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Abstract
Medical question answering requires extensive001
access to specialized conceptual knowledge.002
The current paradigm, Retrieval-Augmented003
Generation (RAG), acquires expertise medi-004
cal knowledge through large-scale corpus re-005
trieval and uses this knowledge to guide a006
general-purpose large language model (LLM)007
for generating answers. However, existing re-008
trieval approaches often overlook the impor-009
tance of factual knowledge, which limits the010
relevance of retrieved conceptual knowledge011
and restricts its applicability in real-world sce-012
narios, such as clinical decision-making based013
on Electronic Health Records (EHRs). This pa-014
per introduces RGAR, a recurrence generation-015
augmented retrieval framework that retrieves016
both relevant factual and conceptual knowl-017
edge from dual sources (i.e., EHRs and the018
corpus), allowing them to interact and refine019
each another. Through extensive evaluation020
across three factual-aware medical question021
answering benchmarks, RGAR establishes a022
new state-of-the-art performance among medi-023
cal RAG systems. Notably, the Llama-3.1-8B-024
Instruct model with RGAR surpasses the con-025
siderably larger, RAG-enhanced GPT-3.5. Our026
findings demonstrate the benefit of extracting027
factual knowledge for retrieval, which consis-028
tently yields improved generation quality.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable capabilities in general question032

answering (QA) tasks, achieving impressive per-033

formance across diverse scenarios (Achiam et al.,034

2023). However, when facing domain-specific035

questions that require specialized expertise, from036

medical diagnosis (Jin et al., 2021) to legal charge037

prediction (Wei et al., 2024), these models face038

significant challenges, often generating unreliable039

conclusions due to both hallucinations (Ji et al.,040

2023) and potentially stale knowledge embedded041

in their parameters (Wang et al., 2024a).042

EHR: Clinical presentation includes fever, hypotension… Physical examination reveals 
mucopurulent cervical discharge …Laboratory studies show Platelet count 14,200/mm3…
Question: When phenol is applied to a sample of the patient's blood…A blood culture is most 
likely to show which of the following?
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Question: Is the affinity column-mediated immunoassay method suitable as an alternative to 
the microparticle enzyme immunoassay method as a blood tacrolimus assay?
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Figure 1: a) Medical AI Systems from the Perspective of
Bloom’s Taxonomy. b) Two Types of Medical Question
Answering Tasks.

Retrieval-Augmented Generation (RAG) 043

(Lewis et al., 2020) has emerged as a promising 044

approach to address these challenges by leveraging 045

extensive, trustworthy knowledge bases to support 046

LLM reasoning. The effectiveness of this approach, 047

however, heavily depends on the relevance of 048

retrieved documents. Recent advances, such 049

as Generation-Augmented Retrieval (GAR) 050

(Mao et al., 2021a), focus on enhancing retrieval 051

performance by generating relevant context for 052

query expansion. 053

In the medical domain, current RAG approaches 054

concatenate all available contextual information 055

from a given example into a single basic query for 056

retrieval, aiming to provide comprehensive con- 057

text for model reasoning (Xiong et al., 2024a). 058

While this method has demonstrated substantial im- 059

provements on early knowledge-intensive medical 060

QA datasets such as PubMedQA (Jin et al., 2019), 061

its limitations have become increasingly apparent 062

with the emergence of EHR-integrated datasets that 063

better reflect real-world clinical practices (Kweon 064

et al., 2024). Electronic Health Records (EHRs) 065

typically contain extensive patient data, including 066

comprehensive diagnostic test results and medical 067
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histories (Pang et al., 2021). However, for any spe-068

cific medical query, only a small subset of this in-069

formation is typically relevant, and retrieval perfor-070

mance can be significantly degraded when queries071

are diluted with extraneous EHR content (Johnson072

et al., 2023; Lovon-Melgarejo et al., 2024).073

We highlight that current retrieval methods often074

fail to adequately consider factual information in075

real-world medical scenarios. Crucially, even when076

applying query expansion with GAR, the persistent077

oversight of factual information fundamentally lim-078

its their ability to retrieve real relevant documents.079

Inspired by Bloom’s taxonomy (Forehand,080

2010; Markus, 2001), we categorize the knowl-081

edge required to address real-world medical QA082

problems into four types: Factual Knowledge, Con-083

ceptual Knowledge, Procedural Knowledge, and084

Metacognitive Knowledge. The latter two represent085

higher-order knowledge typically embedded within086

advanced RAG systems. Specifically, Procedural087

Knowledge refers to the processes and strategies088

required to solve problems, such as problem decom-089

position and retrieval (Wei et al., 2022; Zhou et al.,090

2023), while Metacognitive Knowledge pertains091

to an LLM’s ability to assess whether it has suffi-092

cient knowledge or evidence to perform effective093

reasoning (Kim et al., 2023; Wang et al., 2023b).094

Factual Knowledge and Conceptual Knowledge095

require retrieval from large databases containing096

substantial amounts of irrelevant content, corre-097

sponding to the EHRs of patients and medical098

corpora in answering medical questions. Unfor-099

tunately, current RAG systems do not differentiate100

between these types of retrieval targets, overlook-101

ing the necessity of retrieval from EHRs.102

To overcome this limitation, we propose RGAR,103

a system designed to simultaneously retrieves104

Factual Knowledge and Conceptual Knowledge105

through a recurrent query generation and interac-106

tion mechanism. This approach iteratively refines107

queries to enhance the relevance of retrieved profes-108

sional and factual knowledge, thereby improving109

performance on knowledge-intensive and factual-110

aware medical QA tasks.111

Our key contributions are listed as follows:112

• We are the first to analyze RAG systems113

through the lens of Bloom’s taxonomy, ad-114

dressing the current underrepresentation of115

Factual Knowledge in existing frameworks.116

• We introduce RGAR, a dual-end retrieval sys-117

tem that facilitates recurrent interactions be-118

tween Factual and Conceptual Knowledge, 119

bridging the gap between LLMs and real- 120

world clinical applications. 121

• Through extensive experiments on three medi- 122

cal QA datasets involving Factual Knowledge, 123

we demonstrate that RGAR achieves superior 124

average performance compared to state-of-the- 125

art (SOTA) methods, enabling Llama-3.1-8B- 126

Instruct model to outperform the considerably 127

larger RAG-enhanced GPT-3.5-turbo. 128

2 Related Work 129

RAG Systems. RAG systems are characterized 130

as a "Retrieve-then-Read" framework (Gao et al., 131

2023). The development of Naive RAG has primar- 132

ily focused on retriever optimization, evolving from 133

discrete retrievers such as BM25 (Friedman et al., 134

1977) to more sophisticated and domain-specific 135

dense retrievers, including DPR (Karpukhin et al., 136

2020) and MedCPT (Jin et al., 2023), which demon- 137

strate superior performance. 138

In recent years, numerous advanced RAG sys- 139

tems have emerged. Advanced RAG systems fo- 140

cus on designing multi-round retrieval structures, 141

including iterative retrieval (Sun et al., 2019), re- 142

cursive retrieval (Sarthi et al., 2024), and adap- 143

tive retrieval (Jeong et al., 2024). A notable work 144

in medical QA is MedRAG (Xiong et al., 2024a), 145

which analyzes retrievers, corpora, and LLMs, of- 146

fering practical guidelines. Follow-up work, i- 147

MedRAG (Xiong et al., 2024b), improved perfor- 148

mance through multi-round decomposition and it- 149

eration, albeit with significant computational costs. 150

These approaches focus solely on optimizing the 151

retrieval process, overlooking the retrievability of 152

factual knowledge. In contrast, RGAR introduces a 153

recurrent structure, enabling continuous query opti- 154

mization through dual-end retrieval and extraction 155

from EHRs and professional knowledge corpora, 156

thereby enhancing access to both knowledge types. 157

Query Optimization. As the core interface 158

in human-AI interaction, query optimization (also 159

known as prompt optimization) is the key to im- 160

proving AI system performance. It is widely ap- 161

plied in tasks such as text-to-image generation (Liu 162

et al., 2022; Wu et al., 2024b) and code generation 163

(Nazzal et al., 2024). 164

In the era of large language models, query op- 165

timization for retrieval tasks has gained increas- 166

ing attention. Representative work includes GAR 167

(Mao et al., 2021a), which improves retrieval per- 168
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formance through query expansion using fine-tuned169

BERT models (Devlin et al., 2019). GENREAD170

(Yu et al., 2023) further explored whether LLM-171

generated contexts could replace retrieved profes-172

sional documents as reasoning evidence. MedGE-173

NIE (Frisoni et al., 2024) extended this approach174

to medical QA.175

Another line of work focuses on query transfor-176

mation and decomposition, breaking down orig-177

inal queries into multiple sub-queries tailored to178

specific tasks, enhancing retrieval alignment with179

model needs (Dhuliawala et al., 2023). Subsequent180

work has reinforced the effectiveness of query de-181

composition through fine-tuning (Ma et al., 2023).182

Using expanded queries directly as reasoning ev-183

idence lacks the transparency of RAG, as RAG re-184

lies on retrievable documents that provide traceable185

and trustworthy reasoning, which is crucial in the186

medical field. Besides, the effectiveness of query187

expansion and query decomposition approaches188

is heavily dependent on fine-tuning LLMs, which189

limits scalability.190

In contrast, our work focuses on query optimiza-191

tion without fine-tuning LLMs. Specifically, re-192

trieval from EHRs can be seen as query filtering193

that eliminates irrelevant information, thereby ob-194

taining pertinent factual knowledge. Extracting195

factual knowledge enhances the effectiveness of196

retrieval from the corpus.197

3 Methodology198

In this section, we introduce RGAR framework, as199

illustrated in Figure 2. It begins by prompting a200

general-purpose LLM to generate multiple queries201

from an initial basic query. These multiple queries202

are then used to retrieve conceptual knowledge203

from the corpus (§ 3.2). Then retrieved conceptual204

knowledge is subsequently used to extract fac-205

tual knowledge from the electronic health records206

(EHRs) and transform it into retrieval-optimized207

representations (§ 3.3). The recurrence pipeline208

continuously updates the basic query and iteratively209

executes the two aforementioned components. This210

process optimizes the retrieved results, ultimately211

improving the quality of responses.(§ 3.4).212

3.1 Task Formulation213

In factual-aware medical QA, each data sample214

comprises the following elements: a patient’s natu-215

ral language query Q, the electronic health record216

(EHR) as factual knowledge F , and a set of candi-217

date answer A = {a1, ..., a|A|}. The overall goal 218

is to identify the correct answer â from A. 219

A non-retrieval approach directly prompts an 220

LLM to act as a reader, processing the entire con- 221

text and generating an answer, formulated as: 222

â = LLM(F ,Q,A|Tr) (1) 223

where Tr is the prompts. However, this approach 224

relies exclusively on the conceptual knowledge en- 225

coded within LLM, without leveraging external, 226

trustworthy medical knowledge sources. 227

To overcome this limitation, recent studies have 228

explored retrieval-based approaches, which en- 229

hance the model’s knowledge by retrieving a 230

specified number N of chunks, denoted as C = 231

{c1, ..., cN}, from a chunked corpus (knowledge 232

base) K. This answering process is expressed as: 233

â = LLM(F ,Q,A, C|Tr). (2) 234

3.2 Conceptual Knowledge Retrieval (CKR) 235

To maintain consistency with the option-free re- 236

trieval approach proposed by (Xiong et al., 2024a), 237

we do not incorporate the answer options A dur- 238

ing retrieval. This design is in line with real-world 239

medical quality assurance scenarios, where answer 240

choices are typically not available in advance. 241

Following their method, we construct the basic 242

query by concatenating the EHR and the patient’s 243

query, formally defined as qb = Q⊕ F , where ⊕ 244

denotes text concatenation. 245

Traditional dense retrievers, such as Dense Pas- 246

sage Retrieval (DPR) (Karpukhin et al., 2020), iden- 247

tify the top-N relevant chunks C from the knowl- 248

edge base K by computing similarity scores using 249

an encoder E: 250

sim(qb, ci) = E(qb)
⊤E(ci),

C = top-N({sim(qb, ci)}).
(3) 251

Vanilla GAR (Mao et al., 2021a) expands qb 252

using a fine-tuned BERT (Devlin et al., 2019) to 253

produce three types of content that enhance re- 254

trieval: potential answers qae , contexts qce, and titles 255

qte. With the growing zero-shot generation capa- 256

bilities of LLMs (Kojima et al., 2022), a common 257

practice is to prompt LLMs to serve as train-free 258

query generators, producing expanded content q̃e 259

using prompt templates Tg (Frisoni et al., 2024). 260

The three types of content generation process can 261

be formulated as: 262
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Figure 2: The Overall Framework of RGAR. a) The Recurrence Pipeline in § 3.4; b) Conceptual Knowledge
Retrieval in § 3.2; c) Factual Knowledge Extraction in § 3.3; d) Response Template in § 3.4.

q̃ae = LLM(qb|T a
g ),

q̃ce = LLM(qb|T c
g ),

q̃te = LLM(qb|T t
g ).

(4)263

The final score Sc for retrieving C is then com-264

puted by normalizing and averaging the similarities265

of these expanded queries:266

Sc(ci) =
∑

q̃e∈{q̃ae ,q̃ce,q̃te}

exp(sim(q̃e, ci))∑
cj
exp(sim(q̃e, cj))

. (5)267

3.3 Factual Knowledge Extraction (FKE)268

In EHR, only a small portion of necessary infor-269

mation constitutes problem-relevant factual knowl-270

edge (D’Alessandro et al., 2004). Direct input of271

lengthy EHR content containing substantial irrele-272

vant information into dense retrievers can degrade273

retrieval performance (Ren et al., 2023). While a274

straightforward approach would be to retrieve EHR275

content based on question Q (Lu et al., 2023), this276

fails to fully utilize conceptual knowledge obtained277

from previous Conceptual Knowledge Retrieval278

Stage. Furthermore, the necessary chunking of279

EHR for retrieval introduces content discontinuity280

(Luo et al., 2024).281

Given that EHRs more closely resemble long282

passages from the Needle in a Haystack task (Kam-283

radt) rather than necessarily chunked corpus, and284

inspired by large language models’ capability to 285

precisely locate answer spans in reading compre- 286

hension tasks (Cheng et al., 2024), we propose 287

leveraging LLMs for text span tasks (Rajpurkar 288

et al., 2016) on EHR to filter relevant factual knowl- 289

edge efficiently and effectively using conceptual 290

knowledge. We define this filtered factual knowl- 291

edge as Fs, with prompts Ts, expressed as: 292

Fs = LLM(F ,Q, C|Ts). (6) 293

In addition, EHRs often contain numerical re- 294

port results (Lovon-Melgarejo et al., 2024) that 295

require conceptual knowledge to interpret their 296

significance. Furthermore, medical QA involves 297

multi-hop questions (Pal et al., 2022), where re- 298

trieved conceptual knowledge can generate explain- 299

able new factual knowledge conducive to reason- 300

ing. Drawing from LLM zero-shot summarization 301

prompting strategies (Wu et al., 2025), we analyze 302

and summarize the filtered EHR Fs with prompts 303

Te, yielding an enriched representation Fe: 304

Fe = LLM(Fs,Q, C|Te). (7) 305

This process, which we refer to as the LLM 306

Extractor, completes the extraction of original 307

EHR information. In practice, RGAR implements 308

these two phases using single-stage prompting to 309

reduce time overhead. 310
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3.4 The Recurrence Pipeline and Response311

Building on the Fe, we update the basic query for312

Conceptual Knowledge Retrieval as qb = Q⊕Fe.313

This establishes a recurrence interaction between314

factual and conceptual knowledge, guiding next315

retrieval toward more relevant content. Iterative316

execution enhances the stability of both retrieval317

and extraction. The entire pipeline recurs for a318

predefined number of iterations, ultimately yielding319

the final retrieved conceptual knowledge C∗.320

During the response phase, we follow the ap-321

proach in Equation 2 to generate answers. Notably,322

the Fe are restricted to the retrieval phase and are323

not used in the response phase. The sole difference324

lies in the retrieved chunks, highlighting the impact325

of retrieval quality on the responses.326

4 Experiments327

4.1 Experimental Setup328

4.1.1 Benchmark Datasets329

We evaluated RGAR on three factual-aware medi-330

cal QA benchmarks featuring multiple-choice ques-331

tions that require human-level reading comprehen-332

sion and expert reasoning to analyze patients’ clini-333

cal conditions.334

MedQA-USMLE (Jin et al., 2021) and MedM-335

CQA (Pal et al., 2022) consist of questions derived336

from professional medical exams, evaluating spe-337

cialized expertise such as disease symptom diag-338

nosis and medication dosage requirements. The339

problems frequently involve patient histories, vi-340

tal signs (e.g., blood pressure, temperature), and341

final diagnostic evaluations (e.g., CT scans), mak-342

ing it necessary to retrieve relevant medical knowl-343

edge tailored to the patient’s specific circumstances.344

However, due to their exam-oriented format, the345

provided information has already been filtered, re-346

ducing the difficulty of extracting factual knowl-347

edge from EHR.348

EHRNoteQA (Kweon et al., 2024) is a re-349

cently introduced benchmark that provides authen-350

tic, complex EHR data derived from MIMIC-IV351

(Johnson et al., 2023). This dataset encompasses352

a wide range of topics and demands that models353

emulate genuine clinical consultations, ultimately354

generating accurate discharge recommendations.355

Consequently, EHRNoteQA challenges models to356

identify which factual details within the EHR are357

relevant to the questions at hand and apply domain-358

specific knowledge to address them.359

Table 1: Medical QA Benchmark Statistics.

Benchmarks Max. Len Avg. Len Min. Len

Non-EHR QA Benchmarks

BioASQ-Y/N 52 17 9
PubMedQA 57 23 10

EHR QA Benchmarks

MedMCQA 207 41 11
MedQA-USMLE 872 197 50
EHRNoteQA 5782 3061 667

Table 1 highlights that the chosen datasets, 360

which include EHR information, tend to have sig- 361

nificantly longer content compared to datasets 362

without EHRs. Notably, the EHRNoteQA dataset 363

has a maximum length exceeding 4,000 tokens. 364

This raises concerns about the reasonableness of 365

directly employing these EHRs for retrieval. 366

4.1.2 Retriever and Corpus 367

To ensure a fair comparison, we adopt the same 368

retriever, corpus, and parameter settings as previ- 369

ous work (Xiong et al., 2024a). We use MedCPT 370

(Jin et al., 2023), a dense retriever specialized for 371

the biomedical domain, configured to retrieve 32 372

chunks by default. For the corpus, we employ the 373

Textbooks dataset (Jin et al., 2019), a lightweight 374

collection of 125.8k chunks derived from medical 375

textbooks, with an average length of 182 tokens. 376

4.1.3 LLMs and Baselines 377

We focus on the effect of RGAR on general- 378

purpose LLMs without domain-specific knowledge. 379

Therefore, we exclude LLMs fine-tuned on the 380

medical domain, such as PMC-Llama (Wu et al., 381

2024a). Our primary experiments utilize Llama- 382

3.2-3B-Instruct, while ablation studies include a 383

range of models from the Llama-3.1/3.2 (Dubey 384

et al., 2024) and Qwen-2.5 (Yang et al., 2024a) 385

families, ranging from 1.5B to 8B parameters. All 386

selected models feature a context length of approx- 387

imately 128K tokens. Temperatures are set to zero 388

to ensure reproducibility through greedy decoding. 389

For non-retrieval methods, we consider a zero- 390

shot approach Custom (Kojima et al., 2022) as a 391

baseline and evaluate improvements relative to it. 392

To fully exploit the reasoning capabilities of the 393

LLMs, we incorporate chain-of-thought (CoT) rea- 394

soning (Wei et al., 2022). For retrieval-based meth- 395

ods, we evaluate the classic RAG model (Lewis 396

et al., 2020), the domain-adapted MedRAG (Xiong 397
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Table 2: Comparison of RGAR with Other Methods on Three Factual-Aware Datasets. ∆ Indicates Improvement
Over Custom, Bold Represents the Best, and Underline Indicates the Second-Best.

Method
MedQA-USMLE (# 1273) MedMCQA(# 4183) EHRNoteQA(# 962) Average(↓)

Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆

w/o Retrieval
Custom 50.20 0.00 50.01 0.00 47.19 0.00 49.13 0.00
CoT 51.45 1.25 44.53 -5.48 62.89 15.70 52.96 3.82

w/ Retrieval

RAG 53.50 3.30 50.54 0.53 61.12 13.93 55.05 5.92
MedRAG 50.27 0.07 47.53 -2.48 70.58 23.39 56.13 6.99
GAR 57.97 7.77 50.42 0.41 65.48 18.29 57.96 8.82
i-MedRAG 56.24 6.04 44.94 -5.07 74.22 27.03 58.47 9.33
RGAR 58.83 8.63 51.02 1.01 73.28 26.09 61.04 11.91

et al., 2024a), and i-MedRAG (Xiong et al., 2024b),398

a medical-domain RAG system designed to decom-399

pose questions and iteratively provide answers.400

We adopt GAR (Mao et al., 2021a) as a represen-401

tative query-optimized RAG method, implemented402

train-free in accordance with § 3.2. RGAR defaults403

to 2 rounds of recurrence.404

4.1.4 Evaluation Settings405

Following MIRAGE (Xiong et al., 2024a), we406

adopt the following evaluation framework. In407

Option-Free Retrieval, no answer options are pro-408

vided for retrieval (§3.2), ensuring a more realistic409

medical QA scenario. In Zero-Shot Learning,410

RAG systems are evaluated without in-context few-411

shot learning, reflecting the lack of similar exem-412

plars in real-world medical questions. For Metrics,413

we employ Accuracy, defined as the proportion of414

correctly answered questions, and we extract model415

outputs by applying regular expression matching to416

the entire generated responses (Wang et al., 2024b).417

4.2 Main Results418

4.2.1 Cross-Dataset Performance419

Improvement420

We evaluate RGAR with the Llama-3.2-3B-Instruct421

across three factual-aware medical datasets, com-422

paring it with several competitive baselines. Ta-423

ble 2 presents the results of all methods, along424

with their relative improvements over the Cus-425

tom baseline. RGAR achieves the highest aver-426

age performance across the three datasets, sur-427

passing the second-best method, i-MedRAG, by428

2%. The retrieval-based methods, even the lowest-429

performing RAG, consistently outperform the non-430

retrieval methods Custom and CoT. This highlights431

the importance of retrieving specialized medical432

knowledge when using general-purpose LLMs to433

answer professional medical queries. Compar-434

ing different retrieval methods, GAR outperforms 435

vanilla RAG by approximately 3% on average, with 436

a maximum improvement of 4.37% across datasets. 437

This indicates that generating multiple queries for 438

retrieval provides consistent benefits. However, 439

while performing well on EHRNoteQA, MedRAG 440

demonstrates a negative effect on the other two 441

datasets compared to vanilla RAG. 442

Notably, the improvements achieved by our 443

RGAR over GAR exhibit a positive correlation 444

with the average length of the dataset’s context. On 445

EHRNoteQA, which has an average context length 446

exceeding 3000 tokens, our approach achieved a 447

7.8% improvement. This validates the advantage 448

of our Factual knowledge Extraction in enhancing 449

retrieval effectiveness. Consequently, our method 450

is particularly well-suited to real-world scenarios 451

where complete electronic health records must be 452

analyzed to provide medical advice. This indicates 453

that our approach is promising for real-life appli- 454

cations in assisting physicians with clinical recom- 455

mendations. 456

When analyzing performance across different 457

datasets, we find that retrieval-based methods per- 458

form significantly better on MedQA-USMLE and 459

EHRNoteQA, while MedMCQA showa a nega- 460

tive effect—consistent with results reported by 461

MedRAG (Xiong et al., 2024a). A closer analy- 462

sis reveals that MedMCQA incorporates arithmetic 463

reasoning questions (roughly 7% of the total), and 464

the addition of extensive retrieved contexts dimin- 465

ishes the model’s numerical reasoning capabilities, 466

which could potentially be fixed with larger base 467

LLMs (Mirzadeh et al., 2025). Nonetheless, among 468

retrieval-based methods, our RGAR stands out as 469

the only approach that outperforms vanilla RAG 470

on this dataset, delivering an improvement of more 471

than 1% over Custom. On EHRNoteQA, while 472
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Figure 3: Accuracy with Different Numbers of Retrieved Chunks on EHRNoteQA Dataset.

RGAR’s performance is slightly below that of i-473

MedRAG, the latter’s inference time is approxi-474

mately 4 times longer, establishing RGAR as a475

more efficient and cost-effective alternative.476

4.2.2 Base LLMs with Different Sizes and477

Model Families478

Table 3: Comparison of LLMs on MedQA-USMLE.

Model Custom RAG GAR RGAR

Llama-3.2-1B-Instruct 38.96 29.30 30.79 29.85
Llama-3.2-3B-Instruct 50.20 53.50 57.97 58.83
Llama-3.1-8B-Instruct 60.80 62.14 67.39 69.52

Qwen2.5-1.5B-Instruct 43.99 41.48 43.42 42.58
Qwen2.5-3B-Instruct 48.23 49.96 53.50 54.28
Qwen2.5-7B-Instruct 59.46 58.83 63.39 63.86

Average 50.27 49.20 52.74 53.15

To further assess the versatility of RGAR, we479

conduct evaluations on MedQA-USMLE, a widely480

used medical dataset, by utilizing base LLMs of481

various sizes and model families, specifically from482

Llama and Qwen. The results in Table 3 show483

that RGAR consistently achieves the best average484

performance.485

When considering model size, we find that486

retrieval-based approaches fall short of the non-487

retrieval Custom baseline for smaller models,488

such as Llama-3.2-1B-Instruct and Qwen2.5-1.5B-489

Instruct. These smaller models, constrained by490

their weaker performance, are not well-suited491

to leverage retrieval-enhanced information. As492

the model size increases, however, all retrieval-493

enhanced approaches exhibit notable performance494

gains, with RGAR yielding the most significant im-495

provements. This trend becomes particularly pro-496

nounced for larger models. For example, RGAR497

achieves a 7.38% improvement over RAG on498

Llama-8B, 5.33% on Llama-3B, 5.03% on Qwen-499

8B, and 4.32% on Qwen-3B.500

Moreover, we find that under the same ex- 501

perimental conditions, Llama-3.1-8B-Instruct 502

achieves a performance of 69.52% with RGAR, 503

surpassing the 66.22% reported by MedRAG 504

for GPT-3.5-16k-0613 (Achiam et al., 2023). This 505

significant improvement underscores the practical- 506

ity of using well-optimized retrieval methods with 507

smaller models, enabling performance rivals those 508

of proprietary large-scale foundational models in 509

real-world medical recommendation tasks. 510

4.3 Ablation Study 511

Due to the absence of ground-truth retrieval chunks, 512

we evaluate retrieval effectiveness through QA per- 513

formance, systematically varying the number of re- 514

trieved chunks N from 4 to 32. A reduced retrieval 515

number serves as a more stringent assessment of re- 516

trieval quality. We investigate three primary factors 517

in Figure 3: the effect of options generated by GAR 518

versus those originally provided by the dataset, the 519

contributions of CKR and FKE components, and 520

the impact of RGAR’s recurrence rounds. 521

We first compare the retrieval performance be- 522

tween LLM-generated options and original dataset 523

options. Figure 3a shows how RGAR and GAR per- 524

form across different values of N . Both approaches 525

maintain stable performance across different N , 526

indicating reliable retrieval quality. While using 527

original options shows slightly higher average Ac- 528

curacy, the difference is minimal. This suggests 529

that even when GAR generates options that dif- 530

fer from the originals, it achieves similar retrieval 531

results as long as the core topics align. 532

We then examine the impact of RGAR’s two 533

main components—CKR and FKE—as shown in 534

Figure 3b. When we remove the conceptual knowl- 535

edge interaction from the FKE phase, the system 536

shows only moderate improvements when extract- 537

ing factual knowledge from EHR without concep- 538

tual knowledge, demonstrating the importance of 539

7



integrating both types of knowledge. Removing the540

multi-query generation step from CKR causes per-541

formance to degrade as N increases, indicating that542

multiple queries are necessary to maintain stable543

retrieval.544

Finally, we analyze the effect of rounds in RGAR545

(Round 0 means GAR), as illustrated in Figure546

3c. Our results show that even a single iteration547

significantly improves performance by enabling548

interaction between factual and conceptual knowl-549

edge. Multiple rounds work similarly to a rerank-550

ing mechanism (Mao et al., 2021b), improving551

the ranking of important chunks and showing sub-552

stantial gains even with relatively small N . With553

N = 8 , the default two-round setup achieves a per-554

formance of 75.78%, almost 1% better than using a555

single round. However, adding more rounds shows556

no clear benefits, as they tend to generate multi-hop557

factual knowledge during the FKE phase, leading558

CKR to retrieve multi-hop conceptual knowledge,559

which may cause LLMs to over-infer (Yang et al.,560

2024b). Given that each round involves one rea-561

soning step from both the LLM extractor and LLM562

query generator, two rounds sufficiently support563

multi-hop reasoning needs (Lv et al., 2021).564

4.4 Fine-Grained Performance Analysis565

While the previous sections examined overall566

dataset performance and established preliminary567

findings, this section provides a detailed analysis568

of specific aspects of our results. In § 4.2.1, we569

showed that RGAR performs better on real-world570

medical recommendation tasks involving compre-571

hensive EHRs. To verify this finding, we conduct a572

detailed analysis of EHRNoteQA by grouping ques-573

tions based on context length and dividing them574

into four bins. Within each bin, we compare the575

performance of RGAR, GAR, and Custom. As576

shown in Figure 4, Custom shows decreasing accu-577

racy with increasing context length. GAR improves578

accuracy across all bins, with RGAR achieving579

further performance gains. Notably, the improve-580

ments are more significant in the three bins with581

longer contexts compared to the first bin. The re-582

sults show that RGAR maintains consistent average583

performance across different context length.584

It is also important to note that generating mul-585

tiple queries from different aspects within RGAR586

helps stabilize retrieval. Figure 5 presents a t-SNE587

visualization of different queries and their individu-588

ally retrieved chunks for a sample question (details589

provided in Appendix B). The basic query shows590
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Figure 4: Fine-Grained Accuracy of EHRNoteQA After
Sorting by Length and Dividing into Four Equal Parts.

limited suitability for retrieval, as its coverage area 591

differs from that of the three queries generated by 592

RGAR. RGAR clearly introduces some variation 593

in retrieval content. Although the regions corre- 594

sponding to the three generated queries overlap, 595

the specific chunks retrieved do not overlap sig- 596

nificantly. This underscores the need to average 597

the retrieval similarities of these three queries to 598

achieve more stable retrieval results. 599
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Figure 5: t-SNE Visualization of Different Queries and
the Retrieved Chunks.

5 Conclusion 600

In this work, we propose RGAR, a novel RAG 601

system that distinguishes two types of retrievable 602

knowledge. Through comprehensive evaluation 603

across three factual-aware medical benchmarks, 604

RGAR demonstrates substantial improvements 605

over existing methods, emphasizing the signifi- 606

cant impact of in-depth factual knowledge extrac- 607

tion and its interaction with conceptual knowledge 608

on enhancing retrieval performance. Notably, our 609

RGAR enables the Llama-3.1-8B-Instruct model to 610

outperform the considerably larger, RAG-enhanced 611

proprietary GPT-3.5. From a broader perspective, 612

RGAR offers a promising approach for enhancing 613

general-purpose LLMs in clinical diagnostic sce- 614

narios where extensive factual knowledge is crucial, 615

with potential for extension to other professional 616

domains demanding precise factual awareness. 617

8



Limitations618

Despite RGAR achieving superior average perfor-619

mance, several limitations warrant discussion. Our620

RGAR requires corpus retrieval, and its time com-621

plexity scales proportionally with the size of the622

corpus, which is an inherent issue within the RAG623

paradigm. Approaches that generate reasoning evi-624

dence directly through domain-specific LLMs (Yu625

et al., 2023; Frisoni et al., 2024) avoid the computa-626

tional challenges at inference time. However, they627

face difficulties in updating LLMs to incorporate628

new medical knowledge, which results in frequent629

updates and training costs.630

Comparative approaches such as MedRAG631

(Xiong et al., 2024a) and i-MedRAG (Xiong632

et al., 2024b) explore integration possibilities with633

prompting techniques like Chain-of-Thought (Wei634

et al., 2022) and Self-Consistency (Wang et al.,635

2023a) to enhance reasoning capabilities. Our in-636

vestigation focused specifically on validating how637

additional factual knowledge processing improves638

retrieval performance, without examining the im-639

pact of these prompting strategies. Furthermore,640

unlike multi-round methods such as i-MedRAG641

(Xiong et al., 2024b) that implement LLM-based642

early stopping to reduce computational costs, our643

system operates with fixed time complexity. How-644

ever, it is noteworthy that, because i-MedRAG re-645

quires multiple rounds of query decomposition, re-646

trieval, and answer aggregation, the actual time647

overhead of RGAR is significantly smaller than648

that of i-MedRAG.649

Our EHR extraction approach assumes LLMs650

can process complete EHR contextual input, justi-651

fied by current mainstream LLMs exceeding 128K652

context windows with anticipated growth. How-653

ever, in extreme cases where EHR content exceeds654

LLM context limits, integration with chunk-free655

approaches may be necessary (Luo et al., 2024;656

Qian et al., 2024). Finally, as RGAR operates in a657

zero-shot setting without instruction fine-tuning, its658

effectiveness is partially contingent on the model’s659

instruction-following capabilities—which we can-660

not fully mitigate.661

Ethical Statement662

This research adheres to the ACL Code of Ethics.663

All medical datasets utilized in this study are ei-664

ther open access or obtained through credentialed665

access protocols. To ensure patient privacy protec-666

tion, all datasets have undergone comprehensive667

anonymization procedures. While Large Language 668

Models (LLMs) present considerable societal ben- 669

efits, particularly in healthcare applications, they 670

also introduce potential risks that warrant careful 671

consideration. Although our work advances the rel- 672

evance of retrieved content for medical queries, we 673

acknowledge that LLM-generated responses based 674

on retrieved information may still be susceptible to 675

errors or perpetuate existing biases. Given the criti- 676

cal nature of medical information and its potential 677

impact on healthcare decisions, we strongly advo- 678

cate for a conservative implementation approach. 679

Specifically, we recommend that all system outputs 680

undergo rigorous validation by qualified medical 681

professionals before any practical application. This 682

stringent verification process is essential to main- 683

tain the integrity of clinical and scientific discourse 684

and prevent the propagation of inaccurate or po- 685

tentially harmful information in healthcare settings. 686

These ethical safeguards reflect our commitment to 687

responsible AI development in the medical domain, 688

where the stakes of misinformation are particularly 689

high and the need for reliability is paramount. 690
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A Implementation Details1062

A.1 Hardware Configuration1063

All experiments were conducted on an in-house1064

workstation equipped with dual NVIDIA GeForce1065

RTX 4090 GPUs, 128GB RAM, and an Intel®1066

Core i9-13900K CPU.1067

Time cost across all methods on EHRNoteQA1068

are shown in Table 4.1069

Table 4: Comparison of different methods in terms of
execution time (hours).

Method Custom CoT RAG MedRAG GAR i-MedRAG RGAR

Time (h) 0.5 0.5 1 1 2 22 6

A.2 Code and Results1070

The core implementation of the RGAR framework1071

and the output json files can be accessed via the1072

Anonymous Repository: https://anonymous.1073

4open.science/r/RGAR-C6131074

B Prompt Template and Case Study1075

For simplicity, we merged EHR and question in the1076

prompt words of the answer and treated them as1077

question in the prompt words. Table 5 shows the1078

prompts template of RGAR and compared work1079

(Using CoT ones). Table 6 shows the input of a1080

sample, Table 7 shows the final output of RGAR.1081

C Framework Insight1082

C.1 Another View of the Recurrence Pipeline1083

We conceptualize the Recurrence Pipeline as an1084

exploration-exploitation process within the rein-1085

forcement learning framework (Auer et al., 2002).1086

In GAR, even when generated content is only par-1087

tially accurate (or potentially inaccurate), it re-1088

mains valuable for retrieval if it correlates with1089

passages containing correct information (e.g., co-1090

occurrence with correct answers), thus representing1091

an exploratory phase. Conversely, EHR extraction1092

serves as an exploitation phase, thoroughly utiliz-1093

ing explored knowledge by selecting relevant com-1094

ponents and synthesizing new evidence (factual1095

knowledge). Based on this newly derived evidence,1096

subsequent iterations can initiate fresh exploration-1097

exploitation cycles, creating a continuous knowl-1098

edge transmission process (Zhu et al., 2024).1099

In scenarios where additional factual knowledge1100

is not required, the retrieved content tends to re-1101

main relatively constant, and utilizing this content1102

under identical prompting conditions would likely 1103

yield similar factual knowledge through extraction 1104

and summarization. However, when conceptual 1105

knowledge is needed to derive new factual knowl- 1106

edge through reasoning from existing factual in- 1107

formation, the updated basic query facilitates eas- 1108

ier retrieval of conceptual knowledge supporting 1109

current reasoned factual knowledge, thereby main- 1110

taining the integrity of reasoning chains. Further- 1111

more, leveraging current factual knowledge for re- 1112

trieval enables the exploration and discovery of 1113

novel knowledge domains. 1114

C.2 Why No Flexible Stopping Criteria 1115

Similar multiround RAG systems have adopted 1116

more flexible stopping criteria. For instance, Adap- 1117

tive RAG (Jeong et al., 2024) determines whether 1118

to retrieve further by consulting the model itself. 1119

i-MedRAG (Xiong et al., 2024b), while setting a 1120

maximum number of retrieval iterations, also sup- 1121

ports early stopping. 1122

In our RGAR framework, we do not adopt such 1123

settings. On the one hand, we focus on evaluating 1124

how additional processing of factual knowledge 1125

enhances retrieval performance, raising awareness 1126

of this often-overlooked type of knowledge in pre- 1127

vious RAG systems, while flexible stopping cri- 1128

teria mainly showcase procedural knowledge and 1129

metacognitive knowledge. On the other hand, the 1130

metacognitive capabilities of current LLMs remain 1131

under question, as a model’s self-evaluation of the 1132

need for additional retrieval information often does 1133

not match actual requirements (Kumar et al., 2024). 1134

C.3 Future Work 1135

Our RGAR framework leverages retrieved medi- 1136

cal domain knowledge to deliver exceptional an- 1137

swer quality. However, we are concerned that such 1138

powerful generative capabilities, if maliciously ex- 1139

ploited, could pose security risks. For instance, 1140

when the retrieved corpus contains private or copy- 1141

righted information, malicious users could exploit 1142

the LLM’s responses to extract and disclose sensi- 1143

tive data from the corpus (Carlini et al., 2021). Ad- 1144

ditionally, malicious users might attempt to repli- 1145

cate our base LLM (Tramèr et al., 2016) by collect- 1146

ing large volumes of question-answer pairs or infer 1147

internal details of our retrieval-based generation 1148

framework (Carlini et al.). We will make every 1149

effort to mitigate these risks, such as verifying the 1150

legitimacy of queries (Inan et al., 2023), ensuring 1151

that RGAR is used responsibly and legally. 1152
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Type Prompt Template

System prompts for Non-CoT You are a helpful medical expert, and your task is to answer a multi-choice
medical question using the relevant documents. Organize your output in a
json formatted as Dict {"answer_choice": Str{A/B/C/...}}. Your responses
will be used for research purposes only, so please have a definite answer.
Please just give me the json of the answer.

System prompts for using CoT You are a helpful medical expert, and your task is to answer a multi-choice
medical question. Please first think step-by-step and then choose the
answer from the provided options. Organize your output in a json format-
ted as Dict{"step_by_step_thinking": Str(explanation), "answer_choice":
Str{A/B/C/...}}. Your responses will be used for research purposes only,
so please have a definite answer. Please just give me the json of the answer.

Answer prompts for Non-CoT Here are the relevant documents: {{context}}
Here is the question: {{question}}
Here are the potential choices: {{options}}
Please just give me the json of the answer. Generate your output in json:

Answer prompts for Using CoT Here are the relevant documents: {{context}}
Here is the question: {{question}}
Here are the potential choices: {{options}}
Please think step-by-step and generate your output in one json:

Extracting EHR prompts Here are the relevant knowledge sources: {{context}}
Here are the electronic health records: {{ehr}}
Here is the question: {{question}}
Please analyze and extract the key factual information in the electronic
health records relevant to solving this question and present it as a Python
list. Use concise descriptions for each item, formatted as ["key detail 1",
..., "key detail N"]. Please only give me the list. Here is the list:

Generating Possible Answer
prompts

Please give 4 options for the question. Each option should be a concise
description of a key detail, formatted as: A. "key detail 1" B. "key detail
2" C. "key detail 3" D. "key detail 4

Generating Possible Title
prompts

Please generate some titles of references that might address the above
question. Please give me only the titles, formatted as: ["title 1", "title 2",
..., "title N"]. Please be careful not to give specific content and analysis,
just the title.

Generating Possible Contexts
prompts

Please generate some knowledge that might address the above question.
please give me only the knowledge.

Table 5: Prompt templates used in RGAR and Compared Methods.
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Type Texts

EHR A 39-year-old woman is brought to the emergency department because
of fevers, chills, and left lower quadrant pain. Her temperature is 39.1°C
(102.3°F), pulse is 126/min, respirations are 28/min, and blood pressure
is 80/50 mm Hg. There is blood oozing around the site of a peripheral
intravenous line. Pelvic examination shows mucopurulent discharge from
the cervical os and left adnexal tenderness. Laboratory studies show:
Platelet count 14,200/mm3 Fibrinogen 83 mg/mL (N = 200–430 mg/dL)
D-dimer 965 ng/mL (N < 500 ng/mL)

Questions When phenol is applied to a sample of the patient’s blood at 90°C, a
phosphorylated N-acetylglucosamine dimer with 6 fatty acids attached to
a polysaccharide side chain is identified. A blood culture is most likely to
show which of the following?

Options A. Coagulase-positive, gram-positive cocci forming mauve-colored
colonies on methicillin-containing agar
B. Encapsulated, gram-negative coccobacilli forming grey-colored
colonies on charcoal blood agar
C. Spore-forming, gram-positive bacilli forming yellow colonies on casein
agar
D. Lactose-fermenting, gram-negative rods forming pink colonies on
MacConkey agar

Table 6: Case Study of a Sample Input.
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Type Texts

Generated Title "Identification of Streptococcus pneumoniae in Clinical Specimens",
"Phosphorylcholine-Binding Protein A of Staphylococcus aureus",
"D-Dimer Assay for Diagnosing Deep Vein Thrombosis",
"The Role of Fibrin Degradation Products in Hemostasis",
"Infection Control Measures for Hospital-Acquired Bloodstream Infec-
tions"

Generate Context The description suggests Neisseria gonorrhoeae infection. Neisseria gon-
orrhoeae produces lipopolysaccharides in its outer membrane, specifically
LPS or endotoxin. When heated, these lipopolysaccharides undergo cross-
linking reactions resulting in the formation of phosphorylcholine-attached
oligomers such as those described in the question stem. These structures
can be detected by ELISA using antibodies against specific epitopes on
the surface of N. gonorrhoeae cells. The presence of this structure would
suggest an active infection due to N. gonorrhoeae. Blood cultures for N.
gonorrhoeae typically require specialized media containing antibiotics like
vancomycin, colistin, and nystatin to inhibit competing bacteria

Generate Answer Option 1: Streptococcus pneumoniae The presence of a high fever, tachy-
cardia, hypotension, and low platelets suggests sepsis or severe infection.
The laboratory findings also indicate disseminated intravascular coagu-
lation (DIC). The identification of a phosphorylated N-acetylglucosane
dimer with 6 fatty acid chains attached to a polysaccharide side chain
after applying phenol at 90°C is consistent with pneumococcal capsular
polysacarcharides.
Option 2: Staphylococcus aureus Staphylococci can cause various infec-
tions but do not typically produce this type of capsule structure when
exposed to heat.
Option 3: Escherichia coli E. coli does have capsules that may be detected
by certain methods such as latex agglutination tests; however, they don’t
match the description given in the prompt.
Option 4: Neisseria meningitidis Neisseria species like N. meningitidis
would more commonly present with symptoms related to central nervous
system involvement rather than pelvic signs described in the scenario.

Extract EHR [’Patient age: 39 years’, ’Symptoms: fever, chills, left lower quadrant
pain’, ’Vital signs: high temperature (39.1°C), tachycardia (126/min),
tachypnea (28/min), hypotension (80/50 mmHg)’, ’Physical exam findings:
mucopurulent discharge from cervix, left adnexal tenderness’, ’Laboratory
results: low platelet count (14,200/mmˆ3), elevated D-dimer (965 ng/mL)’,
’Phenol test result: phosphorylated N-acetylglucosame dimmer with 6
fatty acids attached to a polysaccharide side chain’]

Output Json {"answer_choice": "D"}

Table 7: Case Study of output in RGAR.
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