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Abstract

Engineering regulatory DNA sequences with precise activity levels in specific
cell types hold immense potential for medicine and biotechnology. However,
the vast combinatorial space of possible sequences and the complex regulatory
grammars governing gene regulation have proven challenging for existing ap-
proaches. Supervised deep learning models that score sequences proposed by
local search algorithms ignore the global structure of functional sequence space.
While diffusion-based generative models have shown promise in learning these
distributions, their application to regulatory DNA has been limited. Evaluating the
quality of generated sequences also remains challenging due to a lack of a unified
framework that characterizes key properties of regulatory DNA. Here we introduce
DNA Discrete Diffusion (D3), a score entropy discrete diffusion model for DNA
sequences, to conditionally generate regulatory sequences with targeted functional
activity levels. We develop a comprehensive suite of evaluation metrics that as-
sess the functional similarity, sequence similarity, and regulatory composition of
generated sequences. Through benchmarking on three high-quality functional
genomics datasets spanning human promoters and fly enhancers, we demonstrate
that D3 outperforms existing methods in capturing the diversity of cis-regulatory
grammars and generating sequences that more accurately reflect the properties of
genomic regulatory DNA. Furthermore, we show that D3-generated sequences can
effectively augment supervised models and improve their predictive performance,
even in data-limited scenarios.

1 Introduction

Designing DNA sequences that precisely control gene expression in specific cell types is a funda-
mental challenge with profound implications for a wide range of fields, from synthetic biology to
gene therapy. However, the immense complexity of gene regulation and the vast space of possible
DNA sequences have made this goal elusive. Traditionally, deep neural networks (DNNs) have been
used to learn a mapping from DNA sequences to experimentally measured gene expression or other
functional genomics readouts [1, 2, 3, 4, 5]. These DNNs serve as an oracle (i.e., scoring function) to
predict the functional activity of proposed sequences [6, 7, 8]. This reframes the design task as an
optimization along sequence space through the lens of the DNN. Recently proposed methods include
gradient ascent [9] or in silico evolution [6, 7]. While somewhat successful, these approaches are
limited to exploring local optima and struggle to broadly sample the diversity of functional sequences.

∗Send correspondence to: asarkar@cshl.edu & koo@cshl.edu
†Currently research scientist at InstaDeep

AI for New Drug Modalities at NeurIPS 2024.



Recent breakthroughs in generative modeling, particularly diffusion [10, 11, 12] and flow match-
ing [13], offer an alternative approach by learning the underlying data distribution and enabling
conditional generation based on desired attributes. These models have been introduced for DNA
engineering recently, showing early promise. These include the Dirichlet Diffusion Score Model
(DDSM) [14], DiscDiff [15], DNA-Diffusion [16] and DNA Flow Matching (DFM) [17]. Here we
introduce DNA Discrete Diffusion (D3) which is adapted from Score Entropy Discrete Diffusion
(SEDD) [18] to regulatory DNA sequences. SEDD was recently introduced as a natural language
generative model that builds on diffusion processes by progressively adding noise to sentences and
learning to reverse it, reconstructing coherent text. Unlike traditional autoregressive models, which
predict one word at a time, SEDD diffuses noise across the entire sequence, providing a different
approach for handling discrete data like words.

While conditional generation is supported by all these models for DNA sequence design, they differ
in how they handle the generation process. D3 operates directly in the discrete nucleotide space,
applying conditions to nucleotide transitions based on desired functional activity. In contrast, DDSM
(which operates in the probability simplex), DiscDiff (latent space), DNA Diffusion (Euclidean
space), and DFM (vector field) apply conditions in continuous spaces and require a post-processing
step—quantization or rounding—to convert their outputs back into discrete sequences. D3’s discrete
approach is particularly effective for generating regulatory sequences, where sparse, informative
motifs are surrounded by large stretches of non-informative "junk" DNA. By directly focusing
on nucleotide transitions, D3 can refine key functional motifs without being overwhelmed by the
surrounding noise. On the other hand, models like DiscDiff and DFM must reconstruct sequences
from compressed latent spaces or continuous vector fields, which can lead to distortions during
reconstruction. By contrast, we surmise that issue of class imbalance is mitigated through D3’s
selective mutations of nucleotides, much like how evolution fine-tunes functional properties of DNA
through mutations at key positions while tolerating neutral drift in others.

All these existing diffusion based models for DNA [14, 15, 19, 16, 17] could allow directly generating
regulatory sequences with specified activity levels and cell-type specificity. However, it is unclear
whether they can reliably generate functional sequences that faithfully recreate the cell-type-specific
grammars of cis-regulatory mechanisms inherent to genomic DNA. Here, we develop a comprehensive
set of evaluations to assess whether generated sequences encode valid regulatory logic found in real
genomes. By benchmarking DNA Discrete Diffusion (D3) against previous methods, we demonstrate
that D3 generates DNA sequences that better capture the diversity of cis-regulatory grammars.

Our major contributions include:

• A new set of evaluations for designed regulatory sequences.
• Application of Score Entropy Discrete Diffusion to regulatory DNA sequences.
• D3 improves conditional sequence generation compared to previous DNA diffusion and

flow matching models across three datasets, two of which are new to generative modeling.

2 Background

2.1 Biological Motivation

The human genome consists of 3 billion base pairs across 23 chromosome pairs [20]. While each cell
shares the same DNA sequence, differential gene regulation gives rise to various cell types throughout
the human body. Protein-coding genes comprise only 1-2% of the genome, while non-coding regions,
which include promoters and enhancers, regulate transcription [21]. Promoters initiate transcription
by recruiting RNA polymerase via transcription factors (TFs), proteins that bind to specific DNA
sequence elements that are 4-19 nucleotides (nt) long. TF binding sites are referred to as motifs [22].
Enhancers are TF binding hotspots and interact with promoters to enhance transcription [23].

Experimental approaches like genome-wide chromatin profiling assays (e.g., CAGE-seq [24]) and
massively parallel reporter assays (MPRAs [25]) have advanced quantitative measurements of
regulatory sequence effects on gene expression. Supervised DNNs trained on these datasets have
provided some insights [26, 3, 27, 28, 29, 30, 31, 32]. However, understanding the complex cis-
regulatory code (i.e., TF binding rules, TF-TF interactions, and sequence context dependencies)
remains an open challenge.
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Current approaches for designing regulatory DNA involve using trained supervised DNNs to score
sequences from local search strategies [6, 7, 33, 9]. Generative models, such as GANs [34, 35, 36],
VAEs [37], and normalizing flows [38], among others [39], provide an avenue to sample sequence
(design) space more broadly, but have yet to demonstrate reliable regulatory DNA generation.
Similarly, BERT-style [40, 41, 42, 43, 44, 45] and autoregressive DNA language models [46, 47, 48,
49] have yet to demonstrate a comprehensive understanding of human regulatory sequences [50]. See
Appendix A for a more detailed primer.

In contrast, deep generative models and language models have been successful when analyzing
protein sequences or coding regions [51, 52, 53, 54]. The discrepancy with non-coding regulatory
DNA may lie in the long stretches of nucleotides where only some positions are informative for TF
binding. This is analogous to injecting random words between every meaningful word in a sentence
and expecting a language model to learn the natural language structure within the noise. The sparsity
of informative positions creates a class imbalance between informative and uninformative nucleotides,
limiting the effectiveness of loss functions that aim to predict missing tokens or reconstruct input
sequences, as these objectives can only be achieved through memorization rather than learning
meaningful patterns.

2.2 Continuous Time Framework for Discrete Diffusion

Let x0 ∈ X be a discrete sequence data with finite cardinality S = |X | and x0 ∼ qdata(x0) for
some discrete data distribution qdata(x0). In the continuous time framework, the discrete diffusion
process can be described by a linear ODE [55, 56]: dqt

dt = Rtqt, where qt represents the family of
distributions that evolves with time t, starting with q0 ≈ qdata, and Rt is the transition rate matrix.
The reverse process starts from the marginal qT (xT ) and can lead to the data distribution qdata(x0)
with a suitable transition rate matrix R̄t ∈ RS×S , which should have non-negative non-diagonal
entries and columns summed to zero, restricting qt to gain or lose any mass during the process.
Rt can be analytically chosen as Rt = β(t)Rb with a time-dependent scalar factor βt and time
independent base rate matrix Rb such that qt approaches a stationary distribution pref as t → ∞.
With this formulation, the reverse transition matrix satisfies (for a perturbed x̄):

R̄t(x, x̄) =
qt(x̄)

qt(x)
Rt(x̄, x) (1)

and the reverse process ODE is given by[57, 58]:
dqT−t

dt
= R̄T−tqT−t. (2)

The ratios qt(x̄)
qt(x)

are collectively known as the concrete score and are generally intractable. Previous

methods attempted to learn the density ratios qt(x̄)
qt(x)

to construct the reverse diffusion process. Lou
et al. [18] proposed a score matching network with Bregman divergence that restricts the density
ratios to positive values and performs well for discrete data. We employ a similar method with a
different function for Bregman divergence, leading to the same formulation as Lou et al. [18]. Hence,
as explained in the next section, we adapt similar forward and backward transition ideas for genomic
sequences, which are inherently different from text and require specific modifications. See Appendix
B for additional details on the continuous time framework and C for previous approaches to learn
density ratios.

3 Use of Score Entropy for Discrete Diffusion

Concrete score matching generalizes the standard Fisher divergence to learn a neural network sθ(x, t)

that can approximate the density ratios qt(x̄)
qt(x)

but does not perform well due to the inability of l2 loss to
penalize the non-positive values. On the other hand, score entropy is defined as Bregman divergence
DF (sθ(x),

q(x̄)
q(x) ) that enjoys convexity and non-negativity properties in general. Specifically, we

consider divergence associated with F (p) as
∑

p log p, i.e., the negative entropy function that inspired
the name. Score entropy loss (LSE) is defined as:

LSE = Ex∼q

∑
x̸̄=x

wxx̄

{
sθ(x)x̄ − q(x̄)

q(x)
log sθ(x)x̄ +K

(
q(x̄)

q(x)

)} , (3)
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Discrete diffusion training Discrete diffusion sampling

Figure 1: Overview of D3 training and sampling. (left) Perturb the original sequence x0 ∼ qdata (of
length 4) to xt (based on a uniformly sampled time t) following Eq. 6 and Eq. 7. Then, calculate
density ratios q(x̄|x0)

q(x|x0)
for sequences with 1-Hamming distance from xt to calculate the score entropy

loss. (right) Start with a random initial sequence, then calculate transition densities (Eq. 9), generating
intermediate samples at time t−∆t, until t > 0; a data sample is generated at the last step.

where K(l) = l(log l − 1). The weights wxx̄ take a specific form using score entropy with diffusion
models. However, LSE contains unknown qt(x̄)

qt(x)
. The ratio is replaced with q(x̄|x0)

q(x|x0)
in the denoising

score entropy loss LDSE , where q is a perturbation of a base density q0 by a transition kernel q(.|.) –
see theorem 3.4 in [18] for a proof of equivalence. Please see Appendix B for how evidence lower
bound (ELBO) is defined for likelihood-based training with a time-dependent score network sθ(., t)
[18]. Below, we discuss choices for the forward transition kernel that allow easy calculation of the
score entropy loss.

3.1 Choice of Forward Process (Specific to Genomics Data)

Modeling highly complex genomic sequences of the form x = x1...xd with a high value of d through
score entropy incurs scaling challenges. Our state factorizes into sequences X = {A,C,G, T}d,
where each position of the sequence represents one nucleotide, i.e., xi ∈ {A,C,G, T}. We consider
a sparse structured matrix RN

t that can perturb every nucleotide independently, which is given by:

Rt(x
1...xi...xd, x1...x̄i...xd) = RN

t (xi, x̄i) . (4)
We model all the density ratios for sequences with Hamming distance 1 following Lou et al. [18],
which drastically reduces the span of perturbations to only sequences with one nucleotide change.
This leads to the score network modeling a sequence-to-sequence map with O(4d) (reduced from
O(4d) for any sequence to any sequence transition) time as below:

(sθ(x
1...xi...xd, t))i,x→x̄ ≈ qt(x

1...x̄i...xd)

q(x1...xi...xd)
. (5)

The calculation for the forward transition qseqt|0 (.|.) with only one nucleotide change can be done in a
single step by decomposing it into independent token perturbations:

qseqt|0 (.|x) =
d∏

i=1

qNt|0(x̄
i, xi) . (6)

Each qNt|0(x̄
i, xi) can be calculated with a noise level β and a pre-specified transition matrix RN as

RN
t = β(t)RN . Considering β̄t as the cumulative noise

∫ t

0
β(t)dt, we have qNt|0(.|x) = x-th column

of exp(β̄(t)RN ). More specifically that implies

qNt|0(x̄t = j|x0 = i) = exp(β̄(t)RN )(j, i) , (7)

where (j, i) represents jth row, ith column entry of the matrix exp(β̄(t)RN ).

Here we consider special structures for the transition matrix, which removes the requirement of
storing all possible edge weights RN (i, j) [55, 59], resulting in a much lower memory and time
requirement. Specifically, a uniform stationary base rate matrix R = 11⊤ − SI can be a natural
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choice for categorical discrete distributions, where 11⊤ is a matrix of all ones, I is identity matrix.
With this formulation, we can quickly calculate all values of LDWDSE for model training. See
Appendix B for additional details of the stationary matrix R and time-dependent version RN

t .

This formulation allows D3 to accept a conditioning signal, a scalar or vector, alongside the data as
input to the score network, which learns the density ratios based on the provided information. This
approach differs from classifier-free guidance as the conditioning signals consist of continuous-valued
scores, aligning precisely with the formulation for conditional training. Previous methods [14, 17]
employed this type of conditioning for designing human promoters (see Sec. 5).

3.2 Simulating Generative Reverse Process with Concrete Scores

Optimal denoising can be achieved only by knowing all density ratios qt(x̄)
qt(x)

. If qt follows the diffusion

ODE (i.e., dqt
dt = Rtqt), the true denoiser can be represented as a discrete version of Tweedie’s

theorem [60], as shown by Lou et al. [18]:

q0|t(x0|xt) =

(
exp(−tR)

[
qt(i)

qt(xt)

]4
i=1

)
x0

exp (tR(xt, x0)) . (8)

The generative reverse process can be efficiently simulated using tau-leaping and Tweedie denoiser
analog, which leverage the concrete scores and consider only sequences with a 1-Hamming distance
as follows:

qi(xi
t−∆t|xi

t) =
(
exp(−β(t)∆tR)sθ(xt, t)i

)
xi
t−∆t

exp(−β(t)∆tR(xi
t, x

i
t−∆t) , (9)

where β(t)∆t = (β̄(t) − β̄(t −∆t)). Now qi(xi
t−∆t|xi

t) may need clamping for minimum 0 and
normalizing the sum to 1, and xt−∆t can be obtained by sampling i-th token as xi

t−∆t ∼ qi(xi
t−∆t).

See Appendix B for additional details on the general reverse process. The sampling process accepts
conditioning signals with the uniformly sampled sequences and follows a similar formulation through
computing the ratios incorporated in the conditionally trained score network outputs. Figure 1 shows
an overview of the D3 training and sampling process.

4 Evaluation Framework for Regulatory DNA Sequences

We have incorporated standard practices and introduced new ones to assess the quality of generated
sequences. Our evaluations are grouped into three main categories (Fig. 2): 1) functional similarity,
2) sequence similarity, and 3) compositional similarity. Functional similarity assesses whether
generated sequences exhibit similar functional activity as real DNA from the original dataset. While
experimental validation is ideal, we rely on an oracle—a DNN trained to predict functional genomics
data—to provide “in silico measurements”. Sequence similarity assesses the extent of memorization
of training sequences and whether generated sequences exhibit similar properties to real ones.
Compositional similarity assesses the similarity of motif composition between generated and real
sequences, as regulatory function is primarily driven by motifs and their complex interactions.

4.1 Functional Similarity

Conditional generation fidelity measures how well-generated sequences yield the same functional
activity as the conditioning value. An oracle predicts activities for a matched set of natural and
generated sequences, and mean squared error is calculated [14, 17]. Lower values indicate higher
fidelity.

Frechet distance is the 2-Wasserstein distance between embeddings given by an oracle for synthetic
and real data, assuming a multivariate normal distribution. It assesses the quality and variety of
generated sequences compared to real ones. Lower values indicate greater sample variety.

Predictive distribution shift is the Kolmogorov-Smirnoff test statistic, quantifying the largest
deviation between the cumulative distribution functions of functional activity predictions for generated
and natural sequences. Lower values indicate more similar distributions.
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Figure 2: Schematic of evaluation framework.

4.2 Sequence Similarity

Percent identity measures the extent of memorization between two sequences using Hamming
distance normalized to sequence length. A value of 1 indicates perfect memorization; lower values
indicate that the model is generating unseen sequences. We calculate the maximum percent identity
for each generated sequence against all training sequences (memorization) and among generated
sequences (diversity). We summarize the percent identity distribution as an average maximum percent
identity and a global maximum across all generated sequences.

k-mer spectrum shift measures the similarity of low-level sequence statistics between generated and
natural sequences using the Jensen-Shannon distance between k-mer frequencies (k = 1 to k = 7).
Lower values indicate more similar distributions.

Discriminatability tests how well a discriminator can classify generated sequences from real ones
using the area under the receiver-operating characteristic curve (AUROC). A value of 0.5 suggests
similar sequence properties; 1 indicates different properties.

4.3 Compositional Similarity

Motif enrichment is calculated by scanning sequences with position weight matrices [61] from the
JASPAR database [62] using FIMO [63]. We calculate the total number of motif hits (879 unique
motifs) across real and generated sequences and use Pearson’s correlation to measure similarity. A
correlation closer to 1 indicates similar proportions of motifs (up to a scaling factor).

Motif co-occurrence is assessed by calculating the motif-motif covariance matrix based on motif
counts per sequence separately for real and generated sequences given by FIMO. The Frobenius norm
between the two covariance matrices is calculated; lower values indicate higher similarity between
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motif co-occurrences. This provides a coarse-grained view of whether the generated sequences are
learning co-occurring motifs, a necessary but not sufficient property of cis-regulatory mechanisms.

Attribution analysis scores the importance of single-nucleotide variants on model predictions,
revealing important motif positions. Using an oracle, we employ GradientSHAP from Captum [64]
with 5,000 random sequences as references. We perform gradient correction to each attribution map
[65] and visualize attribution maps using Logomaker [66]. We calculated attribution maps for 2,000
generated and real sequences based on high functional activity and compared them qualitatively.

Attribution consistency quantifies the enrichment of k-mer patterns within high attribution scores
using the Kullback-Leibler divergence (KLD) between an analytical, geometric embedding of mean
attribution scores over k = 6 positions and an uninformative prior [67]. Higher values indicate more
consistent patterns. We analyze 2,000 sequences with the highest functional activity. We also assess
attribution consistency across generated and real sequences by analyzing a concatenated sequence set.

4.4 Other Evaluations

Informativeness refers to the added information provided by the generated sequences when combined
with genomic sequences. We conditionally generate sequences with matched activities as the original
training sequences, combine them with downsampled subsets of the original training data (100%,
75%, 50%, 25%, and 0%), and train a DNN on the hybrid dataset using the same procedure outlined
in the original studies. If the generated sequences provide added information, the performance will
improve compared to training on just the original training sequences.

Conditional sampling diversity is assessed according to the sequence diversity, which calculates
percent identity on generated sequences sampled using the same conditioning value. For the fly
enhancer dataset, we generate 500 samples using a fixed conditioning value and perform an all-vs-all
percent identity comparison. A baseline is set using a matched set of dinucleotide shuffled sequences.
We also assess the mechanistic diversity, that is, the variability of the cis-regulatory mechanisms
encoded in the generated sequences sampled using the same conditioning value. Attribution maps
are calculated and compared as an all-vs-all Euclidean distance. A higher value indicates that the
generated sequences contain diverse mechanisms (i.e., variable arrangements of motifs).

Task-specific design assesses the ability to generate sequences with desired activity levels across
tasks. We set the conditioning values for desired activities for each task, generate 500 sequences, and
compare the distribution of oracle-predicted activities.

5 Experiments

To demonstrate the effectiveness of D3 in conditionally generating sequences, we benchmark its per-
formance against previous methods using three high-quality experimental datasets: human promoters
[14], fly enhancers [68], and cell-type-specific MPRA [33].

5.1 Designing human promoters

Dataset. The human promoter dataset is an established benchmark for DNA generative models
[14]. It consists of 100,000 promoter sequences (1024 nt long, centered on transcription start sites)
with corresponding transcription initiation signal profiles measured via CAGE-seq [24] from the
FANTOM database [69]. The signal profiles represent transcription activity levels, which vary across
genes depending on promoter content.

Baselines. We compared D3 against Bit-diffusion [70], D3PM [59], DDSM, and DFM. We used
the same CNN specs and setup as the original DDSM study for a fair comparison. Sequences were
conditionally generated using transcription initiation signal profiles as input. We also introduced and
trained a new transformer architecture within the D3 and DFM framework (details in Appendix D).

Evaluation. In addition to conditional generation fidelity, which was previously established [14],
we also evaluated the predictive distribution shift, percent identity, k-mer spectrum shift, motif
enrichment, and motif co-occurrence, focusing on DFM- and D3-based models, using Sei [71] as
an oracle. Generated sequences were conditioned using activities from test sequences, creating a
matched set of generated and real sequences. See Appendix D for additional details.
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Table 1: Performance of generated human promoter sequences.

Functional similarity Sequence similarity Compositional similarity
Conditional
generation

fidelity

Predictive
distribution

shift
Percent identity

k-mer
spectrum

shift

Motif
enrichment

Motif
co-occurrence

Model (MSE ↓) (KS test statistic ↓) (Average) (Max) (JS distance ↓) (Pearson’s r ↑) (Frobenius norm ↓)
Bit Diffusion*

(Bit encoding) 0.0414 - - - - - -

BIT Diffusion*
(one-hot encoding) 0.0395 - - - - - -

D3PM-Uniform* 0.0375 - - - - - -
DDSM* 0.0334 - - - - - -
DFM-Conv* 0.0269 0.399 7.09 12.4 0.346 0.831 23.699
DFM-Tran 0.0318 0.336 6.49 12.4 0.216 0.873 12.924
D3-Conv 0.0259 0.093 8.57 12.4 0.003 0.997 0.746
D3-Tran 0.0219 0.052 9.06 12.4 0.002 0.999 1.487
Shuffle 0.0617 0.300 7.97 12.4 0.096 0.891 2.545

Results. D3 with a CNN (D3-Conv) achieved lower conditional generation fidelity (MSE) com-
pared to the state-of-the-art DFM with a CNN (FM-Conv) (Table 1). A transformer architecture
further improved MSE for D3 but worsened results for DFM. All generative models outperformed
dinucleotide shuffled sequences, suggesting they learned useful sequence properties (to varying
extents). D3-based models yielded lower predictive distribution shifts compared to FM-based models.
All models did not memorize training sequences, indicated by low percent identity on par with
shuffled sequences. The k-mer spectrum shift was substantially lower for D3-based models across
different k-mer sizes (Fig. 3, Appendix E), while FM-based models showed higher shift than shuffled
sequences, suggesting unnatural sequence biases. Similar trends for motif enrichment and motif
co-occurrence suggest that D3-generated sequences better reflect real sequence composition.

5.2 Context-specific Fly Enhancer Design

Data. The data consists of enhancer sequences with corresponding activity values in two contexts
(housekeeping and developmental gene promoters), taken from the STARR-seq dataset [68]. The
dataset contains 402,296 training, 40,570 validation, and 41,186 test sequences. Each 249 nt enhancer
sequence has two scalar activity values for the developmental and housekeeping conditions. We
repurposed this dataset to train and evaluate generative models for context-specific enhancer activity.

Baselines. We trained DFM-Conv, DFM-Tran, D3-Conv, and D3-Tran with conditioning using
activities from the training set. Training details are in Appendix D.

Evaluation. We performed the evaluations outlined in Sec. 4 using a DeepSTARR model trained
with EvoAug [72] as the oracle, which employs evolution-inspired data augmentations and has
demonstrated state-of-the-art performance on this dataset (Appendix D). For each method, we
generated sequences conditioned on the test sequence activities for both tasks to obtain a matched set
of generated and real sequences. Dinucleotide shuffled test sequences were used as a reference.

Results. D3-based models outperformed DFM-based models on evaluations for functional, se-
quence, and compositional similarity (Table 2). D3-Tran achieved the lowest MSE (conditional
generation fidelity) and KS test statistic (predictive distribution shift), while D3-Conv had a slightly
lower Frechet distance (representational similarity). According to percent identity, no model memo-
rized training sequences. D3-based models yielded lower k-mer spectrum shift and discriminatability
compared to DFM-based models, suggesting DFM-generated sequences contain biases easily recog-
nized by a discriminator. Compositionally, D3-generated sequences contained motif enrichment and
motif combinations at similar levels as real genomic sequences. Moreover, D3-generated sequences
produced attribution maps visually similar to real sequences, with short, consistent motif-like patterns.
In contrast, DFM-generated sequences exhibited spurious attribution scores for arbitrary positions
(Fig. 5, Appendix E). The attribution consistency score showed that D3-Tran captures patterns more
consistently within its own set of generated sequences and in combinations with the real sequences.

According to added information, a supervised DeepSTARR improved performance when trained
with a combination of real sequences and D3-generated sequences (Figs. 6, Appendix E), with
further improvements when augmenting the training data two-fold (Figs. 7, Appendix E) and
remarkably, training DeepSTARR using only D3-Tran-generated sequences achieved nearly the
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Table 2: Performance for fly enhancers. See Sec. 4 for details of each metric. Attribution consistency*
represents analyses using combined attribution maps from generated sequences with real sequences.
Red highlights indicate best performance.

Functional similarity Sequence similarity
Conditional
generation

fidelity

Predictive
distribution

shift

Representational
similarity Percent identity k-mer

spectrum shift Discriminatability

Model (MSE ↓) (KS test statistic ↓) (Frechet distance ↓) (Average) (Max) (JS distance ↓) (AUROC ↑)
DFM-Conv 2.029 0.231 1.109 38.9 ± 0.01 50.2 0.303 0.979 ± 0.014
DFM-Tran 2.182 0.212 1.059 40.4 ± 0.03 51.0 0.195 0.982 ± 0.019
D3-Conv 1.192 0.025 0.022 40.3 ± 0.02 51.0 0.004 0.516 ± 0.017
D3-Tran 1.156 0.020 0.033 40.4 ± 0.02 51.0 0.004 0.552 ± 0.034
Shuffle 1.708 0.184 0.803 40.0 ± 0.02 51.0 0.085 0.970 ± 0.003
Test set - - - - - - -

Compositional similarity
Motif

enrichment
Motif

co-occurrence
Attribution
consistency

Attribution consistency
generated + real sequences

Model (Pearson’s r ↑) (Frobenius norm ↓) (KLD ↑) (KLD ↑)
DFM-Conv 0.450 100.5 0.485 0.459
DFM-Tran 0.656 104.5 0.438 0.450
D3-Conv 0.977 36.4 0.504 0.503
D3-Tran 0.984 19.3 0.525 0.514
Shuffle 0.743 81.0 0.084 0.376
Test set - - 0.52 -

same performance as training on the actual set (Figs. 7e, Appendix E), suggesting D3-Tran samples
informative sequences (beyond the observed training sequences), providing additional information
that benefits supervised modeling.

To ensure broad sampling, we also considered the sequence diversity and mechanistic diversity of
sequences generated using a fixed conditioning value. We found that generated sequences exhibit a
diverse set of sequences (Table 4, Appendix E), and their underlying cis-regulatory mechanisms were
diversely represented in attribution maps (Fig. 8). Finally, we assessed the ability for task-specific
design by generating sequences conditioned with specific activity settings across tasks. Strikingly,
D3-Tran-generated sequences better reflected the task conditional values compared to DFM-Conv
(Fig. 9), demonstrating that D3-Tran has learned a meaningful density over sequence space that
enables sampling unseen sequences with desired activity levels across tasks.

5.3 Cell-type-specific Regulatory Sequence Design

Data. The dataset, created by Gosai et al. [33], consists of cis-regulatory sequences with activity
values measured via an MPRA in three human cell lines: K562 (erythroid precursors), HepG2
(hepatocytes), and SK-N-SH (neuroblastoma). It contains 640,029 training, 59,697 validation, and
63,958 test sequences. Each 200 nt sequence has three scalar activity values for each cell type. We
used this dataset to train and evaluate generative models for cell-type-specific sequence activity.

Baselines. We used the same models as in the fly enhancer analysis (see Appendix D for details).

Evaluation. We evaluated the conditional generation fidelity from Sec. 4 and explored the ability
to generate sequences with cell-type-specific activity levels. The oracle was a custom ResidualBind
model [26, 73] with dilated convolutional blocks and residual connections (details in Appendix D).

Results. Similarly, D3-based models led to lower MSE in conditional generation fidelity (Table 3,
Appendix E). For task-specific design, D3-Tran generated sequences with appropriate activities when
the conditioning activity values across cell types were the same (Fig. 10a, Appendix E). However,
D3-Tran yielded lower efficacy when generating sequences were conditioned with highly differential
activities across cell types (Fig. 10b-d, Appendix E). Further investigation revealed that task labels in
the MPRA training set were highly correlated, with high activity examples being extremely rare (Fig.
11, Appendix E). In contrast, the fly enhancer dataset exhibited lower activity correlation across tasks
and contained more high-activity examples. This suggests that while D3-Tran has learned a useful
distribution capturing many observed properties of sequence-function space, its ability to generate
unseen combinations of task-specific activities is limited. However, this issue could be a limitation of
the supervised oracle’s inability to generalize under covariate shifts. Experimental evidence is needed
to resolve this discrepancy, but it remains out of scope for this study.
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6 Conclusion
Here, we introduced DNA Discrete Diffusion, a generative model for conditionally sampling regula-
tory DNA with targeted functional activity levels. Through extensive benchmarking, we demonstrated
that D3 outperforms existing methods in generating sequences that more accurately reflect the func-
tional, sequence, and compositional properties of the regulatory genome. Notably, D3-generated
sequences effectively augmented supervised models, improving predictive performance even in
data-limited scenarios. These results highlight the potential of diffusion-based generative models to
learn complex cis-regulatory mechanisms underlying gene regulation, which opens new avenues for
targeted sequence design in biomedicine and synthetic biology. Future work could explore model
distillation to improve sampling efficiency, increase the scale of generated sequences to incorporate
interactions across distal cis-regulatory elements, and improve out-of-distribution generation.
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[75] Martin Kavšček, Martin Stražar, Tomaž Curk, Klaus Natter, and Uroš Petrovič. Yeast as a cell factory:
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A Appendix: brief primer on regulatory genomics

The human genome consists of DNA sequences comprising 23 pairs of chromosomes, totaling
approximately 3 billion base pairs [20]. While most cells share the same DNA, different cell types
(e.g., heart, neurons, muscle) arise due to differential gene regulation. Protein-coding genes constitute
1-2% of the genome; large regions of the non-coding genome regulate transcription, the process
of converting DNA to mRNA for protein translation [21]. Important non-coding regions called
cis-regulatory elements act as promoters and enhancers, among others [23].

Promoters initiate and maintain mRNA transcription. Transcription requires RNA polymerase
recruited to genes through interactions with transcription factors (TFs) that bind short DNA sequences
(4-19 nucleotides). Amino acid-DNA interactions determine TF binding specificity; TF binding
sites are called sequence ‘motifs’. TF binding is influenced by factors such as nucleotide content,
neighboring context, other TFs, and cofactors [22], resulting in a complex and partially stochastic
process. Human cells contain 1,500-2,000 TF types expressed at varying levels across cell types.
Enhancers are DNA sequence elements (200-1kb long) that act as TF binding hotspots, interacting
with promoters to enhance polymerase recruitment [23]. The cell-type-specific regulatory code
governing which TFs bind where and how they interact to coordinate transcription remains largely
unknown.

Experimental approaches have advanced quantitative measurements of how regulatory sequences
impact gene expression via high-throughput chromatin profiling screens (e.g., CAGE-seq [24]
measuring mRNA levels) or massively parallel reporter assays (MPRAs). High-throughput chromatin
profiling screens measure the genome-wide occupancy of TFs, chromatin accessibility, or histone
modifications, providing indirect readouts of regulatory activity. MPRAs measure the quantitative
effects of sequence elements like promoters or enhancers on reporter expression (e.g., mRNA,
fluorescence, barcodes), providing direct readouts of their regulatory activity [25].

While fitting deep learning models to functional assays in a supervised manner has enabled some
insights into regulatory elements and motif interactions [74, 26, 29, 30, 28, 31, 32], our under-
standing of the complex cis-regulatory code governing cell-type-specific gene expression remains
limited. Current methods provide only partial insights into the intricate mechanisms of transcriptional
regulation.

The ability to precisely design regulatory sequences for desired expression patterns would revolu-
tionize therapeutics via targeted mRNA delivery and industrial biotechnology through optimized
protein production in bacteria or yeast [75, 76]. However, realizing these transformative applications
requires going beyond interpreting the genomic regulatory code to generative modeling approaches
that encode this complex biological knowledge. Despite recent advances, it remains to be seen
whether the few generative models that have recently emerged can reliably learn and recapitulate the
context-dependent interactions orchestrating how transcription factors, enhancers, promoters, and
other elements control gene programs across diverse cellular environments.

The main approaches to designing regulatory sequences involve using trained, supervised models to
score proposed sequences from search strategies that sample from or navigate along the design space.
In genomics, search methods include in silico evolution (computational simulation of evolutionary
processes) [6], gradient ascent (iterative optimization by following the gradient of a target function)
[9], simulated annealing (a probabilistic optimization algorithm) [33], motif implanting (inserting
known TF binding motifs into sequences) [7], and reinforcement learning methods like GFlowNets
(learning a policy to generate sequences with desired properties) [77]. In terms of generative models,
generative adversarial networks (GANs) have also been proposed but have yet to generate compelling
sequences [34, 35], albeit no further follow-up studies have demonstrated the capabilities of GANs.
Surprisingly, other generative AI methods like variational autoencoders [37] and normalizing flows
[38] have not reliably established an ability to generate regulatory sequences. Recently, DNA
language models have emerged [41, 46, 44, 42, 43, 78, 45, 47, 48, 49], demonstrating promise in
learning gene features in the genome. However, careful evaluation of their representations has shown
that they need to learn a foundational understanding of regulatory sequences in humans [50].

By contrast, generative models have found success in learning distributions of homologous protein
sequences [79, 80, 81, 82] and large language models have learned functional and structural features
from sequence alone [51, 52, 53, 54]. The distinction is that protein sequences exhibit deep conserva-
tion across distant species spanning millions of years, while non-coding genomic regions are highly
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divergent at the sequence level. Importantly, unlike natural languages or proteins, regulatory DNA
sequences contain long stretches with only some positions informative for transcription factor binding,
creating a large class imbalance of uninformative versus informative positions. Loss functions aiming
to predict missing tokens or reconstruct input sequences are dominated by positions that require
memorization due to their high entropy (i.e., low information content), limiting their effectiveness for
modeling regulatory sequences.
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B Appendix: Method details

B.1 Discrete Diffusion Process

Our aim is to model discrete sequence data x0 ∈ X with finite cardinality S = |X | and x0 ∼
qdata(x0) for some discrete data distribution qdata(x0). Similar to a continuous process, a forward
noising process can be defined that transforms pdata(x0) to some terminal distribution qK(xK) that
closely approximates an easy-to-sample distribution pref (xK). Following the notion of discrete state
spaces, a forward kernel can be defined as qk+1|k(xk+1|k) that tends to the stationary distribution
as k → ∞. A simple uniform kernel can be defined as qk+1|k(xk+1|k) = δxk+1|k(1 − β) + (1 −
δxk+1|k)β/(S − 1) [83, 59] where δ is Kronecker delta with the stationary distribution being uniform
distribution over all states. With a valid definition of qk+1|k, a forward joint decomposition is defined
as below:

q0:K(x0:K) = qdata(x0)

K−1∏
k=0

qk+1|k(xk+1|k)

The joint distribution can be decomposed with the reverse transitions as given below:

q0:K(x0:K) = qK(xK)

K−1∏
k=0

qk|k+1(xk|xk+1) where qk|k+1(xk|xk+1) =
qk+1|k(xk+1|k)qk(xk)

qk+1(xk+1)

With access to reverse transition kernel qk|k+1, it is possible to sample from the stationary distribution
xK ∼ qK(.) and then sample from the reverse kernels to produce qdata(x0) as the last step of the
process. Generally, a parametric reverse kernel pθk|k+1 is employed to approximate the intractable
qk|k+1 and samples can be generated from pdata(x0) can be obtained by generative joint distribution

pθk|k+1(x0:K) = pref (xK)

K−1∏
k=0

pθk|k+1(xk|xk+1)

where qK(xK) is expected to approximate the stationary distribution pref (xK) closely for large K.

B.2 Continuous Time Framework

The transitions can occur at any time during t = 0 to t = T following a continuous time Markov
process, which is more flexible compared to the discrete-time scenario. This process starts with an
initial distribution q0 and is driven by a transition rate matrix Rt ∈ RS×S that defines how the state
changes during the process. The corresponding discrete diffusion process can be denoted by a linear
ordinary differential dqt

dt = Rtqt where qt represents the family of distributions that evolves with time
t that starts with q0 ≈ qdata. The transition rate matrix Rt should have non-negative non-diagonal
entries and columns summed to zero that restrict pt to gaining or losing any mass during the process.
Rt can be analytically chosen as Rt = β(t)Rb with a time-dependent scalar factor βt and time
independent base rate matrix Rb such that pt approaches a stationary distribution pref as t → ∞.

Rt can also represent infinitesimal transition probability and corresponding small ∆t Euler steps for
the process at any time points t−∆t and t as below:

qt|t−∆t(x|x̄) = δx,x̄ +Rt(x̄, x)∆t+O(∆t) (10)

The reverse process starts from the marginal qT (xT ) and can lead to data distribution pdata(x0) with
suitable transition rate matrix R̄t ∈ RS×S as:

qt|t+∆t(x̄|x) = δx̄,x + R̄t(x, x̄)∆t+O(∆t) (11)

Also the reverse transition matrix satisfies

R̄t(x, x̄) =
qt(x̄)

qt(x)
Rt(x̄, x) (12)
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and the reverse process ODE can be given by
dqT−t

dt
= R̄T−tqT−t (13)

The ratios qt(x̄)
qt(x)

are collectively known as concrete score, but are generally intractable. Their
behavioral similarity to score function ∇ log q(x) for continuous distributions instigates learning the
ratios for discrete data points (such as genomics data that we are trying to model).

B.3 Properties and Likelihood Bound

For any fully supported distribution q and positive weights wxx̄, the optimal θ∗ minimizing LSE for
all x, x̄ pairs satisfies sθ∗(x)x̄ = q(x̄)

q(x) , with the minimum value being 0 at θ∗. This can be shown by
taking derivative of LSE (without considering K(.) as it doesn’t depend on θ) w.r.t. sθ and setting it
to 0 [18].

Unfortunately, the score entropy term contains the unknown qt(x̄)
qt(x)

term, which requires planning for
an alternate solution to tractably calculate LSE . Following Theorem 3.4 in [18], we continue with
calculating denoising score entropy as an equivalent (up to a constant independent of θ) of LSE . If q
is a perturbation of a base density q0 by a transition kernel q(.|.) such as q(x) =

∑
x0

q(x|x0)q0(x0),
LDSE is given by

LDSE = Ex0∼q0,x∼q(.|x0)[
∑
x̄ ̸=x

wxx̄(sθ(x)x̄ − q(x̄|x0)

q(x|x0)
log sθ(x)x̄)] (14)

Access to the perturbation kernel makes LDSE scalable as the hope is to train a model sθ(x) that can
provide any sθ(x)x̄. We will discuss different perturbation techniques in the following subsection.
Particularly, defining an ELBO and likelihood-based training requires defining a time-dependent
score network sθ(., t) with the parameterized reverse matrix as R̄t(x̄, x) = sθ(x, t)Rt(x, x̄) which
is found by replacing the density ratios with scores in Equation 12. Also, the parameterized densities
qθt satisfy reverse process ODE in Equation 13. The log-likelihood of data points was derived for
discrete diffusion models in [55], with a specific form for score entropy in [18] as

−logqθ0(x0) ≤ LDWDSE(x0) +DKL(qT |0(.|x0)||pref ) (15)

where qθT = pref for the parameterized densities qθt , and LDWDSE(x0) is the diffusion weighted
denoising score entropy for x0, which is given by∫ T

0

Ext∼qt|0(.|x0)

∑
x̄ ̸=xt

Rt(x̄t, t)

(
sθ(xt, t)x̄ −

qt|0(x̄|x0)

qt|0(x|x0)
log sθ(xt, t)x̄ +K

(
qt|0(x̄|x0)

qt|0(x|x0)
)

))
dt

(16)
We follow the likelihood based training off of this upper bound with specific choices for forward
transition kernel that allow easy calculation of LDWDSE which we discuss now in detail.

B.4 Choice of Forward Process (specific to genomics data)

Modeling highly complex genomics sequences of the form x = x1...xd with a high value of d through
score entropy incurs real scaling challenges. Our state factorizes into sequences X = {A,C,G, T}d
such that each position of the sequence represents one nucleotide i.e. xi ∈ {A,C,G, T}, which
is synonymous to tokens for language models or image pixels for computer vision tasks. Rt

should be able to take any sequence to any other sequence which requires exponential time and
space, specifically O(4d). Here, we consider a sparse structured matrix RN

t that can perturb every
nucleotide independently, which is given by

Rt(x
1...xi...xd, x1...x̄i...xd) = RN

t (xi, x̄i) (17)
Specifically, we model all the density ratios for sequences with a Hamming distance of 1, which
drastically reduces the span of perturbations to only sequences with one nucleotide change. This
leads to the score network to model a seq-to-seq map with O(4d) time as below:

(sθ(x
1...xi...xd, t))i,x→x̄ ≈ qt(x

1...x̄i...xd)

q(x1...xi...xd)
(18)
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As we consider only one token change, the calculation for the forward transition qseqt|0 (.|.) can be done
in a single step by decomposing it to independent token perturbation:

qseqt|0 (.|x) =
d∏

i=1

qNt|0(x̄
i, xi) (19)

Each qNt|0(x̄
i, xi) can be calculated with a noise level β and a pre-decided transition matrix RN as

RN
t = β(t)RN . Considering β̄t as the cumulative noise

∫ t

0
β(t)dt, we have qNt|0(.|x) = x-th column

of exp(β̄(t)RN ). More specifically, that implies

qNt|0(x̄t = j|x0 = i) = exp(β̄(t)RN )(j, i) (20)

where (j, i) represents jth row,ith column entry of the matrix exp(β̄(t)RN ). With this formulation,
We follow the diffusion-weighted denoising score entropy loss LDWDSE from [18] for our model
training.

Storing all possible edge weights RN (i, j) requires a high cost in terms of space and time. This
issue can be addressed by considering special structures for transition matrix [55, 59]. In particular, a
uniform stationary base rate matrix R = 11⊤ − SI can be a natural choice for categorical discrete
distributions where 11⊤ is a matrix of all ones, I is identity matrix. For our specific scenario, the
token size is 4, and hence the corresponding time-dependent transition matrix is given by

1
4 + 3

4e
−4t 1

4 − 1
4e

−4t 1
4 − 1

4e
−4t 1

4 − 1
4e

−4t

1
4 − 1

4e
−4t 1

4 + 3
4e

−4t 1
4 − 1

4e
−4t 1

4 − 1
4e

−4t

1
4 − 1

4e
−4t 1

4 − 1
4e

−4t 1
4 + 3

4e
−4t 1

4 − 1
4e

−4t

1
4 − 1

4e
−4t 1

4 − 1
4e

−4t 1
4 − 1

4e
−4t 1

4 + 3
4e

−4t


This structured matrix perturbs the input sequence according to the uniformly sampled time t, with
the idea that all the matrix entries tend to 1

4 uniformly when t → ∞. This formulation explained
above enables us to calculate all values of LDWDSE quickly, which makes the training process much
faster. Specifically, LDWDSE can be calculated as below:

LDWDSE = β(t)

d∑
i=1

4∑
y=1

(1− δx̄i
t
(y))(sθ(x̄t, t)i,y −

qt|0(y|xi
0)

qt|0(x̄
i
t|xi

0)
log sθ(x̄t, t)i,y (21)

where β(t) is noise schedule (with total noise β̄(t), and δ is Kronecker delta. While other options
are available, such as absorbing state process with a stationary matrix of all zeros[55, 18], our
experiments with uniform rate matrix showed exciting results, and we leave other options for future
work.

B.5 Simulating Generative Reverse Process

The parametric generative reverse process following continuous time framework with rate matrix R̄
can be employed by taking a small Euler step shown in Eq. 11. While this process can be simulated
using Gillespie’s Algorithm [84], this is impractical for large sequence lengths as stepping through
each transition individually will allow only one dimension change for each backward step [55].
Another popular approximate simulation method, tau-leaping [84], can be employed that applies
all the transitions simultaneously. Particularly, a sequence xt−∆t can be constructed from xt by
sampling each token xi

t−∆t independently [18] by below probability:

qi(xi
t−∆t|xi

t) = δxi
t
(xi

t−∆t) + ∆tR̄t(x
i
t, x

i
t−∆t)sθ(xt, t)i,xi

t−∆t
(22)

B.6 Utilizing Concrete Scores

The optimal denoising can be achieved only by knowing all density ratios qt(x̄)
qt(x)

. If qt follows the

diffusion ODE dqt
dt = Rtqt, the true denoiser can be represented as a discrete version of Tweedie’s

theorem [60], as shown in [18]

q0|t(x0|xt) =

(
exp(−tR)

[
qt(i)

qt(xt)

]4
i=1

)
x0

exp(tR(xt, x0) (23)

20



As we only know the density rations for sequences with 1 Hamming distance away, a Tweedie
denoiser analog of tau-leaping to construct transition densities can be obtained by replacing the token
transition probabilities as below:

qi(xi
t−∆t|xi

t) =
(
exp(−β(t)∆tR)sθ(xt, t)i

)
xi
t−∆t

exp(−β(t)∆tR(xi
t, x

i
t−∆t) (24)

where β(t)∆t = (β̄(t) − β̄(t −∆t)). Now qi(xi
t−∆t|xi

t) may need clamping for minimum 0 and
normalizing the sum to 1, and xt−∆t can be obtained by sampling i-th token as xi

t−∆t ∼ qi(xi
t−∆t).
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C Appendix: Related Work

Discrete Diffusion Models. There are previous methods that aimed to learn the density ratios qt(x̄)
qt(x)

and accordingly construct the reverse process stated above. Austin et al. [59], Campbell et al. [55]
followed the strategy from [10] to learn the reverse density q0|t which can recover the density ratios
[18]. This framework does not perform well empirically, as learning a density is harder than a value
(or density ratios). On the other hand, the ratio matching method Sun et al. [58] follows maximum
likelihood training to learn marginal probabilities, which is inherently different from score matching
and requires expensive architecture for better performance [85]. Meng et al. [86] employs Fisher
divergence to learn density ratios through score matching network that outputs sθ(x, t) approximating
qt(x̄)
qt(x)

. As l2 loss does not constrain the density ratios to be zero or negative, this method (concrete
score matching) suffers in producing good performance. Lou et al. [18] recently proposed a score
matching network with Bregman divergence that restricts the density rations to only positive values
and empirically performs well for discrete data (text). We employ a similar method with a different
function for Bregman divergence that ultimately leads to the same formulation as shown in Lou
et al. [18]. Hence, we follow the similar forward and backward transition ideas tweaked for genomic
sequences, which are inherently different from the text and require very specific modifications, as
explained in the next section.

Simplex Based Models. Some of the previous diffusion-based approaches were designed for
modeling discrete data residing at vertices of a probability simplex. Richemond et al. [87], Floto
et al. [88] proposed methods that start from a Dirichlet prior over whole simplex and converge to
a Dirichlet distribution with densities accumulated to one of the vertices of the simplex. Dirichlet
diffusion score matching (DDSM) [14] follows the Jacobi diffusion process with a stick-breaking
transform that converges to a Dirichlet distribution. Dirichlet flow matching (DFM) [17] designed a
simplex flow method that transports data points residing in the simplex to the vertices with the points
constrained inside the simplex at every intermediate step.

Continuous Diffusion Approaches. Another class of discrete diffusion approaches modeled
discrete data without restricting them as discrete points and brought them into continuous space
by adding Gaussian noise with the stationary distribution as Gaussian distribution [89, 70, 90, 16].
Dieleman et al. [91], Li et al. [15] proposed moving the continuous diffusion process to the latent
space and considering another set of encoder-decoder networks for data space to latent space forward
and backward transfer. While these methods are very similar to standard continuous diffusion
processes, approaches explicitly designed for discrete data work better in practice.
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D Appendix: Experiment details

D.1 Diffusion Details

We provide all our code at https://anonymous.4open.science/r/
D3-DNA-Discrete-Diffusion-3E42/ for reference to the reviewers. Please note that the
training and sampling code is primarily influenced by the code shared with [18] with changes
required for DNA sequence modeling.

Method Details. We follow the diffusion training closely from [18] with the geometric noise distri-
bution β̄(t) = β1−t

minβ
t
max, where β̄ moves from βmin = 0 (1e−3 to be specific) to βmax = 1 with

increasing time step t. The noise schedules are chosen such that the prior loss DKL(qT |0(.|x0)||pref
are negligible and qβ̄(0) remains close to qdata. The uniform transition matrix is scaled down by 1

N
(N = 4 here), and we consider pref as uniform.

Convolution Model Details. We use the same architecture for D3-Conv as the architecture used
in Stark et al. [17] and Avdeyev et al. [14] for human promoter sequences. In place of the time step
embedding with Gaussian random feature projection, we use similar embedding to parameterize the
network with the total noise level instead of the time t. Here, the results (MSE) are compared with
other previous methods, for which we referred to [17]. We follow a similar setup for DeepSTARR and
MPRA datasets, too, for D3-Conv. As DFM [17] and other previous methods did not experiment with
these two datasets, we trained the DFM-conv model (with a similar setup provided for the promoter)
for proper performance comparison. Please note that we only considered DFM for comparison as
their results are closest to D3-conv.

Transformer Model Details. We follow the similar transformer architecture for D3-Tran as used for
SEDD small [18]. We used flash attention[92] with fused kernels and adaLN-zero time information
network from [93] with 128 hidden dimensions, which is based on incorporating time conditioning
into a standard encoder-only transformer architecture[94, 40]. A small change on this setup is adding
rotary positional embedding [95] for performance improvement. D3-Tran has 12 transformer blocks
and 12 attention heads per block. Training D3-Tran with this transformer architecture yielded even
better performance than D3-Conv for all three datasets, i.e., promoter, DeepSTARR, and MPRA, as
explained in Section5. Surprisingly, the performance of DFM with the transformer degraded more
than its convolution counterpart, and this trend remained the same for all three datasets. We do not
rule out the possibility of some minor architectural or methodical change to improve the performance
of DFM for transformers, which may be explored in the near future.

Toward a more complete performance comparison of D3 with DFM, we trained DFM with the same
transformer architecture with the only change of time step embedding (with Gaussian random feature
projection) instead of embedding on noise level as already mentioned for convolution model details.
For a fair comparison, we did not change any other part of the transformer architecture. We followed
a similar overall training setup to train DFM as explained in [17].

Training Details. All of our models were trained with a learning rate 3 × 10−4, a batch size of
128 for convolution architecture and 256 for transformer architecture. Following [18], our gradient
norm is clipped to 1 and a linear warmup schedule for the first 2000 iterations. We set the training for
500000 steps with a validation step after every 50000 training step. The best models were found after
different training steps for different datasets and methods. For example, DFM yielded the best model
after 345730 steps, which is 400000 steps for D3 for convolution architecture with DeepSTARR. We
employ an exponential moving average of 0.9999 for all our D3-Conv and D3-Tran training. All the
training was performed on a single node with 4 A100 80GB GPUs.

Hyperparameter Search. As mentioned in Lou et al. [18], no hyperparameter or architecture
search was performed for our models. The convolution architecture was chosen from the previous
works [14, 17] and the transformer architecture from DDiT[93], with the rotary embedding as was
used in [96]. The learning rate of 3 × 10−4 and the EMA of 0.9999 were selected as a standard
choice from the previous well-known diffusion training recipes.
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Conditioning Details. As mentioned in the main paper, we consider datasets with continuous-
valued vectors as conditioning signals. Therefore, we send these signals with the true sequences to
the score function, which is trained to learn density ratios based on the signals. For the promoter
dataset, we have transcription initiation signal profiles, a vector of the same length as the sequences,
i.e., 1024. Here, we concat (similar functionality as torch.cat for PyTorch framework) the signal
profiles with the sequences before forwarding to the score function. As the fly enhancer sequences
have corresponding activity values in 2 contexts (housekeeping and developmental gene promoters),
we employ a 2-layered fully connected network that outputs an embedding (of the same length as
sequence, i.e., 249) from the 2 activity values. Then, we concat the embeddings with the sequences
and follow the same training and sampling process. For cell-type specific regulatory sequences, there
are three cell-type specific activity levels. Hence, we use a similar 2-layered fully connected network
to find an embedding (of length 200 to match the sequence length) that we concat to the sequences.

D.2 Oracle details

Human promoters. The oracle was Sei [71], a multi-task CNN that predicts 21,907 chromatin
profiles across >1,300 cell lines/tissues from DNA sequences. Active promoter predictions were
obtained from the H3K4me3 chromatin mark prediction. The Sei oracle and weights were acquired
from the DDSM repository (https://github.com/jzhoulab/ddsm).

Fly enhancers. The DeepSTARR dataset [68] is a multi-task regression problem that predicts
enhancer activity for two promoters, representing a developmental and housekeeping gene in D.
melanogaster S2 cells. The input consists of genomic sequences with a length of 249 nucleotides,
and the output comprises two scalar values indicating the activity of developmental and housekeeping
enhancers, experimentally measured using STARR-seq. Sequences containing N characters were
removed, which had a minimal impact on the dataset size (reducing it by approximately 0.005%). The
dataset [72] was analyzed using the original DeepSTARR model architecture, described as follows:

• Input

• 1D convolution (256 filters, size 7, stride 1)

• BatchNorm + ReLU activation

• Max-pooling (size 2, stride 2)

• 1D convolution (60 filters, size 3, stride 1)

• BatchNorm + ReLU activation

• Max-pooling (size 2, stride 2)

• 1D convolution (60 filters, size 5, stride 1)

• BatchNorm + ReLU activation

• Max-pooling (size 2, stride 2)

• 1D convolution (120 filters, size 3, stride 1)

• BatchNorm + ReLU activation

• Max-pooling (size 2, stride 2)

• Fully-connected layer (256 units)

• BatchNorm + ReLU activation

• Dropout (0.4)

• Fully-connected layer (256 units)

• BatchNorm + ReLU activation

• Dropout (0.4)

• Fully-connected output layer (2 units, linear activation)

The DeepSTARR model was trained using EvoAug, an evolution-inspired data augmentations that was
shown to lead to SOTA performance. We acquired weights from DeepSTARR_combo1_finetune_2.
ckpt located on https://zenodo.org/records/7767325. The augmentation hyperparameters
for this model were set to:

• mutation: mutate_frac = 0.05
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• translocation: shift_min = 0, shift_max = 20

• insertion: insert_min = 0, insert_max = 20

• deletion: delete_min = 0, delete_max = 30

• reverse-complement: rc_prob = 0

• noise: noise_mean = 0, noise_std = 0.3

with a maximum number of augmentations set to 2. Dataset was acquired from https://zenodo.
org/records/7265991.

Cell-type-specific cis-regulatory sequences. The MPRA dataset was curated by [33], which is a
compilation of several MPRA experiments for K562, HepG2, and SK-N-SH cell lines from ENCODE
[97]. We acquired and processed the data from Supplementary Table 2 of [33]. The input data are
200 nt genomic sequences with reference or alternate alleles for genomic variants, and the target is
a scalar value (for each cell line) representing experimentally measured activities. Sequences from
chromosomes 7 and 13 were used for testing (63,958 total), chromosomes 19, 21, and X were for
validation (59,697 total), and all of the other sequences were used for training (640,029 total).

Our custom model is a variation of ResidualBind [26, 73], consisting of convolutional layers, residual
blocks, and dense layers. The model takes an input with a specified shape and applies the following
layers:

• Input layer

• Conv1D(196, 15) - BatchNorm - Activation(’exponential’) - Dropout(0.1)

• Residual Block(196, 3, ’relu’, num_dilation_factors=4)

• Dropout(0.2) - MaxPooling1D(4)

• Conv1D(256, 5) - BatchNorm - Activation(’relu’) - Dropout(0.1)

• Residual Block(256, 3, ’relu’, num_dilation_factors=3)

• MaxPooling1D(4) - Dropout(0.2)

• Conv1D(256, 3) - BatchNorm - Activation(’relu’) - Dropout(0.1)

• Residual Block(256, 3, ’relu’, num_dilation_factors=1)

• MaxPooling1D(2) - Dropout(0.2)

• Flatten()

• Dense(512) - BatchNorm - Activation(’relu’) - Dropout(0.5)

• Dense(256) - BatchNorm - Activation(’relu’) - Dropout(0.5)

• Dense(1, activation=’linear’)

The model uses exponential activations in the first layer as it has been shown to lead to more
interpretable convolutional kernels and improved efficacy with attribution analysis [98]. The residual
block consists of a series of convolutional layers with varying dilation rates, batch normalization, and
activation functions, according to:

• Input layer

• Conv1D(num_filters, filter_size, dilation_rate=1) - BatchNorm - Activation(’relu’)

• Dropout(0.1)

• For each dilation factor(1, 2, 4, 8)[:num_dilation_factor]:

– Conv1D(num_filters, filter_size, dilation_rate=factor) - BatchNorm - Activation(’relu’)

• Add input layer and the output of the last convolutional layer

• Activation(’relu’)

where the number of dilation factors subsamples the dilation factor list, the output of the residual
block is then added to the input layer, creating a residual connection.

ResidualBind was trained for 100 epochs using the Adam optimizer [99] with an initial learning
rate of 1 × 10−3. The learning rate was decayed by a factor of 0.2 when the validation loss did
not improve for five epochs. Early stopping with a patience of 10 epochs was used. The model
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checkpoint with the lowest validation loss was chosen for downstream analysis. A separate model
was trained for each cell line. Notably, the performance of ResidualBind for K562 (Pearson’s r =
0.839), HepG2 (Pearson’s r = 0.839), and SK-N-SH (Pearson’s r = 0.827) was higher than what was
achieved by the models explored in [100]. Nevertheless, nuances in data processing and training
make direct comparisons not straightforward (even with the same data splits).
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Figure 3: Sequence evaluation for human promoters.The cumulative distribution function of the
maximum percent identity for each generated sequence against the entire training set (a) to assess
memorization and among the generated set (b) to assess sequence diversity. Different methods are
shown in different colors and comprise analysis for 7,497 sequences in each curve. Shuffle represents
dinucleotide shuffled test sequences. c Shows the k-mer spectrum shift for each method according to
the KL divergence for various k-mer values. D3-Conv is shown in dashed lines to see the separation
from D3-Tran visually. d Scatter plot of the JASPAR motif hits using FIMO for generated sequences
versus test sequences. Each dot represents the total enrichment of a different motif across the entire
set. Pearson’s r is shown in the legend. e the observed motif-motif covariance matrix (based on motif
hits per sequence) is shown for test sequences (observed), FM-conv, and D3-trans.
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Figure 4: Sequence evaluation for fly enhancers. The cumulative distribution function of the maximum
percent identity for each generated sequence against the entire training set (a) to assess memorization
and among the generated set (b) to assess sequence diversity. Different methods are shown in different
colors and comprise analysis for 7,497 sequences in each curve. Shuffle represents dinucleotide
shuffled test sequences. c Shows the k-mer spectrum shift for each method according to the KL
divergence for various k-mer values. D3-Conv is shown in dashed lines to show the separation from
D3-Tran visually. d Scatter plot of the JASPAR motif hits using FIMO for generated sequences
versus test sequences. Each dot represents the total enrichment of a different motif across the entire
set. Pearson’s r is shown in the legend. e the observed motif-motif covariance matrix (based on motif
hits per sequence) is shown for test sequences (observed), FM-conv, and D3-trans.
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Figure 6: Augmentation analysis for synthetic fly enhancers. The performance of training a Deep-
STARR model using different downsampled sets of training sequences (No Aug) and with the addition
of synthetic sequences generated conditionally by different methods to match the activity of the full
training set (shown in a different color) according to the Pearson correlation for developmental (a)
and housekeeping (c) contexts and the test loss for developmental (b) and housekeeping (d) contexts.
Plots display average values; shaded regions represent the standard deviation across five trials, each
with a random initialization.
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Figure 7: Augmentation analysis for synthetic fly enhancers. The performance of training a Deep-
STARR model using different downsampled sets of training sequences (No Aug) and with the
addition of synthetic sequences generated conditionally to match the activity of the full training set by
D3-Tran with different multiples of the generated training set (shown in a different color) according
to the Pearson correlation for developmental (a) and housekeeping (c) contexts and the test loss
for developmental (b) and housekeeping (d) contexts. Plots display average values; shaded regions
represent the standard deviation across five trials, each with a random initialization. e Boxplot of
Pearson correlation for DeepSTARR models trained using only synthetic sequences from various
methods, evaluated on test sequences.
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Figure 9: Task-specific design for fly enhancers. Comparison of predicted activities by EvoAug-
trained DeepSTARR model for generated sequences conditioned on task-specific activities for DFM-
Conv (left) and D3-Tran (right). Task activity values used for conditioning are shown on the x-ticks
as (activity for developmental tasks and activity for housekeeping tasks). Each boxplot represents the
task-specific predictions for 500 generated sequences. (a,d) Results when conditional activities are
similar across cell types. (b,c,e,f) Results with differential conditional activities. D3-Tran generates
sequences whose predicted activity more closely tracks the conditioning value trends, albeit the
magnitude of the high activities is not as precise.
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Figure 10: Task-specific design for cell-type-specific cis-regulatory sequences from MPRA data.
Boxplots show oracle-predicted activities for sequences generated by D3-Tran, conditioned on values
indicated by (K562 activity, HepG2 activity, SK-N-SH activity) on the x-axis. Each boxplot represents
the corresponding cell type activities from 500 generated sequences. (a) Results when conditional
activities are similar across cell types. (b-d) Results with differential conditional activities.
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Figure 11: Label statistics for fly enhancer and cell-type-specific MPRA data. Histogram of label
activities for each task within fly enhancers dataset (a) and cell-type-specific regulatory sequences (c).
Correlation matrix of target activities of the training data for fly enhancers (b) and cell-type-specific
regulatory sequences (d).
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Table 3: Results for cell-type-specific generation from MPRA data.

Conditional generation fidelity
Model (MSE)
DFM-Conv 2.243
DFM-Tran 1.620
D3-Conv 0.937
D3-Tran 0.929
Shuffle 1.824

Table 4: Conditional sampling diversity for fly enhancers. 500 sequences were generated using a
fixed conditional value of [7.045, 1.973] for [developmental task, housekeeping task] (from test
sequence index=21,106) and assessed according to sequence diversity and mechanistic diversity.

Model Sequence Diversity
(percent identity)

Mechanistic diversity
(Euclidean distance)

DFM-Conv 23.9 0.428
DFM-Tran 25.0 0.425
3D-Conv 26.6 0.456
3D-Tran 26.5 0.472
Shuffle 29.5 0.436
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