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ABSTRACT

As artificial intelligence (AI) systems approach and surpass expert human perfor-
mance across a broad range of tasks, obtaining high-quality human supervision
for evaluation and training becomes increasingly challenging. Our focus is on
tasks that require deep knowledge and skills of multiple domains. Unfortunately,
even the best human experts are knowledgeable only in a single narrow area, and
will not be able to evaluate the correctness of advanced AI systems on such su-
perhuman tasks. However, based on their narrow expertise, humans may provide
a weak signal, i.e., a complementary label indicating an option that is incorrect.
For example, a cardiologist could state that “this is not related to cardiology,” even
if they cannot identify the true disease. Based on this weak signal, we propose a
scalable oversight framework that enables us to evaluate frontier AI systems with-
out the need to prepare the ground truth. We derive an unbiased estimator of top-1
accuracy from complementary labels and quantify how many complementary la-
bels are needed to match the variance of ordinary labels. We further introduce two
estimators to combine scarce ordinary labels with abundant complementary la-
bels. We provide finite-sample deviation guarantees for both complementary-only
and the mixed estimators. Empirically, we show that we can evaluate the output of
large language models without the ground truth, if we have complementary labels.
We further show that we can train an AI system with such weak signals: we show
how we can design an agentic AI system automatically that can perform better
with this partitioned human supervision.

1 INTRODUCTION

As foundation models and artificial intelligence (AI) systems (OpenAI, 2025a; Anthropic, 2025;
DeepSeek, 2025; DeepMind, 2025) approach and in some areas surpass expert human performance,
supervision itself becomes a key bottleneck. Current alignment pipelines such as supervised fine-
tuning (SFT), reinforcement learning from human feedback (RLHF; Ziegler et al. (2019); Stiennon
et al. (2020); Ouyang et al. (2022)), or reinforcement learning from verifiable rewards (RLVR; Shao
et al. (2024); Yu et al. (2025); Lambert et al. (2025)) presuppose that humans can reliably provide
supervision or design verifiers for training and evaluation. Yet for the superalignment regime (Bow-
man et al., 2022), future models will tackle problems whose solutions are too technical or too cross-
disciplinary for any single human to verify comprehensively. When we cannot produce ground truth
or prepare automated verifiers, how should we evaluate and train such systems?

We begin from an observation about the expertise in high-skill domains in the human society
(Wuchty et al., 2007). As tasks grow in difficulty, human experts specialize ever more narrowly:
cardiology vs. oncology in medicine, sector-specific analysts in finance, or sub-subfields in science.
Specialists can often make local determinations with high precision, e.g., a cardiologist might say,
“this is not a cardiology case,” while an oncologist might point out, “this pattern is never seen in the
field of oncology.” While such judgments may fail to positively certify correctness, they readily cer-
tify that certain options are wrong. In other words, even when positive ground truth is out of reach,
human experts can often provide reliable complementary labels (Ishida et al., 2017; Yu et al., 2018;
Wang et al., 2024a; 2025): labels indicating one or more options that are definitely the incorrect.

This paper develops a scalable oversight (Amodei et al., 2016) framework that treats such parti-
tioned human supervision as a first-class supervision primitive. Our starting point is a multi-choice
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Figure 1: Superhuman tasks are routed
to a human expert who can only give
a weak signal that they are not capable
of solving the task. We show that this
weak signal, i.e., complementary label,
can be used to evaluate/train an AI sys-
tem.

evaluation setting where ordinary (true) labels may be scarce or unavailable, but complementary la-
bels arise naturally from partitioned expertise and are abundant. We show that one can utilize these
complementary labels to propose an unbiased estimator of top-1 accuracy for any system under test,
and combine them with scarce ordinary labels for refinement of the estimator. The resulting estima-
tors allow us to (i) evaluate frontier models without preparing any ground truth, and (ii) use these
evaluations as learning signals to design agentic systems on tasks beyond expert human abilities.

Our work complements many other active lines of research on scalable oversight. For example,
weak-to-strong generalization (Burns et al., 2024) studies whether strong models trained on weak
(noisy) supervisors can exceed those supervisors, possibly by eliciting knowledge that the strong
model already possesses. Easy-to-hard generalization (Sun et al., 2024) trains evaluators on easier
problems and applies them to supervise harder ones, by leveraging the assumption that evaluation
is easier than generation. Debate (Khan et al., 2024) elicits truth via adversarial arguments that
a judge selects among. Reinforcement learning from AI feedback or Constitutional AI (Bai et al.,
2022) replaces human preferences with AI-generated feedback. Recursive task decomposition (Wu
et al., 2021) breaks the problem into leaf subtasks that humans can directly label or compare, for
tasks that are easily decomposable. We address a new, orthogonal axis: when human experts cannot
supply correct answers for hard, cross-domain instances, can we use their partitioned “this option is
wrong” judgments to obtain performance estimates and useful training signals?

We formalize a labeling protocol in which each instance is routed to a randomly chosen domain spe-
cialist responsible for exactly one option (class). The specialist either confirms that option (yielding
an ordinary label) or confidently rejects it (yielding a complementary label). Under this uniform
wrong-index design, we derive an unbiased estimator of accuracy from complementary labels alone
via a simple linear correction, and characterize its variance. We then introduce two mixture esti-
mators that combine ordinary and complementary labels: (i) an inverse-variance–weighted (IVW)
estimator with a practical plug-in form, and (ii) a closed-form maximum-likelihood estimator (ML).

We empirically validate the framework in three settings. First, we perform statistical validation
on many popular large language model (LLM) benchmarks, which confirms that we do not need
the ground truth to evaluate the performance of AI systems experimentally, such as LLMs. We
focus on real-world evaluation on tasks that cannot be solved by a single expert human with only
narrow expertise. As a proof-of-concept, we use finance and medical benchmarks to demonstrate
that partitioned feedback from sector analysts or highly-specialized doctors enable accurate model
evaluation without the ability to solve the task alone. Finally, we show that this weak signal can
be used as a training signal for an AI system. More specifically, we use complementary labels for
agentic training: we replace ordinary accuracy with our estimator as the fitness signal inside agent
search pipelines, and show that this improves downstream performance, demonstrating a pathway
to training when only complementary feedback is available.

Our main contributions are as follows: 1) We introduce scalable oversight via partitioned human su-
pervision, a protocol that exploits real-world specialization to collect complementary labels at scale
for superhuman tasks. 2) We derive an unbiased complementary-label estimator for top-1 accuracy,
analyze its variance, and show how many complementary labels are needed to match the variance
of the estimator obtained from ordinary labels. We further propose two mixture estimators together
with finite-sample bounds and practical plug-in implementations. 3) We demonstrate empirically
that these estimators enable both evaluation and training without the full ground truth.

2 METHODOLOGY

In this section, we explain our problem setup and notations and explain our proposed method.
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Setup and Notations We consider a multiple-choice evaluation task with K options per item
(e.g., K = 4 for choices A, B, C, and D). Formally, each item is represented by an input x ∈ X ,
where X denotes the input domain (e.g., the space of question texts). Each item has a correct label
y ∈ {1, . . . ,K}, representing the index of the correct option after any shuffling. We call this the
ordinary label. Let (x, y) denote a random pair drawn from an identical joint distribution D over
X × {1, . . . ,K}.

Equivalently, we can regard to first sample item x, and then a human expert provides label y based
on the underlying conditional distribution p(y|x). An AI system (e.g., a machine learning classifier,
a single LLM, or an LLM agent/workflow) produces a prediction ŷ = f(x) ∈ {1, . . . ,K}. For an
item with an ordinary label y, define the indicator Z = I{ŷ = y} ∈ {0, 1}. The (population) top-1
accuracy is then A = Pr(Z = 1) = Pr(f(x) = y), where Pr(·) denotes probability with respect to
the joint distribution D.

We assume the complementary label is drawn uniformly at random among the non-y classes (Ishida
et al., 2017):

p(ȳ = k | y) = 1

K − 1
, ∀k ̸= y. (1)

That is, for each item, the revealed wrong index is sampled uniformly from the K−1 non-y classes.
For an item with a complementary label ȳ ̸= y, define W = I{ŷ ̸= ȳ} ∈ {0, 1}. The assumption
in Eq. 1 is enforced by the following data collection protocol. We assume that we have a set of
questions {xi}Ni=1 and K annotators, where each annotator is a human expert in the field of one of
the classes. For each question xi, choose an annotator randomly (let’s say an annotator in charge of
the k-th class is chosen), and ask “Is the answer of question xi class k?”. If the answer is yes, we
save this in the ordinary-label set as an item with (ordinary) class k label. If the answer is no, we
save this in the complementary-label set as an item with (complementary) class k label.

Finally, we will have two disjoint evaluation sets, drawn from the same distribution and evaluated by
the same system: 1) An ordinary-label set of size no, yielding indicators Z1, . . . , Zno and total cor-
rect count So =

∑no

j=1 Zj . 2) complementary-label set of size nc, yielding indicators W1, . . . ,Wnc

and total “weakly-correct”1 count Sc =
∑nc

i=1 Wi. The total number of samples is N = no + nc.

2.1 ESTIMATOR FROM COMPLEMENTARY LABELS

It is straightforward to estimate the system accuracy A by using ordinary labels as Âord = So

no
. If we

want to use complementary labels to estimate A, a naive approach would be to count the proportion
of “avoiding the complementary label,” i.e., q̂ = 1

nc

∑nc

i=1 Wi. However, q̂ is not an unbiased
estimator of the accuracy. Thus, we propose the following complementary-label estimator:

Corollary 1. Under the assumption in Eq. (1), the estimator

Âcomp = (K − 1)q̂ − (K − 2) (2)

is unbiased for A, where K ≥ 3 is the number of choices.

We show the proof in Appendix A. This linear correction is precisely the 0–1 loss specialization of
the risk-rewrite identity of Eqs. (8) and (10) in Ishida et al. (2019); replacing expectations by sample
means yields our unbiased estimator. A full derivation is provided in Appendix B.

Even if we have an unbiased estimator with only complementary labels, the variance is expected
to become larger compared with the case when we use the same number of ordinary labels.This is
because complementary labels are “weaker” than ordinary labels in the sense that K − 1 different
complementary labels is equivalent to 1 ordinary label. We first confirm this as follows. Since W is
Bernoulli with mean q = A+K−2

K−1 , we obtain

Var(Âcomp) = (K − 1)2 Var

(
1
nc

nc∑
i=1

Wi

)
=

(K − 1)2

nc
q(1− q) =

(A+K − 2)(1−A)

nc
. (3)

1Here “weakly-correct” means that the model prediction is not equal to the complementary label. For
example, when K = 4, avoiding the complementary label still leaves a 2

3
chance of being wrong.
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This expression depends on the unknown A. In practice, a plug-in estimator is used. For the
ordinary-label dataset, the number of correct predictions satisfies So ∼ Bin(no, A), where Bin(n, p)
denotes the binomial distribution with parameters n (number of independent trials) and p (success
probability in each trial). Thus, E[So/no] = A, and Var(So/no) = A(1−A)/no, where E[·] and
Var(·) denote expectation and variance, respectively, taken with respect to the underlying population
distribution D over (x, y). Comparing this with Eq. (3), the variance ratio is

Var(Âcomp)

Var(So/no)
=

(A+K − 2)no

Anc
. (4)

Hence, when nc = no, the complementary estimator has larger variance for all K ≥ 3, as expected.
Next, it would be interesting to derive how much more complementary labels we will need to prepare
to have the same amount of variance as the ordinary label case. To match the variance of the ordinary
estimator, the size of the complementary dataset must be

nc =

(
1 +

K − 2

A

)
no. (5)

That is, the larger A is, the fewer additional complementary labels are needed. Since A is unknown,
one can use a small ordinary-labeled set to bound A and infer the required nc, motivating the com-
bined estimator in § 2.2.

2.2 COMBINING ORDINARY AND COMPLEMENTARY LABELS

We now combine information from both datasets. Recall Âord = So

no
and Âcomp = (K−1)Sc

nc
−(K−

2) are both unbiased under the independent and identically distributed (i.i.d.) sampling assumption.

Inverse Variance Weighted Estimator (IVW) Consider the linear combination Âmix = w Âord+

(1 − w) Âcomp where w ∈ [0, 1]. Because the two components are independent and unbiased
(disjoint samples), Âmix is unbiased with variance

Var(Âmix) = w2A(1−A)
no

+ (1− w)2 (K−1)2

nc
q(1− q), q = A+K−2

K−1 .

Minimizing it w.r.t. w yields

w⋆ =

(K−1)2

nc
q(1− q)

A(1−A)
no

+ (K−1)2

nc
q(1− q)

. (6)

The corresponding minimum variance equals Varmin(Âmix) =
A(1−A)

no
·
(K−1)2

nc
q(1−q)

A(1−A)
no

+
(K−1)2

nc
q(1−q)

. Since A is

unknown, we use plug-in estimators: V̂ar(Âord) =
Âord(1−Âord)

no
, and V̂ar(Âcomp) =

(K−1)2

nc
q̂(1−

q̂), q̂ = Sc

nc
. Then

ŵ =
V̂ar(Âcomp)

V̂ar(Âord) + V̂ar(Âcomp)
,where ÂIVW = ŵ Âord + (1− ŵ) Âcomp. (7)

Its (plug-in) variance is the harmonic mean:

V̂ar(ÂIVW) = V̂ar(Âord) V̂ar(Âcomp)/(V̂ar(Âord) + V̂ar(Âcomp)). Substituting q = A+K−2
K−1 into

Eq. (6) gives

w⋆ =
(A+K − 2)no

Anc + (A+K − 2)no
, (8)

and replacing A by a pilot Ã (e.g. Ã = Âord), yields a closed-form estimator of w∗.. If we prepare
a separate set other than nc + no samples to estimate the weight, we can maintain the unbiasedness
of Âmix; if not (as in our experiments), we will show in § 2.3 that we have a consistent estimator.

4
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Closed-Form Maximum-Likelihood Estimator (ML) The ordinary set induces a likelihood term
in A given by So ∼ Bin(no, A). The complementary set induces a likelihood term Sc ∼ Bin(nc, q)
with q = A+K−2

K−1 . Assuming independence between the two datasets, the joint log-likelihood is

ℓ(A) = So logA+ (no − So) log(1−A) + Sc log q + (nc − Sc) log(1− q).

Setting ∂ℓ/∂A = 0 yields the score equation So

A − no−So

1−A + Sc

A+K−2−
nc−Sc

1−A = 0, which simplifies
to a quadratic form in A. Let To = no −So, Tc = nc −Sc, α = N , β = (K − 2)(To +Tc)+ (K −
3)So − Sc, γ = −(K − 2)So. Then the ML is the unique root in [0, 1]:

ÂML =
−β +

√
β2 − 4αγ

2α
. (9)

A large-sample standard error is se(ÂML) ≈
[

no

ÂML(1−ÂML)
+ nc

(K−1)2 q̂(1−q̂)

]−1/2

, based on ob-
served or expected information.

If nc = 0, Eq. (9) reduces to Âord. If no = 0, it reduces to Âcomp. For K = 4, one always has
q̂ ∈ [ 23 , 1] when A ∈ [0, 1], which bounds the complementary-component variance. Moreover, a
one-step Newton update around the truth shows that the IVW estimator with optimal fixed weights
coincides with the ML estimator up to the first order2, and both are statistically efficient.

2.3 THEORETICAL ANALYSIS

We analyze the deviation of the complementary-label estimator Âcomp under the uniform wrong-
index assumption Eq. (1). Although Âcomp is unbiased, its variance can be non-negligible at
small sample sizes. We present two finite-sample deviation bounds: a distribution-free Hoeffd-
ing bound (Boucheron et al., 2003) and a data-dependent Bernstein bound (Maurer & Pontil, 2009)
leveraging empirical variance. We then extend these to a fixed-weight mixture estimator.

Bounds for Âcomp We derive a unified bound for Âcomp by taking the minimum of the Hoeffding
and empirical Bernstein inequalities. This formulation is both variance-free (via Hoeffding) and
variance-adaptive (via Bernstein).The proof is shown in Appendix E.
Theorem 2. With probability at least 1− δ,∣∣Âcomp −A

∣∣ ≤ (K − 1) min

{√
log(2/δ)

2nc
,
√

2 q̂(1−q̂)
nc−1 log 4

δ + 7 log(4/δ)
3 (nc−1)

}
.

The first branch (Hoeffding) is simple and variance-free but conservative. The second branch (em-
pirical Bernstein) adapts to the empirical variance q̂(1 − q̂) and is typically tighter when q̂ is close
to 0 or 1. Both bounds require only i.i.d. sampling of {Wi} under Eq. (1), and hold for any nc.

Bounds for Âmix Consider the mixture estimator with a (possibly data-dependent) weight w ∈
[0, 1]: Âmix = w Âord + (1 − w) Âcomp where Âord = 1

no

∑no

j=1 Zj , and Zj ∈ {0, 1}. Since the

ordinary and complementary sets are disjoint, we have Âmix−A = w(Âord−A)+(1−w)(Âcomp−
A). With a union bound and Hoeffding inequality, we can derive the following proposition.
Proposition 3. For any split δ = δo + δc, with δo, δc > 0, with probability at least 1− δ,

∣∣Âmix −A
∣∣ ≤ min



w
√

log(2/δo)
2no

+ (1− w)(K − 1)
√

log(2/δc)
2nc

,

w

(√
2 Âord(1−Âord)

no−1 log 4
δo

+ 7 log(4/δo)
3 (no−1)

)
+ (1− w)

(√
2 (K−1)2 q̂(1−q̂)

nc−1 log 4
δc

+ 7 (K−1) log(4/δc)
3 (nc−1)

)


.

A symmetric choice δo = δc = δ/2 yields the simpler logs log(4/δ) and log(8/δ) respectively.

2A detailed proof is provided in Appendix D.
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The union-bound approach provides guarantees that hold for any weight w ∈ [0, 1], including data-
dependent plug-in choices such as ŵIVW. This makes it directly applicable in practice, although
the constants are typically looser than those obtained from the moment generating function based
Bernstein bound (See Theorem 4).

We now state a Bernstein-type PAC bound for the mixed estimator that complements the union-
bound inequalities established in Proposition 3; its proof is deferred to Appendix F.

Theorem 4. With probability at least 1− δ, the following holds for Âmix:∣∣Âmix −A
∣∣ ≤

√
2v log 2

δ + c log 2
δ , (10)

where v = w2A(1−A)
no

+ (1− w)2 (K−1)2 q(1−q)
nc

, and c = max
{

w
no

, (1−w)(K−1)
nc

}
.

This bound tightens Hoeffding’s inequality by incorporating both the variance term v and the (range-
driven) linear term c. It is valid for any fixed choice of the weight w ∈ [0, 1], for instance if w is
set as a constant or estimated on an independent pilot set. If instead w is estimated from the same
evaluation data (e.g. the plug-in ŵIVW), the fixed-weight assumption is violated; in that case one
must either revert to the union-bound bounds (Proposition 3), or apply standard remedies such as
sample splitting (Chernozhukov et al., 2018; Wager & Athey, 2018)or a finite grid with a union
bound (Boucheron et al., 2013; Shalev-Shwartz & Ben-David, 2014). For practical plug-in forms
and further discussion, see Appendix G.

3 EXPERIMENTS

We evaluate our unbiased and mixed estimators in three settings: (I) Statistical validation on
standard multiple-choice benchmarks, where we verify unbiasedness and variance properties (see
Eqs. (2), (4), (16)); (II) Practical evaluation on two real-world classification benchmarks: the
Japanese financial dataset EDINET-Bench (Sugiura et al., 2025), where each option corresponds to
a professional industry domain and annotators provide weak complementary feedback; and the En-
glish Medical Abstracts dataset (Schopf et al., 2023), which covers multiple disease categories with
natural clinical text. (III) Agentic training in agent-based workflows, where we replace ordinary
accuracy with our proposed estimator as the fitness function and examine the resulting agent perfor-
mance. For agent scaffolding, we use ADAS (Hu et al., 2025) and AFlow (Zhang et al., 2025c). For
details of the labeling protocol, please refer to Appendix C.

Statistical Validation of Complementary and Mixed Estimators Statistical validation is con-
ducted on four benchmarks. Since oracle labels are available, complementary labels are syntheti-
cally constructed following Appendix C. We report three types of evaluation metrics. (A) Unbiased-
ness and variance are examined by subsampling 300 ordinary and 300 complementary labels (120
for GPQA due to dataset size). Accuracy is estimated using Eq. (2), and variability is quantified
through standard deviations, reported as Â ± σ̂ with σ̂ denoting the estimated standard deviation.
(B) The relative efficiency of complementary labels is assessed by computing the number of comple-
mentary samples required to achieve the same variance as no ordinary labels, according to Eq. (4),
where the full ordinary dataset is used to approximate the ground-truth accuracy A. (C) To mimic
practical annotation protocols (Appendix C), we assume that each ordinary label can be replaced by
(K − 1) complementary labels, where K is the number of answer options. This setting is used to
evaluate the mixed estimators in Eq. (7) and Eq. (9).

Each dataset is evaluated on all five metrics using gpt-5-nano (OpenAI, 2025b), with three in-
dependent runs averaged; aggregated outcomes are summarized in Table 1. For the MATH-MC
benchmark, we use GPT-4.1-nano instead of GPT-5-nano. This choice is due to (i) output-
format constraints in GPT-5-nano that conflict with our final-answer extraction protocol, and (ii)
the need to avoid ceiling effects: in our pilot runs, GPT-5-nano attains near-ceiling accuracy on
MATH-MC, which compresses the observable gaps among estimators.

Table 1 summarizes the results across benchmarks, together with a reference evaluation using all
available ordinary labels (Ord-Eval). Importantly, higher accuracy in isolation does not imply a
better estimator; the desideratum is to approximate the Ord-Eval reference as closely and reliably
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Table 1: Performance of estimators across benchmarks. Values are reported as mean accuracy ± standard
deviation across three random seeds; the average of per-run standard deviations is additionally shown in paren-
theses. Detailed estimator setups and confidence-interval analyses are provided in Appendix I. The last column
reports the macro-average across datasets (counting Math and Math-COT separately). For each benchmark, the
estimator whose mean accuracy is closest to the Ord-Eval reference is highlighted in bold.

Estimator MMLU-Pro MedQA-USMLE GPQA MATH† MATH(CoT)‡ Average
Ord 78.33 ± 1.73 (±2.38) 92.89 ± 1.35 (±1.48) 64.17 ± 1.67 (±4.39) 47.56 ± 3.91 (±2.88) 84.89 ± 0.77 (±2.07) 73.57
Comp-no 77.00 ± 12.49 (±7.95) 92.67 ± 1.53 (±2.67) 59.17 ± 3.82 (±9.42) 48.44 ± 10.78 (±7.72) 80.44 ± 2.78 (±4.98) 71.54
Comp-Var 75.67 ± 2.15 (±2.51) 90.61 ± 1.43 (±1.69) 63.67 ± 5.01 (±4.28) 41.10 ± 3.17 (±2.93) 81.35 ± 0.29 (±2.28) 70.48
IVW-0.5 77.89 ± 1.58 (±1.80) 91.61 ± 1.11 (±1.15) 65.28 ± 1.34 (±3.33) 43.44 ± 3.95 (±2.52) 83.56 ± 1.17 (±1.58) 72.36
IVW 77.97 ± 1.58 (±1.79) 91.86 ± 1.11 (±1.13) 65.14 ± 1.38 (±3.30) 44.87 ± 3.82 (±2.37) 83.86 ± 0.83 (±1.56) 72.74
ML 77.94 ± 1.58 (±1.79) 91.65 ± 1.08 (±1.18) 65.11 ± 1.38 (±3.28) 44.75 ± 3.79 (±2.36) 83.65 ± 1.04 (±1.59) 72.62

Ord-Eval 77.97 92.66 59.52 44.21 83.89 –

as possible under scarce supervision. With finite ordinary labels and (K − 1)-times complementary
labels (where K is the number of choices), Ord and Comp-no can occasionally yield point estimates
that are numerically closer to Ord-Eval (as seen in MedQA and GPQA). However, their standard
errors are substantially wider, indicating poor reliability and limited reproducibility. For Comp-
Var, increasing the number of complementary labels reduces variance, consistent with Eq. (3) and
Eq. (4). We report both across-seed variability and the average within-run standard deviation, the
latter more directly reflecting estimator variance. Ord-Eval itself should not be regarded as the
ground-truth accuracy—especially on GPQA, where dataset size is small and uncertainty remains
substantial—but rather as an empirical reference.

Among mixture estimators, IVW consistently improves over the equal-weighted baseline in within-
run standard deviation (IVW-0.5), confirming that inverse-variance weighting provides the optimal
linear combination of ordinary and complementary labels. ML further achieves narrower intervals
owing to its joint likelihood formulation. However, ML requires more precise pilot estimates of
accuracy and may thus be less robust in practice, whereas IVW remains stable by directly incorpo-
rating variance estimates. This distinction is supported by the within-run standard deviations, which
indicate that IVW achieves competitive efficiency with simpler computation.

(a) Optimal w vs. number of
samples .

(b) Corresponding variance
on a log scale.

Figure 2: Comparison of optimal weighting and baseline
(w = 0.5). Optimal weighting consistently achieves lower
variance compared to the equal-weighted baseline, demon-
strating more reliable estimation with limited samples.

Overall, while Comp-no may occasionally
appear closest to Ord-Eval in mean accu-
racy, its instability makes it unreliable for
reproducible evaluation. IVW and ML in-
stead strike the best balance between bias
and variance, yielding stable and repro-
ducible estimates close to the Ord-Eval
reference across datasets. The empiri-
cal closeness of the two methods further
validates our theoretical analysis, suggest-
ing that mixture estimators can serve as a
practical foundation for scalable oversight
in settings where ground-truth labels are
scarce or infeasible.

Ablation Study on IVW. Recall that the
optimal coefficient for IVW is given in Eq. (8). When setting nc = (K − 1)no (where K denotes
the number of choices), the expression simplifies to A+K−2

AK+K−2 = 1
K

(
1 + (K−1)(K−2)

AK+K−2

)
. Since

0 ≤ A ≤ 1, the coefficient lies in the range 1
2 ≤ 1

K

(
1 + (K−1)(K−2)

AK+K−2

)
≤ 1. In particular,

when A is close to 1—as suggested by the Ord-Eval reference—the optimal weight approaches 1
2 ,

explaining why in Table 1 the IVW estimator often performs similarly to the ordinary baseline.

To further examine whether the closed-form coefficient yields the optimal trade-off, we conduct an
ablation on MedQA-USMLE by varying the number of complementary labels from nc = no to
nc = 20no (with no = 300). Results are averaged over three random seeds. As shown in Figure 2,
when nc ≈ 3no—the setting used in Table 1—the optimal weight is close to the fixed baseline
w = 0.5. However, for nc < no or nc > 6no, the optimal variance is consistently lower than the
baseline. This behavior is intuitive: once the number of complementary labels exceeds the variance-
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Table 2: Mean acc. ± standard devi-
ation across 3 seeds, w/ the average
of per-run standard deviations. Bold:
Lowest variance across 3 runs. See
App. I for details.

Estimator EDINET EDINET (Extended) Medical Abstract
Ord 19.35 ± 5.59 (±7.13) 21.67 ± 2.46 (±2.89) 70.38 ± 0.62 (±0.96)
Comp-(K-1) 10.75 ± 8.12 (±16.46) 26.60 ± 3.45 (±5.86) 68.79 ± 0.71 (±1.13)
IVW-0.5 15.05 ± 5.18 (±8.98) 24.14 ± 2.26 (±3.27) 69.58 ± 0.57 (±0.74)
IVW 17.95 ± 4.88 (±6.53) 22.64 ± 2.27 (±2.59) 69.71 ± 0.56 (±0.73)
ML 17.93 ± 4.87 (±6.29) 22.61 ± 2.28 (±2.26) 69.70 ± 0.56 (±0.74)

matching threshold in Eq. (4), the complementary estimator alone has smaller variance, and the
closed-form IVW solution naturally shifts weight away from ordinary labels. By contrast, the fixed
baseline cannot adapt, leading to consistently higher variance.

Benchmark Evaluation in Real-World Tasks To demonstrate the practicality of our method in
real-world scenarios, we conduct proof-of-concept experiments for estimation and learning un-
der partitioned human supervision, as directly collecting superhuman tasks would be prohibitively
costly. Following the data collection protocol in Algorithm 1, for each domain we randomly select
an expert and ask whether a given object belongs to their field. Applied to the benchmarks, comple-
mentary labels are generated from the oracle labels by splitting each instance into 1 ordinary label
and K − 1 complementary labels, corresponding to the K candidate classes.

We evaluate on two benchmarks. First, we use EDINET-Bench (Sugiura et al., 2025), a Japanese
financial report classification dataset, where each industry corresponds to a professional domain,
and we adopt the prompting setup of Sugiura et al. (2025). Since the original dataset contains
only 496 samples (comparable to GPQA), we extend it following their released code, resulting in
3,269 samples; we refer to this as EDINET-Bench Extended. To our knowledge, there are no public
medical benchmarks in which each class explicitly corresponds to a medical specialization. We
therefore adopt the Medical Abstracts dataset (Schopf et al., 2023), which consists of paper abstracts
labeled by disease categories, simulating the task of narrow domain experts classifying diseases.

Both EDINET-Bench Extended and Medical Abstracts are imbalanced across classes. Nevertheless,
our assumption in Eq. (1) is that complementary labels are sampled uniformly at random, indepen-
dent of the original label distribution. We follow this procedure and empirically verify that class
imbalance does not affect the validity of our estimator.

Results As shown in Table 2, both IVW and ML consistently achieve the lowest average per-run
standard deviation, confirming the variance reduction effect observed in § 3. In contrast, the Comp-
(K-1) estimator exhibits much larger variance on EDINET-Bench, which aligns with Eq. (4): with
K = 16 industries and relatively low accuracy, the variance is amplified.

Comparing EDINET-Bench and its extended version, we observe that increasing the number of
samples substantially reduces the fluctuations of the estimators, supporting our earlier finding in § 3
that small-scale benchmarks such as GPQA can lead to unstable estimates. Finally, on the Medical
Abstracts dataset, IVW and ML again achieve the most stable performance, demonstrating that the
complementary-label estimators generalize across domains and languages.

Agent Search with Estimator Feedback Finally, we show that weak human supervision can be
leveraged not only for evaluation but also as training signal for AI systems. We evaluate agentic
flows under complementary-label signals on three benchmarks. GPQA serves as the most challeng-
ing setting in our study (Table 1); Math-MC focuses on reasoning ability; and Medical Abstracts
best captures our practical scenario. Following Hu et al. (2025), we include COT (Wei et al., 2022),
COT-SC (Wang et al., 2023), Self-Refine (Madaan et al., 2023), LLM Debate (Du et al., 2024),
Step-back Abstraction (Zheng et al., 2024), Quality-Diversity (Lu et al., 2025), and Role Assign-
ment (Xu et al., 2025) as manually designed baselines, and compare against ADAS (Hu et al., 2025)
and AFlow (Zhang et al., 2025c). We define the accuracy computed by q as complementary accu-
racy and apply Eq. (2) to obtain the transformed complementary accuracy. For ADAS and AFlow,
we follow the original protocol (see Appendix J), computing both complementary and transformed
complementary accuracy on the validation set and reporting the better-performing variant.

Figure 3 compares ADAS and AFlow against strong baselines on GPQA, Math-MC, and Medical
Abstracts. Both agentic systems consistently outperform manually designed workflows once weak
complementary-label signals are incorporated, demonstrating that weak human feedback can pro-
vide learning signal. While the choice of estimator (raw vs. transformed complementary accuracy)

8
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Figure 3: Accuracy across dif-
ferent benchmarks. Across
GPQA, Math-MC, and Med-
ical Abstract, agentic sys-
tems guided by weak comple-
mentary signals (ADAS and
AFlow) consistently outper-
form manually designed base-
lines.

leads to different outcomes depending on task difficulty, the overall pattern remains robust: weak
signals suffice to improve performance beyond established baselines, with additional variance anal-
ysis provided in Appendix K. These findings reinforce the central theme of our study: humans’ weak
labels can provide a reliable and scalable supervisory channel for steering agentic AI systems.

4 RELATED WORK

Scalable oversight In superhuman regimes where AI systems surpass human abilities, humans
can no longer provide reliable supervision to evaluate and train them. Recent scalable-oversight
work explores strategies that let limited (human) supervisors steer stronger models. Among the
many scalable oversight protocols (such as weak-to-strong generalization (Burns et al., 2024), easy-
to-hard generalization (Sun et al., 2024), debate (Khan et al., 2024), and RLAIF (Bai et al., 2022)),
our approach may seem similar to iterated amplification/IDA (Christiano et al., 2018) and recursive
task decomposition (Wu et al., 2021) at a glance. The difference is that our approach can be used
for tasks that are not easily decomposable, as we are not decomposing the task, but rather relying on
expertise-wise partitioned human supervision to enable the usage of complementary labels.

Weak supervision Weakly-supervised learning (Sugiyama et al., 2022) studies learning with
weaker form of supervision instead of ground-truth labels. Complementary labels (Ishida et al.,
2017; 2019; Yu et al., 2018; Wang et al., 2024a; 2025), in particular, provide “not-this-class” in-
formation, with the traditional motivation of reducing annotation cost. Our perspective differs: we
leverage weak supervision not merely for cheaper labeling, but as a principled route to scalable over-
sight in the superhuman regime, where no single human expert can provide verification end-to-end.

Agentic systems LLMs have inspired a wide range of system architectures (Wei et al., 2022; Wang
et al., 2023; Madaan et al., 2023; Shinn et al., 2023b;a), in particular by incorporating multiple
LLMs into collaborative frameworks (Du et al., 2024; Liu et al., 2024; Chen et al., 2024; Wu et al.,
2024; Wang et al., 2024c). Early studies relied on manually designed agentic workflows, which
demanded substantial manual design and domain expertise. More recent work has shifted toward
automated agent discovery, in which LLMs themselves are used to generate, refine, and optimize
workflow structures (Hu et al., 2025; Zhang et al., 2025a;b;c), but required ground-truth supervision
to construct a fitness score. We investigate whether automated agentic system design can proceed
even with weaker training signals, i.e., complementary labels.

5 CONCLUSION

We introduced scalable oversight via partitioned human supervision, a protocol that utilizes the
weak human supervision for tasks beyond any single expert’s ability. We derived an unbiased
estimator of performance metric from complementary labels, analyzed its variance, and provided
finite-sample guarantees. We further proposed two practical mixture estimators that combine scarce
ordinary labels with abundant complementary labels. Empirically, we show that these estimators
allow us to estimate the performance of AI systems without requiring full ground truth. They also
serve as effective training signals which we demonstrate with automatically designing agentic work-
flows.
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ETHICS STATEMENT

Our work is motivated by AI safety: we aim to improve oversight of advanced AI systems by en-
abling evaluation and training even on tasks beyond any single human expert’s competence. This
approach is intended to enhance the reliability and alignment of future AI models with human inter-
ests, which we believe is a positive contribution to society.

Currently, we do not foresee immediate direct negative social impacts from the research itself. How-
ever, we recognize that alignment techniques are a double-edged sword (Machine Learning Street
Talk, 2025). While our framework is intended to improve safety, a malicious actor could in principle
repurpose similar methods to align an AI system with harmful or unethical objectives. This risk is
not unique to our approach, as any alignment method can be misused if directed toward bad ends.
We explicitly caution against such misuse. Our work is presented in the spirit of enhancing benefi-
cial oversight, and we emphasize that strong governance and ethical guidelines are needed to ensure
alignment techniques are only applied to promote safety in AI systems (Bengio et al., 2024).

REPRODUCIBILITY STATEMENT

All code and scripts required to reproduce our experiments are included in the submission reposi-
tory. For ADAS (Hu et al., 2025) and AFlow (Zhang et al., 2025c), we primarily follow the official
public implementations; see Appendix J for additional details. Since our study relies on the Ope-
nAI API, exact replication may be affected if certain models are deprecated or become unavailable
in the future. Nevertheless, we provide complete implementation details, dataset references, and
evaluation scripts to ensure reproducibility to the greatest extent possible.

Datasets.

• https://huggingface.co/datasets/TIGER-Lab/MMLU-Pro

• https://huggingface.co/datasets/GBaker/
MedQA-USMLE-4-options

• https://huggingface.co/datasets/Idavidrein/gpqa

• https://huggingface.co/datasets/SakanaAI/EDINET-Bench

• https://huggingface.co/datasets/TimSchopf/medical_abstracts

Code.

• https://github.com/Geralt-Targaryen/MC-Evaluation

• https://github.com/SakanaAI/edinet2dataset

• https://github.com/ShengranHu/ADAS

• https://github.com/FoundationAgents/AFlow
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A PROOF OF COROLLARY 1

Proof. For a single item, under Eq. (1),

E[W ] = Pr(ŷ = y) Pr(W = 1 | ŷ = y) + Pr(ŷ ̸= y) Pr(W = 1 | ŷ ̸= y)

= Pr(ŷ = y) · 1 + Pr(ŷ ̸= y) ·
(
1− 1

K−1

)
=

A+K − 2

K − 1
.

If we consider q̂ = 1
nc

∑nc

i=1 Wi, an empirical version of E[W ], this q̂ is an unbiased estimator of

E[W ]. Hence, Âcomp = (K − 1)q̂ − (K − 2) is an unbiased estimator of A.

B CONNECTION BETWEEN THE COMPLEMENTARY-LABEL ESTIMATOR AND
COMPLEMENTARY LOSS

Notation. Let (X,Y ) ∼ D with Y ∈ [K] = {1, . . . ,K}. Given a model g, denote its prediction
by ŷ = g(X). For any class k ∈ [K], the loss is ℓ(k, ŷ). In complementary-label learning Ishida
et al. (2019), one observes Ȳ ̸= Y sampled uniformly from [K] \ {Y }. The complementary loss is
defined (Eq. (10) in Ishida et al. (2019)) as

ℓ̄(k, ŷ) = −(K − 1) ℓ(k, ŷ) +

K∑
j=1

ℓ(j, ŷ).

Specialization to 0-1 loss. For the 0–1 loss ℓ(k, ŷ) = I{ŷ ̸= k}, we compute

ℓ̄(k, ŷ) = −(K − 1) I{ŷ ̸= k}+
K∑
j=1

I{ŷ ̸= j}

= −(K − 1) I{ŷ ̸= k}+ (K − 1)

= (K − 1) I{ŷ = k}. (11)

Risk under complementary labels. The standard risk is

R = E(X,Y )[ℓ(Y, ŷ)] = Pr(ŷ ̸= Y ) = 1−A,

where A = Pr(ŷ = Y ) is the accuracy. By the risk-rewrite identity of Ishida et al. (2019) (Eq. (8)),
we also have

R = E(X,Ȳ )[ℓ̄(Ȳ , ŷ)] = (K − 1) Pr(ŷ = Ȳ ).

Equivalence to our estimator. Let W = I{ŷ ̸= Ȳ }. Then Pr(ŷ = Ȳ ) = 1− E[W ], so

1−A = (K − 1) (1− E[W ]).

Rearranging yields
A = (K − 1)E[W ]− (K − 2).

This is exactly the linear correction in Eq. (2). Replacing E[W ] by its empirical mean q̂ =
1
nc

∑nc

i=1 Wi gives the unbiased estimator Âcomp = (K − 1)q̂ − (K − 2) of Theorem 1.

C DATA LABELING AND ESTIMATION PROTOCOL

In multiple-choice evaluation, the effective “class” is the index position of an option rather than
its textual content. To satisfy the uniformity condition in Eq. (1), the labeling process proceeds as
follows. For each item, all options are first shuffled uniformly at random. After shuffling, the correct
index y is recorded. A complementary label is then created by sampling a wrong index ȳ uniformly
from the K − 1 remaining positions. The final published datum is (x, shuffled options, ȳ). When
the ground truth is known, this procedure can be automated: y is only used internally for generating
ȳ, and the released dataset never exposes y. When labels are collected from human raters, the
annotation interface can enforce the same randomization in the backend to guarantee uniformity.
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Any deviation, such as asking raters to pick the “most plausible wrong option,” would violate the
assumption behind Eq 1.

The same protocol can be extended to cases where the ground truth is not available in advance. A
complementary label is first generated in the same way, and then the annotator is asked to verify
whether it happens to be correct. This verification yields a mixture of ordinary and complementary
labels, which forms the mixed dataset studied in § 2.2.

The end-to-end evaluation pipeline, including both ordinary and complementary sets and the as-
sociated estimators, is summarized in Algorithm 1. Two estimation strategies are supported: a
closed-form maximum-likelihood estimator and an inverse-variance weighted (IVW) estimator.

Algorithm 1 Collecting complementary labels and estimating accuracy (fixed K)

1: Input: MCQ items; evaluation model f ; sizes no, nc.
2: for each item do
3: Shuffle options uniformly; record correct index y.
4: if item ∈ ordinary set then
5: Evaluate f to obtain prediction ŷ; record Z = I{ŷ = y}.
6: else ▷ complementary set
7: Sample ȳ uniformly from {1, . . . ,K} \ {y}; publish (x, options, ȳ).
8: Evaluate f to obtain prediction ŷ; record W = I{ŷ ̸= ȳ}.
9: end if

10: end for
11: Compute So =

∑
Z, Sc =

∑
W .

12: Option A (ML): return ÂML via Eq. (9) and a confidence interval from observed information.
13: Option B (IVW): compute Âord, Âcomp, and ŵ, then return ÂIVW with plug-in confidence

interval.

Two assumptions are critical for the validity of these estimators. First, the wrong index in each
complementary label must be sampled uniformly; systematic biases, such as consistently preferring
hard negatives, lead to biased estimates of Âcomp. Second, the ordinary and complementary sets
must be drawn from the same distribution of items. If domain shift or subject imbalance exists, the
combined estimator reflects accuracy on a mixture distribution. In such cases, stratified or subject-
wise weighting may be preferable.

D ONE-STEP NEWTON UPDATE AND IVW EQUIVALENCE

Setup and notation. Let A ∈ (0, 1) denote the (unknown) accuracy for a K-way multiple-choice
task (K ≥ 3). We observe two independent samples: (i) ordinary labels So ∼ Bin(no, A) with
empirical accuracy Âord = So/no; (ii) complementary labels obtained by uniformly sampling a
wrong option per item, so that Sc ∼ Bin(nc, q) with

q(A) =
A+K − 2

K − 1
, q̂ = Sc/nc, Âcomp = (K − 1)q̂ − (K − 2).

We consider a pilot A0 (e.g. Âord or Âcomp) and write q0 = q(A0).

Newton update and plug-in simplification. The joint log-likelihood is

ℓ(A) = So logA+ (no − So) log(1−A) + Sc log q + (nc − Sc) log(1− q).

Differentiating gives the score functions

Uo(A) =
no(Âord −A)

A(1−A)
, Uc(A) =

nc(Âcomp −A)

(K − 1)2 q(1− q)
.

The observed information terms are

Iobs
o (A) =

So

A2
+

no − So

(1−A)2
, Iobs

c (A) =
1

(K − 1)2

(
Sc

q2
+

nc − Sc

(1− q)2

)
.
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A one-step Newton update around A0 is

A1 = A0 −
U(A0)

U ′(A0)
= A0 +

Uo(A0) + Uc(A0)

Iobs
o (A0) + Iobs

c (A0)
.

When we set A0 = Âord, the ordinary part simplifies exactly: since So = noA0, we have Uo(A0) =
0 and Iobs

o (A0) = no/[A0(1−A0)] = Io(A0), the Fisher information. For the complementary part,
we plug in q = q̂ so that Sc = ncq̂ holds identically. This yields

Iobs
c (A0)

∣∣
q=q̂

=
nc

(K − 1)2 q̂(1− q̂)
= Ic(q̂), Uc(A0)

∣∣
q=q̂

= Ic(q̂) (Âcomp −A0).

Substituting back into the Newton update gives

A1 ≈ A0 +
Ic(q̂)(Âcomp −A0)

Io(A0) + Ic(q̂)
.

Closed-form IVW rule. Rearranging shows that the practical one-step update is a convex combi-
nation of the two empirical estimators:

ÂIVW ≈ Io(Âord) Âord + Ic(q̂) Âcomp

Io(Âord) + Ic(q̂)
.

Variance–information identities and final form. For the two constituent estimators, the vari-
ance–information identities are

Var(Âord) =
1

Io
, Var(Âcomp) =

1

Ic
,

with the plug-in Fisher information

Io(Âord) =
no

Âord(1− Âord)
, Ic(q̂) =

nc

(K − 1)2 q̂(1− q̂)
.

Therefore the IVW weight can be written either in information form, w⋆ = Io
Io+Ic

, or, equivalently,

in variance form (using I• = 1/Var(Â•)),

w⋆ =
Io

Io + Ic
=

Var(Âcomp)

Var(Âord) + Var(Âcomp)
.

Plugging these into the convex combination yields exactly results in §2.2:

ÂIVW = w⋆ Âord + (1− w⋆) Âcomp.

In summary, the IVW estimator is a one-step Newton approximation to the joint ML: it is first-order
equivalent and asymptotically efficient, but may differ in finite samples because the weights are
fixed by plug-in information rather than optimized jointly. While the ML is theoretically optimal,
the IVW rule is a simple linear combination that often delivers practically comparable performance
and is easier to apply in practice.

E PROOF OF THEOREM 2

Proof. Hoeffding part. For i.i.d. Wi∈ [0, 1], Hoeffding gives
Pr
(
|q̂ − Eq̂| ≥ ϵ

)
≤ 2 exp(−2ncϵ

2).

Since Âcomp = (K − 1)q̂ − (K − 2) and A = (K − 1)Eq̂ − (K − 2), we have

|Âcomp −A| = (K − 1) |q̂ − Eq̂|.

Empirical Bernstein part. Apply the two-sided empirical Bernstein inequality (Maurer & Pontil,
2009) to q̂ = 1

nc

∑nc

i=1 Wi with Wi ∈ [0, 1]:

∣∣q̂ − Eq̂
∣∣ ≤

√
2 q̂(1− q̂) log(4/δ)

nc
+

7 log(4/δ)

3 (nc − 1)
.

Multiplying both sides by (K − 1) and using Âcomp − (A) = (K − 1)
(
q̂ − Eq̂

)
yields the second

branch in Theorem 2
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F PROOF OF THEOREM 4

Proof. Recall Zj = I{ŷj = yj}, j = 1, . . . , no, are i.i.d. Bernoulli(A) with E[Zj ] = A; and
Wi = I{ŷi ̸= ȳi}, i = 1, . . . , nc, are i.i.d. Bernoulli(q) with q = (A + K − 2)/(K − 1) under
Eq. (1). The two groups are independent.

Define the rescaled variables

X
(o)
j := w

no
Zj , X

(c)
i := (1−w)(K−1)

nc
Wi,

and collect them as X1, . . . , Xn with n = no + nc. Then the centered sum

S :=

no∑
j=1

(
X

(o)
j − EX(o)

j

)
+

nc∑
i=1

(
X

(c)
i − EX(c)

i

)
= Âmix −A. (12)

We verify the conditions of Theorem 2.10 in Boucheron et al. (2003):

(i) Independence) holds by construction.

(ii) Boundedness). For all j, i,∣∣X(o)
j − EX(o)

j

∣∣ ≤ w
no

,
∣∣X(c)

i − EX(c)
i

∣∣ ≤ (1−w)(K−1)
nc

.

Set
c := max

{
w
no

, (1−w)(K−1)
nc

}
. (13)

(iii) Second moment). Summing variances,

v :=

no∑
j=1

Var(X
(o)
j ) +

nc∑
i=1

Var(X
(c)
i ) = w2A(1−A)

no
+ (1− w)2 (K−1)2 q(1−q)

nc
. (14)

(iv) Higher moments). Since |Xi − EXi| ≤ c, for all integers q ≥ 3, (Xi − EXi)
q
+ ≤ c q−2(Xi −

EXi)
2; summing and taking expectations yields

∑
i E[(Xi)

q
+] ≤ v c q−2, which is dominated by the

requirement q!
2 v c q−2 in (Boucheron et al., 2003, Thm. 2.10). Therefore, Theorem 2.10 applies to S

in Eq. (12) and (using the symmetric lower tail plus a union bound) gives Pr{ |S| ≥
√
2vt+ ct } ≤

2e−t. Setting t = log(2/δ) yields Eq. (10).

G PRACTICAL PLUG-IN FORMS OF THE BERNSTEIN BOUND

The quantities A and q are unknown; replace them by their empirical counterparts. Define
v̂o = Âord(1−Âord)

no
, v̂c = (K−1)2 q̂(1−q̂)

nc
, v̂mix = w2v̂o + (1 − w)2v̂c, with q̂ = Sc/nc.

Substituting into Eq. (10) yields the computable bound
∣∣Âmix−A

∣∣ ≤
√

2 v̂mix log 2
δ + c log 2

δ ,

where c is as in Eq. (13). For clarity, an equivalent compact statement is

|Âmix −A| ≤
√

2 log 2
δ

[
w2v̂o + (1− w)2v̂c

]
+ log 2

δ max
(

w
no

, (1−w)(K−1)
nc

)
. (15)

The variance component is minimized at w⋆ = vc
vo+vc

, a practical w is defined as ŵIVW = v̂c
v̂o+v̂c

,
coinciding with the IVW weight in Eq. (7). At this choice, the dominant (variance) term equals√

2 log 2
δ · vovc

vo+vc
.

Defining ĥmin := v̂o v̂c
v̂o+v̂c

, using the fully plug-in version gives

|Âmix −A| ≤
√

2 log 2
δ ĥmin + log 2

δ max
(

ŵIVW

no
, (1−ŵIVW)(K−1)

nc

)
, (16)

Conceptually, the mgf-based Bernstein bound (Eq. (10)) tightens Hoeffding’s inequality by adding
both a variance term v and a range-driven linear term c. As no or nc grows, the right-hand
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side vanishes: the variance part decays as O(1/no) + O(1/nc), while the linear term scales as
O
(
max {w/no, (1 − w)(K − 1)/nc}

)
. The plug-in IVW weight ŵIVW = v̂c

v̂o+v̂c
converges to

w⋆ = vc
vo+vc

; in particular, w⋆ → 0 when nc →∞ with no fixed (the complementary arm domi-
nates), and w⋆→ 1 when no→∞ with nc fixed (the ordinary arm dominates).

Formally, Eq. (10) is valid for any fixed choice of the weight w ∈ [0, 1] (e.g., a constant choice or an
estimate obtained from an independent pilot split). If instead w is chosen adaptively from the same
evaluation data (e.g., the plug-in ŵIVW), the fixed-weight assumption is violated and the bound is
no longer guaranteed. In such cases one can (i) revert to the union-bound inequalities of the main
text, which hold for arbitrary (possibly data-dependent) w via a triangle inequality; (ii) restore the
fixed-w condition through sample splitting or cross-fitting (Chernozhukov et al., 2018; Wager &
Athey, 2018); or (iii) restrict w to a finite grid G ⊂ [0, 1] and apply a union bound with δ adjusted
by |G| (Boucheron et al., 2013; Shalev-Shwartz & Ben-David, 2014).

H BENCHMARK DETAILS

From MMLU-Pro (Wang et al., 2024b), we select only the 10-option questions, yielding 9,795
examples. MedQA-USMLE (Jin et al., 2021) and GPQA (Rein et al., 2024) are both four-option
multiple-choice benchmarks; for GPQA we adopt the extended version for broader coverage. For
MATH-MC, following the candidate-generation protocol of Zhang et al. (2024), we construct five-
option questions from the original MATH dataset (Hendrycks et al., 2021), discarding problems
with fewer than four distractors, which yields 11,751 examples. All duplicates are removed to
ensure consistency.

I ESTIMATOR CONFIGURATIONS

For completeness, we summarize the exact configurations of all estimators used in Table 1.

Ord Ordinary-label estimator based on no = 300 samples per dataset (no = 120 for GPQA
due to dataset size). Accuracy is computed directly from the proportion of correct ordinary
labels.

Comp-no Complementary-label estimator with the same number of samples as the ordinary case, i.e.
nc = no (nc = 120 for GPQA). This setting highlights the loss of efficiency when only
complementary labels are available.

Comp-(K-1) Complementary-label estimator with sample size fixed at (K − 1) times the ordinary case,
i.e. nc = (K−1)no. Following the protocol in Appendix C, each instance with oracle label
y is converted into (K − 1) complementary “No” labels {ȳ ∈ Y \ {y}}, and the ordinary
label is discarded; thus no ordinary labels are present in this setting.

Comp-Var Complementary-label estimator with sample size nc chosen such that its variance matches
that of no ordinary labels, following Eq. (4). This represents the idealized regime where
complementary labels are sufficiently abundant to offset their lower per-sample informa-
tion.

IVW-0.5 A baseline inverse-variance weighted estimator with a fixed equal weight w = 0.5 between
ordinary and complementary accuracies. This serves as a naı̈ve combination strategy with-
out using variance information.

IVW Inverse-variance weighted estimator with closed-form plug-in weights (Eq. (6)), combining
ordinary and complementary estimates optimally under the variance–information identities.

ML Maximum-likelihood estimator obtained by solving the joint likelihood equation using both
ordinary and complementary samples. Asymptotically equivalent to IVW but involving a
nonlinear update (Appendix D).

Ord-Eval Oracle reference: accuracy evaluated directly on the entire dataset using ordinary labels.
This is shown only for comparison and is excluded from macro-averages.

Notes on datasets. † Math denotes Math-MC evaluated with GPT-4.1-nano instead
of GPT-5-nano, due to reasoning-output constraints. ‡ Math (CoT) denotes the
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Figure 4: Estimator sensitiv-
ity under weak signals. De-
tailed comparison of raw com-
plementary accuracy (q) and its
linear transform (trans) across
GPQA, Math-MC, and Med-
ical Abstract. The figure il-
lustrates how the two estima-
tors behave differently depend-
ing on task difficulty, with vari-
ance amplification explaining
when the transform helps or
hurts.

same Math-MC dataset evaluated under chain-of-thought prompting (applied only to Math;
model=GPT-4.1-nano).

J IMPLEMENTATION DETAILS ON ADAS AND AFLOW

To ensure a fair comparison, we constructed validation and test splits for each benchmark, following
the numbers and ratios used in Hu et al. (2025). Specifically, we sampled 120 validation and 800 test
examples for Math-MC and Medical Abstract, and 88 validation and 458 test examples for GPQA.
For AFlow, we set the number of validation runs to 3 and used the same validation set as ADAS,
rather than the separate validation subset reported in Zhang et al. (2025c).

For code and prompts, we largely follow the official implementations of Hu et al. (2025) and Zhang
et al. (2025c), with two minor modifications for reproducibility in our setting.

ADAS. The set of experts was adapted to better align with our benchmarks (e.g., replacing domain-
specific experts in LLM Debate with ones relevant to GPQA and Medical Abstract). All other
prompt components remain unchanged. We uploaded the full text of the adapted prompts and scripts
in the supplementary material.

AFlow. Since the original AFlow does not directly correspond to the multiple-choice format, we
modified the answer extraction and normalization functions, and used the following prompt:

Answer the following multiple choice question.
{problem[’Question’]}
(A) {problem[’A’]}
(B) {problem[’B’]}
(C) {problem[’C’]}
(D) {problem[’D’]}

At the very end, output the final answer in the format:

### X

Where X is exactly one of A, B, C, or D.

Do not add anything after this line. The last line of your output must
only contain ’### X’. If you write anything after the line ’### X’, your
answer will be marked as incorrect.

K ESTIMATOR VARIANCE ANALYSIS

Figure 4 reports ADAS and AFlow under the two estimators—raw complementary accuracy (q)
and its linear transform (trans)—each selected at the iteration that maximizes validation accuracy.
The results show clear regime dependence: on GPQA (the hardest benchmark), q is more reliable
(e.g., ADAS drops from 47.2 with q to 42.4 with trans, while AFlow remains unchanged at 47.2).
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On Math-MC, ADAS still prefers q (88.1 vs. 84.2), whereas AFlow shows only a slight gain with
trans (86.8 vs. 86.5). On Medical Abstract, where complementary accuracy is relatively high, the
transform becomes beneficial: ADAS improves from 61.6 to 67.8, and AFlow from 68.5 to 68.9.

This behavior is explained by variance amplification: according to Eq. (3), the variance of the trans-
formed estimator scales by (K−1)2 compared to q. When signals are weak (e.g., GPQA), variance
amplification exacerbates noise and harms performance. In settings with stronger signals (Math-
MC, Medical Abstract), the effect is less detrimental, and the transformed estimator occasionally
yields modest gains. A systematic study of this trade-off is left for future work.

L LARGE LANGUAGE MODELS USAGE STATEMENT

LLMs assisted us in formulating our ideas, working on extensions and analysis, and polishing the
writing. All of the LLM outputs were subsequently verified, revised and modified by the authors.
Any errors or inappropriate statements remain the responsibility of the authors.
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