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Abstract

Predictor screening rules, which discard predictors before fitting a model, have had
considerable impact on the speed with which sparse regression problems, such as
the lasso, can be solved. In this paper we present a new screening rule for solving
the lasso path: the Hessian Screening Rule. The rule uses second-order information
from the model to provide both effective screening, particularly in the case of high
correlation, as well as accurate warm starts. The proposed rule outperforms all
alternatives we study on simulated data sets with both low and high correlation for
{-regularized least-squares (the lasso) and logistic regression. It also performs
best in general on the real data sets that we examine.

1 Introduction

High-dimensional data, where the number of features (p) exceeds the number of observations
(n), poses a challenge for many classical statistical models. A common remedy for this issue is to
regularize the model by penalizing the regression coefficients such that the solution becomes sparse. A
popular choice of such a penalization is the /1 -norm, which, when the objective is least-squares, leads
to the well-known lasso [1]. More specifically, we will focus on the following convex optimization
problem:

migé%ize{f(ﬂ;X)—&-x\Hﬁ”l}, (D

where f(/3; X) is smooth and convex. We let B be the solution vector for this problem and, abusing

notation, equivalently let B : R +— RP be a function that returns this vector for a given A. Our focus
lies in solving (1) along a regularization path A1, Ao ..., A\, with Ay > Ay > -+ > \,,. We start
the path at A, which corresponds to the null (all-sparse) model', and finish at some fraction of
Amax for which the model is either almost saturated (in the p > n setting), or for which the solution
approaches the ordinary least-squares estimate. The motivation for this focus is that the optimal A
is typically unknown and must be estimated through model tuning, such as cross-validation. This
involves repeated refitting of the model to new batches of data, which is computationally demanding.

Fortunately, the introduction of so-called screening rules has improved this situation remarkably.
Screening rules use tests that screen and possibly discard predictors from the model before it is fit,
which effectively reduces the dimensions of the problem and leads to improvements in performance
and memory usage. There are, generally speaking, two types of screening rules: safe and heuristic
rules. Safe rules guarantee that discarded predictors are inactive at the optimum—heuristic rules do
not and may therefore cause violations: discarding active predictors. The possibility of violations
mean that heuristic methods need to validate the solution through checks of the Karush—-Kuhn-Tucker
(KKT) optimality conditions after optimization has concluded and, whenever there are violations, re-
run optimization, which can be costly particularly because the KKT checks themselves are expensive.
This means that the distinction between safe and heuristic rules only matters in regards to algorithmic

"Amax is in fact available in closed form—for the lasso it is max; |x]Ty|
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details—all heuristic methods that we study here use KKT checks to catch these violations, which
means that these methods are in fact also safe.

Screening rules can moreover also be classified as basic, sequential, or dynamic. Basic rules screen
predictors based only on information available from the null model. Sequential rules use information
from the previous step(s) on the regularization path to screen predictors for the next step. Finally,
dynamic rules screen predictors during optimization, reducing the set of screened predictors repeatedly
throughout optimization.

Notable examples of safe rules include the basic SAFE rule [2], the sphere tests [3], the R-region
test [4], Slores [5], Gap Safe [6, 7], and Dynamic Sasvi [8]. There is also a group of dual polytope
projection rules, most prominently Enhanced Dual Polytope Projection (EDPP) [9]. As noted
by Fercoq, Gramfort, and Salmon [6], however, the sequential version of EDPP relies on exact
knowledge of the optimal solution at the previous step along the path to be safe in practice, which
is only available for Ap,x. Among the heuristic rules, we have the Strong Rule [10], SIS [11], and
ExSIS [12]. But the latter two of these are not sequential rules and solve a potentially reduced form
of the problem in (1)—we will not discuss them further here. In addition to these two types of
rules, there has also recently been attempts to combine safe and heuristic rules into so-called hybrid
rules [13].

There are various methods for employing these rules in practice. Of particular interest are so-called
working set strategies, which use a subset of the screened set during optimization, iteratively updating
the set based on some criterion. Tibshirani et al. [10] introduced the first working set strategy, which
we in this paper will refer to simply as the working set strategy. It uses the set of predictors that have
ever been active as an initial working set. After convergence on this set, it checks the KKT optimality
conditions on the set of predictors selected by the strong rule, and then adds predictors that violate the
conditions to the working set. This procedure is then repeated until there are no violations, at which
point the optimality conditions are checked for the entire set, possibly triggering additional iterations
of the procedure. Blitz [14] and Celer [15] are two other methods that use both Gap Safe screening
and working sets. Instead of choosing previously active predictors as a working set, however, both
Blitz and Celer assign priorities to each feature based on how close each feature is of violating the
Gap Safe check and construct the working set based on this prioritization. In addition to this, Celer
uses dual point acceleration to improve Gap Safe screening and speed up convergence. Both Blitz
and Celer are heuristic methods.

One problem with current screening rules is that they often become conservative—including large
numbers of predictors into the screened set—when dealing with predictors that are strongly correlated.
Tibshirani et al. [10], for instance, demonstrated this to be the case with the strong rule, which was the
motivation behind the working set strategy. (See Appendix F.4 for additional experiments verifying
this). Yet because the computational complexity of the KKT checks in the working set strategy
still depends on the strong rule, the effectiveness of the rule may nevertheless be hampered in this
situation. A possible and—as we will soon show—powerful solution to this problem is to make use of
the second-order information available from (1), and in this paper we present a novel screening rule
based on this idea. Methods using second-order information (the Hessian) are often computationally
infeasible for high-dimensional problems. We utilize two properties of the problem to remedy this
issue: first, we need only to compute the Hessian for the active set, which is often much smaller than
the full set of predictors. Second, we avoid constructing the Hessian (and it’s inverse) from scratch
for each A along the path, instead updating it sequentially by means of the Schur complement. The
availability of the Hessian also enables us to improve the warm starts (the initial coefficient estimate
at the start of each optimization run) used when fitting the regularization path, which plays a key role
in our method.

We present our main results in Section 3, beginning with a reformulation of the strong rule and
working set strategy before we arrive at the screening rule that represents the main result of this
paper. In Section 4, we present numerical experiments on simulated and real data to showcase the
effectiveness of the screening rule, demonstrating that the rule is effective both when p > n and
n > p, out-performing the other alternatives that we study. Finally, in Section 5 we wrap up with a
discussion on these results, indicating possible ways in which they may be extended.



2 Preliminaries

We use lower-case letters to denote scalars and vectors and upper-case letters for matrices. We use 0
and 1 to denote vectors with elements all equal to O or 1 respectively, with dimensions inferred from
context. Furthermore, we let sign be the standard signum function with domain {—1, 0,1}, allowing
it to be overloaded for vectors.

Let () == —=Vgaf (B (A); X) be the negative gradient, or so-called correlation, and denote A, =
{i : |e(N)i] > A} as the active set at A: the support set of the non-zero regression coefficients

corresponding to 5(A). In the interest of brevity, we will let A := A,. We will consider 3 a solution
to (1) if it satisfies the stationary criterion

0 € Vaf(B;X)+ A )
Here 0 is the subdifferential of ||3]|1, defined as
5. ¢ {{Sign(ﬁj)} if 3 # 0,
J

[—1,1] otherwise.

This means that there must be a d € 9 for a given A such that
Vsf(8;X) + A0 =0. 3)

3 Main Results

In this section we derive the main result of this paper: the Hessian screening rule. First, however,
we now introduce a non-standard perspective on screening rules. In this approach, we note that (2)
suggests a simple and general formulation for a screening rule, namely: we substitute the gradient
vector in the optimality condition of a ¢;-regularized problem with an estimate. More precisely, we
discard the jth predictor for the problem at a given A if the magnitude of the jth component of the
gradient vector estimate is smaller than this A, that is

|E(N);] < A 4)

In the following sections, we review the strong rule and working set method for this problem from
this perspective, that is, by viewing both methods as gradient approximations. We start with the case
of the standard lasso (¢;-regularized least-squares), where we have f(3; X) = (| X3 — y/[3.

3.1 The Strong Rule

The sequential strong rule for ¢;-penalized least-squares regression [10] discards the jth predictor at
)\ - >\k+1 lf

‘x?(XBO\k) —y)| = le(Ae);] < 2Mkg1 — Ak
This is equivalent to checking that

& (Aes1) = (M) + (Ae — A1) sign(e(Ar)) (5)
satisfies (4). The strong rule gradient approximation (5) is also known as the unit bound, since it

assumes the gradient of the correlation vector to be bounded by one.

3.2 The Working Set Method

A simple but remarkably effective alternative to direct use of the strong rule is the working set
heuristic [10]. It begins by estimating 3 at the (k + 1)th step using only the coefficients that have
been previously active at any point along the path, i.e. A;.x = U¥_, A;. The working set method can
be viewed as a gradient estimate in the sense that

& (1) = X7 (= X BOks1 A1) ) = =V (Bwr1, Ara); X),

where S(\, A) = argming 3|y — X48]I% + AlBI.



3.3 The Hessian Screening Rule

We have shown that both the strong screening rule and the working set strategy can be expressed as
estimates of the correlation (negative gradient) for the next step of the regularization path. As we
have discussed previously, however, basing this estimate on the strong rule can lead to conservative
approximations. Fortunately, it turns out that we can produce a better estimate by utilizing second-
order information.

We start by noting that (3), in the case of the standard lasso, can be formulated as

X;;XA XﬁXAC
X5 X4 XL X4

S

0 e

and consequently that

BN a = (X4X4) (X Ly — Asign (Ba)).
Note that, for an interval [A;, \,] in which the active set is unchanged, that is, Ay = A for all
A € [Ay, Ak, then B (1)) is a continuous linear function in A (Theorem 3.1)°.

Theorem 3.1. Let B()x) be the solution of (1) where f(8; X) = %HXﬂ —y||3. Define

B (Naye = B )4y — (=2 (X5 Xa,.) " sign (BOV) 4y

and B (N ag. = 0. If it for X € [Xo, \*] holds that (i) sign (B*" (\)) = sign (B(\*)) and (i)

max [V f(BY (\).a,. | < A, then B\) = B () for X € [Ao, \*].

See Appendix A for a full proof. Using Theorem 3.1, we have the following second-order approxima-

tion of c(Ag+1):

M (Nps1) = =V (B (Mr1)ay,) = QR FAep1—A) X7 X, (X4, Xa,) "' sign (B().4y)-
(6)

Remark 3.2. Tf no changes in the active set occur in [Agy1, Ax], (6) is in fact an exact expression for
the correlation at the next step, that is, ¢ (g1 1) = c(Apy1)-

One problem with using the gradient estimate in (6) is that it is expensive to compute due to the
inner products involving the full design matrix. To deal with this, we use the following modification,
in which we restrict the computation of these inner products to the set indexed by the strong rule,
assuming that predictors outside this set remain inactive:

Ak+1 SigHB()\k)j if j € Ay,
5H(/\k+1>j =<0 if |5S()\k+1)j| < )\k+1 andj ¢ A,\k,
e (A1) else.

For high-dimensional problems, this modification leads to large computational gains and seldom
proves inaccurate, given that the strong rule only rarely causes violations [10]. Lastly, we make one
more adjustment to the rule, which is to add a proportion of the unit bound (used in the strong rule)
to the gradient estimate:

M (Neg1)j = " (Arr1)j + 7YAkgr — M) sign(e(Ae);),

where v € R,. Without this adjustment there would be no upwards bias on the estimate, which
would cause more violations than would be desirable. In our experiments, we have used v = 0.01,
which has worked well for most problems we have encountered. This finally leads us to the Hessian
screening rule: discard the jth predictor at A1 if |éH()\k+1)j\ < A1

We make one more modification in our implementation of the Hessian Screening Rule, which is to
use the union of the ever-active predictors and those screened by the screening rule as our final set of
screened predictors. We note that this is a marginal improvement to the rule, since violations of the
rule are already quite infrequent. But it is included nonetheless, given that it comes at no cost and
occasionally prevents violations.

2This result is not a new discovery [16], but is included here for convenience because the following results
depend on it.



As an example of how the Hessian Screening Rule performs, we examine the screening performance
of several different strategies. We fit a full regularization path to a design with n = 200, p = 20000,
and pairwise correlation between predictors of p. (See Section 4 and Appendix F.4 for more
information on the setup.) We compute the average number of screened predictors across iterations
of the coordinate descent solver. The results are displayed in Figure 1 and demonstrate that our
method gracefully handles high correlation among predictors, offering a screened set that is many
times smaller than those produced by the other screening strategies. In Appendix F.4 we extend these
results to ¢;-regularized logistic regression as well and report the frequency of violations.

p=0 —— Hessian
10000 - M:_ Celer
w
g 1000 — Blitz
3]
= 100 Strong
=
a8 10 — EDPP
1 = Gap Safe
0 25 50 75 100 O 25 50 75 100 0 25 50 75 100
Step Sasvi

Figure 1: The number of predictors screened (included) for when fitting a regularization path of
¢1-regularized least-squares to a design with varying correlation (p), n = 200, and p = 20000. The
values are averaged over 20 repetitions. The minimum number of active predictors at each step across
iterations is given as a dashed line. Note that the y-axis is on a log;, scale.

Recall that the Strong rule bounds its gradient of the correlation vector estimate at one. For the
Hessian rule, there is no such bound. This means that it is theoretically possible for the Hessian rule
to include more predictors than the Strong rule?. In fact, it is even possible to design special cases
where the Hessian rule could be more conservative than the Strong rule. In practice, however, we
have not encountered any situation in which this is the case.

3.3.1 Updating the Hessian

A potential drawback to using the Hessian screening rule is the computational costs of computing the
Hessian and its inverse. Let Ay, be the active set at step k on the lasso path. In order to use the Hessian

screening rule we need H, ' = (X4.X Ak)_l. Computing (X% X Ak)_l directly, however, has

11, Hj._1) previously, we can

numerical complexity O(]Ag|* + |Ax|?n). But if we have stored (H,

utilize it to compute (H,_ L H ) more efficiently via the so-called sweep operator [17]. We outline
this technique in Algorithm 1 (Appendix B). The algorithm has a reduction step and an augmentation
step; in the reduction step, we reduce the Hessian and its inverse to remove the presence of any
predictors that are no longer active. In the augmentation step, we update the Hessian and its inverse
to account for predictors that have just become active.

The complexity of the steps depends on the size of the sets C = Ax_1 \ Ax,D = Ag \ Ag—1,
and €& = Aj, N Ap_1 The complexity of the reduction step is O(|C|> + |C|?|€| + |C||€|?) and the
complexity of the augmentation step is O(|D|*n+n|D||E|+|D|*|E|+|D|?) since n > max(|&|,|D|).
An iteration of Algorithm 1 therefore has complexity O(|D|?*n + n|D||E| + |C|? + |C||€|?).

In most applications, the computationally dominant term will be n|D||€| (since, typically, n > |E] >
D > C) which could be compared to evaluating the gradient for 8 4, , which is n (|D| + |£]) when
Bag = 0. Note that we have so far assumed that the inverse of the Hessian exists, but this need not
be the case. To deal with this issue we precondition the Hessian. See Appendix C for details.

3.3.2 Warm Starts

The availability of the Hessian and its inverse offers a coefficient warm start that is more accurate
than the standard, naive, approach of using the estimate from the previous step. With the Hessian
screening rule, we use the following warm start.

BAkr1)a, = B4, + (M — A1) Hoy ) sign (B(Me)a, ), (7

3The chance of this happening is tied to the setting of ~.




where H;; is the Hessian matrix for the differentiable part of the objective. Our warm start is
equivalent to the one used in Park and Hastie [18], but is here made much more efficient due due to
the efficient updates of the Hessian and its inverse that we use.

Remark 3.3. The warm start given by (7) is the exact solution at )\, if the active set remains constant
in [)\k+1; )\k]

As a first demonstration of the value of this warm start, we look at two data sets: YearPredicitionMSD
and colon-cancer. We fit a full regularization path using the setup as outlined in Section 4, with or
without Hessian warm starts. For YearPredictionMSD we use the standard lasso, and for colon-cancer
¢1-regularized logistic regression.

The Hessian warm starts offer sizable reductions in the number of passes of the solver (Figure 2), for
many steps requiring only a single pass to reach convergence. On inspection, this is not a surprising
find. There are no changes in the active set for many of these steps, which means that the warm start
is almost exact—*"“almost” due to the use of a preconditioner for the Hessian (see Appendix C).

colon-cancer YearPredictionMSD
Hessian
30
— Standard
G 20
172
[72]
<
A~ 10
0
100
Step

Figure 2: Number of passes of coordinate descent along a full regularization path for the colon-cancer
(n = 62, p = 2000) and YearPredictionMSD (n = 463 715, p = 90) data sets, using either Hessian
warm starts (7) or standard warm starts (the solution from the previous step).

3.3.3 General Loss Functions

We now venture beyond the standard lasso and consider loss functions of the form
= fi(z]B) ®)
i=1

where f; is convex and twice differentiable. This, for instance, includes logistic, multinomial, and
Poisson loss functions. For the strong rule and working set strategy, this extension does not make
much of a difference. With the Hessian screening rule, however, the situation is different.

To see this, we start by noting that our method involving the Hessian is really a quadratic Taylor
approximation of (1) around a specific point 3y. For loss functions of the type (8), this approximation
is equal to

Q(B, Bo) = f(Bo; X Z ( Tﬁo )(B = Bo) + (ﬁ - 50)T5UiniN(CUiT50)$i(5 - 50))

(52T Bo) — XB)" D (w(Bo)) (#(xT Bo) — XB) + C(Bo),

w\»—‘

where D(w(f3p)) is a diagonal matrix with diagonal entries w(y) where w(8y); = f"(xT Bp) and
§(2)i = f(2)/ f'(z) — T By, whilst C(fy) is a constant with respect to /3.

Suppose that we are on the lasso path at \;, and want to approximate ¢(Ag1). In this case, we simply
replace f(5; X) in (1) with Q(8, B(\x)), which leads to the following gradient approximation:

M (Nrs1) = cMnk) + Mksr — M) XTD(w) X a, (X5, D(w) X )" sign (B(Ak)ay)

where w = w(5(\;)). Unfortunately, we cannot use Algorithm 1 to update X% D(w)X.4,. This
means that we are forced to either update the Hessian directly at each step, which can be compu-
tationally demanding when |.A| is large and inefficient when X is very sparse, or to approximate



D(w) with an upper bound. In logistic regression, for instance, we can use Y4 as such a bound, which
also means that we once again can use Algorithm 1.

In our experiments, we have employed the following heuristic to decide whether to use an up-
per bound or compute the full Hessian in these cases: we use full updates at each step if
sparsity(X)n/max{n,p} < 1073 and the upper bound otherwise.

3.3.4 Reducing the Impact of KKT Checks

The Hessian Screening Rule is heuristic, which means there may be violations. This necessitates that
we verify the KKT conditions after having reached convergence for the screened set of predictors, and
add predictors back into the working set for which these checks fail. When the screened set is small
relative to p, the cost of optimization is often in large part consumed by these checks. Running these
checks for the full set of predictors always needs to be done once, but if there are violations during
this step, then we need repeat this check, which is best avoided. Here we describe two methods to
tackle this issue.

We employ a procedure equivalent to the one used in Tibshirani et al. [10] for the working set strategy:
we first check the KKT conditions for the set of predictors singled out by the strong rule and then,
if there are no violations in that set, check the full set of predictors for violations. This works well
because the strong rule is conservative—violations are rare—which means that we seldom need to
run the KKT checks for the entire set more than once.

If we, in spite of the augmentation of the rule, run into violations when checking the full set of
predictors, that is, when the strong rule fails to capture the active set, then we can still avoid repeating
the full KKT check by relying on Gap Safe screening: after having run the KKT checks and have
failed to converge, we screen the set of predictors using the Gap Safe rule. Because this is a safe rule,
we can be sure that the predictors we discard will be inactive, which means that we will not need to
include them in our upcoming KKT checks. Because Gap Safe screening and the KKT checks rely
on exactly the same quantity—the correlation vector—we can do so at marginal extra cost. To see how
this works, we now briefly introduce Gap Safe screening. For details, please see Fercoq, Gramfort,
and Salmon [6].

For the ordinary lasso (¢;-regularized least squares), the primal (1) is P(8) = $|ly — X3[13 + || 8|11
and the corresponding dual is

Do) = 23— o~ 2| ©

subject to || X 70| < 1. The duality gap is then G(3,0) = P(3) — D(6) and the relation between
the primal and dual problems is given by y = A0+ X 3, where 0 is the maximizer to the dual problem

(9). In order to use Gap Safe screening, we need a feasible dual point, which can be obtained via dual
point scaling, taking 6 = (y — X 8)/ max (X, | X” (y — X 8)||o). The Gap Safe screening rule then

discards the jth feature if |7 0] < 1 — ||z;||24/2G(3,0) /2. Since we have computed X (y — X )

as part of the KKT checks, we can perform Gap Safe screening at an additional (and marginal) cost
amounting to O(n) + O(p).

Since this augmentation benefits the working set strategy too, we adopt it in our implementation of
this method as well. To avoid ambiguity, we call this version working+. Note that this makes the
working set strategy quite similar to Blitz. In Appendix F.8 we show the benefit of adding this type of
screening.

3.3.5 Final Algorithm

The Hessian screening method is presented in full in Algorithm 2 (Appendix B).

Lemma 3.4. Let 5 € RP*™ be the output of Algorithm 2 for a path of length m and convergence
threshold € > 0. For each step k alonzg the path and corresponding solution %) € RP, there is a
dual-feasible point 0%) such that G(5™*),0()) < (e.

Proof. First note that Gap safe screening [7, Theorem 6] ensures that G O Aj. Next, note that the
algorithm guarantees that the working set, VV, grows with each iteration until \;L"JTT| < A for all



j € G\ W, at which point

max (Ar, | Xy — XwBY) o) = max (A, [|XF (v — X85 )|o)-

At this iteration, convergence at line 2, for the subproblem (Xyy, y), guarantees convergence for the
full problem, (X, y), since

k
o) — y— XW/81(/V)
max (g, | X35 (y — Xwﬁf/lf,))ﬂoo)
is dual-feasible for the full problem. O

3.3.6 Extensions

Approximate Homotopy In addition to improved screening and warm starts, the Hessian also
allows us to construct the regularization path adaptively via approximate homotopy [19]. In brief, the
Hessian screening rule allows us to choose the next A along the path adaptively, in effect distributing
the grid of As to better approach the exact (homotopy) solution for the lasso, avoiding the otherwise
heuristic choice, which can be inappropriate for some data sets.

Elastic Net Our method can be extended to the elastic net [20], which corresponds to adding a
quadratic penalty ¢[|3]/3/2 to (1). The Hessian now takes the form X% X 4 + ¢1. Loosely speaking,
the addition of this term makes the problem “more* quadratic, which in turn improves both the
accuracy and stability of the screening and warm starts we use in our method. As far as we know,
however, there is unfortunately no way to update the inverse of the Hessian efficiently in the case of
the elastic net. More research in this area would be welcome.

4 Experiments

Throughout the following experiments, we scale and center predictors with the mean and uncorrected
sample standard deviation respectively. For the lasso, we also center the response vector, y, with the
mean.

To construct the regularization path, we adopt the default settings from glmnet: we use a log-spaced
path of 100 X values from Apay t0 EApax, Where &€ = 1072 if p > n and 10~ otherwise. We stop
the path whenever the deviance ratio, 1 — dev/devy,;, reaches 0.999 or the fractional decrease in
deviance is less than 10~°. Finally, we also stop the path whenever the number of coefficients ever to
be active predictors exceeds p.

We compare our method against working+ (the modified version of the working set strategy from
Tibshirani et al. [10]), Celer [15], and Blitz [14]. We initially also ran our comparisons against
EDPP [9], the Gap Safe rule [6], and Dynamic Sasvi [8] too, yet these methods performed so poorly
that we omit the results in the main part of this work. The interested reader may nevertheless consult
Appendix F.6 where results from simulated data has been included for these methods too.

We use cyclical coordinate descent with shuffling and consider the model to converge when the
duality gap G(3,0) < e, where we take ( to be ||y||3 when fitting the ordinary lasso, and n log 2
when fitting /1 -regularized logistic regression. Unless specified, we let e = 10~*. These settings are
standard settings and, for instance, resemble the defaults used in Celer. For all of the experiments, we
employ the line search algorithm used in Blitz*.

The code used in these experiments was, for every method, programmed in C++ using the Armadillo
library [21, 22] and organized as an R package via Rcpp [23]. We used the renv package [24]
to maintain dependencies. The source code, including a Singularity [25] container and its recipe
for reproducing the results, are available at https://github.com/jolars/HessianScreening.
Additional details of the computational setup are provided in Appendix D.

“Without the line search, all of the tested methods ran into convergence issues, particularly for the high-
correlation setting and logistic regression.


https://github.com/jolars/HessianScreening

4.1 Simulated Data

Let X € R™"*P, 5 € RP, and y € R"™ be the predictor matrix, coefficient vector, and response vector
respectively. We draw the rows of the predictor matrix independently and identically distributed from
N(0,%) and generate the response from A (X 3, 02I) with 02 = 37¥3/SNR, where SNR is the
signal-to-noise ratio. We set s coefficients, equally spaced throughout the coefficient vector, to 1 and
the rest to zero.

In our simulations, we consider two scenarios: a low-dimensional scenario and a high-dimensional
scenario. In the former, we set n = 10000, p = 100, s = 5, and the SNR to 1. In the high-
dimensional scenario, we take n = 400, p = 40000, s = 20, and set the SNR to 2. These SNR
values are inspired by the discussion in Hastie, Tibshirani, and Tibshirani [26] and intend to cover the
middle-ground in terms of signal strength. We run our simulations for 20 iterations.

From Figure 3, it is clear that the Hessian screening rule performs best, taking the least time in every
setting examined. The difference is largest for the high-correlation context in the low-dimensional
setting and otherwise roughly the same across levels of correlation.

The differences between the other methods are on average small, with the working+ strategy perform-
ing slightly better in the p > n scenario. Celer and Blitz perform largely on par with one another,
although Celer sees an improvement in a few of the experiments, for instance in logistic regression
when p > n.

Least-Squares Least-Squares Logistic Logistic
n = 10000, p = 100 n =400, p = 40000 n = 10000, p = 100 n =400, p = 40000
5 D Hessian
4 D Working
D Celer pH
2, [ Biiz

Time (relative)
(38

é

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8
Correlation (p)

Figure 3: Time to fit a full regularization path for ¢;-regularized least-squares and logistic regression
to a design with n observations, p predictors, and pairwise correlation between predictors of p. Time
is relative to the minimal mean time in each group. The error bars represent ordinary 95% confidence
intervals around the mean.

4.2 Real Data

In this section, we conduct experiments on real data sets. We run 20 iterations for the smaller data
sets studied and three for the larger ones. For information on the sources of these data sets, please see
Appendix E. For more detailed results of these experiments, please see Appendix F.5.

Starting with the case of ¢;-regularized least-squares regression, we observe that the Hessian screening
rule performs best for all five data sets tested here (Table 1), in all but one instance taking less than
half the time compared to the runner-up, which in each case is the working+ strategy. The difference
is particularly large for the YearPredictionMSD and e2006-tfidf data sets.

In the case of ¢;-regularized logistic regression, the Hessian method again performs best for most
of the examined data sets, for instance completing the regularization path for the madelon data set
around five times faster than the working+ strategy. The exception is the arcene data set, for which
the working+ strategy performs best out of the four methods.

We have provided additional results related to the effectiveness of our method in Appendix F.



Table 1: Average time to fit a full regularization path of ¢;-regularized least-squares and logistic
regression to real data sets. Density represents the fraction of non-zero entries in X. Density and
time values are rounded to two and three significant figures respectively.

Time (s)
Data Set n p Density Loss Hessian Working Blitz Celer
bcTCGA 536 17322 1 Least-Squares 3.00 7.67 11.7 10.6
€2006-loglp 16087 4272227 1.4 x 1073  Least-Squares 205 438 756 835
€2006-tfidf 16 087 150360 8.3 x 1073  Least-Squares 14.3 143 277 335
scheetz 120 18975 1 Least-Squares 0.369 0.643 0.706 0.801
YearPredictionMSD 463 715 90 1 Least-Squares 78.8 541 706 712
arcene 100 10000 5.4 x 10~ Logistic 4.35 3.27 4.42 3.99
colon-cancer 62 2000 1 Logistic 0.0542 0.134 0.177 0.169
duke-breast-cancer 44 7129 1 Logistic 0.111 0.210 0.251 0.262
ijennl 35000 22 1 Logistic 0.939 5.53 4.68 3.50
madelon 2000 500 1 Logistic 48.2 232 240 247
news20 19996 1355191 3.4 x 1074 Logistic 1290 1620 2230 2170
revl 20242 47236 1.6 x 1072 Logistic 132 266 384 378

5 Discussion

We have presented the Hessian Screening Rule: a new heuristic predictor screening rule for ¢;-
regularized generalized linear models. We have shown that our screening rule offers large performance
improvements over competing methods, both in simulated experiments but also in the majority of the
real data sets that we study here. The improved performance of the rule appears to come not only
from improved effectiveness in screening, particularly in the high-correlation setting, but also from
the much-improved warm starts, which enables our method to dominate in the n >> p setting. Note
that although we have focused on /; -regularized least-squares and logistic regression here, our rule is
applicable to any composite objective for which the differentiable part is twice-differentiable.

One limitation of our method is that it consumes more memory than its competitors owing to the
storage of the Hessian and its inverse. This cost may become prohibitive for cases when min{n, p} is
large. In these situations the next-best choice may instead be the working set strategy. Note also that
we, in this paper, focus entirely on the lasso path. The Hessian Screening Rule is a sequential rule
and may therefore not prove optimal when solving for a single A, in which case a dynamic strategy
such as Celer and Blitz likely performs better.

With respect to the relative performance of the working set strategy, Celer, and Blitz, we note that our
results deviate somewhat from previous comparisons [15, 14]. We speculate that these differences
might arise from the fact that we have used equivalent implementations for all of the methods and
from the modification that we have used for the working set strategy.

Many avenues remain to be explored in the context of Hessian-based screening rules and algorithms,
such as developing more efficient methods for updating of the Hessian matrix for non-least-squares
objectives, such as logistic regression and using second-order information to further improve the
optimization method used. Other interesting directions also include adapting the rules to more
complicated regularization problems, such as the fused lasso [27], SLOPE [28], SCAD [29], and
MCP [30]. Although the latter two of these are non-convex problems, they are locally convex for
intervals of the regularization path [31], which enables the use of our method. Adapting the method
for use in batch stochastic gradient descent would also be an interesting topic for further study, for
instance by using methods such as the ones outlined in Asar et al. [32] to ensure that the Hessian
remains positive definite.

Finally, we do not expect there to be any negative societal consequences of our work given that it is
aimed solely at improving the performance of an optimization method.
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