
Published as a conference paper at ICLR 2023

Voint Cloud: Multi-View Point Cloud Rep-
resentation for 3D Understanding

Abdullah Hamdi Silvio Giancola Bernard Ghanem

King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
{abdullah.hamdi, silvio.giancola, bernard.ghanem}@kaust.edu.sa

Abstract

Multi-view projection methods have demonstrated promising performance
on 3D understanding tasks like 3D classification and segmentation. However,
it remains unclear how to combine such multi-view methods with the widely
available 3D point clouds. Previous methods use unlearned heuristics to
combine features at the point level. To this end, we introduce the concept of
the multi-view point cloud (Voint cloud), representing each 3D point as a set
of features extracted from several view-points. This novel 3D Voint cloud
representation combines the compactness of 3D point cloud representation
with the natural view-awareness of multi-view representation. Naturally, we
can equip this new representation with convolutional and pooling operations.
We deploy a Voint neural network (VointNet) to learn representations in the
Voint space. Our novel representation achieves state-of-the-artperformance
on 3D classification, shape retrieval, and robust 3D part segmentation on
standard benchmarks (ScanObjectNN, ShapeNet Core55, and ShapeNet
Parts).1

1 Introduction

A fundamental question in 3D computer vision and computer graphics is how to represent
3D data (Mescheder et al., 2019; Qi et al., 2017a; Maturana & Scherer, 2015). This question
becomes particularly vital given how the success of deep learning in 2D computer vision
has pushed for the wide adoption of deep learning in 3D vision and graphics. In fact,
deep networks already achieve impressive results in 3D classification (Hamdi et al., 2021),
3D segmentation (Hu et al., 2021), 3D detection (Liu et al., 2021a), 3D reconstruction
(Mescheder et al., 2019), and novel view synthesis (Mildenhall et al., 2020). 3D computer
vision networks either rely on direct 3D representations, indirect 2D projection on images,
or a mixture of both. Direct approaches operate on 3D data commonly represented with
point clouds (Qi et al., 2017a), meshes (Feng et al., 2019), or voxels (Choy et al., 2019). In
contrast, indirect approaches commonly render multiple 2D views of objects or scenes (Su
et al., 2015), and process each image with a traditional 2D image-based architecture. The
human visual system is closer to such a multi-view indirect approach for 3D understanding,
as it receives streams of rendered images rather than explicit 3D data.
Tackling 3D vision tasks with indirect approaches has three main advantages: (i) mature
and transferable 2D computer vision models (CNNs, Transformers, etc.), (ii) large and
diverse labeled image datasets for pre-training (e.g. ImageNet (Russakovsky et al., 2014)),
and (iii) the multi-view images give context-rich features based on the viewing angle, which
are different from the geometric 3D neighborhood features. Multi-view approaches achieve
impressive performance in 3D shape classification and segmentation (Wei et al., 2020; Hamdi
et al., 2021; Dai & Nießner, 2018). However, the challenge with the multi-view representation
(especially for dense predictions) lies in properly aggregating the per-view features with 3D
point clouds. The appropriate aggregation is necessary to obtain representative 3D point

1The code is available at https://github.com/ajhamdi/vointcloud

1

https://github.com/ajhamdi/vointcloud

Published as a conference paper at ICLR 2023

Multi-View Renderings

Voint

View-Features

Voint Cloud

Figure 1: 3D Voint Clouds. We propose the multi-view point cloud (Voint cloud), a novel 3D
representation that is compact and naturally descriptive of view projections of a 3D point cloud.
Each point in the 3D cloud is tagged with a Voint, which accumulates view-features for that point.
Note that not all 3D points are visible from all views. The set of Voints constructs a Voint cloud.

clouds with a single feature per point suitable for typical point cloud processing pipelines.
Previous multi-view works rely on heuristics (e.g. average or label mode pooling) after
mapping pixels to points (Kundu et al., 2020; Wang et al., 2019a), or multi-view fusion
with voxels (Dai & Nießner, 2018). Such setups might not be optimal for a few reasons. (i)
Such heuristics may aggregate information of misleading projections that are obtained from
arbitrary view-points. For example, looking at an object from the bottom and processing that
view independently can carry wrong information about the object’s content when combined
with other views. (ii) The views lack geometric 3D information.
To this end, we propose a new hybrid 3D data structure that inherits the merits of point
clouds (i.e. compactness, flexibility, and 3D descriptiveness) and leverages the benefits of rich
perceptual features of multi-view projections. We call this new representation multi-view
point cloud (or Voint cloud) and illustrate it in Figure 1. A Voint cloud is a set of Voints,
where each Voint is a set of view-dependent features (view-features) that correspond to the
same point in the 3D point cloud. The cardinality of these view-features may differ from
one Voint to another. In Table 1, we compare some of the widely used 3D representations
and our Voint cloud representation. Voint clouds inherit the characteristics of the parent
explicit 3D point clouds, which facilitates learning Voint representations for a variety of vision
applications (e.g. point cloud classification and segmentation). To deploy deep learning on
the new Voint space, we define basic operations on Voints, such as pooling and convolution.
Based on these operations, we define a practical way of building Voint neural networks that
we dub VointNet. VointNet takes a Voint cloud and outputs point cloud features for 3D
point cloud processing. We show how learning this Voint cloud representation leads to strong
performance and gained robustness for the tasks of 3D classification, 3D object retrieval,
and 3D part segmentation on standard benchmarks like ScanObjectNN (Uy et al., 2019),
and ShapeNet (Chang et al., 2015).
Contributions: (i) We propose a novel multi-view 3D point cloud representation (denoted
as Voint cloud), which represents each point (namely a Voint) as a set of features from
different view-points. (ii) We define pooling and convolutional operations at the Voint
level to construct a Voint Neural Network (VointNet) capable of learning to aggregate
information from multiple views in the Voint space. (iii) Our VointNet reaches state-of-
the-artperformance on several 3D understanding tasks, including 3D shape classification,
retrieval, and robust part segmentation. Further, VointNet achieves robustness improvement
to occlusion and rotation.

2

Published as a conference paper at ICLR 2023

3D Representation Explicitness View-Based Main Use 3D Expressiveness
Point Clouds Explicit ✗ 3D Understanding Medium
Multi-View Projections Implicit ✓ 3D Understanding Low
Voxels Explicit ✗ 3D Understanding Medium
Mesh Explicit ✗ 3D Modeling High
NeRFs Implicit ✓ Novel View Synthesis Medium
Voint Clouds (ours) Explicit ✓ 3D Understanding Medium

Table 1: Comparison of Different 3D Representations. We compare some of the widely
used 3D representations to our proposed Voint cloud. Note that our Voint cloud shares the
view-dependency of NeRFs (Mildenhall et al., 2020) while inheriting the merits of 3D point clouds.

2 Related Work

Learning on 3D Point Clouds. 3D point clouds are widely used for 3D representation
in computer vision due to their compactness, flexibility, and because they can be obtained
naturally from sensors like LiDAR and RGBD cameras. PointNet (Qi et al., 2017a) paved the
way as the first deep learning algorithm to operate directly on 3D point clouds. It computes
point features independently and aggregates them using an order-invariant function like
max-pooling. Subsequent works focused on finding neighborhoods of points to define point
convolutional operations (Qi et al., 2017b; Wang et al., 2019c; Li et al., 2018; Han et al.,
2019). Several recent works combine point cloud representations with other 3D modalities
like voxels (Liu et al., 2019b; You et al., 2018) or multi-view images (Jaritz et al., 2019). We
propose a novel Voint cloud representation for 3D shapes and investigates novel architectures
that aggregate view-dependent features at the 3D point level.
Multi-View Applications. The idea of using 2D images to understand the 3D world was
initially proposed in 1994 by Bradski et. al. (Bradski & Grossberg, 1994). This intuitive
multi-view approach was combined with deep learning for 3D understanding in MVCNN (Su
et al., 2015). A line of works continued developing multi-view approaches for classification and
retrieval by improving the aggregation of the view-features from each image view (Kanezaki
et al., 2018; Esteves et al., 2019; Cohen & Welling, 2016; Wei et al., 2020; Hamdi et al.,
2021). In this work, we fuse the concept of multi-view into the 3D structure itself, such that
every 3D point would have an independent set of view-features according to the view-points
available in the setup. Our Voints are aligned with the sampled 3D point cloud, offering
a compact representation that allows for efficient computation and memory usage while
maintaining the view-dependent component that facilitates view-based learning for vision.
Hybrid Multi-View with 3D Data. On the task of 3D semantic segmentation, a smaller
number of works tried to follow the multi-view approach (Dai & Nießner, 2018; Kundu et al.,
2020; Wang et al., 2019a; Kalogerakis et al., 2017; Jaritz et al., 2019; Liu et al., 2021b; Lyu
et al., 2020). A problem arises when combining view features to represent local points/voxels
while preserving local geometric features. These methods tend to average the view-features
(Kundu et al., 2020; Kalogerakis et al., 2017), propagate the labels only (Wang et al., 2019a),
learn from reconstructed points in the neighborhood (Jaritz et al., 2019), order points on
a single grid (Lyu et al., 2020), or combine the multi-view features with 3D voxel features
(Dai & Nießner, 2018; Hou et al., 2019). To this end, our proposed VointNet operates on the
Voint cloud space while preserving the compactness and 3D descriptiveness of the original
point cloud. VointNet leverages the power of multi-view features with learned aggregation
on the view-features applied to each point independently.

3 Methodology

The primary assumption in our work is that surface 3D points are spherical functions,
i.e. their representations depend on the viewing angles observing them. This condition
contrasts with most 3D point cloud processing pipelines that assume a view-independent
representation of 3D point clouds. The full pipeline is illustrated in Figure 2.

3

Published as a conference paper at ICLR 2023

Pixel-to-Point
Mapping B

VointNet

F

Visibility V

Point Cloud

X
Multi-View
Renderings

Renderer

R
2D Backbone

C
Voint Cloud

X

Point
Features

(M ⨉ 2)

(N ⨉ d)(M ⨉ H ⨉W ⨉ 3)

Multi-View
Features

(N ⨉M)

(N ⨉M ⨉ d)

Unprojection

ɸB

(M ⨉ H ⨉W)

View-Points U

(N ⨉ 3) (M ⨉ H ⨉W ⨉ d)

Figure 2: Learning from Voint Clouds. To construct a 3D Voint cloud X̂ , a renderer R renders
the point cloud X from view-points U and image features are extracted from the generated images
via a 2D backbone C. The image features are then unprojected to the Voint cloud by ΦB and passed
to VointNet F̂. To learn both C and F̂, a 3D loss on the output points is used with an optional
auxiliary 2D loss on C.

3.1 3D Voint Cloud
From Point Clouds to Voint Clouds. A 3D point cloud is a compact 3D representation
composed of sampled points on the surface of a 3D object or a scene and can be obtained by
different sensors like LiDAR (Chen et al., 2017) or as a result of reconstruction (Okutomi &
Kanade, 1993). Formally, we define the coordinate function for the surface gs(x) : R3 → R
as the Sign Distance Function (SDF) in the continuous Euclidean space (Park et al., 2019;
Mescheder et al., 2019). The 3D iso-surface is then defined as the set of all points x that
satisfy the condition gs(x) = 0. We define a surface 3D point cloud X ∈ RN×3 as a set
of N 3D points, where each point xi ∈ R3 is represented by its 3D coordinates (xi, yi, zi)
and satisfies the iso-surface condition as follows: X =

{
xi ∈ R3 | gs(xi) = 0

}N
i=1. In this

work, we aim to fuse the view-dependency to 3D point. Inspired by NeRFs (Mildenhall
et al., 2020), we assume that surface points also depend on the view direction from which
they are being observed. Specifically, there exists a continuous implicit spherical function
g(x,u) : R5 → Rd that defines the features of each point x depending on the view-point
direction u. Given a set of M view-point directions U ∈ RM×2, a Voint x̂ ∈ RM×d is a set
of M view-dependent features of size d for the sphere centered at point x as follows.

x̂i =
{

g (xi,uj) ∈ Rd | xi ∈ X
}M
j=1 (1)

The Voint cloud X̂ ∈ RN×M×d = {x̂i}Ni=1 is the set of all N Voints x̂i corresponding to the
parent point cloud X . Note that we typically do not have access to the underlying implicit
function g and we approximate it with the following three steps.
1- Multi-View Projection. As mentioned earlier, a Voint combines multiple view-features
of the same 3D point. These view-features come from a multi-view projection of the points
by a point cloud renderer R : RN×3 → RM×H×W×3 that renders the point cloud X from
multiple view-points U into M images of size H ×W × 3. In addition to projecting the point
cloud into the image space, R defines the index mapping B ∈ {0, .., N}M×H×W between
each pixel to the N points and background it renders. Also, R outputs the visibility binary
matrix V ∈ {0, 1}N×M for each point from each view. Since not all points appear in all the
views due to pixel discretization, the visibility score Vi,j defines if the Voint x̂i is visible
in the view uj . The matrix B is crucial for unprojection, while V is needed for defining
meaningful operations on Voints.
2- Multi-View Feature Extraction. The rendered images are processed by a function
C : RM×H×W×3 → RM×H×W×d that extracts image features, as shown in Figure 2. If C is
the identity function, all the view-features would typically the RGB value of the corresponding
point. However, the C function can be a 2D network dedicated to the downstream task and
can extract useful global and local features about each view.
3- Multi-View Unprojection. We propose a module ΦB : RM×H×W×d → RN×M×d that
unprojects the 2D features from each pixel to be 3D view-features at the corresponding voint.
Using the mapping B created by the renderer, ΦB forms the Voint cloud features X̂ .

4

Published as a conference paper at ICLR 2023

To summarize, the output Voint cloud is described by Eq (1), where g (xi,uj) =
ΦB
(
C (R (X ,uj))

)
i

and the features are only defined for a view j of Voint x̂i if Vi,j = 1.

3.2 Operations on 3D Voint Clouds
We show in the Appendix that a functional form of max-pooled individual view-features
of a set of angles can approximate any function in the spherical coordinates. We provide a
theorem that extends PointNet’s theorem of point cloud functional composition (Qi et al.,
2017a) and its Universal Approximation to spherical functions underlying Voints. Next, we
define a set of operations on Voints as building blocks for Voint neural networks (VointNet).
VointMax. We define VointMax as max-pooling on the visible view-features along the
views dimension of the voint x̂. For all i ∈ 1, 2, ..., N and j ∈ 1, 2, ...,M ,

VointMax(x̂i) = max
j

x̂i,j , s.t. Vi,j = 1 (2)

VointConv. We define the convolution operation hV : RN×M×d → RN×M×d
′

as any
learnable function that operates on the Voint space with shared weights on all the Voints
and has the view-features input size d and outputs view-features of size d′ and consists of
lV layers. A simple example of this VointConv operation is the shared MLP applied only
on the visible view-features. We provide further details for such operations in Section 4.2,
which result in different non-exhaustive variants of VointNet.

3.3 Learning on 3D Voint Clouds
VointNet. The goal of the VointNet model is to obtain multi-view point cloud features
that can be subsequently used by any point cloud processing pipeline. The VointNet module
F̂ : RN×M×d → RN×d is defined as follows.

F̂(X̂) = hP

(
VointMax

(
hV
(
X̂
)))

, (3)

where hP is any point convolutional operation (e.g. shared MLP or EdgeConv). VointNet F̂
transforms the individual view-features using the learned VointConv hV before VointMax is
applied on the view-features to obtain point features.
VointNet Pipeline for 3D Point Cloud Processing. The full pipeline is described in
Figure 2. The loss for this pipeline can be described as follows:

arg min
θC,θ

F̂

N∑
i

L
(

F̂
(
ΦB
(
C (R (X ,U))

))
i
, yi

)
, (4)

where L is a Cross-Entropy (CE) loss defined on all the training points X , and {yi}Ni=1
defines the labels of these points. The other components (R,ΦB,U ,C) are all defined before.
The weights to be jointly learned are those of the 2D backbone (θC) and those of the
VointNet (θF̂) using the same 3D loss. An auxiliary 2D loss on θC can be optionally added
for supervision at the image level. For classification, the entire object can be treated as a
single Voint, and the global features of each view would be the view-features of that Voint.
We analyze different setups in detail in Section 6.

4 Experiments
4.1 Experimental Setup
Datasets. We benchmark VointNet on the challenging and realistic ScanObjectNN dataset
for 3D point cloud classification (Uy et al., 2019). The dataset has three variants, includes
background and occlusion, and has 15 categories and 2,902 point clouds. For the shape
retrieval task, we benchmark on ShapeNet Core55 as a subset of ShapeNet (Chang et al.,
2015). The dataset consists of 51,162 3D mesh objects labeled with 55 object classes. We
follow the MVTN’s setup (Hamdi et al., 2021) in sampling 5,000 points from each mesh
object to obtain point cloud. On the other hand, for the task of shape part segmentation,

5

Published as a conference paper at ICLR 2023

Classification Overall Accuracy
Method Data Type OBJ_BG OBJ_ONLY Hardest

PointNet (Qi et al., 2017a) Points 73.3 79.2 68.0
SpiderCNN (Xu et al., 2018) Points 77.1 79.5 73.7
PointNet ++ (Qi et al., 2017b) Points 82.3 84.3 77.9
PointCNN (Li et al., 2018) Points 86.1 85.5 78.5
DGCNN (Wang et al., 2019c) Points 82.8 86.2 78.1
SimpleView (Goyal et al., 2021) M-View - - 79.5
BGA-DGCNN (Uy et al., 2019) Points - - 79.7
BGA-PN++ (Uy et al., 2019) Points - - 80.2
MVTN (Hamdi et al., 2021) M-View 92.6 92.3 82.8
VointNet (ours) Voints 93.7 94.0 85.4

Table 2: 3D Point Cloud Classification on ScanObjectNN. We report the accuracy of
VointNet in 3D point cloud classification on three different variants of ScanObjectNN (Uy et al.,
2019). Bold denotes the best result in its setup. Note that the Hardest variant includes rotated
and translated objects, which highlights the benefits of Voints on challenging scenarios.

we test on ShapeNet Parts (Yi et al., 2016), a subset of ShapeNet (Chang et al., 2015)
that consists of 16,872 point cloud objects from 16 categories and 50 parts. For occlusion
robustness, we follow MVTN (Hamdi et al., 2021) and test on ModelNet40 (Wu et al., 2015),
which is composed of 40 classes and 12,311 3D objects.
Metrics. For 3D point cloud classification, we report the overall accuracy, while shape
retrieval is evaluated using mean Average Precision (mAP) over test queries (Hamdi et al.,
2021). 3D semantic segmentation is evaluated using mean Intersection over Union (mIoU)
on points. For part segmentation, we report Instance-averaged mIoU (Ins. mIoU).
Baselines. We include PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), DGCNN
(Wang et al., 2019c), as baselines that use point clouds. We also compare against multi-view
classification approaches like MVCNN (Su et al., 2015), SimpleView (Goyal et al., 2021), and
MVTN (Hamdi et al., 2021) as baselines for classification and retrieval and adopt some of
the multi-view segmentation baselines (e.g. Label Fusion (Wang et al., 2019a) and Mean
Fusion (Kundu et al., 2020)) for part segmentation.

4.2 VointNet Variants

VointNet in Eq (3) relies on the VointConv operation hV as the basic building block. Here,
we briefly describe three examples of hV operations VointNet uses.
Shared Multi-Layer Perceptron (MLP). It is the most basic VointConv formulation.
For a layer l, the features of Voint i at view j are updated to layer l+1 as: hl+1

i,j = ρ
(
hli,jWρ

)
,

where ρ is the shared MLP with weights Wρ followed by normalization and a nonlinear
function (e.g. ReLU). This operation is applied on all Voints independently and only
involves the visible views-features for each Voint. This formulation extends the shared MLP
formulation for PointNet (Qi et al., 2017a) to work on Voints’ view-features.
Graph Convolution (GCN). We define a fully connected graph for each Voint by creating
a virtual center node connected to all the view-features to aggregate their information (similar
to ”cls" token in ViT (Dosovitskiy et al., 2021)). Then, the graph convolution can be defined
as the shared MLP (as described above) but on the edge features between all view features,
followed by a max pool on the graph neighbors. An additional shared MLP is used before
the final output.
Graph Attention (GAT). A graph attention operation can be defined just like the GCN
operation above but with learned attention weights on the graph neighbor’s features before
averaging them. A shared MLP computes these weights.

6

Published as a conference paper at ICLR 2023

Results MVCNN RotNet ViewGCN MVTN VointNet
(Su et al., 2015) (Kanezaki et al., 2018) (Wei et al., 2020) (Hamdi et al., 2021) (ours)

ShapeNet
Retr. mAP 73.5 77.2 78.4 82.9 83.3

Table 3: 3D Shape Retrieval. We report 3D shape retrieval mAP on ShapeNet Core55 (Chang
et al., 2015; Sfikas et al., 2017).VointNet achieves state-of-the-art results on this benchmark.

Part Segmentation
Method Data Type (Unrotated) (Rotated)

PointNet (Qi et al., 2017a) Points 80.1 36.6 ±0.2
DGCNN (Wang et al., 2019c) Points 80.1 37.1 ±0.2
CurveNet (Xiang et al., 2021) Points 84.9 32.3 ±0.0
Label Fuse (Wang et al., 2019a) M-View 80.0 61.4 ±0.2
Mean Fuse (Kundu et al., 2020) M-View 77.5 62.0 ±0.2
VointNet (ours) Voints 81.2 62.4 ±0.2

Table 4: Robust 3D Part Segmentation on ShapeNet Parts. We compare the Inst. mIoU
of VointNet against other methods in 3D segmentation on ShapeNet Parts (Yi et al., 2016). At test
time, we randomly rotate the objects and report the results over ten runs. Note how VointNet’s
performance largely exceeds the point baselines in the realistic rotated scenarios, while exceeding
multi-view baselines on the unrotated benchmark. All the results are reproduced in our setup.

4.3 Implementation Details

Rendering and Unprojection. We choose the differentiable point cloud renderer R from
Pytorch3D (Ravi et al., 2020) in our pipeline for its speed and compatibility with Pytorch
libraries (Paszke et al., 2017). We render point clouds on multi-view images with size
224 × 224 × 3. We color the points by their normals’ values or keep them white if the normals
are not available. Following a similar procedure to (Wei et al., 2020; Hamdi et al., 2021), the
view-points setup is randomized during training (using M = 8 views) and fixed to spherical
views in testing (using M = 12 views).
Architectures. For the 2D backbone C, we use ViT-B (Dosovitskiy et al., 2021) (with
pretrained weights from TIMM library (Wightman, 2019)) for classification and DeepLabV3
(Chen et al., 2018) for segmentation. We use the 3D CE loss on the 3D point cloud output
and the 2D CE loss when the loss is defined on the pixels. The feature dimension of the
VointNet architectures is d = 64, and the depth is lV = 4 layers in hV. The main results
are based on VointNet (MLP), unless otherwise specified as in Section 6, where we study in
details the effect of VointConv hV and C.
Training Setup. We train our pipeline in two stages, where we start by training the 2D
backbone on the 2D projected labels of the points, then train the entire pipeline end-to-end
while focusing the training on the VointNet part. We use the AdamW optimizer (Loshchilov
& Hutter, 2017) with an initial learning rate of 0.0005 and a step learning rate schedule of
33.3% every 12 epochs for 40 epochs. The pipeline is trained with one NVIDIA Tesla V100
GPU. We do not use any data augmentation. More details about the training setup (loss and
rendering), VointNet, and the 2D backbone architectures can be found in the Appendix .

5 Results

The main test results of our Voint formulations are summarized in Tables 2,3, 4, and 5. We
achieve state-of-the-artperformance in the task of 3D classification, retrieval, and robust 3D
part segmentation. More importantly, under the realistic rotated setups of ScanObjectNN
and ShapeNet Parts, we improve over 7.2 % Acc. and 25% mIoU respectively compared to
point baselines Qi et al. (2017a); Wang et al. (2019c). Following common practice Hamdi
et al. (2021), we report the best results out of four runs in benchmark tables, but detailed
results are provided in the Appendix .

7

Published as a conference paper at ICLR 2023

Ground Truth VointNet (ours) Mean Fuse (Kundu et al., 2020)

Figure 3: Qualitative Comparison for Part Segmentation. We compare our VointNet 3D
segmentation predictions to Mean Fuse (Kundu et al., 2020) that is using the same trained 2D
backbone. Note how VointNet distinguishes detailed parts (e.g. the car window frame).

5.1 3D Shape Classification

Table 2 reports the classification accuracy on the 3D point cloud classification task on
ScanObjectNN Uy et al. (2019). It benchmarks VointNet against other recent and strong
baselines Hamdi et al. (2021); Goyal et al. (2021); Hamdi et al. (2021). VointNet demonstrates
state-of-the-artresults on all the variants, including the challenging Hardest (PB_T50_RS)
variant that includes challenging scenarios of rotated and translated objects. The increase in
performance (+2.6%) is significant on this variant, which highlights the benefits of Voints on
challenging scenarios, with further affirming results in Section 5.4. We follow exactly the
same procedure as in MVTN Hamdi et al. (2021).

5.2 3D Shape Retrieval

Table 3 benchmarks the 3D shape retrieval mAP on ShapeNet Core55 Chang et al. (2015).
VointNet achieves state-of-the-artperformance on ShapeNet Core55. Baseline results are
reported from Hamdi et al. (2021).

5.3 Robust 3D Part Segmentation

Table 4 reports the Instance-averaged segmentation mIoU of VointNet compared with other
methods on ShapeNet Parts Yi et al. (2016). Two variants of the benchmark are reported
: unrotated normalized setup, and the rotated realistic setup. For the rotated setup, we
follow the previous 3D literature Liu et al. (2019a); Hamdi et al. (2021; 2020) by testing
the robustness of trained models by perturbing the shapes in ShapeNet Parts with random
rotations at test time (ten runs) and report the averages in Table 4. Note VointNet’s
improvement over Mean Fuse Kundu et al. (2020) and Label Fuse Wang et al. (2019a) on
unrotated setup despite that both baselines use the same trained 2D backbone as VointNet.
Also, for rotated setups, point methods don’t work as well. All the results in Table 4 are
reproduced by our code in the same setup (see the code attached in supplementary material).
Figure 3 shows qualitative 3D segmentation results for VointNet and Mean Fuse Kundu et al.
(2020) as compared to the ground truth.

5.4 Occlusion Robustness

One of the aspects of the robustness of 3D classification models that have been recently
studied is their robustness to occlusion, as detailed in MVTN Hamdi et al. (2021). These
simulated occlusions are introduced at test time, and the average test accuracy is reported
on each cropping ratio. We benchmark our VointNet against recent baselines in Table 5.
PointNet Qi et al. (2017a) and DGCNN Wang et al. (2019c) are used as point-based baselines,
and MVTN Hamdi et al. (2021) as a multi-view baseline.

8

Published as a conference paper at ICLR 2023

Occlusion Ratio
Method Data Type 0 0.1 0.2 0.3 0.5

PointNet (Qi et al., 2017a) Points 89.1 88.2 86.1 81.6 53.5
DGCNN (Wang et al., 2019c) Points 92.1 77.1 74.5 71.2 30.1
PCT (Guo et al., 2021) Points 93.3 92.6 91.1 88.2 61.9
MVTN (Hamdi et al., 2021) M-View 93.8 90.3 89.9 88.3 67.1
VointNet (ours) Voints 92.8 91.6 91.2 89.1 66.1

Table 5: Occlusion Robustness for 3D Classification. We report the test accuracy on
ModelNet40 (Wu et al., 2015) for different occlusion ratios of the data to measure occlusion
robustness of different 3D methods.

4 5 6 7 8 9 10 11 12
Number of Views (M)

75

76

77

78

79

80

81

Te
st

 m
Io

U
(%

)

Mean Fuse
Label Fuse
VointNet (GAT)

Figure 4: Effect of the Number of Views. We plot Ins. mIoU of 3D segmentation vs. the
number of views (M) used in inference on ShapeNet Parts. Note VointNet’s consistent improvement
over Mean Fuse (Kundu et al., 2020) and Label Fuse (Wang et al., 2019a). Both baselines use the
same trained 2D backbone as VointNet and are tested on the same unrotated setup.

6 Analysis and Insights
Number of Views. We study the effect of the number of views M on the performance of
3D part segmentation using multiple views. We compare Mean Fuse (Kundu et al., 2020) and
Label Fuse (Wang et al., 2019a) to our VointNet when all of them have the same trained 2D
backbone. The views are randomly picked, and the experiments are repeated four times. Ins.
mIoU with confidence intervals are shown in Figure 4. We observe a consistent improvement
with VointNet over the other two baselines across different numbers of views.

2D Backbone VointConv Results
FCN DeepLabV3 MLP GCN GAT Inst. mIoU
✓ - ✓ - - 78.8 ± 0.2
✓ - - ✓ - 77.6 ± 0.2
✓ - - - ✓ 77.1 ± 0.2
- ✓ ✓ - - 80.6 ± 0.1
- ✓ - ✓ - 77.2 ± 0.4
- ✓ - - ✓ 80.4 ± 0.2

Table 6: Ablation Study for 3D Segmentation. We ablate different components of VointNet
(2D backbone and VointConv choice) and report Ins. mIoU performance on ShapeNet Parts.

Choice of Backbones. We ablate the choice of the 2D backbone and the VointConv
operation used in VointNet and report the segmentation Ins. mIoU results in Table 6. Note
how the 2D backbone greatly affects performance, while the VointConv operation type does
not. This ablation highlights the importance of the 2D backbone in VointNet pipeline and
motivates the use of the simplest variant of VointNet (MLP). We provide a detailed study of
more factors as well as compute and memory costs in the Appendix .

9

Published as a conference paper at ICLR 2023

7 Limitations and Acknowledgments
One aspect limiting the performance of Voints is how well-trained the 2D backbone is for
the downstream 3D task. In most cases, the 2D backbone must be pretrained with enough
data to learn meaningful information for VointNet. Another aspect that limits the capability
of the Voint cloud is how to properly select the view-points for segmentation. Addressing
these limitations is an important direction for future work. Also, extending Voint learning
on more 3D tasks like 3D scene segmentation and 3D object detection is left for future work.
Acknowledgments. This work was supported by the King Abdullah University of Science
and Technology (KAUST) Office of Sponsored Research through the Visual Computing
Center (VCC) funding and the SDAIA-KAUST Center of Excellence in Data Science and
Artificial Intelligence (SDAIA-KAUST AI)

References
Gary Bradski and Stephen Grossberg. Recognition of 3-d objects from multiple 2-d views by

a self-organizing neural architecture. In From Statistics to Neural Networks, pp. 349–375.
Springer, 1994.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository. Technical Re-
port arXiv:1512.03012 [cs.GR], Stanford University — Princeton University — Toyota
Technological Institute at Chicago, 2015.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision (ECCV), pp. 801–818, 2018.

Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3d object detection
network for autonomous driving. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 1907–1915, 2017.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3075–3084, 2019.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pp. 2990–2999, 2016.

Angela Dai and Matthias Nießner. 3dmv: Joint 3d-multi-view prediction for 3d semantic
scene segmentation. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 452–468, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. ICLR, 2021.

Carlos Esteves, Yinshuang Xu, Christine Allen-Blanchette, and Kostas Daniilidis. Equivariant
multi-view networks. In Proceedings of the IEEE International Conference on Computer
Vision, pp. 1568–1577, 2019.

Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. Meshnet: Mesh neural
network for 3d shape representation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 8279–8286, 2019.

Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia Deng. Revisiting point cloud
shape classification with a simple and effective baseline. In ICML, 2021.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min
Hu. Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, 2021.

10

Published as a conference paper at ICLR 2023

Abdullah Hamdi, Sara Rojas, Ali Thabet, and Bernard Ghanem. Advpc: Transferable
adversarial perturbations on 3d point clouds. In Computer Vision – ECCV 2020, pp.
241–257, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58610-2.

Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem. Mvtn: Multi-view transforma-
tion network for 3d shape recognition. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 1–11, October 2021.

Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias Zwicker. Multi-angle point
cloud-vae: Unsupervised feature learning for 3d point clouds from multiple angles by
joint self-reconstruction and half-to-half prediction. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 10441–10450. IEEE, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Ji Hou, Angela Dai, and Matthias Nießner. 3d-sis: 3d semantic instance segmentation of
rgb-d scans. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4421–4430, 2019.

Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and Tien-Tsin Wong. Bidirectional projec-
tion network for cross dimension scene understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14373–14382, 2021.

Maximilian Jaritz, Jiayuan Gu, and Hao Su. Multi-view pointnet for 3d scene understanding.
In Proceedings of the IEEE International Conference on Computer Vision Workshops, pp.
0–0, 2019.

Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, and Siddhartha Chaudhuri. 3d
shape segmentation with projective convolutional networks. In proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3779–3788, 2017.

Asako Kanezaki, Yasuyuki Matsushita, and Yoshifumi Nishida. Rotationnet: Joint object
categorization and pose estimation using multiviews from unsupervised viewpoints. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5010–5019, 2018.

Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas
Funkhouser, and Caroline Pantofaru. Virtual multi-view fusion for 3d semantic seg-
mentation. In European Conference on Computer Vision (ECCV), pp. 518–535. Springer,
2020.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn:
Convolution on x-transformed points. In Advances in neural information processing systems
(NIPS), pp. 820–830, 2018.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional
neural network for point cloud analysis. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8895–8904, 2019a.

Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-free 3d object detection via
transformers. arXiv preprint arXiv:2104.00678, 2021a.

Zhengzhe Liu, Xiaojuan Qi, and Chi-Wing Fu. 3d-to-2d distillation for indoor scene parsing.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4464–4474, 2021b.

Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel cnn for efficient 3d deep
learning. In Advances in Neural Information Processing Systems, pp. 965–975, 2019b.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3431–3440, 2015.

11

http://arxiv.org/abs/1512.03385

Published as a conference paper at ICLR 2023

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yecheng Lyu, Xinming Huang, and Ziming Zhang. Learning to segment 3d point clouds in
2d image space. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12255–12264, 2020.

Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey
Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7210–7219, 2021.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for
real-time object recognition. In 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 922–928. IEEE, 2015.

Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering system.
In Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pp. 39–46, 1995.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470,
2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In
European conference on computer vision, pp. 405–421. Springer, 2020.

Masatoshi Okutomi and Takeo Kanade. A multiple-baseline stereo. IEEE Transactions on
pattern analysis and machine intelligence, 15(4):353–363, 1993.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 165–174, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf:
Neural radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 10318–10327, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in neural
information processing systems (NIPS), pp. 5099–5108, 2017b.

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin John-
son, and Georgia Gkioxari. Accelerating 3d deep learning with pytorch3d. arXiv:2007.08501,
2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and
Fei-Fei Li. Imagenet large scale visual recognition challenge. CoRR, abs/1409.0575, 2014.
URL http://arxiv.org/abs/1409.0575.

12

http://arxiv.org/abs/1409.0575

Published as a conference paper at ICLR 2023

Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. Exploiting the
PANORAMA Representation for Convolutional Neural Network Classification and Re-
trieval. In Ioannis Pratikakis, Florent Dupont, and Maks Ovsjanikov (eds.), Eurographics
Workshop on 3D Object Retrieval, pp. 1–7. The Eurographics Association, 2017. ISBN
978-3-03868-030-7. doi: 10.2312/3dor.20171045.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view
convolutional neural networks for 3d shape recognition. In Proceedings of the IEEE
international conference on computer vision, pp. 945–953, 2015.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point
clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 6411–6420, 2019.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit
Yeung. Revisiting point cloud classification: A new benchmark dataset and classification
model on real-world data. In International Conference on Computer Vision (ICCV), 2019.

Brian H Wang, Wei-Lun Chao, Yan Wang, Bharath Hariharan, Kilian Q Weinberger, and
Mark Campbell. Ldls: 3-d object segmentation through label diffusion from 2-d images.
IEEE Robotics and Automation Letters, 4(3):2902–2909, 2019a.

He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J
Guibas. Normalized object coordinate space for category-level 6d object pose and size
estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2642–2651, 2019b.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 2019c.

Xin Wei, Ruixuan Yu, and Jian Sun. View-gcn: View-based graph convolutional network for
3d shape analysis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1850–1859, 2020.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and J. Xiao. 3d
shapenets: A deep representation for volumetric shapes. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920, 2015.

Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. Walk in the
cloud: Learning curves for point clouds shape analysis. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 915–924, October 2021.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning
on point sets with parameterized convolutional filters. In Proceedings of the European
Conference on Computer Vision (ECCV), pp. 87–102, 2018.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu,
Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region
annotation in 3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12,
2016.

Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. Pvnet: A joint convolutional network
of point cloud and multi-view for 3d shape recognition. In Proceedings of the 26th ACM
international conference on Multimedia, pp. 1310–1318, 2018.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees
for real-time rendering of neural radiance fields. In ICCV, 2021.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point transformer.
arXiv preprint arXiv:2012.09164, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Published as a conference paper at ICLR 2023

Appendix

A Detailed Formulations

A.1 Toy Example

In the toy 2D example in Figure 5, the center point (represented by a circular function g) is
viewed from various view-points uj that are agnostic to the underlying function itself. In
many applications, it is desired to have a single feature representing each point in the point
cloud. When the projected values of g from these uj view-points are aggregated together
(e.g. by max/mean pool) to get a constant representation of that point, the underlying
properties of g are lost. We build our Voint representation to keep the structure of g intact
by taking the full set {(uj , g(uj))}5

j=1 in learning the aggregations.

A.2 Functional Form of VointNet

We can look at a simplified setup to decide on the functional form of the deep neural network
that operates in the Voint space. In this simplified setup, we consider a 2D example (instead
of 3D Voints) and assume that a circular function describes a point at the center. The center
point will assume its value according to the angle u. The following Theorem 1 proves that
for any continuous set function f that operates on any set of M angles {u1, ..., uM}, there
exists an equivalent composite function consisting of transformed max-pooled individual
view-features. This composition is the functional form we describe later for Voint neural
networks

Theorem 1 Suppose f : S → R is a continuous set function operating on an angles set
S = {u | u ∈ [0, 2π]}. The continuity of f is based on the Hausdorff distance dH between
two sets of angles, where dH(S,S ′) = maxu′

i
∈S′ minui∈S dA(ui, u′

i), and dA is the smallest
positive angle between two angles dA(u, u′) = min(|u− u′|, 2π − |u− u′|). Then, for every
ϵ > 0, and U = {u1, ..., uM} ⊂ S, there exists a continuous function h and a symmetric
function g(u1, ..., uM) = γ ◦ MAX, such that:∣∣∣f(U) − γ

(
MAX

(
h (u1) , . . . ,h (uM)

))∣∣∣ < ϵ, (5)

where γ is a continuous function, and MAX is an element-wise vector max operator.

Proof. By the continuity of f , we take δϵ so that |f(U) − f(U ′)| < ϵ for any U ,U ′ ⊂ S if
dH(U ,U ′) < δϵ. Define K = [2π/δϵ], which split [0, 2π] into K intervals evenly and define an
auxiliary function that maps an angle to the beginning of the interval it lies in:

σ(u) = ⌊Ku⌋
K

Let Ũ = σ(u) : u ∈ U , then
|f(U) − f(Ũ)| < ϵ (6)

Let hk(u) = e−d(u,[k−1
K , k

K]) be a soft indicator function where d
(
u,
[
k−1
K , kK

])
=

min
(
dA
(
u, k−1

K

)
, dA

(
u, kK

))
is the distance between angle u to interval

[
k−1
K , kK

]
. Let

h(u) = [h1(u); . . . ;hK(u)], then h : R → RK

Let qj (u1, . . . , uM) = max {hj (u1) , . . . , hj (uM)}, indicating the occupancy of the j-th
interval by angles in U . Let q = [q1; . . . ; qK], then q : [0, 2π]M → {0, 1}K is a symmetric
function, indicating the occupancy of each interval by angles in U .
Define ζ : {0, 1}K → S as ζ(q) =

{
k−1
K : qk ≥ 1

}
which maps the occupancy vector to a set

which contains the left end of each angle interval. It is straightforward to show:
ζ (q (U)) ≡ Ũ (7)

Let γ : RK → R be a continuous function such that γ(q) = f(ζ(q)) for q ∈ {0, 1}K . Then
from Eq (6) and Eq (7),

|γ (q (U)) − f(U)|
= |f (ζ (q (U))) − f(U)| < ϵ

(8)

14

Published as a conference paper at ICLR 2023

+1
+1

+1

+1

+1

+1
+1

-1
-1

-1

-1

-1
-1

-1

u1

u2

u3

u5

u4

+1

+1

-1

-1

-1

g(u) = sign(cos u)

Figure 5: A Toy 2D Example of Voints. Voints assume view-dependency for every 3D point.
Here, we look at a single 2D point at the center with a circular function g(u) = sign (cos u) from
five arbitrary view-points {uj}5

j=1. Trying to reduce g to a single value based on uj projections
undermines the underlying structure of g. We take the full set {(uj , g(uj))}5

j=1 as a representation of
g and learn a set function f on these view-features for a more informative manner of representation
aggregation.

Note that γ (q (U)) can be rewritten as follows:
γ (q (U)) = γ (q (u1, . . . , uM))

= γ (MAX (h (u1) , . . . ,h (uM)))
= (γ ◦ MAX) (h (u1) , . . . ,h (uM))

(9)

Since γ◦ MAX is a symmetric function and from Eq (8) and Eq (9), we reach to the main
result in Eq (5). This concludes the proof. □

A.3 3D Voint Cloud

Plenoptic and Spherical Coordinate Functions. The Plenoptic function was first
introduced by McMillan and Bishop (McMillan & Bishop, 1995) in 1995 as a general function
that describes the visible world. The Plenoptic function P is a continuous spherical function
that describes the visibility at any Euclidean 3D point in space (Vx, Vy, Vx) when looking into
any direction (θ, ϕ) across wavelength λ at time t . It is defined as p = P (θ, ϕ, λ, Vx, Vy, Vx, t).
Such a remarkable and compact formulation covers all the images observed as just samples
of the function P . For fixed time and wavelength, the reduced Plenoptic function P becomes
p = P (θ, ϕ, Vx, Vy, Vx,) which can describe any field in 3D space. This shortened formulation
is what Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020; Pumarola et al., 2021;
Martin-Brualla et al., 2021) try to learn with MLPs to describe the radiance and RGB values
in the continuous Euclidean space with a dependency on the view direction (θ, ϕ). In the
same spirit of the Plenoptic function and NeRFs, the Voint cloud representation relies on the
viewing angles (θ, ϕ) to define the view-features. The problem with the plenoptic functions
P , and subsequently NeRFs, is that they are very high dimensional, and any attempt to
densely represent the scene with discrete and fixed data will cause memory and compute
issues (Yu et al., 2021; Pumarola et al., 2021). Unlike NERFs (Mildenhall et al., 2020) that
define dense 3D volumes, we focus only on the surface of the 3D shapes with our Voint
clouds representation. Our Voints are in the order of the sampled point cloud, offering a
compact representation that allows for efficient computation and memory while maintaining
the view-dependent component that facilitates view-based learning.
From Point Clouds to Voint Clouds. Implicit representation of 3D surfaces typically
aims to learn an implicit function gs(x) : R3 → R that define the Sign Distance Function

15

Published as a conference paper at ICLR 2023

(SDF) or the occupancy in the continuous Euclidean space (Park et al., 2019; Mescheder
et al., 2019). The 3D iso-surface is then defined as the set of all points x that satisfy the
condition gs(x) = 0 (assuming gs(x) as SDF hereafter). We define a surface 3D point cloud
X ∈ RN×3, as a set of N 3D points, where each point xi ∈ R3 is represented by its 3D
coordinates (xi, yi, zi) and satisfy the iso-surface condition as follows.

X =
{

xi ∈ R3|gs(xi) = 0
}N
i=1

(10)

Here, we assume that surface points also depend on the view direction from which they are
being observed. Specifically, there exists a continuous implicit spherical function g(x,u) :
R5 → Rd that defines the features at each point x depending on the view direction u. Given
a set of M view-point directions U ∈ RM×2, a Voint x̂ ∈ RM×d is a set of M view-dependent
features of size d for the sphere centered at point x. The Voint cloud X̂ ∈ RN×M×d is the
set of all N Voints x̂.

x̂i =
{

g (xi,uj) ∈ Rd | xi ∈ X
}M
j=1

X̂ =
{

x̂i ∈ RM×d}N
i=1

(11)

Note that we typically do not have access to the underlying implicit function g and we
approximate it by 2D projection, feature extraction, and then un-projection as we show next.
1- Multi-View Projection. As mentioned earlier, a Voint combines multiple view-features
of the same 3D point. These view-features come from a multi-view projection of the points
by a point cloud renderer R : RN×3 → RM×H×W×3 that renders the point cloud X from
multiple view-points U into M images of size H × W × 3. In addition to projecting the
point cloud into the image space, R defines the mapping B ∈ {0, .., N}M×H×W between
each pixel to the N points and background it renders. Also, R outputs the visibility binary
matrix V ∈ {0, 1}N×M for each point from each view. Since not all points appear in all the
views due to pixel discretization, the visibility score Vi,j defines if the Voint x̂i is visible
in the view uj . The matrix B is crucial for unprojection, while V is needed for defining
meaningful operations on Voints.
2- Multi-View Feature Extraction. The rendered images are processed by a function
C : RM×H×W×3 → RM×H×W×d that extracts image features. If C is the identity function,
all the view-features would be identical for each Voint (typically the RGB value of the
corresponding point). However, the C function can be a 2D network dedicated to the
downstream task and can extract useful global and local features about each view.
3- Multi-View Unprojection. We propose a module ΦB : RM×H×W×d → RN×M×d that
unprojects the 2D features from each pixel to be 3D view-features at the corresponding
Voint. This is performed by using the mapping B created by the renderer to form the Voint
cloud features X̂ . Note that the points are not necessarily visible from all the views, and
some Voints that are not visible from any of the M views will not receive any features. We
post-process these empty points (∼ 0.5% of points during inference) to be filled with nearest
3D neighbors features. The output Voint cloud features would be described as follows.

x̂i =
{

gi,j,: ∈ Rd | xi ∈ X , Vi,j = 1
}M
j=1

g:,j = ΦB (C (R (X ,uj)) ,B)

X̂ =
{

x̂i ∈ RM×d}N
i=1

(12)

A.4 Voint Operations

VointMax. In order to learn a neural network in the Voint space in the form dictated by
Theorem 1, we need to define some basic differentiable operations on the Voint space. The

16

Published as a conference paper at ICLR 2023

Voint

Shared MLP

Voint Cloud

Virtual Center
View-Feature

Voint

Voint Graph

MLP

Graph Convolution

MLP

Figure 6: VointNet Variants. We propose three variants of VointNet that use three different
examples of VointConv operation hv: shared MLP (MLP), Graph Convolution (GCN), and Graph
Attention (GAT). Here we highlight the main difference between VointNet (MLP) that shares
the MLP on all the view-features and VointNet (GCN) that creates a fully connected graph on
the view-features and learn an MLP on the edge view-features. VointNet (GAT) is similar to
VointNet (GCN) in addition to learning attention weights for each view-feature in weighted average
aggregation.

max operation on the Voint cloud can be defined as follows.

VointMax(x̂) = max
j

x̂i,j , ∀i, j

s.t. i ∈ 1, 2, ..., N , j ∈ 1, 2, ...,M ,Vi,j = 1
(13)

Equivalently, VointMax(x̂) = maxj
(
x̂:,j − ∞V:,j

)
, where V is the complement of V.

VointConv. We define the convolution operation hV : RN×M×d → RN×M×d
′

as any
learnable function that operates on the Voint space with shared weights on all the Voints
and has the view-features input size d and outputs view-features of size d′ and consists of lV
layers. Examples of this VointConv operation include the following operations applied only
on the visible view-features: a shared MLP, a graph convolution, and a graph attention. We
detail these operations later in Section A.6, which result in different non-exhaustive variants
of VointNet.

A.5 Learning on 3D Voint Clouds

VointNet. Typical 3D point cloud classifiers with a feature max pooling layer work as in
Eq (14), where hmlp and hPconv are the MLP and point Convolutional (1 × 1 or edge) layers,
respectively. This produces a K-class classifier F.

F(X) = hmlp(max
xi∈X

{hPconv (xi)}) (14)

Here, F : RN×3 → RK produces the logits layer of the classifier with size K. On the
other hand, the goal of the VointNet model is to get multi-view point cloud features that
can be used after which by any point cloud processing pipeline. The VointNet module
F̂ : RN×M×d → RN×d as follows.

F̂(X̂) = hP

(
VointMax

(
hV
(
X̂
)))

, (15)

A.6 VointNet Variants

We define the convolution operation hV : RN×M×d → RN×M×d
′

in VointNet from Eq (15)
as any learnable function that operates on the Voint space with shared weights on all the

17

Published as a conference paper at ICLR 2023

Voints and has the view-features input size d and outputs view-features of size d′ and consists
of lV layers. Examples of this VointConv operation include the following:
Shared MLP. It is the most basic Voint neural network. For layer l, the features of Voint i
at view j is updated as follows to layer l + 1

hl+1
i,j = ρ

(
hli,jWρ

)
, ∀i, j

s.t. i ∈ 1, 2, ..., N , j ∈ 1, 2, ...,M ,Vi,j = 1
(16)

where ρ is the shared MLP with weights Wρ followed by normalization and nonlinear function
(e.g. ReLU) applied on all Voints independently at the visible views features for each Voint.
This formulation extends the shared MLP formulation for PointNet (Qi et al., 2017a) to
make the MLP shared across the Voints and the views-features.
Graph Convolution (GCN). Just like how DGCNN (Wang et al., 2019c) extended
PointNet (Qi et al., 2017a) by taking the neighborhood information and extract edge features,
we extend the basic VointNet formulation in Eq (15). We define a fully connected graph
for each Voint along the views dimension by creating a center virtual node connected to
all the view features (similar to the classification token in ViT (Dosovitskiy et al., 2021)).
This center virtual view-feature would be assigned the index j = 0 and can be initilized with
zeros as the “cls" token in ViT (Dosovitskiy et al., 2021). Then, Voint graph convolution
operation can be defined as follows to update the activations from layer l to l + 1

hl+1
i,j = ρ

((
max
k

ψ
(
(hli,j ,hli,k)Wψ

))
Wρ

)
∀i, j, k s.t. i ∈ 1, 2, ..., N , j ∈ 0, 1, ...,M

k ∈ 0, 1, ...,M , k ̸= j , Vi,j = 1

(17)

where ρ, ψ are two different shared MLPs as in Eq (16). The difference between VointNet
(MLP) and VointNet (GCN) is highlighted in Figure 6.
Graph Attention (GAT). Similar to how Point Transformer (Zhao et al., 2020) extended
the graph convolution by adding attention to DGCNN (Wang et al., 2019c), we extend the
basic Voint GraphConv formulation in Eq (17). Voint graph attention operation can be
defined as follows to update the activations from layer l to l + 1

hl+1
i,j = ρ

(M∑
k=0,k ̸=j

ηkψ
(
(hli,j ,hli,k)Wψ

))
Wρ

∀i, j s.t. i ∈ 1, 2, ..., N , j ∈ 0, 1, ...,M

ηk = ζ
(
hli,kWζ

)
, Vi,j = 1

(18)

where ρ, ψ, ζ are three different shared MLPs as in Eq (16), and ηk are the learned attention
weights for each neighbor view-feature.

B Detailed Experimental Setup

B.1 Datasets

ScanObjectNN: 3D Point Cloud Classification. We follow the literature (Goyal et al.,
2021; Hamdi et al., 2021) on testing 3D classification in the challenging ScanObjectNN
(Uy et al., 2019) point cloud dataset, since it includes background and considers occlusions.
The dataset is composed of 2902 point clouds divided into 15 object categories. We use
2048 sampled points per object for Voint learning. We benchmark on its variants: Object
only, Object with Background, and the Hardest perturbed variant (PB_T50_RS variant).
Visualization is provided in Figure 7 of some of the renderings used in training the 2D
backbone in our pipeline.
ShapeNet Core55: 3D Shape Retrieval. The shape retrieval challenge SHREC (Sfikas
et al., 2017) uses ShapeNet Core55 is a subset of ShapeNet (Chang et al., 2015) for bench-
marking. The dataset consists of 51,162 3D mesh objects labeled with 55 object classes. The

18

Published as a conference paper at ICLR 2023

training, validation, and test sets consist of 35764, 5133, and 10265 shapes. We create a
dataset of point clouds by sampling 5000 points from each mesh object as in MVTN (Hamdi
et al., 2021).
ShapeNet Parts: 3D Part Segmentation. ShapeNet Parts is a subset of ShapeNet
(Chang et al., 2015) that consists of 13,998 point cloud objects for train and 2,874 objects
for the test from 16 categories and 50 parts. It is designed for the part segmentation task
(Yi et al., 2016). Visualization is provided in Figure 10 of some of the renderings used in
training the 2D backbone in our pipeline colored with the ground truth segmentation labels.
ModelNet40: 3D Shape Classification Occlusion Robustness. ModelNet40 (Wu
et al., 2015) is composed of 12,311 3D objects (9,843/2,468 in training/testing) labelled with
40 object classes. We sample 2048 points clouds from the objects following previous works
(Qi et al., 2017b; Zhao et al., 2020). Visualization is provided in Figure 8 of some of the
renderings used in training the 2D backbone in our pipeline.

B.2 Metrics

Classification Accuracy. The standard evaluation metric in 3D classification is accuracy.
We report overall accuracy (percentage of correctly classified test samples) and average
per-class accuracy (mean of all true class accuracies).
Retrieval mAP. Shape retrieval is evaluated by mean Average Precision (mAP) over test
queries. For every query shape Sq from the test set, AP is defined as AP = 1

GTP
∑N
n

1(Sn)
n ,

where GTP is the number of ground truth positives, N is the size of the ordered training
set, and 1(Sn) = 1 if the shape Sn is from the same class label of query Sq. We average the
retrieval AP over the test set to measure retrieval mAP.
Segmentation mIoU. Semantic Segmentation is evaluated by mean Intersection over Union
(mIoU) over pixels or points. For every class label, measure the size of the intersection mask
between the ground truth points of that label and the predicted points as that label. Then,
divide by the size of the union mask of the same label to get IoU. This procedure is repeated
over all the labels, and averaging the IoUs gives mIoU. We report two types of mIoUs:
Instance-averaged mIoU (averages all mIoUs across all objects) and Category-averaged
mIoU (averages all mIoU from shapes of the same category, and then average those across
object categories).

B.3 Baselines

Point Cloud Networks. We include PointNet (Qi et al., 2017a), PointNet++ (Qi et al.,
2017b), DGCNN (Wang et al., 2019c), PVNet (You et al., 2018), and KPConv (Thomas
et al., 2019), Point Transformer (Zhao et al., 2020) and CurveNet (Xiang et al., 2021) as
baselines that use point clouds. These methods leverage different convolution operators on
point clouds by aggregating local and global point information.
Multi-View Networks. We also compare against multi-view classification approaches like
MVCNN (Su et al., 2015) and MVTN (Hamdi et al., 2021) as baselines for classification and
retrieval. Since there is no available multi-view pipeline for 3D part segmentation, we adopt
some of the multi-view segmentation baselines (e.g. Label Fusion (Wang et al., 2019a) and
Mean Fusion (Kundu et al., 2020)) for part segmentation to work in the Voint space.

B.4 Implementation Details

Rendering and Un-Projection. We choose the differentiable point cloud renderer R from
Pytorch3D (Ravi et al., 2020) in our pipeline for its speed and compatibility with Pytorch
libraries (Paszke et al., 2017). We render multi-view images with size 224 × 224 × 3. We
color the points by their normals’ values or keep them white if the normals are not available.
Following a similar procedure to (Wei et al., 2020; Hamdi et al., 2021), the view-point setup
is randomized during training (using M = 8 views) and fixed to spherical views in testing
(using M = 12 views).

19

Published as a conference paper at ICLR 2023

Object Only

With Background

PB_T50_RS (Hardest)

Figure 7: ScanObjectNN Variants. We show examples of point cloud renderings of different
variants of the ScanObjectNN (Uy et al., 2019). These renderings are used in training VointNet for
3D point cloud classification.

Architectures. For the 2D backbone, we use ViT (Dosovitskiy et al., 2021) (with pretrained
weights from TIMM library (Wightman, 2019)) for classification and DeepLabV3 (Chen
et al., 2018) for segmentation. We used parallel heads for each object category for part
segmentation since the task is solely focused on parts. We use the 3D cross-entropy loss on
the 3D point cloud output and the 2D cross-entropy loss when the loss is defined on the pixels.
When used, the linear tradeoff coefficient of the 2D loss term is set to 0.003. To balance
the frequency of objects in part segmentation, we multiply the loss by the frequency of the
object class of each object we segment. The feature dimension of the VointNet architectures
is d = 64, and the depth is lV = 4 layers in hV. The main results are based on VointNet
(MLP) variant unless otherwise specified. The coordinates x can be optionally appended
to the input view-features x̂, which can improve the performance but reduce the rotation
robustness as we show later in Section C.1 and Table 9.
Training Setup. We train our pipeline in two stages, where we start by training the 2D
backbone on the 2D projected labels of the points, then train the full pipeline end-to-end
while focusing the training on the VointNet part. We use the AdamW optimizer (Loshchilov
& Hutter, 2017) with an initial learning rate of 0.0005 and a step learning rate schedule of
33.3% every 12 epochs for 40 epochs. The pipeline is trained with one NVIDIA Tesla V100
GPU. We do not use any data augmentation.

20

Published as a conference paper at ICLR 2023

Figure 8: ModelNet40. We show some examples of point cloud renderings of ModelNet40
(Wu et al., 2015) used for 3D classification robustness in our setup.

Figure 9: ShapeNet Core55. We show some examples of point cloud renderings of
ShapeNet Core55 (Chang et al., 2015) used for 3D shape retrieval in our setup.

21

Published as a conference paper at ICLR 2023

Figure 10: ShapeNet Parts. We show some examples of point cloud renderings of ShapeNet
Parts (Yi et al., 2016) colored with ground truth segmentation labels. We use these renderings
as 2D ground truth to pre-train the 2D backbone C for 2D segmentation before training
VointNet’s pipeline for 3D segmentation.

22

Published as a conference paper at ICLR 2023

Classification Shape Retrieval
Method Data Type ModelNet40 ShapeNet Core

PointNet (Qi et al., 2017a) Points 89.2 -
PointNet++ (Qi et al., 2017b) Points 91.9 -
DGCNN (Wang et al., 2019c) Points 92.2 -
KPConv(Thomas et al., 2019) Points 92.9 -
PCT(Guo et al., 2021) Points 93.3 -
CurveNet(Xiang et al., 2021) Points 93.8 -
ReVGG (Sfikas et al., 2017) M-View - 74.9
MVCNN (Su et al., 2015) M-View 90.1 73.5
ViewGCN (Wei et al., 2020) M-View 93.3 78.4
MVTN (Hamdi et al., 2021) M-View 93.8 82.9
VointNet (ours) Voints 92.8 83.3

Table 7: 3D Shape Classification and Retrieval. We report VointNet’s classification accuracy
on ModelNet40 (Wu et al., 2015) and its 3D shape retrieval mAP on ShapeNet Core55 (Chang
et al., 2015; Sfikas et al., 2017). Baseline results are reported from (Hamdi et al., 2021; Zhao et al.,
2020; Xiang et al., 2021).

Rotation Perturbations Range
Method 0◦ ±90◦ ±180◦

PointNet (Qi et al., 2017a) 88.7 42.5 38.6
PointNet ++ (Qi et al., 2017b) 88.2 47.9 39.7
RSCNN (Liu et al., 2019a) 90.3 90.3 90.3
MVTN (Hamdi et al., 2021) 91.7 90.8 91.2
VointNet (ours) 91.5 90.9 91.1

Table 8: Rotation Robustness for 3D Classification. At test time, we randomly rotate objects
in ModelNet40 (Wu et al., 2015) around the Y-axis (gravity) with different ranges and report the
overall accuracy.

C Additional Results

C.1 Model Robustness

Rotation Robustness for 3D Classification. We follow the standard practice in 3D
shape classification literature by testing the robustness of trained models to perturbations
at test time (Liu et al., 2019a; Hamdi et al., 2021). We perturb the shapes with random
rotations around the Y-axis (gravity-axis) contained within ±90◦ and ±180◦ and report the
test accuracy over ten runs in Table 8.
Rotation Robustness for 3D Segmentation. We follow the previous 3D literature by
testing the robustness of trained models to perturbations at test time (Liu et al., 2019a;
Hamdi et al., 2021; 2020). We perturb the shapes in ShapeNet Parts with random rotations
in SO(3) at test time (ten runs) and report Ins. mIoU in Table 9. Note how our VointNet
performance largely exceeds the baselines in this realistic unaligned scenario. We can
augment the training with rotated objects for the baselines, which improves their robustness,
but loses performance on the unrated setup. Adding xyz coordinates to the view-features
of VointNet improves the performance on an unrotated setup but negatively affects the
robustness to rotations. The discrepancy between the Voint results and the results of some
point cloud methods is that Voints heavily depend on the underlying 2D backbone and
inherit all its biases, especially those from pretraining. Hence, the 2D backbone limits what
the performance can reach with VointNet. We study the effect of the backbone in detail in
Section C.2. Figure 11 shows qualitative 3D segmentation results for VointNet and Mean
Fuse (Kundu et al., 2020) as compared to the ground truth.

23

Published as a conference paper at ICLR 2023

Ground Truth VointNet (ours) Mean Fuse (Kundu et al., 2020)

Figure 11: Qualitative Comparison for 3D Part Segmentation. We compare our VointNet
3D segmentation prediction to Mean Fuse (Kundu et al., 2020) that is using the same trained 2D
backbone. Note how VointNet distinguishes detailed parts (e.g. the car window frame). Beware that
visualization colors can shift if an extra label is predicted (e.g. the motorbike labels are correct).

24

Published as a conference paper at ICLR 2023

Segmentation Under Rotation
Method Unrotated Rotated

PointNet (Qi et al., 2017a) 80.1 36.6 ±0.2
DGCNN (Wang et al., 2019c) 80.1 37.1 ±0.2

PointNet + Aug. 65.8 65.8 ±0.1
DGCNN + Aug. 60.7 60.7 ±0.2

Mean Fuse (Kundu et al., 2020) 79.1 61.6 ±0.1
Label Fuse (Wang et al., 2019a) 78.9 61.0 ± 0.1

VointNet (w/o xyz) 79.6 65.4 ±0.1
VointNet (w/o xyz) + Aug. 68.0 68.5 ± 0.1

VointNet (w/ xyz) 81.2 61.5 ±0.2

Table 9: Rotation Robustness for 3D Part Segmentation. At test time, we randomly rotate
objects from ShapeNet Parts (Yi et al., 2016) and report the Ins. mIoUs of our VointNet compared
to trained PointNet (Qi et al., 2017a) and DGCNN (Wang et al., 2019c). Note how VointNet’s
performance largely exceeds the baselines in realistic unaligned scenarios, highlighting the benefit
of view dependency. If we use rotation augmentation in training for the baselines, the rotated
performance improves, but the unrotated performance drops.

C.2 Detailed Analysis

Effect of Pretraining. We study the effect of pretraining the 2D backbone C for 3D
classification on ModelNet40. Training a ViT with Mean Fuse for 3D classification on
ModelNet40 obtains 92.2 test Acc. with ImageNet pretraining and 80.0 test Acc. from
scratch. Other multi-view networks, e.g. MVCNN (Su et al., 2015), ViewGCN(Wei et al.,
2020), and MVTN(Hamdi et al., 2021) all use ImageNet pretraining, which is not unique to
Voints.
Classification Backbone. We study the effect of ablating the 2D backbone C for 3D
classification on ModelNet40. We show in Table 10 the performance of VointNet (MLP)
when Vit-B (Dosovitskiy et al., 2021) and ResNet-18 (He et al., 2015) are used. We also
show that following the per-point classification setup instead of the per-shape for 3D shape
classification leads to worse performance for VointNet and the naive multi-view. This is why
we used the per-shape approach when adopting VointNet for 3D classification (using one
Voint for the entire shape).
Number of points and visibility. Table 11 studies the effect of point number on 3D part
segmentation performance, when different numbers of views are used. The visibility ratio is
also reported in each case.
Points color. We colored the points with ground truth normals as in Figure 16, when
they are available (ShapeNet Parts), and we used white colors as in Figure 9, when other
baselines do not use normals. We ablate the color of the points on VointNet (MLP) with
normals colors, white color, and NOCs colors (Wang et al., 2019b). We obtain the following
segmentation mIoU results: (normals: 80.6), (white: 74.7), and (NOCs: 57.9).
Time and Memory Requirements. To assess the contribution of the Voint module, we
take a macroscopic look at the time and memory requirements of each component in the
pipeline. We record the number of floating-point operations (GFLOPs) and the time of
a forward pass for a single input sample. In Table 12, the VointNet module contributes
negligibly to the memory requirements compared to multi-view and point networks.
Feature Size (d). We study the effect of the feature size d on the performance of VointNet
(MLP) in 3D part segmentation on ShapeNet Parts (Yi et al., 2016) and plot the results (
with confidence intervals) in Figure 12. We note that the performance peaks at d = 128, but
it is close to what we use in the main results (d = 64).

25

Published as a conference paper at ICLR 2023

View Aggregation 2D Backbone
ResNet18 ViT-B DeepLabV3

(per-shape) (per-shape) (per-point)
VointNet 91.2 92.8 10.2

Table 10: Ablation Study for 3D Classification. We study the effect of different 2D backbone
for ModelNet40 3D classification task. We compare VointNet’s performance to naive multi-view
(e.g. MVCNN (Su et al., 2015) or Mean Fuse (Kundu et al., 2020)) using the same 2D backbone.
Note that using the per-point classification setup instead of the per-shape for 3D shape classification
leads to worse performance for VointNet and the naive multi-view.

Points # Metric Number of Views
2 4 8 12

500 visibility 99.1 99.9 100 100
mIoU 69.2 73.9 76.0 76.4

1000 visibility 98.0 99.7 100 100
mIoU 69.5 74.3 76.5 77.1

2000 visibility 95.7 99.2 99.8 99.9
mIoU 69.7 75.0 77.7 78.5

Table 11: Analysis on Number of Points and Visibility. We show the Instance mIoUs and
visibility ratio (1 − empty

total)% of our VointNet on ShapeNet Parts when varying points # and number
of views.

Model Depth (lv). We study the effect of the model depth lv on the performance of
VointNet (MLP) in 3D part segmentation on ShapeNet Parts (Yi et al., 2016) and plot the
results (with confidence intervals) in Figure 13. We note that model depth of VointNet does
not enhance the performance significantly. Our choice of lv = 4 balances the performance
and the memory/computations requirements of VointNet (MLP).
Distance to the Object. We study the effect of distance to the object in rendering as
in Figure 17 to the performance of VointNet (MLP) in 3D part segmentation on ShapeNet
Parts (Yi et al., 2016) and plot the results (with confidence intervals) in Figure 14. We
note that our default choice of 1.0 is actually reasonable. This choice of distance shows the
object entirely (as illustrated in Figure 17), but also cover the details needed for small parts
segmentation (see Figure 11).
Image Size (H,W). We study the effect of the image size H&W on the performance
of Mean Fuse (Kundu et al., 2020) baseline when training the 2D backbone for 3D part
segmentation. We plot the results (with confidence intervals) in Figure 15.
Number of Views on Classification. We study the effect of the number of views (M)
on classification accuracy on ModelNet40 Wu et al. (2015) of VointNet and report results in
Table 13.
Unprojection Operation Speed. We evaluate the speed of the unprojection operation
ΦB and report average latency of 10,000 runs (in ms) in Table 14.
Unprojection Operation Speed. We evaluate the speed of the point cloud renderer R
used in Voint pipeline from Pytroch3D Ravi et al. (2020) and report average latency of 1,000
renderings (in ms/image) in Table 15.

C.3 Visualizations

In Figure 16 and 17, we visualize the multi-view renderings of the point clouds along with the
2D learned features based on the DeepLabV3 (Chen et al., 2018) backbone. These features
are then unprojected and transformed by VointNet to obtain 3D semantic labels.

26

Published as a conference paper at ICLR 2023

Network GFLOPs Time (ms) Parameters # (M)
MVCNN (Su et al., 2015) 43.72 39.89 11.20
ViewGCN (Wei et al., 2020) 44.19 26.06 23.56
ResNet 18 (He et al., 2015) 3.64 3.70 11.20
ResNet 50 (He et al., 2015) 8.24 9.42 23.59
ViT-B (Dosovitskiy et al., 2021) 33.70 12.46 86.57
ViT-L (Dosovitskiy et al., 2021) 119.30 29.28 304.33
FCN (Long et al., 2015) 53.13 10.34 32.97
DeeplabV3 (Chen et al., 2018) 92.61 20.62 58.64
PointNet (Qi et al., 2017a) 1.78 4.24 3.50
DGCNN (Wang et al., 2019c) 10.42 0.95 16.350
MVTN (Hamdi et al., 2021) 1.78 4.24 3.5
VointNet (MLP) 1.90 2.90 0.04
VointNet (GCN) 16.18 32.10 0.05
VointNet (GAT) 32.05 68.71 0.07
Full Voint pipeline 94.51 23.50 58.68

Table 12: Time and Memory Requirements. We assess the contribution of the Voint module to
the time and memory requirements in the multi-view and point cloud pipeline. Note that VointNet
(shared MLP) is almost 100 times smaller than PointNet (Qi et al., 2017a).

50 100 150 200 250
Featrure Size (d)

79.0

79.5

80.0

80.5

Te
st

 m
Io

U
(%

)

VointNet (MLP)

Figure 12: The Effect of Feature Size d. We plot Ins. mIoU of 3D segmentation vs.
the feature size d used in training on ShapeNet Parts (Yi et al., 2016). We note that the
performance peaks at d = 128, but it is close to what we use in the main results (d = 64).

27

Published as a conference paper at ICLR 2023

2 4 6 8 10 12
Model Depth (lv)

78

79

80

Te
st

 m
Io

U
(%

)

VointNet (MLP)

Figure 13: The Effect of Model Depth lv. We plot Ins. mIoU of 3D segmentation vs.
the model depth lv used in training on ShapeNet Parts (Yi et al., 2016). We note that model
depth of VointNet does not enhance the performance significantly. Our choice of lv = 4
balances the performance and the memory/computations requirements of VointNet (MLP).

0.6 0.8 1.0 1.2 1.4
Distnace to the Object (unit)

70.0

72.5

75.0

77.5

80.0

Te
st

 m
Io

U
(%

)

VointNet (MLP)

Figure 14: The Effect of Distance to the Object. We plot Ins. mIoU of 3D segmentation
vs. the distance to the object used in inference on ShapeNet Parts (Yi et al., 2016). We
note that our default choice of 1.0 is actually reasonable. This choice of distance shows the
object entirely (as illustrated in Figure 17), but also cover the details needed for small parts
segmentation (see Figure 11).

180 200 220 240 260 280
Image Size

65.0

67.5

70.0

72.5

75.0

77.5

Te
st

 m
Io

U
(%

)

Mean Fuse

Figure 15: The Effect of Image Size H,W . We plot Ins. mIoU of 3D segmentation vs.
the image size used in inference on ShapeNet Parts (Yi et al., 2016).

28

Published as a conference paper at ICLR 2023

(INPUT)

(PRED 2D)

(PRED 3D)

(GT)

(INPUT)

(PRED 2D)

(PRED 3D)

(GT)

Figure 16: Multi-view Projected Segmentation 1. We show how, after rendering points, we
can segment in the image space. For each example, we show (INPUT): the projections of the points
(colored with normals) used in training with random view-points. (PRED 2D): the segmentation
prediction of the 2D backbone (DeepLabV3) (Chen et al., 2018)). (PRED 3D): the unprojected 3D
segmentation prediction. (GT): the 3D segmentation ground truth.

29

Published as a conference paper at ICLR 2023

(INPUT)

(PRED 2D)

(PRED 3D)

(GT)

(INPUT)

(PRED 2D)

(PRED 3D)

(GT)

Figure 17: Multi-view Projected Segmentation 2. We show how, after rendering points, we
can segment in the image space. For each example, we show (INPUT): the projections of the points
(colored with normals) used in training with random view-points. (PRED 2D): the segmentation
prediction of the 2D backbone (DeepLabV3) (Chen et al., 2018)). (PRED 3D): the unprojected 3D
segmentation prediction. (GT): the 3D segmentation ground truth.

30

Published as a conference paper at ICLR 2023

Number of Views
Method 4 6 8 10

VointNet (Cls. Acc.) 90.3 90.8 92.0 92.3

Table 13: Effect of the Number of Views on Classification. We report the classification
accuracy of VointNet vs. the number of views (M) used in the training on ModelNet40.

Number of Views
Method 1 2 4 6 8 10 12

Features Unprojection 3.0 5.3 11.45 15.7 17.2 29.7 24.0
Labels Unprojection 2.6 2.5 3.4 3.1 3.0 3.2 3.6

Table 14: Unprojection Operation Speed. We report the average latency (in ms) over 10,000
runs of the unprojection operation with its two forms: features unprojection (used in mean) and
labels unprojection (used in mode).

Number of Points
Criteria 1e2 1e3 1e4 1e5 1e6

Point Rendering Speed (ms/image) 7.2 7.6 7.7 10.4 37.7

Table 15: Point Rendering Speed. We report the average rendering speed (in ms/image) over
1,000 renderings of the point cloud renderer Ravi et al. (2020) used in Voint clouds.

31

	Introduction
	Related Work
	Methodology
	3D Voint Cloud
	Operations on 3D Voint Clouds
	Learning on 3D Voint Clouds

	Experiments
	Experimental Setup
	VointNet Variants
	Implementation Details

	Results
	3D Shape Classification
	3D Shape Retrieval
	Robust 3D Part Segmentation
	Occlusion Robustness

	Analysis and Insights
	Limitations and Acknowledgments
	Detailed Formulations
	Toy Example
	Functional Form of VointNet
	3D Voint Cloud
	Voint Operations
	Learning on 3D Voint Clouds
	VointNet Variants

	Detailed Experimental Setup
	Datasets
	Metrics
	Baselines
	Implementation Details

	Additional Results
	Model Robustness
	Detailed Analysis
	Visualizations

