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ABSTRACT

Instruction-based fine-tuning of large language models (LLMs) has achieved remarkable success
in various natural language processing (NLP) tasks. Parameter-efficient fine-tuning (PEFT) meth-
ods, such as Mixture of LoRA Experts (MoLE), combine the efficiency of Low-Rank Adaptation
(LoRA) with the versatility of Mixture of Experts (MoE) models, demonstrating significant potential
for handling multiple downstream tasks. However, the existing routing mechanisms for MoLE often
involve a trade-off between computational efficiency and predictive accuracy, and they fail to fully
address the diverse expert selection demands across different transformer layers. In this work, we
propose DYNMOLE, a hybrid routing strategy that dynamically adjusts expert selection based on the
Tsallis entropy of the router’s probability distribution. This approach mitigates router uncertainty,
enhances stability, and promotes more equitable expert participation, leading to faster convergence
and improved model performance. Additionally, we introduce an auxiliary loss based on Tsallis
entropy to further guide the model toward convergence with reduced uncertainty, thereby improving
training stability and performance. Our extensive experiments on commonsense reasoning bench-
marks demonstrate that DYNMOLE achieves substantial performance improvements, outperforming
LoRA by 9.6% and surpassing the state-of-the-art MoLE method, MoLA, by 2.3%. We also conduct
a comprehensive ablation study to evaluate the contributions of DYNMOLE’s key components.

1 INTRODUCTION

Instruction-based fine-tuning of large language models (Brown et al., 2020; Chowdhery et al., 2022; Touvron
et al., 2023a;b) for various downstream tasks has achieved remarkable proficiency in natural language processing
tasks (Chung et al., 2022; Iyer et al., 2022; Zheng et al., 2024). To significantly reduce the computational and mem-
ory resources required for full parameter fine-tuning, parameter-efficient fine-tuning methods have emerged (Houlsby
et al., 2019; Li & Liang, 2021; Lester et al., 2021; Ben-Zaken et al., 2021; Liu et al., 2022). Among these, LoRA (Hu
et al., 2021) has gained popularity due to its ability to reduce substantial computational costs. To maintain both cross-
task generalization and computational efficiency, a promising solution (Yang et al., 2024; Luo et al., 2024; Feng et al.,
2024) is to design an architecture that combines the resource-efficient features of LoRA with the versatility of Mixture
of Experts (MoE) models (Wu et al., 2024a; Dou et al., 2024; Gou et al., 2023; Liu et al., 2023; Feng et al., 2024).
These methods are often referred to as Mixture of LoRA Experts (MoLE). The routing mechanisms of these MoLE
methods are mostly derived from standard MoE models, where a fixed number of expert networks are activated. How-
ever, recent studies indicate that the requirements for experts vary across different transformer layers (Gao et al., 2024;
Zeng et al., 2024), suggesting that the routing mechanism requires further modifications to account for these factors.

Current routing mechanisms (Cai et al., 2024) can be broadly classified into two categories: 1) Soft Routing: These
methods activate all expert networks for each input token, which typically leads to improvement in prediction accu-
racy (Ma et al., 2018; Nie et al., 2021; Wu et al., 2024c; Dou et al., 2024; Pan et al., 2024). However, this comes at
the cost of significant computational overhead, as all experts are involved in the computation (Shazeer et al., 2017).
2) Sparse Routing: These approaches enhance model efficiency by activating only a subset of experts (Shazeer et al.,
2017). Some techniques route each token to a single expert (Fedus et al., 2022), while others activate multiple experts,
such as using Top-K (Zhou et al., 2022) or Top-P (Huang et al., 2024), or employing uncertainty-based routing (Wu
et al., 2024b). Although sparse routing improves parameter efficiency, it often results in an imbalanced workload
among experts, making it necessary to include an auxiliary loss functions to ensure the balance. Though both of these
routing techniques aim to select the optimal set of experts for each input token, neither provides a fully comprehensive
solution that accounts for the diverse and complex factors affecting model performance, which raises a key question:
How can we design a hybrid routing approach that considers these factors holistically to provide a more complete
solution for MoE and MoLE models?
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Figure 1: Visualized motivation of DYNMOLE. We propose a hybrid routing mechanism for DYNMOLE to address and solve
these critical challenges.

To answer this question, several critical challenges emerge: 1) Inconsistent Expert Selection occurs when flat prob-
ability distributions lead to similar inputs activating different experts, resulting in unstable expert training. 2) Varied
Expert Requirements across the model, as noted by Gao et al. (2024); Zeng et al. (2024), leads to uneven expert loads
when the number of activated experts is fixed across all layers. Finally, 3) Fluctuating Gradient Updates resulting
from uncertain routing decisions, cause fluctuations in gradient flows, which adversely affect convergence speed and
stability during model training. These challenges are illustrated in Figure 1.

Our Insights: To address these challenges, we propose DYNMOLE (Dynamic Routing for Mixture of LoRA Experts),
a hybrid routing approach designed to reduce router uncertainty in Mixture of LoRA Experts adapters for parameter-
efficient fine-tuning of large language models. Our approach leverages the mathematical properties of Tsallis en-
tropy (Tsallis, 1988), a generalized entropy measure, to develop adaptive routing strategies that effectively minimize
router uncertainty. Furthermore, we introduce an auxiliary loss based on Tsallis entropy to guide the model towards
convergence with reduced uncertainty, thus improving training stability and performance. By preventing over-reliance
on certain experts and promoting more equitable engagement across all experts, this method fosters a diverse and ro-
bust set of expert contributions. This approach not only optimizes computational resource allocation but also enhances
overall model performance by improving decision consistency and stability during training.

Summary of Contributions:

1. We identify the uncertainty problem in MoE routers and theoretically derive their optimal probability distri-
bution, which we term the Peaked Distribution. Through formal reasoning, we prove that Tsallis entropy
provides a more effective quantification of routing uncertainty compared to traditional measures.

2. We propose a hybrid strategy, called DYNMOLE, which enables the routing mechanism to dynamically
adjust based on the entropy of the routing distribution for each token, making expert selection more flexible
and efficient. Additionally, we introduce an auxiliary loss for DYNMOLE based on T sallis entropy, to guide
the model toward convergence with reduced uncertainty, improving training stability and performance.

3. We validate the effectiveness of DYNMOLE using widely recognized benchmarks, as used in prior works.
The results demonstrate that DYNMOLE achieves remarkable performance, outperforming LoRA by 9.6%
and MoLA, a state-of-the-art MoLE method, by 2.3%. Furthermore, we conducted a comprehensive ablation
study to explore the effectiveness of DYNMOLE’s key components.

2 BACKGROUND

In this section, we introduce the background of the Mixture of Experts (MoE) and Mixture of Large Experts (MoLE),
review existing popular routing strategies, and provide the mathematical definitions of uncertainty and entropy.
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2.1 MIXTURE-OF-EXPERTS

First introduced in 1991 by Jacobs et al. (1991), the Mixture-of-Experts (MoE) architecture has seen a resurgence in
the context of modern large-scale models, largely attributed to the work of Shazeer et al. (2017), Mustafa et al. (2022),
Lepikhin et al. (2020), and Fedus et al. (2022). Their contributions have made MoE a promising approach for scaling
models without significantly increasing computational overhead.

Each MoE layer consists of N independent networks, referred to as experts, denoted by {Ei}Ni=1, along with a gating
function G, which assigns weights to each expert based on a probability distribution. The forward propagation process
fMoE for a given input x can be mathematically expressed as:

fMoE(x) =

N∑
i=1

G(x)i · Ei(x), (1)

where router logits G(x)i represent the routing probabilities for each expert. Each expert Ei(x) produces an output
based on the input x, allowing the MoE architecture to leverage the strengths of multiple specialized models.

In this paper, we focus exclusively on routing strategies for MoLE due to the computational resource limitations of our
team. The pre-training and fine-tuning of MoE models require computational resources beyond our current capacity.

2.2 MIXTURE-OF-LORA-EXPERTS

The MoLE architecture (Wu et al., 2024c) extends the traditional Mixture of Experts approach by integrating Low-
Rank Adaptation into expert layers, significantly enhancing computational efficiency. In a MoLE layer, each expert
Ei(·) is a LoRA-enhanced module that updates only a subset of parameters while leveraging the pretrained knowledge
of the base model.

Low-Rank Adaptation, introduced by Hu et al. (2021), proposes a method that adjusts only a small number of addi-
tional parameters, rather than updating the entire weight matrix of the model. A LoRA block consists of two matrices,
B ∈ Rd×r and A ∈ Rr×k, where d and k represent the dimensions of the pretrained weight matrix W0 ∈ Rd×k in
large language models. The parameter r is the low-rank dimension, with r ≪ min(d, k). The updated weights W ′ are
computed as:

W ′ = W0 +∆W = W0 +BA, (2)

where ∆W = BA represents the LoRA-induced weight update. Formally, given N experts in a MoLE layer, denoted
by {Ei}Ni=1, and router logits G(x)i representing the routing probabilities for each expert, the forward propagation
process fMoLE for a given hidden state x is calculated as:

fMoLE(x) = W0x+∆Wx = W0x+

N∑
i=1

G(x)i · Ei(x), (3)

where W0 denotes the pretrained weights of the base model, and ∆W represents the weight updates generated by the
LoRA-enhanced experts. Each expert Ei(x) computes its output using the LoRA update rule:

Ei(x) = BiAix, (4)

with Bi ∈ Rd×r and Ai ∈ Rr×k. The low-rank matrix multiplication significantly reduces the number of trainable
parameters, improving memory efficiency and accelerating fine-tuning compared to standard MoE architectures. By
incorporating the parameter-efficient updates of LoRA, MoLE significantly enhances both computational efficiency
and model performance, especially in scenarios that require fine-tuning across multiple tasks.

2.3 ROUTING ALGORITHMS

Softmax Routing As a classic non-sparse gating function (Jordan & Jacobs, 1994), it involves multiplying the input
by a trainable weight matrix Wg and then applying the softmax function.

3
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G(x) = softmax(x ·Wg) (5)

This standard routing mechanism, often referred to as soft routing, is the foundation of all MoE routing algorithms,
enabling the MoE model to adaptively allocate resources based on the specific requirements of the input.

Top-K Routing This is one of the most commonly used MoE routing algorithms. Let R(x) = sort(G(x)) represent
the sorted probability distribution over experts for the input token x, and the algorithm is then defined as follows:

Topk(R(x)) = {i | pi(x) ⩾ p(k)(x)}, (6)

where pi(x) is the probability assigned to expert i, and p(k)(x) is the k-th highest probability in R(x). Top-k routing
selects the k experts with the highest probabilities, balancing efficiency and performance.

Top-P Routing Introduced by Huang et al. (2024), this algorithm aims to achieve variability in expert selection.
It activates experts dynamically by selecting those whose cumulative probability exceeds the given threshold. This
flexibility allows for tailored expert activation based on each token. The Top-p algorithm is formulated as follows:

Topp(R(x)) = {i |
i∑

j=1

p(j)(x) ⩾ p}, (7)

where p(j)(x) denotes the j-th highest probability in the sorted probability distribution R(x), and p is the cumulative
probability threshold. The algorithm selects the smallest set of experts whose cumulative probability is at least p,
enhancing both efficiency and adaptability.

2.4 UNCERTAINTY AND ENTROPY

Entropy was first introduced by Shannon (1948) to quantify the amount of ”choice” involved in the selection of an
event, or the level of uncertainty in its probability distribution. The Shannon entropy is defined as:

H(p) = −
N∑
i=1

pi log pi, (8)

where p = {p1, p2, . . . , pN} represents a probability distribution over N events.

Shannon entropy has been widely applied in various fields, such as natural language processing and machine learn-
ing (Jelinek, 1980; Quinlan, 1986). However, Alomani & Kayid (2023) argues that the non-additive property of Tsallis
entropy (Tsallis, 1988) provides an advantage over Shannon entropy in handling complex systems and non-Gaussian
distributions. Tsallis entropy introduces a tunable parameter q, which offers greater flexibility in measuring uncertainty
under different conditions. The parameter q, known as the entropic index, controls the degree of non-extensivity. The
Tsallis entropy is defined as:

Sq(p) =
1

q − 1

(
1−

N∑
i=1

pqi

)
, (9)

3 DEEP DIVE INTO THE ROUTING MECHANISM

In this section, we present an in-depth analysis of the routing mechanism employed in MoE and MoLE architectures.

3.1 WHAT IS THE IDEAL DISTRIBUTION OF ROUTING WEIGHTS?

Given an N -expert MoE model using a soft routing algorithm, the router generates a probability distribution normal-
ized by Softmax function. The distribution corresponds to the proportion of outputs from each expert. The initial
distribution G(x) is set as uniform. It is optimized during training to minimize a loss function L(fMoE(x), y) which is
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convex and differentiable. fMoE(x) is the model’s predicted output for input x, and y is the true label. From A.1, we
proof that the gradient of the loss function L with respect to Gi(x) is proportional to the expert output Ei(x), that is:

∂L

∂Gi(x)
∝ Ei(x) (10)

This indicates that the variation of Gi(x) during training is highly dependent on the contributions of the experts to
the model’s output, where the expert outputs directly influence the direction and magnitude of the weight updates. In
other words, for experts who contribute to a reduction in loss, the gating network increases their weights; For other
experts who result in an increase in loss, it decreases their weight.

Ideally, when the model completely converges, the weights that G(x) assigned to the subset of experts who con-
tribute most significantly to loss reduction, will be close to 1. This causes the distribution of G(x) to approach an
indicative distribution, expressed in a characteristic function form as follows:

Gi(x) =

{
1, i ∈ argmin

j
L(Ej(x), y)

0, otherwise
(11)

Though in practice, due to regularization terms and numerical stability, G(x) cannot form a perfect indicative distribu-
tion, the overall trend of allocating higher weights to a smaller subset of experts, will form a peaked distribution, as
shown in Figure 3. We use uncertainty to describe how much the current distribution deviates from the ideal peaked
distribution (indicative distribution). A greater uncertainty indicates a more uniform distribution and higher confusion
in the router selection. However, since it is hard to define peaked distribution directly in an analytic expression math-
ematically, traditional measures such as KL divergence based on mutual information, are inadequate. Therefore, we
introduce the concept of entropy from information theory.

3.2 TSALLIS ENTROPY VS. SHANNON ENTROPY

Figure 2: Tsallis entropy provides
a more stable optimization process
than Shannon entropy by reducing
the impact of low-probability events.

Tsallis Entropy Provide More Flexible. As q → 1, the Tsallis entropy degen-
erates to the Shannon entropy:

lim
q→1

Sq(p) = lim
q→1

1−
∑N

i=1 p
q
i

q − 1
= −

N∑
i=1

pi log pi = H(p) (12)

The Tsallis entropy provides a continuous framework that includes the Shannon
entropy as a special case. The entropic-index q acts as a tunable hyperparameter,
offering a powerful tool. By adjusting q, we can modulate the sensitivity of the
entropy to the probability distribution, making it a more adaptable and flexible tool
across various scenarios. The detail information is at A.2.1

Tsallis Entropy Provide More Training Stability. Consider a loss function that
incorporates an entropy regularization term: L = Ldata − λ · Entropy(fMoE(x)),
where λ is the regularization coefficient and Entropy(fMoE(x)) quantifies the un-
certainty in the router’s output. Now, let us compare the loss functions using Shan-
non entropy and Tsallis entropy, respectively. Let Gi(x) represent the routing
probability of expert i:

LShannon = Ldata − λ ·
n∑

i=1

Gi(x) logGi(x) (13)

LTsallis = Ldata − λ · 1

q − 1

(
1−

n∑
i=1

Gi(x)
q

)
(14)

When optimizing these loss functions via gradient descent, the gradients with respect to Gi(x) are given by:

5
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Figure 3: Comparison of three routing strategies: (a) the classic Top-K Routing, here we use Top-2 as example; (b) the classic
Top-P Routing, where the blue bars represent the sum of the highest probabilities; and (c) DYNMOLE Hybrid Routing, where the
green bars represent the entropy values across different probability distributions.

∂LShannon

∂Gi
=
∂Ldata

∂Gi
− λ · (1 + logGi) (15)

∂LTsallis

∂Gi
=
∂Ldata

∂Gi
− λ ·Gq−1

i (16)

Figure 2 clearly shows the trend of gradients of the two entropy functions as Gi(x) changes. For Shannon entropy, as
Gi(x)→ 0, logGi → −∞, which can lead to steep gradient magnitudes and unstable updates. In contrast, for Tsallis
entropy, as Gi(x)→ 0, the gradient λGq−1

i → 0 (q > 1), reducing the impact of low-probability events and providing
a more stable optimization process.

Tsilli Entropy Provide More Certainty: As q increases, Tsallis entropy assigns greater weights to high-probability
events in the entropy calculation, while the contribution from low-probability events diminishes. This encourages the
optimization process to choose a few experts with higher probabilities. As a result, the model is biased towards reliable
experts and avoids the uncertain ones, effectively reducing the overall uncertainty in the decision-making process.

4 DYNMOLE

In this section, we present the routing algorithm used in DYNMOLE, which integrates entropy-based selection across
various routing strategies to efficiently allocate tokens to experts, as shown in Figure 3(c). This approach, termed
dynamic routing, leverages Tsallis entropy to dynamically switch between soft routing, top-p routing, and top-k
routing mechanisms. By assigning the most suitable experts to each token, we reduce routing uncertainty and improve
model efficiency. Additionally, we incorporate Tsallis entropy into an auxiliary loss to guide the model towards
convergence with reduced uncertainty.

4.1 ENTROPY-BASED INTELLIGENT HYBRID ROUTING

In this study, we use Tsallis entropy to capture the deviation from the ideal peaked distribution, providing greater
flexibility than KL divergence. While Top-k and Top-p routing are effective, both struggle when the router has high
uncertainty, leading to nearly uniform probability distributions and reducing expert prioritization, which results in
suboptimal performance.

To address this, we propose DYNMOLE, a hybrid strategy that dynamically adjusts routing based on the entropy of
each token. For high-entropy tokens, indicating greater uncertainty, we use soft routing, allowing the model to select

6
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from a broader set of experts. For low-entropy tokens, a more deterministic Top-p routing is applied to focus on a
narrower set of likely experts. Additionally, at least k experts are always activated to prevent overfitting. This dynamic
approach balances exploration and exploitation, improving performance across different conditions.

Given the sorted router probabilities for the input token x as R(x) = sort(G(x)), and the Tsallis entropy of the router
probability as S(x) = Sq(R(x)), with a routing threshold Hthreshold, the hybrid routing Ghybrid(x) can be expressed as:

Ghybrid(x) =

{
R(x), if S(x) > Hthreshold

Top(p,k)(R(x)), otherwise
(17)

where Top(p,k)(R(x)) is defined as:

Top(p,k)(r(x)) =

{
Topp(R(x)), if p(j)(x) ⩾ p(k)(x)

Topk(R(x)), otherwise
(18)

where p(j)(x) represents the j-th largest probability in r(x) for the Top-p selection, and p(k)(x) denotes the k-th
largest probability for the Top-k selection. The function Topp(r(x)) selects the Top-p fraction of probabilities, while
Topk(r(x)) ensures that at least k experts are selected, guaranteeing sufficient diversity in expert participation based
on router probabilities.

4.2 AUXILIARY ENTROPY LOSS

To further reduce the uncertainty of the router and promote balanced expert usage, we introduce an auxiliary loss based
on Tsallis entropy and load balancing. Given N experts, the sorted router probabilities for the input token x are denoted
by R(x) = sort(softmax(G(x))), with the Tsallis entropy of the router probability defined as S(x) = Sq(R(x)). For
a batch B containing T tokens, the entropy loss is computed as:

Lentropy = β · 1
T

∑
x∈B

S(x), (19)

where β is a multiplicative coefficient controlling the impact of the entropy loss.

To encourage a balanced load across experts, we also introduce a load balance loss from Fedus et al. (2022) defined
as:

Lbalance = α ·N ·
N∑
i=1

fi · Pi (20)

The overall auxiliary loss combines both the entropy loss and the load balance loss:

Lauxiliary = Lbalance + Lentropy (21)

By incorporating this auxiliary loss, DYNMOLE improves model performance by addressing both router uncertainty
(through the Tsallis entropy loss) and router imbalance (through the load balance loss), leading to more efficient expert
utilization and reduced uncertainty in routing decisions.

5 EXPERIMENTS

In this section, we present a comprehensive evaluation of DYNMOLE. We compare the performance of DYNMOLE
with other state-of-the-art fine-tuning methods. Our experiments are designed to assess the generalization capability of
DYNMOLE in handling diverse tasks. Through extensive comparisons, we demonstrate that DYNMOLE consistently
outperforms baseline methods in terms of accuracy, particularly when integrated with entropy-based routing. Addi-
tionally, we show that DYNMOLE achieves superior performance while maintaining parameter efficiency, highlighting
its effectiveness in large language model fine-tuning.
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Table 1: Performance comparison of LLaMA-2-7B models with different PEFT methods across various benchmarks.

PEFT Method RTE ARC-e ARC-c BoolQ OBQA PIQA SIQA HellaS WinoG AVG.

LoRA 52.7 73.8 50.9 68.2 77.4 81.1 69.9 88.4 68.8 70.1

DoRA 52.7 76.5 52.8 71.7 78.6 82.7 74.1 89.6 69.3 72.0

LoRAMoE (Soft Routing) 55.6 75.7 51.5 71.7 78.4 81.9 77.7 93.5 75.6 73.5

MoLA (Top-K) 69.3 76.7 52.4 72.3 78.2 82.0 78.7 93.2 75.1 75.3

DYNMOLE (Top-P) 70.8 76.1 52.6 72.9 76.2 82.1 78.1 93.7 77.8 75.6

DYNMOLE(-) 69.0 76.8 54.9 73.5 78.0 81.9 78.1 93.2 76.7 75.8

DYNMOLE 80.1 78.6 56.0 72.9 79.2 82.5 78.5 92.9 77.8 77.6

(-) Indicates that DYNMOLE trained without auxiliary entropy loss.

5.1 EXPERIMENTAL SETUP

Datasets. To evaluate the effectiveness of DYNMOLE, we conducted experiments on a diverse set of commonsense
reasoning datasets, following prior work (Liu et al., 2024; Li et al., 2024). The datasets are as follows: ARC(Clark
et al., 2018), OpenBookQA(Mihaylov et al., 2018), PIQA(Bisk et al., 2020), SocialIQA(Sap et al., 2019), BoolQ(Clark
et al., 2019), Hellaswag(Zellers et al., 2019), Winogrande(Sakaguchi et al., 2021), and GLUE(Wang, 2018). These
datasets provide a comprehensive assessment of LLMs across various challenges, ranging from scientific queries to
commonsense inference. The performance of all methods are measured using accuracy across all datasets. Further
details are provided in Appendix A.3.

Baselines. In line with previous studies (Dou et al., 2024; Gao et al., 2024), we employed the widely-adopted Llama-
2-7B as the base model. To thoroughly assess the performance of DYNMOLE, we compared it against several promi-
nent parameter-efficient fine-tuning (PEFT) methods, including LoRA(Hu et al., 2021), DoRA(Liu et al., 2024), Lo-
RAMoE(Dou et al., 2024) (representing soft routing), and MoLA(Gao et al., 2024) (representing Top-K routing).
While no existing PEFT methods explicitly use the Top-P routing strategy(Huang et al., 2024), we fixed DYNMOLE’s
routing algorithm to Top-P to evaluate the performance of all fundamental routing strategies.

Settings. To ensure parameter consistency across experiments, both LoRA and DoRA are initialized with a rank of
r = 80, while LoRAMoE and MoLA are initialized with a rank of r = 16 across 6 experts. For all baselines, we
apply updates to the gate proj, down proj, and up proj weights within the feed-forward network (FFN) layers to
ensure fair comparisons. Importantly, we control the number of trainable parameters across all methods, ensuring that
DYNMOLE and other MoE-based approaches have an identical number of trainable parameters—approximately 3%
(200 million) of the total model parameters. Further details on hyperparameters are provided in Appendix A.4.

5.2 MAIN RESULTS

Table 1 provides a comprehensive comparison of various PEFT methods, applied to the LLaMA-2-7B model across
a diverse set of benchmarks. DYNMOLE consistently demonstrates superior performance, especially when combined
with entropy loss, achieving an average accuracy of 77.6%, which surpasses all baseline methods. These results un-
derscore the effectiveness of incorporating Tsallis entropy as a measure to improve routing decisions in MoE-based
architectures. For individual tasks, DYNMOLE with entropy loss exhibits remarkable improvements in challenging
benchmarks such as ARC-c and PIQA, achieving 56.0% and 82.5%, respectively. In particular, DYNMOLE outper-
forms traditional PEFT method LoRA by 7.5% and state-of-art PEFT method DoRA by 4.6%, clearly demonstrating
the superiority of the MoLE.

To further validate the efficacy of our proposed hybrid routing strategy, We included three important baselines: Lo-
RAMoLE, MoLA, and DYNMOLE (Top-p), representing soft routing, Top-k routing, and Top-p routing, respectively.
The Top-p method is effectively implemented by disabling the soft routing mechanism, eliminating the entropy loss
calculation of DYNMOLE, and reducing the minimum number of activated experts(Refers to the super parameter
Keep-Top-k) to one. LoRAMoE, as a soft MoE method, achieved an average accuracy of 73.5%. It combines the
strengths of the LoRA module and the MoE architecture, leading to considerable improvements over traditional PEFT
methods, yet there is still significant room for improvement in enhancing the specialization of its experts. While MoLA
achieves an average accuracy of 75.3%, showcasing that although Top-k routing is competitive, it struggles to dynam-
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(a) (b) (c) (d) (e)

Figure 4: The result of ablation studies: (a) analyzes the effect of varying the proportion of Entropy Router Loss, (b) describes the
impact of the Tsallis Entropic Index q on model performance (when q = 1, it becomes Shannon entropy), (c) reveals the results of
different soft routing thresholds, (d) shows the impact of the Top-p threshold, and (e) presents the analysis of Keep-Top-k.

ically adjust the number of active experts based on token uncertainty. On the other hand, DYNMOLE (Top-p) delivers
a commendable performance with an average accuracy of 75.6%, but its pure Top-p routing mechanism does not fully
exploit the flexibility required for dynamic token-expert assignment (Detailed results are shown in Appendix A.5).

The comparisons above highlight the advantage of DYNMOLE’s hybrid routing strategy, which leverages the benefits
of both Top-p and Top-k mechanisms. DYNMOLE(-) leverages Tsallis entropy to assist the router in customizing to-
ken routing, surpassing other advanced MoLE methods by more than 0.2%. Notably, by integrating a newly designed
auxiliary entropy loss, DYNMOLE optimizes both of the router uncertainty and load balancing among experts more
effectively, maintaining an accuracy advantage of over 2% compared to other MoLE methods. In particular, in bench-
marks like ARC-c and OBQA, the performance gap is narrower, yet DYNMOLE still maintains a consistent lead. This
consistent performance across tasks highlights DYNMOLE’s strong generalization ability, even in scenarios where the
distinction between models is less pronounced.

5.3 ABLATION STUDIES

In this section, we present a comprehensive ablation study to analyze the impact of various key hyperparameters on
the performance of DYNMOLE, across the ARC, OpenBookQA, BoolQ, and PIQA datasets using LLaMA-2-7B. The
results of these ablations, summarized in Figure 4.

5.3.1 IMPACT OF DIFFERENT ENTROPY SETTINGS ON DYNMOLE’S PERFORMANCE

In this part, we primarily discuss the impact of three entropy-related factors on model performance:

Entropy Loss Coefficient refers to a key parameter that balances the proportions of Tsallis entropy loss and load
balance loss (Equation 19). We designed different β values ranging from 1×10−4 to 1×10−2. Figure 4(a) shows that
our findings indicated an entropy router loss coefficient of 1× 10−2 achieved the highest average accuracy, effectively
addressing the challenges of imbalanced expert selection. Conversely, disabling the entropy router loss or employing
excessively high coefficients disrupts the balance between the two losses, leading to suboptimal performance.

Entropic Index is the parameter q in Tsallis entropy (Equation 9), which controls the degree of non-extensivity in
the system. It adjusts how much weight is given to rare versus frequent events in the routing mechanism. When
q = 1, Tsallis entropy reverts to Shannon entropy, treating all token-routing decisions uniformly. However, varying q
allows the model to emphasize or de-emphasize token assignments to experts based on their likelihood, influencing the
balance between exploration (specialization of experts) and exploitation (generalization). We conducted experiments
by selecting the entropic index within the range of 1.0 to 1.4 and find that an entropic index of 1.1 yielded the best
overall performance(Figure 4(b)), suggesting that introducing Tsallis entropy rather than Shannon entropy allows for
better adaptation to task complexity. Deviating from this optimal value, either by increasing or decreasing q, led
to reduced accuracy. This indicates the critical role of q in fine-tuning the routing strategy and balancing expert
specialization with generalization.

Entropy Threshold defines the soft routing threshold hthreshold in DYNMOLE. Typically, tokens with higher entropy
lead to unclear routing decisions. In our method, we send high-entropy tokens to all experts through soft routing,
allowing them to participate in the gradient update. Therefore, setting a reasonable threshold to constrain the soft
routing algorithm is crucial. We collect the performance data for models with the entropy threshold set from 0.7 to
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0.95, and find that an entropy threshold of 0.9 produced the highest accuracy (Figure 4(c)). Lower thresholds led to
the over-selection of experts, causing computational inefficiency without significant performance gains, while higher
thresholds resulted in under-utilization of experts, limiting the model’s capacity.

5.3.2 IDENTIFYING THE OPTIMAL HYPERPARAMETER FOR EFFECTIVE EXPERT SELECTION

This part include the discussion on two hyperparameters that closely related to expert selection.

Top-p refers to the threshold p in the Top-p algorithm (Huang et al., 2024), originally designed for MoE models. This
algorithm collects the confidence level of each expert in handling input x and activates a number of experts based
on cumulative probability. We examined the impact of various p values, ranging from 0.6 to 0.95, and found that a
Top-p value of 0.75 resulted in the highest accuracy (Figure 4(d)). These results highlight the importance of selecting
an optimal Top-p value to balance expert specialization and generalization, while also demonstrating the superior
adaptability of DYNMOLE compared to the Top-p approach (Figure 6).

Keep-Top-k means the minimum number of activated experts k in our architecture. The work on the Switch Trans-
former(Fedus et al., 2022) defined expert capacity, noting that if tokens are unevenly dispatched, certain experts may
overflow. Due to the limited number of activated parameters, the expert capacity of MoLE is lower than that of MoE
models, and during fine-tuning, activating only one expert can lead to overfitting, therefore, we tested different k
values ranging from 1 to 4 on the dynamic routing strategy in DYNMOLE to explore the optimal minimum number
of activated experts. We find that increasing k to 2 provided the necessary parameter activation, resulting in the best
performance improvements (Figure 4(e)), maximally avoiding overfitting issues.

Figure 5: The entropy loss of DYNMOLE efficiently re-
duces uncertainty during fine-tuning on RTE.

By appropriately configuring the parameters mentioned above,
the experiments demonstrated a significant improvement in
DYNMOLE’s performance. Figure 5 shows the change in loss
during fine-tuning on the GLUE-RTE dataset. We treat ev-
ery 320 training steps as one round and calculate the mean
and standard deviation for each round, resulting in a signifi-
cantly lower average loss compared to other methods This im-
provement is especially evident after 12 rounds, where DYN-
MOLE outperforms MoLA, LoRAMoE, and Top-p strategies,
highlighting its effectiveness in mitigating training uncertainty
(Figure 5). Additionally, by expanding the token allocation in
three dimensions, DYNMOLE shows greater ability than the
Top-p method in reducing system entropy and efficiently as-
signing tokens to optimal experts (refer to Appendix A.6 for
more details).

6 CONCLUSION

In this paper, we introduce DYNMOLE, a hybrid routing strategy that enables the routing mechanism to dynamically
adjust based on the entropy of the router’s probability distribution for each token. This dynamic adjustment allows
for more flexible and efficient expert selection, optimizing performance across diverse conditions while balancing
exploration and exploitation in token routing. Our extensive experiments on commonsense reasoning benchmarks
demonstrate that DYNMOLE achieves significant performance improvements.
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A APPENDIX

A.1 UNCERTAINTY AND ENTROPY

Consider an MoE (Mixture of Experts) model with N experts. This is an initial MoE model using only a soft routing
algorithm. For an input x, the model’s output is given by Equation 1.

Here, G(x) = [G1(x), G2(x), . . . , GN (x)] is the router’s output after softmax normalization, initialized to a uniform
distribution, satisfying Gi(x) ⩾ 0,

∑N
i=1 Gi(x) = 1. Ei(x) represents the output of the i-th expert.

We define a differentiable and convex loss function L = L(fMoE(x), y). During training, the gating network adjusts
the model parameters using gradient descent to minimize the loss function, which measures the difference between
the model’s predicted output fMoE(x) and the true label y. Specifically, we update:

Gi(x)← Gi(x)− η · ∂L

∂Gi(x)
(22)

where η is the learning rate. The partial derivative of the loss function L with respect to the gating network output
Gi(x) is:

∂L

∂Gi(x)
=

∂L

∂fMoE(x)
·∂fMoE(x)

∂Gi(x)
=

∂[G1(x)E1(x) + · · ·+Gi(x)Ei(x) + · · ·+GN (x)EN (x)]

∂Gi(x)
=

∂L

∂fMoE(x)
·Ei(x)

(23)

This shows that the gradient of the loss function L with respect to Gi(x) is proportional to the output of the expert
Ei(x):

∂L

∂Gi(x)
∝ Ei(x) (24)

This indicates that the larger the influence of Ei(x) on the model’s output, the larger the absolute value of the gradient,
meaning that adjusting Gi(x) will have a more significant impact on reducing the loss. The expert’s output directly
affects both the direction and magnitude of the weight update.Through gradient updates, the gating network adaptively
adjusts Gi(x) to increase the weights of experts that help reduce the loss and decrease the weights of experts that
increase the loss.

In the ideal case, when the model fully converges and L reaches its minimum, we expect for all experts:

∂L

∂Gi(x)
=

∂L

∂fMoE(x)
· Ei(x) = 0 for all i = 1, 2, . . . , N (25)

Since the gradient of the loss function with respect to the model output, ∂L
∂fMoE(x)

, is a constant vector for a fixed input x.
For experts that satisfy ∂L

∂fMoE(x)
·Ei(x) = 0, there may be non-zero Gi(x); for other experts where ∂L

∂fMoE(x)
·Ei(x) ̸= 0,

i.e., experts that cannot minimize the loss, Gi(x) must converge to zero to satisfy the zero-gradient condition.

This analysis shows that the distribution of G(x) will tend to assign a value of 1 to the optimal set of experts and 0 to
the other experts, forming an indicative distribution with characteristic function:

Gi(x) =

{
1, i ∈ argmin

j
L(Ej(x), y)

0, otherwise
(26)

However, in practice, due to factors such as regularization and numerical stability, G(x) cannot fully form a perfectly
indicative distribution. Moreover, an overly indicative distribution may lead to overfitting. Nonetheless, the overall
trend is still to assign greater weights to a few more optimal experts, resulting in a peak-like distribution. As the
probability distribution increasingly approaches this ideal peak distribution, the MoE model is often able to select the
optimal set of experts. Since it is difficult to define the ideal peak distribution in an analytical mathematical form,
traditional methods such as KL divergence cannot accurately measure this deviation.
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A.2 TSALLIS ENTROPY VS. SHANNON ENTROPY

A.2.1 MORE FLEXIBILE

Sq(p) =
1−

∑N
i=1 p

q
i

q − 1
(27)

we employ a Taylor series expansion around q = 1. Consider the function f(q) = pqi and expand it around q = 1:

pqi = p
1+(q−1)
i

= pi · pq−1
i

= pi exp [(q − 1) log pi]

= pi

[
1 + (q − 1) log pi +

1

2
(q − 1)2(log pi)

2 + · · ·
]
. (28)

Sum over all i:
N∑
i=1

pqi =

N∑
i=1

[
pi + pi(q − 1) log pi +

1

2
pi(q − 1)2(log pi)

2 + · · ·
]

= 1 + (q − 1)

N∑
i=1

pi log pi +
1

2
(q − 1)2

N∑
i=1

pi(log pi)
2 + · · · . (29)

Using the normalization condition
∑N

i=1 pi = 1, we have:

1−
N∑
i=1

pqi = −(q − 1)

N∑
i=1

pi log pi −
1

2
(q − 1)2

N∑
i=1

pi(log pi)
2 + · · · . (30)

Substituting back into the definition of the Tsallis entropy:

Sq(p) =
1−

∑N
i=1 p

q
i

q − 1

= −
N∑
i=1

pi log pi −
1

2
(q − 1)

N∑
i=1

pi(log pi)
2 + · · · . (31)

As q → 1+, the term (q − 1) approaches zero, and higher-order terms become negligible. Thus, we obtain:

lim
q→1+

Sq(p) = −
N∑
i=1

pi log pi. (32)

A.2.2 MORE STABLE

Consider a loss function that incorporates an entropy regularization term:

L = Ldata − λ · Entropy(fMoE(x)), (33)

where λ is a regularization coefficient controlling the influence of entropy on the overall loss, and Ldata represents the
data loss, which measures the discrepancy between model predictions and the true labels. Entropy(fMoE(x)) quantifies
the uncertainty in the router’s output.

Now, let us compare the loss functions using Shannon entropy and Tsallis entropy, respectively:

LShannon =Ldata − λ ·
n∑

i=1

Gi(x) logGi(x), (34)

LTsallis =Ldata − λ · 1

q − 1

(
1−

n∑
i=1

Gi(x)
q

)
, (35)
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where Gi(x) represents the routing probability of expert i.

When optimizing these loss functions via gradient descent, the gradients with respect to Gi(x) are given by:

∂LShannon

∂Gi
=
∂Ldata

∂Gi
− λ · (1 + logGi) , (36)

∂LTsallis

∂Gi
=
∂Ldata

∂Gi
− λ ·Gq−1

i . (37)

For Shannon entropy, as Gi(x) → 0, logGi → −∞, which can lead to steep gradient magnitudes and unstable
updates. In contrast, for Tsallis entropy, as Gi(x) → 0, the gradient λGq−1

i → 0 (q > 1), reducing the impact of
low-probability events and providing a more stable optimization process.

A.3 DATASETS

Table 2 presents detailed information about the datasets used in our experiments, including their task names, respective
domains, the number of training and test sets, task types. All datasets are downloaded from HuggingFace by using the
DATASETS library in Python.

Table 2: Description of Datasets used in experiments.

Task Name Domain # Train # Test Task Type
RTE GLUE Benchmark 2,490 277 Textual Entailment
BoolQ Wikipedia 9,427 3,270 Text Classification
ARC-E Natural Science 2,250 2,380 Question Answering
ARC-C Natural Science 1,120 1,170 Question Answering
OpenBookQA Science Facts 4,957 500 Question Answering
PIQA Physical Interaction 16,100 1,840 Question Answering
SIQA Social Interaction 33,410 1,954 Question Answering
HellaSwag Video Caption 39,905 10,042 Sentence Completion
WinoGrande Winograd Schemas 9,248 1,267 Fill in the Blank

A.4 HYPER PARAMETERS SETTING
Table 3: Hyperparameter configurations for all baseline methods and DYNMOLE fine-tuning with LLaMA2-7B.

Hyperparameters LoRA/DoRA LoRAMoE MoLA DYNMOLE
Cutoff Length 512
Learning Rate 2e-4
Optimizer AdamW
Batch size 16
Accumulation Steps 8
Dropout 0.05
Epochs 2
Where Up, Down, Gate

LoRA Rank r 80 24 24 24
LoRA Alpha α 160 48 48 48
Experts - 6 6 6
Top-K - - 2 2
Top-P - - - 0.75
Entropy Threshold - - - 0.9
Entropy Index - - - 1.1

A.5 FLEXIBILITY STUDIES

We evaluated the flexibility of DYNMOLE and the Top-p method on the ARC-c dataset (as shown in Figure 6). Similar
to Top-p, DYNMOLE demonstrates comparable performance across the three projections. However, DYNMOLE
activates the appropriate number of experts earlier and more comprehensively in response to router uncertainty.
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(a) Top-P Routing Strategy (b) DYNMOLE

Figure 6: The average number of activated experts across different transformer layers.

A.6 WORD EMBEDDING

As shown in Figure 7, we present a visualization comparing token allocation between the Top-P routing strat-
egy (Huang et al., 2024) and our proposed DYNMOLE approach. We embedded 2D visualized word tokens from
10 randomly selected sentences, coloring them based on their most confidently routed expert index from the 1st, 16th,
and 32nd Transformer layers, and projected them into 3D space using their normalized entropy. The percentage dis-
tribution of routing strategies is shown for each method. Compared to Top-P, DYNMOLE more efficiently routes
tokens with similar entropy to similar experts, resulting in significantly lower average entropy and a more balanced
load across experts, as reflected in the more even distribution across layers.

(a) Top-P Routing of Layer 1 (b) Top-P Routing of Layer 16 (c) Top-P Routing of Layer 32

(d) DYNMOLE of Layer 1 (e) DYNMOLE of Layer 16 (f) DYNMOLE of Layer 32

Figure 7: 3D visualization of token embeddings and router entropy for each token.
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