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Abstract

Treatment effect estimation from observational data is a central problem in causal inference.
Methods based on potential outcomes framework solve this problem by exploiting inductive
biases and heuristics from causal inference. Each of these methods addresses a specific aspect
of treatment effect estimation, such as controlling propensity score, enforcing randomization,
etc., by designing neural network architectures and regularizers. In this paper, we propose an
adaptive method called Neurosymbolic Treatment Effect Estimator (NESTER), a generalized
method for treatment effect estimation. NESTER brings together all the desiderata for
treatment effect estimation into one framework. To perform program synthesis, we design
a Domain Specific Language (DSL) for the treatment effect estimation based on inductive
biases used in literature. We also theoretically study NESTER’s capability for the treatment
effect estimation task. Our comprehensive empirical results show that NESTER performs
better on benchmark datasets than state-of-the-art methods without compromising run time
requirements.

1 Introduction
Treatment effect (a.k.a. causal effect) estimation measures the effect of a treatment variable on an outcome
variable (e.g., the effect of a medicine on recovery). Randomized Controlled Trials (RCTs), where individuals
are randomly split into treated and control (untreated) groups, are considered the gold standard approach
for treatment effect estimation (Chalmers et al., 1981; Pearl, 2009). However, RCTs are often: (i) unethical
(e.g., in a study to find the effect of smoking on lung disease, a randomly chosen person cannot be forced to
smoke), and/or (ii) impossible/infeasible (e.g., in finding the effect of blood pressure on the risk of an adverse
cardiac event, it is impossible to intervene on the same patient with and without high blood pressure with
all other parameters the same) (Sanson-Fisher et al., 2007; Carey & Stiles, 2016; Pearl et al., 2016). These
limitations leave us with observational data to compute treatment effects.

Observational data, similar to RCTs, suffer from the fundamental problem of causal inference (Pearl, 2009), viz.
for any individual, we cannot observe all potential outcomes at the same time (e.g., we cannot uniquely record
the same person’s medical condition/response at a given time to two different treatments individually, say, on
consuming a medicinal drug and an alternate placebo). Observational data also suffers from selection bias (e.g.,
certain age groups are more likely to take certain kinds of medication compared to other age groups) (Collier
& Mahoney, 1996). For these reasons, estimating unbiased treatment effects from observational data can
be challenging (Hernan & Robins, 2019; Farajtabar et al., 2020). However, due to the many use cases in
the real-world, estimating treatment effects from observational data has remained an important problem in
causal inference (Rosenbaum & Rubin, 1983; 1985; Brady et al., 2008; Morgan & Winship, 2014), with recent
efforts leveraging learning-based methods to this end (Curth & van der Schaar, 2021a; Zhang et al., 2021).

Simpson’s paradox (Pearl et al., 2016) underpins the necessity of choosing the correct set of variables to
control/adjust for estimating the treatment effects from observational data. The Pearlian framework (Pearl,
2009) uses graphical criteria such as back-door criterion and front-door criterion depending on the available
adjustment variables and identifiability conditions. However, the Pearlian framework requires knowledge of
the underlying causal graph, which is not feasible for many real-world scenarios. On the other hand, under
the no latent confounding/ignorability assumption, methods based on the classical Neyman-Rubin potential
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outcomes framework (Rubin, 1974) suggest that all observed features are to be controlled. The ignorability
assumption avoids the problem of choosing a specific set of variables to control. However, as discussed above,
observational data suffers from issues such as selection bias, leading to biased estimates of treatment effects.
Various methods have been proposed to address one or more of these issues in recent literature (Shalit et al.,
2017; Shi et al., 2019; Farajtabar et al., 2020; Curth & van der Schaar, 2021a).

TARNet (Shalit et al., 2017)

if subset (v, {0})
then subset (v, {0..|v|})
else subset (v, {0..|v|})

if subset (v, {0})
then subset (v, paT)
else subset (v, paT)

CFR (Shalit et al., 2017)

if subset (v, {0})
then transform (v)
else transform (v)

Dragonnet (Shi et al., 2019)
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Figure 1: Programs PT ,PC ,PD generated by the proposed
method, NESTER, using our Domain-Specific Language (DSL)
(Table 1) that achieve functionality similar to TARNet (PT ), CFR
(PC), and Dragonnet (PD).

In this paper, we provide a pathway to
integrate existing solutions based on the
potential outcomes framework into a sin-
gle framework and propose a generalized
method for treatment effect estimation.
As shown in Fig 1, our method gener-
ates programs, each of which can instan-
tiate existing methods for treatment ef-
fect estimation as special cases. Con-
cretely, we propose an adaptive method
called NEuroSymbolic Treatment Effect
EstimatoR (NESTER) that automatically
synthesizes different programs for estimat-
ing treatment effects given observational
data. For example, the two branches
(or heads) in the TARNet neural net-
work (NN) architecture (Shalit et al.,
2017) in Fig 1 can be seen as implement-
ing an if− then− else program primi-
tive (Sec 4.2). In our proposed method
NESTER, we hence develop a Domain-
Specific Language (DSL) of program prim-
itives containing learnable components,
which is then used by a neurosymbolic
program synthesis (NPS) technique to au-
tomatically generate a program given ob-
servational data. This is equivalent to
putting together modules (program primitives in our DSL) to obtain a model architecture/workflow that
can be used for the given observational data. In other words, NESTER learns to adaptively synthesize
differentiable programs for a given set of input-output examples, wherein the sequence of learnable program
modules provides an overall network architecture that is used to estimate treatment effects for the given
dataset. Empirically, by limiting the depth of synthesized programs, NESTER performs state-of-the-art
treatment effect estimation on benchmark datasets with almost no additional time overhead.

NPS methods generate programs using a language of program primitives that satisfy given observational data
of input-output pairs so that the synthesized programs generalize well to unseen inputs (see Appendix D, E
for real-world examples) (Biermann, 1978; Gulwani, 2011; Parisotto et al., 2016; Valkov et al., 2018; Shah
et al., 2020). Usually, a Domain-Specific Language (DSL) (e.g., a specific context-free grammar) is used
to synthesize relevant programs for a given domain or task. Recently, various NN-based techniques have
been proposed to perform NPS (Parisotto et al., 2016; Valkov et al., 2018; Gaunt et al., 2017; Bošnjak et al.,
2017). We use a NPS paradigm where each program primitive (e.g., if− then− else, subset, add) is a
differentiable module (Shah et al., 2020). Such differentiable programs simultaneously optimize program
primitive parameters while learning the overall program structure. Many methods have been proposed to
efficiently synthesize and learn such a program using a DSL (Gulwani et al., 2012; Valkov et al., 2018; Shah
et al., 2020). We use Neural Admissible Relaxation (NEAR) (Shah et al., 2020) in this work, which uses
neural networks as relaxations of partial programs while searching the program space using informed search
algorithms such as A∗ (Hart et al., 1968). The final program is obtained by training using gradient descent
algorithms. Our key contributions in this work are summarized below:
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• We develop an adaptive neurosymbolic method that can learn to estimate treatment effects given observa-
tional data. Such a method is not restricted by its architecture and is easy to implement and extend. To
the best of our knowledge, this is the first neurosymbolic approach to estimate treatment effects.

• We propose a domain-specific language (DSL) for treatment effect estimation, whose program primitives
are inspired by treatment effect estimation efforts in literature.

• We theoretically study the universal approximation ability of a synthesized neurosymbolic program and
show how this provides a pathway for our method for treatment effect estimation. We also study how the
proposed NESTER method can be viewed as a generalization of a class of treatment effect estimation
methods based on multi-head NN architectures.

• We perform comprehensive empirical studies on multiple benchmark datasets (including additional results
in the Appendix C) where NESTER outperforms existing state-of-the-art models. We also observe that
these results are obtained with almost no additional empirical time complexity beyond existing methods.

2 Related Work
Matching and Covariate Adjustment Methods: Early methods of treatment effect estimation are
largely based on matching techniques (Brady et al., 2008; Morgan & Winship, 2014; Stuart, 2010) where
similar data points in treatment and control groups are compared using methods such as nearest neighbor
matching and propensity score matching. In nearest neighbor matching (Stuart, 2010), for each sample in the
treatment group, the nearest points from the control group w.r.t. Euclidean distance are identified, and the
difference in potential outcomes between the treatment and corresponding control data points is estimated as
treatment effect. In propensity score matching (Rosenbaum & Rubin, 1983), a model is trained to predict the
treatment value using data from both treatment and control groups. Using this model, points from treatment
and control groups that are close w.r.t. the model’s output are compared, and the difference in observed
potential outcomes of these points is estimated as treatment effect. However, such matching techniques are
known to not scale to high-dimensional or large-scale data (Abadie & Imbens, 2006).

Another family of methods estimates treatment effects using the idea of backdoor adjustment (Pearl, 2009;
Rubin, 2005). Assuming the availability of a sufficient adjustment set, these models rely on fitting conditional
probabilities given the treatment variable and a sufficient adjustment set of covariates. Such models are
however known to suffer from high variance in the estimated treatment effects (Shalit et al., 2017). Covariate
balancing is another technique to control for the confounding bias in estimating treatment effects. Weighting
techniques perform covariate balancing by assigning weights to each instance based on various techniques (e.g.,
weighting each instance using propensity score in the inverse probability weighting technique) (Rosenbaum &
Rubin, 1983; Assaad et al., 2021; CRUMP et al., 2009; L & T, 2013; Diamond & Sekhon, 2013; Li & Fu,
2017). As noted in Assaad et al. (2021), such methods face challenges with large weights and high-dimensional
inputs. Besides, leveraging the success of learning-based methods has yielded significantly better performance
in recent years.

Representation Learning-based Methods: Recent methods to estimate treatment effects have largely
been based on multi-head NN architectures (NN architectures which branch out into different heads for
different treatments) equipped with regularizers (Curth & van der Schaar, 2021a;b; Shi et al., 2019; Schwab
et al., 2020; Chu et al., 2020; Shalit et al., 2017). Considering multiple treatment values and continuous
dosage for each treatment, Schwab et al. (2020) devised an NN architecture with multiple heads for multiple
treatments, and multiple sub-heads from each of the treatment-specific heads to model (discretized) dosage
values. CFR (Shalit et al., 2017) proposed a two-headed NN architecture with a regularizer that forced the
latent representations of treatment and control groups to be close to each other to adjust confounding features.
Extending CFR, (Farajtabar et al., 2020) proposed an additional regularizer to adjust for confounding by
forcing both treatment-specific heads to have same baseline outcomes. In Dragonnet (Shi et al., 2019),
along with two heads for predicting treatment-specific (potential) outcomes, an additional head to predict
treatment value was also used; this allowed pre-treatment covariates to be used in predicting potential
outcomes. Assuming that potential outcomes are strongly related, (Curth & van der Schaar, 2021a;b)
proposed techniques that improve existing models using the structural similarities between potential outcomes.
These methods, however, have a fixed architecture design, and each addresses a specific problem in estimating
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treatment effects. Our approach is also NN-based but uses a neurosymbolic approach to automatically
synthesize an architecture (or a flow of program primitives), thereby allowing it to generate different programs
for different observational data. Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have also
been used to learn the interventional distribution (Yoon et al., 2018; Bica et al., 2020) from observed data in
both categorical and continuous treatment variable settings to estimate treatment effects. By disentangling
confounding variables from instrumental variables, Zhang et al. (2021) proposed a variational inference method
that uses only confounding variables. However, generative modeling requires a large amount of data to be
useful, which is often not practical in treatment effect estimation tasks.Yao et al. (2018) proposed a method
to learn representations by leveraging local similarities and thereby estimate treatment effects. Ensemble
models such as causal forests (Wager & Athey, 2018), and Bayesian additive regression trees (Chipman et al.,
2010) have also been considered for effect estimation. Our work is very different from these efforts – we
choose to integrate the heuristics and corresponding NN architectures under a single framework, and seek to
provide a flexible yet powerful framework for treatment effect estimation using NPS.

Relevance of Causal Discovery Methods: In Pearlian approaches to treatment effect estimation (which
assume knowledge of causal graph), performing causal discovery before treatment effect estimation has also
been studied in literature (Hoyer et al., 2008; Mooij et al., 2016; Maathuis et al., 2010; Gupta et al., 2022).
However, NN-based learning approaches have largely focused on the potential outcomes approach for this
objective. Since our work is situated in the latter context, under the ignorability assumption (see Section 3),
we assume that the underlying causal graph takes a form in which the treatment is independent of the
potential outcomes given a set (possibly empty) of pre-treatment covariates (Shalit et al., 2017). Thus, we
avoid the need to perform causal discovery before estimating treatment effects.

Neurosymbolic Program Synthesis (NPS): Program synthesis, viz. automatically learning a program
that satisfies given observational data of input-output pairs (Biermann, 1978; Gulwani, 2011; Parisotto
et al., 2016; Valkov et al., 2018; Shah et al., 2020), has been shown to be helpful in diverse tasks such as
low-level bit manipulation code (Solar-Lezama et al., 2005), data structure manipulations (Solar Lezama,
2008), and regular expression-based string generation (Gulwani, 2011). For each task, a specific DSL is used
to synthesize programs. Even with a small DSL, the number of programs that can be synthesized is very
large. Several techniques such as greedy enumeration, Monte Carlo sampling, Monte Carlo tree search (Kocsis
& Szepesvári, 2006), evolutionary algorithms (Valkov et al., 2018), and recently, node pruning with neural
admissible relaxation (Shah et al., 2020) have been proposed to efficiently search for optimal programs from
a vast search space. We use the idea of node pruning with neural admissible relaxation (Shah et al., 2020)
as it gives near-optimal solutions with fast convergence. This is the first use of NPS for treatment effect
estimation, to the best of our knowledge.

3 Background and Problem Formulation
Treatment Effect Estimation: Let D = {(xi, ti, yi)}n

i=1 be an observational dataset of n triplets. xi ∈ Rd

denotes the d−dimensional covariate vector, ti ∈ R denotes the treatment variable (ti ̸⊆ xi), and yi ∈ R
denotes the observed potential outcome. Each (xi, ti, yi) is randomly sampled from p(X, T, Y ), where X,
Y and T are the corresponding random variables. In a binary treatment setting (t ∈ {0, 1}), for the ith

observation, let Y 0
i denote the true potential outcome under treatment ti = 0 and Y 1

i denote the true potential
outcome under treatment ti = 1. Because of the fundamental problem of causal inference, we observe only one
of Y 0

i , Y
1

i for a given [ti; xi]. Hence, observed yi can be expressed in terms of Y 0
i , Y

1
i as yi = tiY

1
i + (1− ti)Y 0

i .
One of the goals in treatment effect estimation from observational data is to learn an estimator f(x, t) such
that the difference between estimated potential outcomes under t = 1 and t = 0, f(xi, 1)− f(xi, 0), is close
to the difference in true potential outcomes: Y 1

i − Y 0
i ∀i. This difference for a specific instance/individual i

is called the Individual Treatment Effect (ITE) (Pearl, 2009).
Definition 3.1. The Individual Treatment Effect (ITE) of T on Y for an instance x ∼ X is defined as

ITEY
T (x) := E[Y 1 − Y 0|x] (1)

Definition 3.2. With respect to the true ITEY
T (x), the expected Precision in Estimation of Heterogeneous

Effect (ϵP EHE) using f(x, t) is defined as

ϵP EHE(f) := E
x∼X

[[f(x, 1)− f(x, 0)]− ITEY
T (x)]2 (2)
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Extending ITE to an entire population, our goal is to estimate the Average Treatment Effect (ATE) (Pearl,
2009) of the treatment variable T on the outcome variable Y .
Definition 3.3. The Average Treatment Effect (ATE) of T on Y is defined as

ATEY
T := E[Y |do(T = 1)]− E[Y |do(T = 0)] (3)

Definition 3.4. The error in estimation of Average Treatment Effect (ϵAT E) using f(x, t) is defined as

ϵAT E(f) := | E
x∼X

[f(x, 1)− f(x, 0)]−ATEY
T | (4)

do(.) in Defn 3.3 denotes an intervention to the treatment variable (Pearl, 2009). E[Y |do(T = t)] refers to
the expected value of Y when every instance in the population is given the treatment t (if t is not binary,
treatment effects are calculated w.r.t. a baseline treatment value t∗ i.e., 1, 0 in Defn 3.3 are replaced with
t, t∗ respectively). Assuming X satisfies the backdoor criterion relative to the treatment effect of T on Y ,
we can write E[Y |do(T = t)] = Ex∼X [E[Y |T = t,X = x]] (Pearl, 2009). Using this, a simple technique to
estimate E[Y |T = t,X = x] (and thus E[Y |do(T = t)]) is to fit a regression model for Y given T , and X.
Models of the form E[Y |T = t,X = x] form the basic building blocks of most methods for treatment effect
estimation. Following (Shalit et al., 2017; Lechner, 2001; Imbens, 2000; Schwab et al., 2020; Zhang et al.,
2021), we make the following assumptions which are sufficient to guarantee the identifiability (Pearl, 2009) of
treatment effects from observational data.
Assumptions 3.1. (Ignorability, Positivity, Stable Unit Treatment Value Assumption (SUTVA)) Ignorability
says that for a given set of pre-treatment covariates, treatment is randomly assigned, i.e., conditioned on
a set of pre-treatment covariates X, T is independent of Y 0, Y 1 ((Y 0, Y 1) ⊥⊥ T |X). Positivity entails that
treatment assignment for each individual is not deterministic, and it must be possible to assign all treatments
to each individual, i.e., 0 < p(t|x) < 1 ∀t,x. SUTVA states that the observed outcome of any individual
under treatment must be independent of the treatment assignment to other individuals. (Ignorability is also
referred to as no-latent-confounding assumption.)

ρ

if α1 > 0 then α2
else α3

α1 + α2

α1 + subset(v, S)

subset(v, S)+
transform(v)

Root node with initial non-terminal

Partial structures

Leaf node contains only terminals

if subset(v, S) > 0
then α2 else α3

Figure 2: Program tree generated using DSL in Table 1.

Neurosymbolic Program Synthesis (NPS): Fol-
lowing Shah et al. (2020), let (P, θ) be a neurosym-
bolic program where P denotes the program struc-
ture and θ denotes the program parameters. (P, θ)
is differentiable in θ. P is synthesized using a
Context-Free Grammar (CFG) (Hopcroft et al., 2001)
(which is a DSL in this work). A CFG consists of
a set of production rules (rules for short) of the
form ρ→ σ1, . . . , σn where ρ is a non-terminal and
σ1, . . . , σn are either non-terminals or terminals. A
nonterminal denotes a missing subexpression in a
program structure and a terminal is a symbol that
appears in a final program structure. Program syn-
thesis starts with an initial non-terminal (see Fig 2),
then iteratively applies the production rules to pro-
duce a series of partial structures, viz. structures
made from one or more non-terminals and zero or
more terminals. These partial structures form inter-
nal nodes of a program tree, and the production rules form the (directed) edges connecting these nodes (e.g.,
a production rule r is considered as an edge from node u to node v when v is obtained from u by applying r).
The process continues until no non-terminals are left, i.e., we have synthesized a program. The resultant
program tree’s leaf nodes contain structures consisting of only terminals (see Fig 2 for an example).

Let s(r) be the cost incurred in using the production rule r for generating a program structure/partial structure
from a given partial structure. The structural cost s(P) of the program P is defined as s(P) =

∑
r∈R(P) s(r),

where R(P) is the multiset of rules used to create the structure P. In this paper, we set s(r) to a constant
real number for all production rules (e.g., s(r) = 1 ∀r ∈ R(P)). The program learning problem is usually
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formulated as a node search problem, i.e., starting with an empty tree, the tree is expanded by creating
new partial structures (internal nodes) and structures (leaf nodes). When searching for an optimal program,
parameters of the program (and program structures) are updated simultaneously along with the synthesis of
the programs. For a synthesized program (P, θ), we define ζ(P, θ) = E(x,t,y)∼D[((P, θ)(x, t)− y)2] as the loss
incurred by (P, θ) in estimating potential outcomes. The overall goal of NPS is then to find a structurally
simple program with low prediction error, i.e., to solve the following optimization problem

(P∗, θ∗) = arg min
(P,θ)

(s(P) + ζ(P, θ)) (5)

4 NESTER: Methodology
The key idea of our methodology is to design a Domain-Specific Language (DSL) for treatment effect
estimation and subsequently leverage well-known search algorithms such as A∗ to synthesize programs or
model architectures for given observational data. We begin by discussing the proposed DSL and its connections
to existing literature, followed by our overall algorithm that uses this DSL to synthesize programs.

4.1 DSL for Treatment Effect Estimation
We pose the problem of treatment effect estimation as the problem of mapping a set of observational input
data points to the corresponding potential outcomes. Formally, given D = {(xi, ti, yi)}n

i=1, the set {(ti,xi)}n
i=1

contains inputs and the set {yi}n
i=1 contains outputs. For simplicity, let vi = [ti; xi] (concatenation of ti

and xi) denote the ith input. A synthesized program learns to estimate the potential outcomes for unseen
inputs by learning a mapping between given input-output examples. To this end, we propose a set of program
primitives (basic building blocks of a synthesized program), which are differentiable and encode specific
inductive biases in an NN model architecture. These primitives comprise our proposed DSL, shown in Table 1.
Each of these listed primitives outputs a real scalar number, which can be the final output (terminal) or fed
as input into another primitive. We briefly describe each of them below. We also later state Propn 5.1 in
Sec 5 that guarantees the existence of a DSL for the treatment effect estimation task.

Table 1: A DSL for the treatment effect estimation task in Backus-Naur form (Winskel, 1993) and its
semantics. ρ is the initial non-terminal. v = [t; x] represents input from D. MLP stands for multi-layer
perceptron. All primitives output real numbers as output.

ρ→ if α1 > 0 then α2 else α3 | subset(v, S) | transform(v)
α1/α2/α3 → if α1 > 0 then α2 else α3 | subset(v, S) | transform(v) | ⊙ (α1, α2)

Program Primitive Description
1. if α1 > 0 then α2 Usual if− then− else condition. To avoid discontinuities and to enable

else α3 backpropagation, we implement a smooth approximation of if− then− else.
2. subset(v, S) Select/retain a set of features of v indexed by the set S. Features at other indices

are set to 0. Feed the resultant vector into an MLP to get a real number as output.
3. transform(v) Transforms the input vector v into ϕ(v) using the function ϕ as explained in

Sec 4.1. Feed ϕ(v) into an MLP to get a real number as output.
4. ⊙(α1, α2) Arithmetic function of α1, α2 where ⊙ ∈ {+,−,×, /} (e.g., α1 + α2, α1 × α2).

The primitive “if α1 > 0 then α2 else α3” works similar to the equivalent programming construct.
To avoid discontinuities and enable backpropagation, following Shah et al. (2020), we implement
a smooth approximation of if− then− else, i.e., if α1 > 0 then α2 else α3 can be written as
sig(β · α1) · α2 + (1− sig(β · α1)) · α3, where sig(·) is the sigmoid function and β is a temperature pa-
rameter. As β → 0, the approximation approaches the usual if− then− else.

The primitive “subset(v, S)” selects a set of features of v indexed by the set S of indices. Other features of v
that are not indexed by the set S are set to 0. The resultant vector is then fed into a multi-layer perceptron
(MLP) (whose parameters are learned during the end-to-end backpropagation of the full program) to get a
real number as output.
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The “transform(v)” primitive transforms a given input vector v into ϕ(v). ϕ is an NN whose parameters
are optimized to produce similar outputs for inputs with different treatment values to act as a regularizer
based on the Integral Probability Metric (IPM), similar to Shalit et al. (2017). In particular, given two inputs
v0 ∼ p(v|t = 0) and v1 ∼ p(v|t = 1), we would want ϕ(v0) ≈ ϕ(v1). We train ϕ such that the Maximum
Mean Discrepancy is minimized between p(ϕ(v)|t = 1) and p(ϕ(v)|t = 0). The transformed vector ϕ(v) is
subsequently fed into a learnable MLP to produce a real number as output. Even though ϕ seems like the
backbone in Shalit et al. (2017), unlike its fixed architecture, the proposed program synthesizer has the
flexibility to choose when to use this primitive. The synthesizer can also use transform multiple times in a
program too (see Table 4 for examples).

The last primitive, “⊙(α1, α2)” is included for giving additional flexibility to the program synthesizer to
allow simple arithmetic operations. ⊙(α1, α2) takes two real numbers as inputs and returns a real number as
output after performing an arithmetic operation ⊙.

4.2 Connection to Existing Methods

As discussed earlier, existing learning-based treatment effect estimation methods introduce inductive biases
into machine learning models through regularizers or through changes in NN architectures. One could view
the primitives of our DSL as learnable modules inspired by existing learning-based methods such as TARNet,
CFR (Shalit et al., 2017), Dragonnet (Shi et al., 2019), SNet (Curth & van der Schaar, 2021a), etc. Table 2
presents a summary of these relationships, which we also discuss below.

Table 2: Connection between inductive biases in existing literature
and the program primitives in the proposed DSL.

Regularizer/Architectural Changes Alternative Primitives
Two-head/Multi-head network if− then− else
(Farajtabar et al., 2020),(Shi et al., 2019) subset
(Shalit et al., 2017),(Schwab et al., 2020)
Pre-treatment selection, subset
Propensity Score Matching(Shi et al., 2019)
IPM regularization transform
(Shalit et al., 2017),(Farajtabar et al., 2020)

(if− then− else, subset) Primitives
for Multi-head NNs: In treatment ef-
fect estimation, our goal is to estimate the
quantity E[Y |T = t,X = x]. If a single
model is used to estimate both E[Y |T =
0,X = x] and E[Y |T = 1,X = x], it is
often the case that X is high-dimensional
and the treatment T is a relatively much
smaller set of variables (often, just one
variable) when compared to X. Hence,
T may not have an impact on the model
when making predictions, resulting in the
estimated treatment effect being biased towards zero (Künzel et al., 2019). Using two different models to
estimate E[Y |T = 0,X = x] and E[Y |T = 1,X = x] suffers from high variance in estimating treatment effect
due to limited data in treatment-specific sub-groups as well as from selection bias. Shalit et al. (2017); Shi
et al. (2019); Schwab et al. (2020); Farajtabar et al. (2020) hence leverage modified NN architectures in which
two separate heads are spawned from a latent representation layer (See Fig 1) to predict treatment-specific
outcomes. To implement such a two-head NN architecture, an NPS can leverage the if− then− else
and subset primitives. As in Table 1, replacing α1 with an appropriate subset(v, 0) would check for the
treatment variable value, and accordingly return α2 or α3, which in turn are each sub-structures that act
as two heads of the overall architecture. A NN with multiple heads would be implemented using nested
if− then− else primitives. We reiterate that we do not hard-code/pre-define the network architecture; the
NPS learns to generate programs that compose primitives suitably to minimize overall loss during training.

subset Primitive for Covariate Selection: To achieve ignorability, pre-treatment covariates are typically
controlled while estimating treatment effect (e.g., (Shi et al., 2019) controls pre-treatment covariates via
controlling propensity score). However, controlling all input covariates may not be required. To identify a
correct set of pre-treatment covariates to control, we can use the subset(v, S) primitive. If we are unsure on
the specific covariates, multiple instances of subset(v, S) with different S can be used, allowing the NPS to
select the appropriate subset for given data.

transform Primitive for IPM Regularization: To improve the results from two-head NN models,
CFR (Shalit et al., 2017) used IPM regularization (using Maximum Mean Discrepancy (Gretton et al.,
2012) or Wasserstein distance (Cuturi & Doucet, 2014)) on a latent layer representation. As in Sec 4.1, the
transform primitive is intended to achieve a similar purpose in our DSL.
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We now present the algorithm to synthesize neurosymbolic programs for the estimation of treatment effects.

4.3 Overall Algorithm

We refer to Sec 3 for the background on NPS, which we build on here. We use the A∗ informed search
algorithm (Hart et al., 1968) to implement NESTER. At any internal node u, informed search algorithms
usually rely on a heuristic value h that underestimates the cost to reach the goal node from u. h is used to
decide which node to explore/expand next. During program tree generation, non-terminals in an internal
node u are substituted by an NN or MLP. The training loss of the resultant program (P(u), θ(u)) on D then
acts as the heuristic value h(u) at node u (Shah et al., 2020). Using this heuristic function, we run the A∗

algorithm to find programs that estimate treatment effects. We outline our overall algorithm in Algorithm 1.
The programs returned by Algorithm 1 are then trained to optimize the objective in Eqn 5 and the best
program based on cross-validation score is chosen to estimate treatment effects. Using a small DSL and
keeping the overall program to only a limited depth allows us to build models that are efficiently learned and
effective in practice with almost no additional time overhead compared to the state-of-the-art methods.

Algorithm 1 NESTER using A∗

Require: Root node u0 with initial non-terminal, DSL L.
1: Initialize: Q := {u0}, f(u0) :=∞
2: while Q ̸= ∅ do
3: v ← arg minu∈Q f(u)
4: Q← Q \ {v} ▷ Q contains unexplored nodes in search
5: if v is leaf node then
6: return v ▷ v contains only terminals
7: else
8: for child u of v do ▷ Create new partial structures from v using DSL L
9: h(u)← minθ(u) ζ(P(u), θ(u)) ▷ P(u) contains MLPs in place of non-terminals in u

10: f(u)← s(P(u)) + h(u) ▷ s is defined in Sec. 3
11: Q← Q ∪ {u}
12: end for
13: end if
14: end while

5 NESTER: Analysis

We analyze NESTER from two perspectives: (i) the capability of a program synthesized using NPS methods
to achieve treatment effect estimation, and (ii) the capabilities of our proposed DSL in relation to well-known
learning-based treatment effect estimation methods. For the former, we hypothesize that if the relationship
between treatment and effect is a continuous function, NPS is a viable candidate for estimating treatment
effects. To this end, we first define the notion of an ϵ-admissible heuristic in Defn 5.1, show how a synthesized
program’s training loss can serve as such an ϵ-admissible heuristic in Lemma 5.1, and then state our result in
Propn 5.1. All proofs are in Appendix A.
Definition 5.1. (ϵ-Admissible Heuristic (Harris, 1974; Pearl, 1984)) In an informed search algorithm,
a heuristic function h(u) that estimates the cost to reach the goal node g from a node u is said to be admissible
if h(u) ≤ h∗(u),∀u where h∗(u) is the true cost to reach g from u. Given ϵ > 0, h(u) is said to be ϵ−admissible
if h(u) ≤ h∗(u) + ϵ,∀u.

Lemma 5.1. (Neural Admissible Relaxations (Shah et al., 2020)) In an informed search algorithm
A, given an internal node ui and a leaf node ul, let the cost of the leaf edge (ui, ul) be s(r) + ζ(P, θ∗),
where θ∗ = arg minθ ζ(P, θ) and s(r) is the structural cost in using rule r to create ul from ui. If a neural
network model is used to substitute each non-terminal of ui, the training loss of the program obtained is an
ϵ−admissible heuristic for ui.
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Proposition 5.1. (Universal Approximation Result for NPS) Given a continuous function g : Rd → R
and an informed search algorithm A, there exists a DSL L such that the output of the program (P, θ)
synthesized using A ϵ−approximates g for a given ϵ > 0.

Our proof follows from the universal approximation theorem for NN models (Hornik et al., 1989), along with
a DSL for a single-hidden-layer NN and Lemma 5.1. The above result shows that if the relationship between
treatment and effect is a continuous function, using NESTER is a viable candidate for estimating treatment
effects. We next discuss the capabilities of the proposed DSL w.r.t. existing methods.

Proposition 5.2. (Error Bounds of NESTER) The program (PC , θC) generated by NESTER using the
proposed DSL, whose architecture is the same as CFR (Shalit et al., 2017), has the same error bounds in
estimating treatment effects as that of CFR.

The above results show that the models for treatment effect estimation generated by NESTER can be shown
to have performance bounds for the task similar to existing methods.

6 Experiments and Results
We perform a comprehensive suite of experiments to study the usefulness of NESTER in estimating treatment
effects with our proposed DSL. Our code and instructions to reproduce the results are included in the
supplementary material and will be made publicly available.

Datasets: Evaluating treatment effect estimation methods requires all potential outcomes to be available
(Defn 3.2 and Defn 3.4), which is not possible due to the fundamental problem of causal inference. Thus,
following Shalit et al. (2017); Yoon et al. (2018); Shi et al. (2019); Farajtabar et al. (2020), we experiment
on two semi-synthetic datasets–Twins (Almond et al., 2005), IHDP (Hill, 2011)–that are derived from
real-world RCTs (see Appendix B for details). For these two datasets, ground truth potential outcomes (a.k.a.
counterfactual outcomes) are synthesized and available, and hence can be used to study the effectiveness
of models in predicting potential outcomes. We also experiment on one real-world dataset–Jobs (LaLonde,
1986)–where we observe only one potential outcome. We note that we are commensurate or better than
existing work on the number of datasets studied. More details of datasets are provided in Appendix B.

Baselines: We compare NESTER with different methods including: Ordinary Least Squares with treatment as
a feature (OLS-1), OLS with two regressors for two treatments (OLS-2), k-Nearest Neighbors (k-NN), balancing
linear regression (BLR) (Johansson et al., 2016), Bayesian additive regression trees (BART) (Chipman
et al., 2010), random forest (Breiman, 2001), causal forest (Wager & Athey, 2018), balancing neural network
(BNN) (Johansson et al., 2016), TARNet (Shalit et al., 2017), multi-head network (MHNET) (Farajtabar et al.,
2020), Generative Adversarial Nets for inference of individualized treatment effects (GANITE) (Yoon et al.,
2018), counterfactual regression with Wasserstein distance (CFRW ASS) (Shalit et al., 2017), Dragonnet (Shi
et al., 2019), multi-task Gaussian process (CMGP) (Alaa & van der Schaar, 2017) and TNet/SNet (Curth &
van der Schaar, 2021a).

Evaluation Metrics: For the experiments on IHDP and Twins datasets where we have access to both
potential outcomes, following (Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Farajtabar et al., 2020),
we use the evaluation metrics: ϵAT E and ϵP EHE (Defn 3.2 and Defn 3.4). ϵAT E measures the error in the
estimation of average treatment effect in a population. ϵP EHE is operates on the error in the estimation of
individual treatment effects. For the experiments on the Jobs dataset where we observe only one potential
outcome per data point, following (Shalit et al., 2017; Yoon et al., 2018; Shi et al., 2019; Farajtabar et al.,
2020), we use the metric error in estimation of average treatment effect on the treated (ϵAT T ). Definitions
and more details of these metrics are provided in Appendix B. We report both in-sample and out-of-sample
performance w.r.t. ϵAT E , ϵAT T ,

√
ϵP EHE in our results. Unlike traditional supervised learning, in-sample

performance is non-trivial in this context, since we do not observe counterfactual outcomes (all potential
outcomes) during training. Additional details on experimental setup is presented in Appendix B.

Results: Table 3 presents our main results. To permit efficient learning (and to some degree, interpretability
of the learned program, as discussed in ablation studies (Sec 7), and in Appendix F), we limit the program
depth to utmost 5 for the main experiments. We present results with other depths in ablation studies (Sec 7).
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Table 3: Results on IHDP, Twins, and Jobs datasets. Lower is better. The best numbers are in bold. Simple
machine learning models, ensemble models, and neural network-based models are separated using horizontal
lines. Further analysis on k-NN results and dataset details are in Appendix B

Datasets (Metric) → IHDP (ϵAT E(↓)) Twins (ϵAT E(↓)) Jobs (ϵAT T (↓))

Methods ↓ In-Sample Out-of-Sample In-Sample Out-of-Sample In-Sample Out-of-Sample

OLS-1 .73±.04 .94±.05 .0038±.0025 .0069±.0056 .01±.00 .08±.04
OLS-2 .14±.01 .31±.02 .0039±.0025 .0070±.0059 .01±.01 .08±.03
k-NN .14±.01 .90±.05 .0028±.0021 .0051±.0039 .21±.01 .13±.05
BLR (Johansson et al., 2016) .72±.04 .93±.05 .0057±.0036 .0334±.0092 .01±.01 .08±.03

BART (Chipman et al., 2010) .23±.01 .34±.02 .1206±.0236 .1265±.0234 .02±.00 .08±.03
Random Forest (Breiman, 2001) .73±.05 .96±.06 .0049±.0034 .0080±.0051 .03±.01 .09±.04
Causal Forest (Wager & Athey, 2018) .18±.01 .40±.03 .0286±.0035 .0335±.0083 .03±.01 .07±.03

BNN (Johansson et al., 2016) .37±.03 .42±.03 .0056±.0032 .0203±.0071 .04±.01 .09±.04
TARNet (Shalit et al., 2017) .26±.01 .28±.01 .0108±.0017 .0151±.0018 .05±.02 .11±.04
MHNET (Farajtabar et al., 2020) .14±.13 .37±.43 .0108±.0008 .0101±.0002 .04±.01 .06±.02
GANITE (Yoon et al., 2018) .43±.05 .49±.05 .0058±.0017 .0089±.0075 .01±.01 .06±.03
CFRW ASS (Shalit et al., 2017) .25±.01 .27±.01 .0112±.0016 .0284±.0032 .04±.01 .09±.03
Dragonnet (Shi et al., 2019) .16±.16 .29±.31 .0057±.0003 .0150±.0003 .04±.00 .04±.00
CMGP (Alaa & van der Schaar, 2017) .11±.10 .13±.12 .0124±.0051 .0143±.0116 .06±.06 .09±.07
TNet (Curth & van der Schaar, 2021a) .20±.18 .22±.11 .0200±.0070 .0200±.0070 .06±.00 .02±.00
SNet (Curth & van der Schaar, 2021a) .09±.10 .14±.12 .0040±.0030 .0040±.0030 .06±.00 .02±.00

NESTER .05±.04 .05±.03 .0034±.0005 .0039±.0006 .06±.00 .02±.01

The results show that NESTER outperforms the best alternative methods everywhere except on in-sample
ϵAT T score in the Jobs dataset. Additional are presented in Appendix C.

7 Additional Empirical Analysis and Discussion

Table 4: Programs synthesized
by NESTER. |v| = size of v.

IHDP
if subset(v, {0..|v|})
then transform(v)
else transform(v)

Twins
subset(v, {0..|v|}))

Jobs
if subset(v, {0..|v|})
then subset(v, {0..|v|})
else subset(v, {0..|v|})

In this section, we present ablation studies to understand various aspects
of synthesized programs.

Flexibility of NESTER: We study different programs generated by
NESTER to estimate treatment effects for different datasets. NESTER has
the flexibility to learn both complex models that are required for datasets
such as IHDP (complex models such as CMGP outperform simpler models
such as OLS on IHDP; see Tab 3) and to learn simple models for datasets such
as Twins and Jobs (OLS, k−NN perform better on Twins, Jobs compared
to complex models). Table 4 shows sample programs learned by NESTER
to estimate treatment effects for various datasets. {0..|v|} is the set of
natural numbers from 0 to |v| (length/size of v). To explain the results
further, for each dataset, NESTER has the flexibility to: (i) choose or not
choose a specific program primitive; (ii) decide the order in which program
primitives are used; and (iii) use a specific program primitive zero or more
times. Unlike traditional fixed architectures, this flexibility allows NESTER
to use primitives differently for different datasets to perform better.

Figure 3: Feature count vs ϵAT E

Interpretability of NESTER: We now provide the interpretability to
the program generated by NESTER for estimating treatment effects for the
Twins dataset: “subset(v, {0..|v|})” (Table 4). Since the subset primitive
allows us check the performance w.r.t. different subsets of covariates, we
empirically verified the effect of choosing a subset of input covariates (other
covariates are set to 0) on ϵAT E . Results in Fig 3 show the performance of
NESTER as the number of covariates are increased from 1 to 31 (starting
with treatment variable, adding one covariate at a time). We observe
that the model with all features included gives the best in-sample and
out-sample ϵAT E . While this is not a surprising conclusion, the choice of
the subset primitive allows us such an analysis. Also, this simple program synthesized by NESTER supports
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the fact that simpler models perform better on the Twins dataset. This can be observed from the first
three rows and the final row of Table 3. See Appendix F for real-world examples of the interpretability of
synthesized programs.

Table 5: Run time of NESTER and
SNet (in minutes)

Dataset NESTER SNet
Twins 2.12±0.12 1.85±0.30
Jobs 1.09±0.40 1.23±0.21

Runtime Analysis: We also compared the run time of NESTER
against the state-of-the-art learning-based method SNet (Curth &
van der Schaar, 2021a), and observe that the two are comparable. As
shown in Tab 5, on Twins and Jobs datasets, to get the results in
Table 3, NESTER and SNet take similar time on average. NESTER
achieves state-of-the-art performance with smaller program depths,
avoiding heavy computation requirements in practice. Experiments are
conducted on a computing unit with an NVIDIA GeForce 1080Ti, and the average time over five runs is
reported.

Table 6: Results on Twins. Primitives 1-4 alone in our proposed
DSL are achieving better results compared to the primitives 4-5.

Metrics → √
ϵP EHE(↓) ϵAT E(↓)

Primitives In-Sample Out-of In-Sample Out-of
of DSL 1 Sample Sample
1,2,3 .318±.003 .319±.000 .0050±.0030 .0039±.0006
1,2,4/1,3,4 .332±.001 .319±.002 .0210±.0030 .0140±.0000
1,2,3,4 .318±.002 .319±.000 .0034±.0026 .0039±.0006

Choice of DSL: The choice of DSL im-
pacts the performance of any program
synthesis method. We argue that the suc-
cess of NESTER is because of the spe-
cific program primitives in the proposed
DSL and their connection to the causal
inference literature (Tab 2). Specifically,
we study the usefulness of the primitives
if− then− else, transform, subset.
We conduct an ablation study where the
DSL only contains the subset of primitives from the set of primitives 1-4 in the original DSL (Tab 1). When
we remove one of the primitives 1-3 from the DSL, we observe the degradation in the performance (Tab 6).
Results improved when we added all primitives 1-3 in the DSL.

Figure 4: Program depth vs performance.

Analysis on Depth of Synthesized Program
Structures: We study the effect of program depth
on the estimated treatment effects while keeping
all other hyperparameters fixed. Fig 4 shows the
results on IHDP and Jobs datasets for various values
of program depth. Since IHDP dataset contains
1000 realizations of simulated outcomes (Hill, 2011),
we take the first instance and verify the effect of
program depth on ϵAT E . For a program depth of 4,
we observed a better trade-off between in-sample and out-sample ϵAT E . Any depth smaller than 4 and higher
than 4 results in degradation of performance w.r.t. one of in-sample or out-sample ϵAT E . We believe that
this is because of model over-fitting for large program depths (In Fig 4 left, out-sample ϵAT E is increasing
while in-sample ϵAT E is decreasing). In the Jobs dataset, we observed that almost all program depths results
in similar in-sample and out-sample ϵAT T . Hence, in this case it is advisable to limit the program depth to
be a small number as it helps to interpret the results better. On Twins dataset, we observed that simple
models give best results. It is observed that, even though we set the hyperparameter that controls the depth
of the program graph to be a large value, the resultant optimal program always ends up to be of depth 1,
again supporting our claim that simple models work better for the Twins dataset.

8 Conclusions
In this paper, we present a novel adaptive method for estimating treatment effects using neurosymbolic
program synthesis, and also study why neurosymbolic programming is a good choice for solving such a
problem. By making an analogy between parameterized program primitives and the basic building blocks
of models in the literature, we propose a domain-specific language for treatment effect estimation, and also
theoretically show why this is viable and suitable. Our comprehensive results and analysis on benchmark
datasets with several baselines show the usefulness of the proposed approach. Exploring new program
primitives corresponding to unexplored heuristics for treatment effect estimation is an interesting future
direction.
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Appendix

In this appendix, we include the following additional details.

• Proofs of propositions
• Additional details on the experimental setup, including:

– Details on evaluation metrics
– Details on datasets

• Additional results
• Example of program synthesis application - FlashFill
• Example of a neurosymbolic program - solving XOR problem
• Interpretability of Synthesized Programs - A real-world example

A Proofs of Propositions

Lemma 5.1. (Neural Admissible Relaxations (Shah et al., 2020)) In an informed search algorithm
A, given an internal node ui and a leaf node ul, let the cost of the leaf edge (ui, ul) be s(r) + ζ(P, θ∗),
where θ∗ = arg minθ ζ(P, θ) and s(r) is the structural cost in using rule r to create ul from ui. If a neural
network model is used to substitute each non-terminal of ui, the training loss of the program obtained is an
ϵ−admissible heuristic for ui.

Proof. Let G denote the program graph that is being generated by an informed search algorithm. At any
node u in G, let s(u) be the structural cost of u i.e., the sum of costs of rules used to construct u. Now, let
u[α1, . . . , αk] be any structure (that is not partial) obtained from u by using the rules α1, . . . , αk. Then the
cost to reach goal node from u is given by:

J(u) = min
α1,...,αn,θ(u),θ

[s(u(α1, . . . , αk))− s(u) + ζ(u[α1, . . . , αk], (θu, θ))]

where θ(u) is the set of parameters of u and θ is the set of parameters of α1, . . . , αk. Now, let the heuristic
function value h(u) at u be obtained as follows: substitute the non-terminals in u with neural networks
parametrized by the set of parameters ω (these networks are type-correct— for example, if a non-terminal
is supposed to generate sub-expressions whose inputs are sequences, then the neural network used in its
place is recurrent). Now, let us denote the program obtained by this construction with (P(u), (θ(u), ω)). The
heuristic function value at u is now given by:

h(u) = min
θ(u),ω

ζ(P(u), (θ(u), ω)) (6)

In practice, neural networks may only form an approximate relaxation of the space of completions and
parameters of architectures; also, the training of these networks may not reach global optima. To account for
these issues, consider an approximate notion of admissibility Harris (1974); Pearl (1984). For a fixed constant
ϵ > 0, let an ϵ-admissible heuristic be a function h∗(u) over architectures such that h∗(u) ≤ J(u) + ϵ;∀u.

As neural networks with adequate capacity are universal function approximators, there exist parameters ω∗

for our neurosymbolic program such that for all u, α1, . . . , αk, θ(u), θ:

ζ(P (u), (θ(u), ω∗)) ≤ ζ(P (u[α1, . . . , αk]), (θ(u), θ)) + ϵ

If s(r) > 0;∀r ∈ L (where L is the DSL under consideration), then s(u) ≤ s(u[α1, . . . , αk]), which implies:

h(u) ≤ min
α1,...,αn,θ(u),θ

ζ(u[α1, . . . , αk], (θu, θ))) + ϵ

≤ min
α1,...,αn,θ(u),θ

ζ(u[α1, . . . , αk], (θu, θ))) + s(u(α1, . . . , αk))− s(u) + ϵ

= J(u) + ϵ
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In other words, h(u) is ϵ-admissible.

Let C denote the optimal path cost in G. If an informed search algorithm returns a node ug as the goal node
that does not have the optimal path cost C, then there must exist a node u′ on the frontier (nodes to explore)
that lies along the optimal path but has not yet explored. Let g(ug) denote the path cost at ug (note that
path cost includes the prediction error of the program at ug). This lets us establish an upper bound on the
path cost of ug.

g(ug) ≤ g(u′) + h(u′) ≤ g(u′) + J(u′) + ϵ ≤ C + ϵ.

In an informed search algorithm, the heuristic estimate at the goal node h(ug) is 0. That is, the path cost of
the optimal program returned by the informed search algorithm is at most an additive constant ϵ away from
the path cost of the optimal solution.

Proposition 5.1. (Universal Approximation Result for NPS) Given a continuous function g : Rd → R
and an informed search algorithm A, there exists a DSL L such that the output of the program (P, θ)
synthesized using A ϵ−approximates g for a given ϵ > 0.

Proof. We know by universal approximation theorem Hornik et al. (1989) that there exist a trained 1-hidden
layer neural network model N with d inputs x1, . . . , xd, n hidden neurons h1, . . . , hn, and output y that
ϵ̂-approximates g : Rd → R for some ϵ̂ > 0. We now show that N ’s output can be ϵ′-approximated using a
program synthesized using NPS with ϵ′-admissible heuristic and a DSL.

In N , let the activation function used in hidden and output layers be f(·); θij be the weight connecting ith

input to jth hidden neuron; and θj be the weight connecting jth hidden neuron to output y. The output y of
N can be expressed in terms of inputs, activation function, and parameters as:

y = f(θ1f(θ11x1 + · · ·+ θd1xd) + · · ·+ θnf(θ1nx1 + · · ·+ θdnxd)) (7)

Since the above expression consists of additions, multiplications, and an activation function f , it is easy to
see that Equation 7 can be synthesized using the following DSL L:

α := f(α) | mul(θ, α) | add(α, α) | x1 | . . . | xn

where mul, add represent usual multiplication and addition operations. If d = 2 and n = 2, the synthesized
program that matches the expression for y in Equation 7 looks like:

f (add (mul (θ, f( add (mul (θ, x1), mul(θ, x2)))), mul(θ, f (add (mul(θ, x1), mul(θ, x2)))))) (8)

Note that θ is overloaded in the above expression only for convenience and readability; each θ is however
updated independently while training the above program using gradient descent.

Using Expression 8, it is clear that Equation 7 can be synthesized using L for any given m,n. Now, as part of
our construction, set s(r) = 0; ∀r ∈ L to synthesize programs of arbitrary depth and width without worrying
about the structural cost of the synthesized program. Now the path cost p of a node u returned by the
synthesizer contains only the prediction error value of the program at the node u (Eqn 5). Using Lemma 5.1,
p is at most ϵ′ away from the path cost of the optimal solution (node with the expression for y, the output
of N ). Since the path cost of any node only contains the prediction error values, we conclude that the loss
incurred by the synthesized program is ϵ′−close to the loss incurred by N .

Finally, as per the universal approximation theorem, we can increase the number of hidden layer neurons of a
1-hidden layer NN N to approximate g : Rd → R with a certain error, say ϵ̂. Also, there exists a neurosymbolic
program (P, θ) whose error in approximating N is ϵ′. Equivalently, there exists a neurosymbolic program
(P, θ) whose error in approximating f is (ϵ̂+ ϵ′). If we choose ϵ̂, ϵ′ such that ϵ = ϵ̂+ ϵ′ for a given ϵ, we have
the desired result.

Before proceeding with the proof of next proposition, we describe how NESTER, using the proposed DSL
can generate programs (PT , θT ), (PC , θC), and (PD, θD), whose architectures are the same as TARNet,
CFR Shalit et al. (2017), and Dragonnet Shi et al. (2019) respectively.
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Table 7: Programs generated using our DSL (Tab 1) equivalent to TARNet (PT ), CFR (PC), and Dragonnet
(PD).

PT PC PD

if subset(v, {0}) if subset(v, {0}) if subset(v, {0})
then subset(v, {0..|v|}) then transform(v) then subset(v, paT)
else subset(v, {0, |v|}) else transform(v) else subset(v, paT)

We construct the program architectures PT ,PC , and PD using the DSL 1. The parameter sets θT , θC , and
θD are implicit in the program primitives used in the respective architectures. The program architectures for
PT ,PC , and PD are shown in Tab 7. In Tab 7, paT denotes the indices of the parents of T in v.

Construction of PT : TARNet is a simple 2-head network without any constraints on the learned represen-
tation ϕ (Fig 1). Since there are no constraints on ϕ, PT has two subset primitives responsible for learning
two representations ϕ0, ϕ1 for p(x|t = 0) and p(x|t = 1) respectively before producing the estimated potential
outcomes (i.e., the outputs of these two subset primitives act as the two hypothesis functions h0, h1 in
TARNet to predict the treatment-specific effects.) The condition check for deciding which head to execute is
done using subset(v, {0}]) where subset primitive chooses the first index of input and returns t value as its
output.

Construction of PC : CFR minimizes the distance between ϕ0, ϕ1 (equivalently between p(x|t = 0), p(x|t =
1)) to achieve IPM regularization. To get similar behavior, PC uses transform primitive that implicitly
generates representations close to each other for inputs with different treatment values. Now, similar to PT ,
PC has two heads corresponding to two transform primitives that output treatment-specific effects.

Construction of PD: In Dragonnnet Shi et al. (2019), along with two treatment-specific heads (similar to
TARNet), there is another head that predicts the treatment variable so that the parents of the treatment
variable are being used for propensity score matching. To achieve this behavior, PD uses subset primitive that
selects parents of the treatment variable paT. Once the parent set is chosen, similar to PT and PC , the outputs
of two subset primitives of PD act as the two hypothesis functions h0, h1 to predict the treatment-specific
effects.
Proposition 5.2. (Error Bounds of NESTER) The program (PC , θC) generated by NESTER using the
proposed DSL, whose architecture is the same as CFR (Shalit et al., 2017), has the same error bounds in
estimating treatment effects as that of CFR.

Proof. Since CFR provides error bounds in estimating ϵP EHE , we show how such bounds can be extended to
NESTER. We first restate the following definitions and notations from Shalit et al. (2017).

Let pt=1(x) = p(x|t = 1), and pt=0(x) = p(x|t = 0) denote respectively the treatment and control distributions.
Let ϕ : X → R be the representation function which is assumed to be one-to-one and differentiable. Let
pt=1

ϕ (x) = pϕ(x|t = 1), and pt=0
ϕ (x) = pϕ(x|t = 0) denote respectively the treatment and control distributions

induced over R. Let h : R × {0, 1} → Y be a hypothesis function (e.g., treatment-specific heads of
TARNet/CFR). The expected loss for the unit (x, t) is defined as follows

lh,ϕ(x, t) :=
∫

Y

L(Y t, h(ϕ(x), t))p(Y t|x)dY t

Where L : Y × Y → R+ is squared loss function defined as L(y, ŷ) := (y − ŷ)2. Now consider the two
complimentary loss functions: one is the standard machine learning loss, call the factual loss, denoted by ϵF .
The other is the expected loss with respect to the distribution where the treatment assignment is flipped,
called the counterfactual loss, ϵCF . These are defined as follows

ϵF (h, ϕ) :=
∫

X×{0,1}
lh,ϕ(x, t)p(x, t)dxdt ϵCF (h, ϕ) :=

∫
X×{0,1}

lh,ϕ(x, t)p(x, 1− t)dxdt
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Similarly, one can define the expected treated and control losses as follows

ϵt=1
F (h, ϕ) =

∫
X
lh,ϕ(x, 1)pt=1(x)dx ϵt=0

F (h, ϕ) =
∫

X
lh,ϕ(x, 0)pt=0(x)dx

ϵt=1
CF (h, ϕ) =

∫
X
lh,ϕ(x, 1)pt=0(x)dx ϵt=0

CF (h, ϕ) =
∫

X
lh,ϕ(x, 0)pt=1(x)dx

For u := p(t = 1), we have the following Shalit et al. (2017)

ϵF (h, ϕ) = uϵt=1
F (h, ϕ) + (1− u)ϵt=0

F (h, ϕ)
ϵCF (h, ϕ) = (1− u)ϵt=1

CF (h, ϕ) + uϵt=0
CF (h, ϕ)

Let G be a function family consisting of functions g : S → R. For a pair of distributions p1, p2 over S, the
Integral Probability Metric is defined as follows

IPMG(p1, p2) = sup
g∈G

∣∣∫
S
g(s)(p1(s)− p2(s))ds

∣∣
For t ∈ {0, 1}, let mt(x) = E[Y t|x], τ(x) = m1(x) −m0(x) and τ̂(x) = f(x, 1) − f(x, 0) (f is defined in
Sec. 3). Then we have the following

ϵP EHE(f) :=
∫

X
(τ̂(x)− τ(x))2p(x)dx

Let
σ2

Y t(p(x, t)) =
∫

X×Y

(Y t −mt(x))2p(Y t|x)p(v, t)dY tdx

and σ2
Y t = min{σ2

Y t(p(x, t)), σ2
Y t(p(x, 1− t))}

and σ2
Y = min{σ2

Y 0 , σ2
Y 1}

Now assume there exists a constant Bϕ and loss L(y1, y2) = (y1 − y2)2 such that for t ∈ {0, 1}, the functions
gϕ,h(r, t) := 1

Bϕ
lh,ϕ(ψ(r), t) ∈ G. Then we have

ϵP EHE(h, ϕ) ≤ 2(ϵCF (h, ϕ) + ϵF (h, ϕ)− 2σ2
Y ) ≤ 2(ϵt=0

F (h, ϕ) + ϵt=1
F (h, ϕ) +BϕIPMG(pt=0

ϕ , pt=1
ϕ )− 2σ2

Y ) (9)

We refer to Shalit et al. (2017) for the complete proof of the Inequality 9 which is valid for Counterfactual
Regression (CFR) model Shalit et al. (2017). We now present the following equivalences to show that the
above error bound is valid for the program (PC , θC) equivalent to CFR.

• In PC , subset(v, {0}) acts as the decision node to decide which specific transform(v) to execute.
The outputs of these specific transform are the same as the outputs of the hypothesis function h
used in the factual and counterfactual losses ϵF , ϵCF defined earlier.

• By our construction of (PC , θC), we have a two transform primitives to output pt=0
ϕ and pt=1

ϕ . ϕ is
trained to minimize the MMD between pt=0

ϕ and pt=1
ϕ . Since MMD is one specific IPM, we replace

IPM with MMD in the inequality 9.

• σ2
Y can be directly obtained from the observational data. Hence the error bounds guaranteed by

NESTER w.r.t. ϵP EHE is as follows.

ϵP EHE(h, ϕ) ≤ 2(ϵCF (h, ϕ)+ϵF (h, ϕ)−2σ2
Y ) ≤ 2(ϵt=0

F (h, ϕ)+ϵt=1
F (h, ϕ)+BϕMMD(pt=0

ϕ , pt=1
ϕ )−2σ2

Y )
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B Experimental Setup

B.1 Additional Details on Evaluation Metrics

For the experiments on IHDP and Twins datasets where we have access to both potential outcomes,
following Shalit et al. (2017); Yoon et al. (2018); Shi et al. (2019); Farajtabar et al. (2020), we use the
evaluation metrics: error in the estimation of Average Treatment Effect (ϵAT E) and the expected Precision in
Estimation of Heterogeneous Effect (ϵP EHE). For a sample of n data points, ϵAT E , ϵP EHE are defined as
follows.

ϵAT E := | 1
n

n∑
i=1

[f(xi, 1)− f(xi, 0)]− 1
n

n∑
i=1

[Y 1
i − Y 0

i ]|

ϵP EHE := 1
n

n∑
i=1

[(f(xi, 1)− f(xi, 0))− (Y 1
i − Y 0

i )]2

For the experiment on the Jobs dataset where we observe only one potential outcome per data point,
following Shalit et al. (2017); Yoon et al. (2018); Shi et al. (2019); Farajtabar et al. (2020), we use the metric
error in estimation of Average Treatment Effect on the Treated (ϵAT T ), which is defined as follows.

ϵAT T := |ATT true − 1
|T |

∑
i∈T

[f(xi, 1)− f(xi, 0)]| (10)

where ATT true is defined as:

ATT true := 1
|T |

∑
i∈T

Y 1
i −

1
|U ∩ E|

∑
i∈U∩E

Y 0
i (11)

and T is the treated group, U is the control group, and E is the set of data points from a randomized
experiment Shalit et al. (2017) (see description of Jobs dataset below for an example of E, T, and U).

Understanding k-NN results: In k-NN algorithm, if k = 1 and treatment value t = 1, f(xi, 1) is exactly
same as Y 1

i . If treatment value t = 0, f(xi, 0) is exactly same as Y 0
i because of the way k-NN works during

test time on in-sample data. For this reason, the estimated value of ϵAT E is biased towards 0. This bias
exists even for higher values of k in k-NN while taking the average outputs of k nearest data points. However,
we do not observe such bias w.r.t. out-sample data. Hence, following earlier work Yoon et al. (2018), we only
consider K-NN results for out-sample performance.

B.2 Details on Datasets

IHDP: Infant Health and Development Program (IHDP) is a randomized control experiment on 747 low-
birth-weight, premature infants. The treatment group consists of 139 children, and the control group has
608 children. The treatment group received additional care such as frequent specialist visits, systematic
educational programs, and pediatric follow-up. The Control group only received pediatric follow-up. Hill
(2011) created the semi-synthetic version of IHDP dataset by synthesizing both potential outcomes. Following
Hill (2011); Shalit et al. (2017); Yoon et al. (2018); Shi et al. (2019), we use simulated outcomes of the IHDP
dataset from NPCI package Dorie (2016). This experiment aims to estimate the effect of treatment on the
IQ score of children at the age of 3.

Twins: The Twins dataset is derived from all births in the USA between 1989-1991 Almond et al. (2005).
Considering twin births in this period, for each child, we estimate the effect of birth weight on 1-year mortality
rate. Treatment t = 1 refers to the heavier twin and t = 0 refers to the lighter twin. Following Yoon et al.
(2018), for each twin-pair, we consider 30 features relating to the parents, the pregnancy, and the birth. We
only consider twins weighing less than 2kg and without missing features. The final dataset has 11,400 pairs
of twins whose mortality rate for the lighter twin is 17.7%, and for the heavier 16.1%. In this setting, for
each twin pair we observed both the case t = 0 (lighter twin) and t = 1 (heavier twin) (that is, since all other
features such as parent’s race, health status, gestation weeks prior to birth, etc. are same except the weight of
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Table 8: Dataset details. ‘Input Size’ includes the treatment variable.

Dataset Sample Size Input Size Batch Size Epochs Train/Valid/Test Split (%)
IHDP 747 (1000 such instances) 26 16 100 64/16/20
Twins 11400 31 128 7 64/16/20
Jobs 3212 18 64 10 64/16/20

each twin, the choice of twin (lighter vs heavier) is associated with the treatment (t = 0 vs t = 1)); thus, the
ground truth of individualized treatment effect is known in this dataset. In order to simulate an observational
study from these 11,400 pairs, following Yoon et al. (2018), we selectively observe one of the two twins using
the feature information x (to create selection bias) as follows: t|x ∼ Bernoulli(sigmoid(wT x + n)) where
wT ∼ U((−0.1, 0.1)30×1) and n ∼ N(0, 0.1).

Jobs: The Jobs dataset is a widely used real-world benchmark dataset in causal inference. In this dataset,
the treatment is job training, and the outcomes are income and employment status after job training. The
dataset combines a randomized study based on the National Supported Work Program in the USA (we denote
the set of observations from this randomized study with E) with observational data A. Smith & E. Todd
(2005). Each observation contains 18 features such as age, education, previous earnings, etc. Following Shalit
et al. (2017); Yoon et al. (2018), we construct a binary classification task, where the goal is to predict
unemployment status given a set of features. The Jobs dataset is the union of 722 randomized samples
(t = 1 : 297, t = 0 : 425) and 2490 observed samples (t = 1 : 0, t = 0 : 2490). The treatment variable is job
training (t = 1 if trained for job else t = 0), and the outcomes are income and employment status after job
training. In Equations 10-11, we then have |T | = 297, |C| = 2915, |E| = 722. Since all the treated subjects T
were part of the original randomized sample E, we can compute the true ATT (Equation 11) and hence can
study the precision in estimation of ATT (Equation 10).

Tab 8 summarizes the dataset details. Each dataset is split 64/16/20% into train/validation/test sets, similar
to earlier efforts. All experiments were conducted on a computing unit with a single NVIDIA GeForce 1080Ti.

C Additional Results

Table 9: Results on IHDP dataset. Lower is better.

Dataset (Metric) → IHDP (√ϵP EHE)
Methods ↓ In-Sample Out-Sample
OLS-1 5.80±0.30 5.80±0.30
OLS-2 2.50±0.10 2.50±0.10
k-NN 2.10± 0.10 4.10±0.20
BLR Johansson et al. (2016) 5.80±0.30 5.80±0.30
BART Chipman et al. (2010) 2.10±0.10 2.30±0.10
R Forest Breiman (2001) 4.20±0.20 6.60±0.30
C Forest Wager & Athey (2018) 3.80±0.20 3.80±0.20
BNN Johansson et al. (2016) 2.20±0.10 2.10±0.10
TARNet Shalit et al. (2017) 0.88±0.02 0.95±0.02
MHNET Farajtabar et al. (2020) 1.54±0.70 1.89±0.52
GANITE Yoon et al. (2018) 1.90±0.40 2.40±0.40
CFRW ASS Shalit et al. (2017) 0.71±0.02 0.76±0.02
Dragonnet Shi et al. (2019) 1.37±1.57 1.42±1.67
CMGP Alaa & van der Schaar (2017) 0.65±0.44 0.77 ± 0.11
TNet Curth & van der Schaar (2021a) 0.90±0.01 0.91±0.03
SNet Curth & van der Schaar (2021a) 0.69±0.01 0.76±0.01
NESTER 0.73±0.19 0.76±0.20

To study how NESTER performs with the ϵP EHE

metric, we empirically captured the performance of
NESTER comprehensively against all baselines on
the IHDP dataset. From Tab 9, NESTER achieves
strong out-sample (out-of-sample) ϵP EHE score on
the IHDP dataset, even on this metric.

D FlashFill
Task and Semantics of its DSL

Following our discussion in Section 1, for better un-
derstanding of symbolic program synthesis, we pro-
vide an example of a symbolic program application
called FlashFill Parisotto et al. (2016). Examples
of the FlashFill task and a DSL to synthesize pro-
grams that solve FlashFill task are given in Tab 10.
Semantics of the DSL in Tab 10 Right are as follows.

• Concat(f1, . . . , fn) - concatenates the results of the expressions f1, . . . , fn.
• ConstStr(s) - returns the constant string s.
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Table 10: Left: An example FlashFill task where input names are automatically translated to an output
format in which last name is followed by the initial of the first name; Right: The DSL for FlashFill task
based on regular expression string transformations Parisotto et al. (2016).

Input Output
William Henry Charles Charles, W.
Michael Johnson Johnson, M.
Barack Rogers Rogers, B.
Martha D. Saunders Saunders, M.
Peter T Gates Gates, P.

String e := Concat(f1, . . . , fn)
Substring f := ConstStr(s)|SubStr(v, pl, pr)
Position p := (r, k, dir)|ConstPos(k)
Direction Dir := Start|End

Regex r := s|T1| . . . |Tn

• SubStr(v, pl, pr) - returns substring v[pl..pr] of the string v, using position logic corresponding to
pl, pr. v[i..j] denotes the substring of string v starting at index i (inclusive) and ending at index j
(exclusive), and len(v) denotes the length of the string v

• ConstPos(k) - returns k if k ≥ 0 else return l + k where l is the length of the string
• (r, k, Start) - returns the Start of kth match of the expression r in v from the beginning (if k ≥ 0)

or from the end (if k < 0).
• (r, k, End) - returns the End of kth match of the expression r in v from the beginning (if k ≥ 0) or

from the end (if k < 0).

Based on the above semantics, a program that generates the desired output given the input names in
Tab 10 is: Concat(f1, ConstStr(”, ”), f2, ConstStr(”.”)) where f1 ≡ SubStr(v, (” ”,−1, End), ConstPos(−1))
and f2 ≡ SubStr(v, ConstPos(0), ConstPos(1)).

E Neurosymbolic Program Example: Solving XOR Problem

Following our discussion in Section 3, for better understanding of the internal workings of a neurosymbolic
program, we provide an example on solving the XOR problem i.e., predicting the output of XOR operation
given two binary digits. Unlike symbolic programs, neurosymbolic programs are differentiable and can be
trained using gradient descent. Program primitives in a neurosymbolic program have trainable parameters
associated with them. The program shown in Tab 11 (left) is constructed using (i) if− then− else and
(ii) affine program primitives. affine primitive takes a vector as input and returns a scalar that is the
sum of dot product of parameters with the input and a bias parameter. For example, if x = [1, 0] then
affine[θ1,θ2;θ3](x) = θ1 × 1 + θ2 × 0 + θ3 = θ1 + θ3. The subscripts of affine in affine[θ1,θ2;θ3] contain the
parameters θ1, θ2 and bias parameter θ3 separated by semi colon (;). The smooth approximation of this
program, to enable backpropagation, is shown in Tab 11 (right). The parameter values are hard-coded for
illustation purposes. In practice, these weights are learned by training through gradient descent.

F Interpretability of Synthesized Programs: A Real World Example

Figure 5: A real-world ex-
ample for interpreting the
synthesized programs.

We expect that each program primitive in a domain-specific language has
a semantic meaning; hence, interpretability in program synthesis refers to
understanding the decision of a synthesized program using various aspects such
as: which program primitives are used and why? what does the learned sequence
of program primitives mean for the problem? what is the effect of each program
primitive on the output? etc.

We explain more clearly with an example. Consider a causal model consisting
of variables T,X1, X2, Y as shown in Fig 5 where: (i) X1 causes T and Y ; (ii)
T causes X2 and Y ; and (iii) X2 causes Y . A real-world scenario depicted by
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Table 11: Left: A neurosymbolic program to solve XOR problem. Right: Smooth approximation of the
program on the left where σ is sigmoid function. β is a temperature parameter. As β → 0, the approximation
approaches usual if− then− else (Section 4.1).

if affine[1,1;0](x) > 0 then

if affine[1,1;−1](x) > 0 then

affine[0,0;0](x)
else

affine[1,1;0](x)
else

affine[0,0;0](x)

σ(β × affine[1,1;0](x))×
(σ(β × affine[1,1;−1](x))× affine[0,0;0](x)+
(1− σ(β × affine[1,1;−1](x)))× affine[1,1;0](x))+
(1− σ(β × affine[1,1;0](x)))× affine[0,0;0](x)

this causal model could be where T is the average distance walked by a person
in a day, X1 is age, X2 is metabolism, and Y is blood pressure. In this example, our goal is to estimate the
effect of walking (T ) on blood pressure (Y ). In this case, the ideal estimator for the quantity E[Y |do(t)] is∑

x1∼X1
E[Y |t, x1]p(x1). However, NESTER has access to only observational data and is unaware of the

underlying causal process. Now consider the following two possible programs p1, p2 synthesized by NESTER
to estimate the treatment effect of T on Y . Let v = [t, x1, x2] be an input data point.

p1 : if subset(v, {0}])
then subset(v, {0, 1}])
else subset(v, {0, 1}])

p2 : if subset(v, {0}])
then subset(v, {0, 1, 2})
else subset(v, {0, 1, 2})

The only difference between p1 and p2 is the set of indices used in subset primitives. p1 uses only T,X1
(indicated by {0, 1} in p1) to predict Y ; while p2 uses T,X1, X2 (indicated by {0, 1, 2} in p2) to predict Y . In
this case, we would ideally observe p1 to perform better than p2 because p1 controls for the correct set of
confounding variables ({X1} in this case). Conversely, observing a strong performance for p1 tells us that
{X1} is the confounder, without knowledge of the causal model.

Observing the generated program and primitives gives us insights about the underlying data-generating
process such as which features are the potential causes of treatment (e.g., age affects the average distance a
person can walk), which features should not be controlled (e.g., we need the effect of walking on blood pressure
irrespective of the metabolism rate of a person), etc. Such information encoded in a synthesized program can
also be validated with domain experts if available. Our experimental results and ablation studies discussed
above show other ways of interpreting programs.
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