.

Proof of Proposition 1. According to the proof in Theorem 3, we have the following inequality with
probability at least 1− δ

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
2
(
2EZ [∥∇f(A(S);Z)∥22] + 1

4β
2 + 16nβ2 log(3/δ)

)
log 6

δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

(26)

Since SGC implies that EZ [∥∇f(w;Z)∥22] ≤ ρ∥∇F (w)∥22, according to inequalities
√
ab ≤ ηa +

1
η b and

√
a+ b ≤

√
a+

√
b for any a, b, η > 0, we have the following inequality with probability at

least 1− δ

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
2
(
2ρ∥∇F (A(S))∥22 + 1

4β
2 + 16nβ2 log(3/δ)

)
log 6

δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ

≤

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

η

1 + η
∥∇F (A(S))∥+ 1 + η

η

4ρM log 6
δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

which implies that

∥∇F (A(S))∥2 ≤ (1 + η)∥∇FS(A(S))∥2 + C
1 + η

η

(
M

n
log

6

δ
+ β log n log

1

δ

)
.

The proof is complete.

Proof of Remark 7. According to the proof in Theorem 3, we have the following inequality that with
probability at least 1− δ

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
4EZ [∥∇f(A(S);Z)∥22] log 6

δ

n
+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

(27)

Since f(w) is γ-smooth, we have

EZ [∥∇f(A(S);Z)∥22]
≤EZ [∥∇f(A(S);Z)−∇f(w∗;Z)∥22 + ∥∇f(w∗;Z)∥22]
≤γ2∥A(S)−w∗∥22 + EZ [∥∇f(w∗;Z)∥22]

(28)
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Plugging (28) into (27), we have

∥∇F (A(S))−∇FS(A(S))∥2

≤

√
4(γ2∥A(S)−w∗∥22 + EZ [∥∇f(w∗;Z)∥22]) log 6

δ

n
+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ

≤2γ∥A(S)−w∗∥2

√
log 6

δ

n
+

√
4EZ [∥∇f(w∗;Z)∥22] log 6

δ

n

+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ,

(29)

where the second inequality holds because
√
a+ b ≤

√
a+

√
b for any a, b > 0, which means that

∥∇F (A(S))−∇FS(A(S))∥2

≲β log n log(1/δ) +
log(1/δ)

n
+

√
EZ [∇∥f(w∗;Z)∥22] log(1/δ)

n
+ ∥A(S)−w∗∥

√
log(1/δ)

n
.

The proof is complete.

C.3 PROOFS OF SUBSECTION 3.2

Proof of Theorem 4. Inequality (29) implies that

∥∇F (A(S))∥2 − ∥∇FS(A(S))∥2

≤

√
4(γ2∥A(S)−w∗∥22 + EZ [∥∇f(w∗;Z)∥22]) log 6

δ

n
+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ

≤2γ∥A(S)−w∗∥2

√
log 6

δ

n
+

√
4EZ [∥∇f(w∗;Z)∥22] log 6

δ

n
+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n

+
M log 6

δ

n
+ 16× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ,

When F (w) satisfies the PL condition and w∗ is the projection of A(S) onto the solution set
argminw∈W F (w), there holds the following error bound property (refer to Theorem 2 in Karimi
et al. (2016))

∥∇F (A(S))∥2 ≥ µ∥A(S)−w∗∥2.
Thus, we have

µ∥A(S)−w∗∥2 ≤ ∥∇F (A(S))∥2

≤∥∇FS(A(S))∥2 + 2γ∥A(S)−w∗∥2

√
log 6

δ

n
+

√
4EZ [∥∇f(w∗;Z)∥22] log 6

δ

n

+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.
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When n ≥ 16γ2 log 6
δ

µ2 , we have 2γ

√
log 6

δ

n ≤ µ
2 , then we can derive that

µ∥A(S)−w∗∥2 ≤ ∥∇F (A(S))∥2

≤∥∇FS(A(S))∥2 +
µ

2
∥A(S)−w∗∥2 +

√
4EZ [∥∇f(w∗;Z)∥22] log 6

δ

n

+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ.

This implies that
∥A(S)−w∗∥2

≤ 2

µ

(
∥∇FS(A(S))∥2 +

√
4EZ [∥∇f(w∗;Z)∥22] log 6

δ

n

+

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n
+

M log 6
δ

n

+ 16× 2
3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 32

√
eβ ⌈log2 n⌉

√
log 3e/δ

)
.

(30)

Then, substituting (30) into (29), when n ≥ 16γ2 log 6
δ

µ2 , with probability at least 1− δ

∥∇F (A(S))−∇FS(A(S))∥

≤∥∇FS(A(S))∥+ 4

√
EZ [∥∇f(w∗;Z)∥2] log 6

δ

n
+ 2

√(
1
2β

2 + 32nβ2 log(3/δ)
)
log 6

δ

n

+
2M log 6

δ

n
+ 32× 2

3
4
√
eβ ⌈log2 n⌉ log (3e/δ) + 64

√
eβ ⌈log2 n⌉

√
log 3e/δ

≤∥∇FS(A(S))∥+ C

√2EZ [∥∇f(w∗;Z)∥2] log 6
δ

n
+

M log 6
δ

n
+ eβ ⌈log2 n⌉ log (3e/δ)

 ,

(31)
where C is a positive constant.

Since F satisfies the PL condition with µ, we have

F (A(S))− F (w∗) ≤ ∥∇F (A(S))∥2

2µ
, ∀w ∈ W. (32)

So to bound F (A(S))− F (w∗), we need to bound the term ∥∇F (A(S))∥2. And there holds

∥∇F (A(S))∥22 = 2 ∥∇F (A(S))−∇FS(A(S))∥2 + 2∥∇FS(A(S))∥22. (33)

On the other hand, when f is nonegative and γ-smooth, from Lemma 4.1 of Srebro et al. (2010), we
have

∥∇f(w∗; z)∥22 ≤ 4γf(w∗; z),

which implies that
EZ [∥∇f(w∗;Z)∥22] ≤ 4γEZf(w

∗;Z) = 4γF (w∗). (34)

Combing (31),(32), (33) and (34), using Cauchy-Bunyakovsky-Schwarz inequality, we can derive
that

F (A(S))− F (w∗) ≲ ∥∇FS(A(S))∥22 +
F (w∗) log (1/δ)

n
+

log2(1/δ)

n2
+ β2 log2 n log2(1/δ).

The proof is complete.
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D PROOFS OF ERM

Proof of Lemma 1. Since FS(i)(w) = 1
n

(
f(w; z′i) +

∑
j ̸=i f(w, zj)

)
, we have

FS(ŵ
∗(S(i)))− FS(ŵ

∗(S))

=
f(ŵ∗(S(i)); zi)− f(ŵ∗(S); zi)

n
+

∑
j ̸=i(f(ŵ

∗(S(i)); zj)− f(ŵ∗(S); zj))

n

=
f(ŵ∗(S(i)); zi)− f(ŵ∗(S); zi)

n
+

f(ŵ∗(S); z′i)− f(ŵ∗(S(i)); z′i)

n

+
(
FS(i)(ŵ∗(S(i)))− FS(i)(ŵ∗(S))

)
≤ f(ŵ∗(S(i)); zi)− f(ŵ∗(S); zi)

n
+

f(ŵ∗(S); z′i)− f(ŵ∗(S(i)); z′i)

n

≤ 2M

n
∥ŵ∗(S(i))− ŵ∗(S)∥2,

where the first inequality follows from the fact that ŵ∗(S(i)) is the ERM of FS(i) and the second
inequality follows from the Lipschitz property. Furthermore, for ŵ∗(S(i)), the convexity of f and
the strongly-convex property of FS imply that its closest optima point of FS is ŵ∗(S) (the global
minimizer of FS is unique). Then, there holds that

FS(ŵ
∗(S(i)))− FS(ŵ

∗(S)) ≥ µ

2
∥ŵ∗(S(i))− ŵ∗(S)∥22.

Then we get

µ

2
∥ŵ∗(S(i))− ŵ∗(S)∥22 ≤ FS(ŵ

∗(S(i)))− FS(ŵ
∗(S)) ≤ 2M

n
∥ŵ∗(S(i))− ŵ∗(S)∥2,

which implies that ∥ŵ∗(S(i))− ŵ∗(S)∥2 ≤ 4M
nµ . Combined with the smoothness property of f we

obtain that for any S(i) and S

∀z ∈ Z,
∥∥∥∇f(ŵ∗(S(i)); z)−∇f(ŵ∗(S); z)

∥∥∥
2
≤ 4Mγ

nµ
.

The proof is complete.

Proof of Theorem 5. From Lemma 1, we have ∥∇f(ŵ∗(S); z)−∇f(ŵ∗(S′); z)∥2 ≤ 4Mγ
nµ . Since

∇FS(ŵ
∗) = 0, we have ∥∇FS(ŵ

∗)∥2 = 0. According to Theorem 4, we can derive that

F (ŵ∗(S))− F (w∗) ≲
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

E PROOFS OF PGD

Proof of Theorem 6. According to smoothness assumption and η = 1/γ, we can derive that

FS(wt+1)− FS(wt)

≤⟨wt+1 −wt,∇FS(wt)⟩+
γ

2
∥wt+1 −wt∥22

=− ηt∥∇FS(wt)∥22 +
γ

2
η2t ∥∇FS(wt)∥22

=
(γ
2
η2t − ηt

)
∥∇FS(wt)∥22

≤− 1

2
ηt∥∇FS(wt)∥22.
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According to above inequality and the assumptions that FS is µ-strongly convex, we can prove that

FS(wt+1)− FS(wt) ≤ −1

2
ηt∥∇FS(wt)∥22 ≤ −µηt(FS(wt)− FS(ŵ

∗)),

which implies that

FS(wt+1)− FS(ŵ
∗) ≤ (1− µηt)(FS(wt)− FS(ŵ

∗)).

According to the property for γ-smooth for FS and the property for µ-strongly convex for FS , we
have

1

2γ
∥∇FS(w)∥22 ≤ FS(w)− FS(ŵ

∗) ≤ 1

2µ
∥∇FS(w)∥22,

which means that µ
γ ≤ 1.

Then If ηt = 1/γ, 0 ≤ 1− µηt < 1, taking over T iterations, we get

FS(wt+1)− FS(ŵ
∗) ≤ (1− µηt)

T (FS(wt)− FS(ŵ
∗)). (35)

Combined (35), the smoothness of FS and the nonnegative property of f , it can be derive that

∥∇FS(wT+1))∥22 = O

(
(1− µ

γ
)T
)
.

On the other hand, from Lemma 2, we have β = ∥∇f(wT+1(S); z)−∇f(wT+1(S
′); z)∥2 ≤

2Mγ
nµ . Since ∥∇FS(wT+1)∥2 = O

(
(1− µ

γ )
T
)

. According to Theorem 4, we can derive that

F (wT+1)− F (w∗) ≲

(
1− µ

γ

)2T

+
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

Let T ≍ log n, we have

F (wT+1)− F (w∗) ≲
F (w∗) log (1/δ)

n
+

log2 n log2(1/δ)

n2
.

The proof is complete.

F PROOFS OF SGD

We first introduce some necessary lemmata on the empirical risk.

Lemma 12 ((Lei & Tang, 2021)). Let {wt}t be the sequence produced by SGD with ηt ≤ 1
2γ for

all t ∈ N. Suppose Assumption 1 hold. Assume for all z, the function w 7→ f(w; z) is M -Lipschitz
and γ-smooth. Then, for any δ ∈ (0, 1), with probability at least 1− δ, there holds that

t∑
k=1

ηk∥∇FS(wk)∥22 = O

(
log

1

δ
+

t∑
k=1

η2k

)
.

Lemma 13 ((Lei & Tang, 2021)). Let {wt}t be the sequence produced by SGD with ηt =
2

µ(t+t0)

such that t0 ≥ max{ 4γ
µ , 1} for all t ∈ N. Suppose Assumption 1 hold. Assume for all z, the function

w 7→ f(w; z) is M -Lipschitz and γ-smooth and assume FS satisfies PL condition with parameter
µ. Then, for any δ ∈ (0, 1), with probability at least 1− δ, there holds that

FS(wT+1)− FS(ŵ
∗) = O

(
log(T ) log3(1/δ)

T

)
.

Lemma 14 ((Lei & Tang, 2021)). Let e be the base of the natural logarithm. There holds the
following elementary inequalities.
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• If θ ∈ (0, 1), then
∑t

k=1 k
−θ ≤ t1−θ/(1− θ);

• If θ = 1, then
∑t

k=1 k
−θ ≤ log(et);

• If θ > 1, then
∑t

k=1 k
−θ ≤ θ

θ−1 .

Proof of Lemma 3. We have known that FS(i)(w) = 1
n

(
f(w; z′i) +

∑
j ̸=i f(w; zj)

)
. We denote

ŵ∗(S(i)) be the ERM of FS(i)(w) and ŵ∗
S be the ERM of FS(w). From Lemma 1, we know that

∀z ∈ Z,
∥∥∥∇f(ŵ∗(S(i)); z)− f(ŵ∗(S); z)

∥∥∥
2
≤ 4Mγ

nµ
.

Also, for wt, the convexity of f and the strongly-convex property implies that its closest optima
point of FS is ŵ∗(S) (the global minimizer of FS is unique). Then, there holds that

µ

2
∥wt − ŵ∗(S)∥22 ≤ FS(wt)− FS(ŵ

∗(S)) = ϵopt(wt).

Thus we have ∥wt − ŵ∗(S)∥2 ≤
√

2ϵopt(wt)
µ . A similar relation holds between ŵ∗(S(i)) and wi

t.
Combined with the Lipschitz property of f we obtain that for ∀z ∈ Z , there holds that∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2

≤ ∥∇f(wt; z)−∇f(ŵ∗(S); z)∥2 +
∥∥∥∇f(ŵ∗(S); z)−∇f(ŵ∗(S(i)); z)

∥∥∥
2

+
∥∥∥∇f(ŵ∗(S(i)); z)−∇f(wi

t; z)
∥∥∥
2

≤ γ∥wt − ŵ∗(S)∥2 +
4Mγ

nµ
+ γ∥ŵ∗(S(i))−wi

t∥2

≤ γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ
+ γ

√
2ϵopt(wi

t)

µ
.

According to Lemma 13, for any dataset S, the optimization error ϵopt(wt) is uniformly bounded by

the same upper bound. Therefore, we write
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ + 4Mγ
nµ

here.

The proof is complete.

Now We begin to prove Lemma 7.

Proof of Lemma 7. If f is L-Lipschitz and γ-smooth and FS is µ-strongly convex, according to (31)
in the proof of Theorem 4, we know that for all w ∈ W and any δ ∈ (0, 1), with probability at least

1− δ/2, when n >
16γ2 log 6

δ

µ2 , we have(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

≤16

(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇FS(wt)∥22 +
4C2L2 log2 6

δ

n2
+

8C2EZ [∥∇f(w∗;Z)∥22] log
2 6

δ

n

+

(
T∑

t=1

ηt

)−1 T∑
t=1

ηtC
2e2β2

t ⌈log2 n⌉
2
log2 (3e/δ),

(36)

where βt =
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2

and C is a positive constant.
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From Lemma 3, we have
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ + 4Mγ
nµ , thus

β2
t =

∥∥∇f(wt; z)−∇f(wi
t; z)

∥∥2
2

≤

(
2γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ

)2

≤16γ2(FS(wt)− FS(ŵ
∗(S)))

µ
+

32M2γ2

n2µ2

≤8γ2∥∇FS(wt)∥22
µ2

+
32M2γ2

n2µ2
,

(37)

where the second inequality holds from Cauchy-Bunyakovsky-Schwarz inequality and the second
inequality satisfies because FS is µ-strongly convex.

Plugging (37) into (36), with probability at least 1− δ/2, when n >
16γ2 log 6

δ

µ2 , we have(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

≤

(
16 +

8γ2C2e2 ⌈log2 n⌉
2
log2 (6e/δ)

µ2

)(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇FS(wt)∥22

+
4C2L2 log2 12

δ

n2
+

8C2EZ [∥∇f(w∗;Z)∥22] log
2 12

δ

n
+

32L2γ2C2e2 ⌈log2 n⌉
2
log2 (6e/δ)

n2µ2
,

(38)

When ηt = η1t
−θ, θ ∈ (0, 1), with η1 ≤ 1

2β and Assumption 1, according to Lemma 12 and Lemma
14, we obtain the following inequality with probability at least 1− δ/2,

(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇FS(wt)∥2 =


O
(

log(1/δ)
T−θ

)
, if θ < 1/2

O
(

log(1/δ)

T− 1
2

)
, if θ = 1/2

O
(

log(1/δ)
T θ−1

)
, if θ > 1/2.

(39)

On the other hand, when f is nonegative and γ-smooth, from Lemma 4.1 of Srebro et al. (2010), we
have

∥∇f(w∗; z)∥22 ≤ 4γf(w∗; z),

which implies that

EZ [∥∇f(w∗;Z)∥22] ≤ 4γEZf(w
∗;Z) = 4γF (w∗). (40)

Plugging (40), (39) into (38), with probability at least 1− δ, we derive that(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22

=


O
(

log2 n log3(1/δ)
T−θ

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ < 1/2

O
(

log2 n log3(1/δ)

T− 1
2

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ = 1/2

O
(

log2 n log3(1/δ)
T θ−1

)
+O

(
log2 n log2(1/δ)

n2 + F (w∗) log2(1/δ)
n

)
, if θ > 1/2.

When θ < 1/2, we set T ≍ n
2
θ and assume F (w∗) = O( 1n ), then we obtain the following result

with probability at least 1− δ(
T∑

t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22 = O

(
log2 n log3(1/δ)

n2

)
.
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When θ = 1/2, we set T ≍ n4 and assume F (w∗) = O( 1n ), then we obtain the following result
with probability at least 1− δ(

T∑
t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22 = O

(
log2 n log3(1/δ)

n2

)
.

When θ > 1/2, we set T ≍ n
2

1−θ and assume F (w∗) = O( 1n ), then we obtain the following result
with probability at least 1− δ(

T∑
t=1

ηt

)−1 T∑
t=1

ηt∥∇F (wt)∥22 = O

(
log2 n log3(1/δ)

n2

)
.

The proof is complete.

Proof of Theorem 8. Since F is µ-strongly convex, we have

F (w)− F (w∗) ≤
∥∇F (w)∥22

2µ
, ∀w ∈ W. (41)

So to bound F (wT+1)− F (w∗), we need to bound the term ∥∇F (wT+1)∥22. And there holds

∥∇F (wT+1)∥22 = 2 ∥∇F (wT+1)−∇FS(wT+1)∥2 + 2∥∇FS(wT+1)∥22. (42)

From (31) in the proof of Theorem 4, if f is L-Lipschitz and γ-smooth and FS is µ-strongly convex,
for all w ∈ W and any δ > 0, when n ≥ 16γ2 log 6

δ

µ2 , with probability at least 1− δ/2, there holds

∥∇F (wT+1)−∇FS(wT+1)∥2

≤ ∥∇FS(wT+1)∥2 + C

√2EZ [∥∇f(w∗;Z)∥22] log 12
δ

n
+

M log 12
δ

n
+ eβ ⌈log2 n⌉ log (6e/δ)


≤ ∥∇FS(wT+1)∥2 + C

√8γF (w∗) log 12
δ

n
+

M log 12
δ

n
+ eβ ⌈log2 n⌉ log (6e/δ)

 ,

(43)
where the last inequality follows from Lemma 4.1 of Srebro et al. (2010) when f is nonegative and
γ-smooth (see (40)) and C is a positive constant. Then we can derive that

∥∇F (wT+1)−∇FS(wT+1)∥22

≤4∥∇FS(wT+1)∥22 +
32C2γF (w∗) log 12

δ

n
+

4M2C2 log2 12
δ

n2
+ 4e2β2

T+1 ⌈log2 n⌉
2
log2 (6e/δ).

(44)

From Lemma 3, we have
∥∥∇f(wt; z)−∇f(wi

t; z)
∥∥
2
≤ 2γ

√
2ϵopt(wt)

µ + 4Mγ
nµ , thus

β2
t =

∥∥∇f(wt; z)−∇f(wi
t; z)

∥∥2
2

≤

(
2γ

√
2ϵopt(wt)

µ
+

4Mγ

nµ

)2

≤16γ2(FS(wt)− FS(ŵ
∗(S)))

µ
+

32M2γ2

n2µ2

≤8γ2∥∇FS(wt)∥22
µ2

+
32M2γ2

n2µ2
,

(45)
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where the second inequality holds from Cauchy-Bunyakovsky-Schwarz inequality and the second
inequality satisfies because FS is µ-strongly convex.

Plugging (45) into (44), with probability at least 1− δ/2, when , we have

∥∇F (wT+1)−∇FS(wT+1)∥22

≤
(
4 + 32e2 ⌈log2 n⌉

2
log2 (6e/δ)

)
∥∇FS(wT+1)∥22 +

32C2γF (w∗) log 6
δ

n

+
4L2C2 log2 12

δ

n2
+

128M2γ2e2 ⌈log2 n⌉
2
log2 (6e/δ)

n2µ2
.

(46)

According to the smoothness property of FS and Lemma 13, it can be derived that with propability
at least 1− δ/2

∥∇FS(wT+1)∥22 = O

(
log T log3(1/δ)

T

)
. (47)

Substituting (47), (46) into (42), we derive that

∥∇F (wT+1)∥22

=O

(
⌈log2 n⌉

2
log T log5(1/δ)

T

)
+O

(
⌈log2 n⌉

2
log2(1/δ)

n2
+

F (w∗) log(1/δ)

n

)
.

(48)

Further substituting (48) into (41), we have

F (wT+1)− F (w∗) = O

(
⌈log2 n⌉

2 log T log5(1/δ)

T

)
+O

(
⌈log2 n⌉

2 log2(1/δ)

n2
+

F (w∗) log(1/δ)

n

)
.

When choosing T ≍ n2, we finally obtain that when n, with probability at least 1− δ

F (wT+1)− F (w∗) = O

(
log4 n log5(1/δ)

n2
+

F (w∗) log(1/δ)

n

)
.

G AN EXAMPLE FOR THE 1-DIMENSIONAL MEAN ESTIMATION CASE

In this section, we provide an example for the 1-dimensional mean estimation case. If we denote
the observed data as X1, X2, . . . , Xn drawn from an unknown distribution, we assume that this
distribution is bounded (for example, any random variable X that follows this distribution satisfies
a ≤ X ≤ b).

To estimate the mean of the random variable, our objective function is defined as f(µ;X) = (X −
µ)2, which yields the usual least squares estimator. Using the definition of M-estimators, our goal
becomes:

µ̂ = argmin
µ

1

n

n∑
i=1

(Xi − µ)2.

We can easily verify that f(µ;X) satisfies the following properties: it is 4(b − a)-Lipschitz, 2-
strongly convex, and 2-smooth with respect to µ. According to Theorem 5, we know that the mean
estimated by this method, which minimizes the least squares loss (or the second central moment),
will converge to

V[X] log (1/δ)

n
+

log2 n log2(1/δ)

n2
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as the sample size n increases, where V[X] is the variance of the distribution. It’s worth noting
that since this example pertains specifically to estimating the mean of a random variable, we have
no additional parameters involved. Therefore, in this case, F (w∗) in Theorem 5, which represents
the variance of the distribution, is O(1). Consequently, we cannot achieve a convergence rate of
1/n2. However, when our objective function employs more complex model functions, our method
can achieve the faster rate of O(1/n2).

33


	Introduction
	Related Work
	Stability and Generalization
	A Moment Bound for Sums of Vector-valued Functions
	Sharper Generalization Bounds in Gradients
	Sharper Excess Risk Bounds

	Application
	Empirical Risk Minimizer
	Projected Gradient Descent
	Stochastic Gradient Descent

	Conclusion
	Additional definitions and lemmata
	Summary of Our High Probability Excess Risk Bounds.
	Proofs of Section 3
	Proofs of Subsection 3.1 
	Proofs of Subsection 3.2
	Proofs of Subsection 3.2

	Proofs of ERM
	Proofs of PGD
	Proofs of SGD
	An Example for the 1-dimensional Mean Estimation Case

