
Under review as a conference paper at ICLR 2021

TELEPORT GRAPH CONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the limitations in message-passing graph neural networks. In
message-passing operations, each node aggregates information from its neigh-
boring nodes. To enlarge the receptive field, graph neural networks need to stack
multiple message-passing graph convolution layers, which leads to the over-fitting
issue and over-smoothing issue. To address these limitations, we propose a tele-
port graph convolution layer (TeleGCL) that uses teleport functions to enable each
node to aggregate information from a much larger neighborhood. For each node,
teleport functions select relevant nodes beyond the local neighborhood, thereby
resulting in a larger receptive field. To apply our structure-aware teleport func-
tion, we propose a novel method to construct structural features for nodes in the
graph. Based on our TeleGCL, we build a family of teleport graph convolutional
networks. The empirical results on graph and node classification tasks demon-
strate the effectiveness of our proposed methods.

1 INTRODUCTION

Graph neural networks (GNNs) have shown great capability in solving challenging tasks on graph
data such as node classification (Grover & Leskovec, 2016; Kipf & Welling, 2017; Veličković et al.,
2017; Gao et al., 2018), graph classification (Xu et al., 2018; Gao & Ji, 2019; You et al., 2019),
and link prediction (Zhang & Chen, 2018; Chen et al., 2019; Zhou et al., 2019). Most graph con-
volutional networks are based on message-passing operations, in which each node aggregates in-
formation from its neighboring nodes. To enable a larger receptive field (Chen et al., 2016), GNNs
need to stack multiple layers, which is straightforward but can result in several issues. Firstly, stack-
ing multiple layers involves massive trainable parameters, which consequently increases the risk of
over-fitting. Secondly, message-passing operations mostly use averaging to combine the aggregated
features, which significantly reduces the distinguishability of network embeddings. From this point,
GNNs that are based on message-passing operations can not use deep network architecture due to
these limitations. Some works such as Geom-GCN (Pei et al., 2020) try to solve these issues by in-
volving more nodes in the feature aggregation process. However, Geom-GCN doesn’t consider the
original graph topology information when generating the additional set of nodes for aggregation,
which can neglect some relevant nodes from a structural perspective.

To address the above limitations and increase the receptive field effectively, we propose a teleport
graph convolution layer (TeleGCL) that uses teleport functions to select highly-relevant nodes at
the global scope. A teleport function computes relevances between the center node and other nodes
beyond the local neighborhood. The nodes with particular relevances are teleported for the center
node. Here, the selection of teleported nodes is not restricted by the graph topology. This enables the
center node to gather information from a larger neighborhood without going deep, which helps to
avoid over-fitting and over-smoothing issues. In particular, we propose two teleport functions; those
are structure-aware and feature-aware teleport functions. They compute the nodes’ relevances from
graph structural perspective and node features perspective, respectively. Based on our TeleGCL, we
build a family of teleport graph convolutional networks. The empirical results on graph and node
classification tasks demonstrate the effectiveness of our proposed methods.

2 BACKGROUND AND RELATED WORK

In this section, we describe message-passing operations on graph data and geometric graph convo-
lutional networks. Graph neural networks (Fan et al., 2019; Wu et al., 2019; Morris et al., 2019; Wu

1

Under review as a conference paper at ICLR 2021

et al., 2020) have achieved state-of-the-art performances on various challenging tasks in the field of
network embedding. The mainstream of graph deep learning operations follows a message-passing
schema. In a message-passing operation, each node sends its features, known as message, to its
neighboring nodes in the graph. Then each node aggregates messages from its neighborhood and
uses them to update its features. When combing the aggregated features, different strategies can
be applied. In the graph convolution layer (GCN) (Kipf & Welling, 2017), features from neigh-
boring nodes are given equal weights in the aggregation process. To assign different weights to
different neighboring nodes, the graph attention network (Veličković et al., 2017) employs an at-
tention mechanism to compute aggregation weights. Based on these message-passing operations,
graph neural networks stack multiple layers, which enables a larger receptive field. Recently, some
research works try to perform message passing beyond the local neighborhood. Pei et al. (2020)
proposed to construct a continuous latent space that enables graph neural networks to perform fea-
ture learning in the latent space. To be specific, it first projects nodes’ features to a 2-dimensional
latent and continuous space. Based on the latent space, a structural neighborhood is constructed
based on the Euclidean distance of each pair of nodes in the 2-dimensional space. In this process,
the construction of structural features does not consider the graph connectivity information in the
graph. Thus, the structural neighborhood in (Pei et al., 2020) is still built on node features without
considering the graph topology. In this work, we propose a method to generate structure-aware fea-
tures for each node. In particular, we use the graph connectivity and similarity information with the
neighboring nodes and construct a feature vector for each node. By considering graph connectivity,
our constructed structural features can reflect graph topology information.

3 TELEPORT GRAPH CONVOLUTIONAL NETWORKS

In this work, we propose the teleport graph convolution layer (TeleGCL) that enables a center node
to aggregate information beyond regular neighborhood structure by using some teleport functions.
To enable effective node teleportation, we propose two teleport functions from structure-aware and
feature-aware perspectives. Specifically, we propose a novel method to construct structural features
for nodes, which can be used by structure-aware functions to select relevant nodes. Based on our
TeleGCL, we propose the teleport graph convolutional networks for network embedding learning.

3.1 LIMITATIONS OF MESSAGE-PASSING OPERATIONS

Currently, most graph convolution networks are based on message-passing operations. In a message-
passing operation, each node aggregates information from its neighboring nodes that usually are the
one-hop neighborhood. Intuitively, it is beneficial to use information from a large neighborhood
for network embedding learning. To enlarge the receptive field, a straight way is to stack multiple
message-passing layers. A graph convolutional network with k layers enables nodes to receive infor-
mation from a k-hop neighborhood. However, this method results in two issues. Firstly, it increases
the risk of over-fitting by involving much more trainable parameters. The number of trainable pa-
rameters in the network increases when stacking multiple layers. Unlike regular convolutional neural
networks, there is no effective graph pooling layer that can enlarge the receptive field without in-
volving trainable parameters. Stacking many graph convolution layers will inevitably increase the
risk of over-fitting. Secondly, stacking multiple layers will reduce the distinguishability of network
embeddings, which is often referred to as the over-smoothing issue (Pei et al., 2020). Due to the
invariant property in graph structures, message-passing operations cannot learn trainable weights in
the aggregation process (Kipf & Welling, 2017; Gao et al., 2018). Averaging operation is usually
used for information aggregation from the neighborhood. Consequently, information from relevant
distant nodes will be diluted and each node carries similar information. In this work, we propose
a teleport graph convolution layer to address this issue. This layer enables each node to aggregate
information from a set of relevant nodes that are not directly connected to the center node in the
original graph structure. Teleport functions are used to determine the relevant nodes from different
perspectives.

3.2 TELEPORT GRAPH CONVOLUTION LAYER

To address the limitations in message-passing operations, we propose the teleport graph convolution
layer (TeleGCL), which enables nodes to aggregate information beyond their local neighborhoods.

2

Under review as a conference paper at ICLR 2021

Figure 1: Illustration of our proposed teleport graph convolution layer. In this layer, the center
node (green node) aggregates information from its local neighborhood (blue nodes), a feature-aware
neighborhood (purple nodes), and a structure-aware neighborhood (yellow nodes).

In this layer, we employ multiple teleport functions to generate neighborhoods for each node. The
teleport functions select some nodes that are relevant but not directly connected. Since these nodes
are teleported from a global context, the receptive field of each node can be effectively enlarged. We
require these functions to be permutation invariant such that the property retains in this layer.

Given a graph G = (V,E), where n = |V |, each node v ∈ V is associated with a fea-
ture vector xv ∈ Rd, and each edge (u, v) ∈ E connects node u and node v in the graph.
X = [x1,x2, . . . ,xn] ∈ Rd×n and A ∈ Rn×n are the feature matrix and adjacency matrix, re-
spectively. A teleport function g(v,G)→ N takes as input a node v and outputs a neighborhood N
that includes a set of relevant nodes for node v’s feature aggregation. In Section 3.3 and Section 3.4,
we propose two teleport functions that can construct structure-aware and feature-aware neighbor-
hoods. Suppose we have m teleport functions, node v aggregates information from a neighborhood
N (v) = {Nl(v),N1(v),N2(v), . . . ,Nm(v)}, where Nl(v) = {u|u ∈ V, (v, u) ∈ E} is the local
neighborhood and Ni(v) = gi(v,G) is a neighborhood created by the ith teleport function. Based
on this neighborhood, the layer-wise propagation of TeleGCL ` for node v is formulated as

x(`)
v = σ

 1

|N(v)|
∑

u∈N(v)

x(`−1)
u

 , (1)

where σ denotes an activation function such as ReLU (Nair & Hinton, 2010). By using teleport
functions, a node can aggregate features beyond the local neighborhood, thereby leading to a larger
receptive field.

In Section 3.2, we propose the teleport graph convolution layer that enables feature aggregation
regardless of the original graph structure. A TeleGCL highly depends on teleport functions which
select distant nodes in the feature aggregation process. In previous works (Pei et al., 2020), teleport
functions are mainly based on node features while neglecting the graph structural information. The
graph topology information should be considered to include nodes that share the same structural
patterns such as graph motifs (Ren & Jin, 2020). In this section, we propose two teleport functions;
those are structure-aware teleport function and feature-aware teleport function. They select teleport
nodes based on graph topology and node features, respectively.

3.3 STRUCTURE-AWARE TELEPORT FUNCTION

Structure-aware teleport function focuses on selecting nodes based on the graph topology. In a
graph, the nodes that share the same structural pattern contain related features. It is desirable for a
node to aggregate information from these relevant nodes. A structure-aware function can be used
to capture relevant nodes from a graph structural perspective. With a structure-aware function, the
teleported nodes for node v are selected as:

Ns(v) = {u|u ∈ V, (v, u) /∈ E, ts(v, u) > θ1}, (2)

where ts(v, u) is a structure-aware function that computes the relevance of two nodes from a struc-
tural perspective. Here, θ1 is used to determine if node u is relevant.

In this work, we propose a novel structure-aware teleport function, which computes the relevance
of two nodes by checking if they share the same structural pattern. Our proposed method is based

3

Under review as a conference paper at ICLR 2021

0.37 0.27

0.19
0.29

0.37

0.29

0.27

0.19

rankcompute
0.37

0.29

0.27

selectk

Figure 2: Illustration of our proposed method to construct structural features for a node. Given a
center node (green node), we first compute similarity scores between it and each of its neighboring
nodes. Then, we rank these scores and select the k-largest values to form its structural feature vector.

on an intuition that the nodes with the same structural pattern have similar connections with their
neighboring nodes. From this point, we create a structure feature vector for each node, which can
reflect its structural pattern such as graph motifs. For each node, we first compute its similarity scores
with its neighboring nodes. Then we rank these similarity scores and use them as the structural
feature of this node. To be specific, the structural feature vector yv for node v is constructed as

wv = XTxv, ∈Rn (3)

idxv = rankk (wv ◦A:,v) , ∈Rk (4)

yv = wv (idxv) , ∈Rk (5)

where ◦ denotes an element-wise vector multiplication, and A:,v is the vth column of the adjacency
matrix. rankk operator ranks the similarity scores and outputs the indices of the top-k values in wv .
wv(idxv) returns a subset of rows in wv indexed by idxv .

We first compute the similarity scores between node v and its neighboring nodes in Eq. (3). Each
element wu,v in wv measures the similarity between node u and node v. In Eq. (4), we rank these
similarity scores and select the k-largest values in wv . The indices of the selected values are stored
in idxv . Using indices idxv , we extract a structural feature vector yv from wv . By repeating these
operations on each node, we can obtain a structural feature matrix Y = [y1,y2, . . . ,yn] ∈ Rk×n for
all nodes in the graph. In this way, the structural feature vector is constructed from similarity scores
between the center node and its neighboring nodes. These similarity scores encode its connectivity
pattern with surrounding nodes, thereby reflecting the structural information in the graph.

Based on structural features, we use dot product to compute the relevance of node u and node v:
ts(u, v) = softmax(yT

u yv), which can measure relevance from the perspectives of both angle and
magnitude in an efficient way. As illustrated in Eq. (2), the teleport nodes can be selected based on
our constructed structural features.

3.4 FEATURE-AWARE TELEPORT FUNCTION

In a feature-aware teleport function, the teleported nodes are selected based on node features. A
feature-aware teleport function can select highly relevant nodes based on their features. By using
this function, the teleported nodes for node v are selected as:

Nf (v) = {u|u ∈ V, (v, u) /∈ E, tf (v, u) > θ2}, (6)

where tf (v, u) is a teleport function. θ2 is a threshold to determine if a node is teleported.

Notably, Geom-GCN (Pei et al., 2020) uses a special case of this feature-aware teleport function.
In Geom-GCN, node features are projected into a 2-dimensional space then the Euclidean distance
is computed and used. The structural features in Geom-GCN are based on the latent space without
considering graph topology information. The time complexity of this function is O(2d).

In our feature-aware teleport function, we use dot product to compute the relevance, which is
effective and can slightly reduce the computational cost. To be specific, the feature-based rele-
vance between node u and node v is computed as tf (v, u) = softmax(xT

uxv). By combining
structure-aware and feature-aware teleport functions, the neighborhood for node v is defined as
N(v) = {Nl(v),Nf (v),Ns(v)}. In our proposed TeleGCL, each node aggregates information from
nodes in neighborhood N(v).

4

Under review as a conference paper at ICLR 2021

GCN MLPTeleGCL TeleGCL
Pool Pool

Figure 3: Illustration of our proposed teleport graph convolutional networks. In this example, the
input graph contains five nodes, each of which has two features. We first use a GCN layer to learn
a new feature embedding for each node. Each of the following two blocks contains a TeleGCL and
a pooling layer to reduce graph size. The outputs of all convolution layers are globally reduced and
fed into the final multi-layer perceptron for prediction.

3.5 TELEPORT GRAPH CONVOLUTIONAL NETWORKS

Based on our TeleGCL, we build a family of teleport graph convolutional networks (TeleGCNs).
Given an input graph, we first use an embedding layer to learn low-dimensional continuous fea-
ture embeddings for nodes in the graph. Possible choices for this embedding layer include fully-
connected layer and GCN layer. Here, we use a GCN layer to learn feature embeddings. Then
several convolutional blocks are stacked to gradually learn network embeddings. In each convo-
lutional block, we use our TeleGCL to learn high-level feature embedding, and a pooling layer
to reduce the graph size and involve more non-linearity. Here, we use a sampling-based pooling
method to retrain original graph structures and reduce the risk of over-fitting. Specifically, we use
top-k pooling (Gao & Ji, 2019) layers in our model. Finally, we stack the outputs of all TeleGCLs
and the output of the first GCN layer. To deal with variable graph sizes in terms of the number of
nodes in a graph, we employ several global pooling layers such as averaging, maximization, and
summation to reduce these outputs into vectors. These feature vectors are concatenated and fed into
a multi-layer perceptron (MLP) for prediction.

4 EXPERIMENTS

In this section, we conduct experiments on graph classification tasks to evaluate our proposed meth-
ods. We compare our teleport graph convolutional networks (TeleGCNs) with previous state-of-the-
art models. We conduct ablation studies to investigate the contributions of our proposed teleport
functions. Some experiments are performed to study the impact of thresholds in teleport functions.
Our code and detailed experimental setups are available in the supplementary material.

4.1 RESULTS ON GRAPH CLASSIFICATION TASKS

We evaluate our proposed TeleGCL and TeleGCNs on graph classification tasks. We compare our
TeleGCNs with the previous model on seven datasets including PROTEINS (Borgwardt et al., 2005),
COLLAB, D&D (Dobson & Doig, 2003), IMDB-MULTI (Yanardag & Vishwanathan, 2015a),
REDDIT-BINARY, REDDIT-MULTI-5K, and REDDIT-MULTI-12K (Yanardag & Vishwanathan,
2015b). These datasets are benchmarking graph datasets and are widely used for evaluation in this
community. Notably, these datasets have no test dataset. The common practice (Xu et al., 2018;
Ying et al., 2018; Gao & Ji, 2019; Lee et al., 2019) is to run 10-fold cross-validation on the train-
ing dataset and report the average accuracy (%) with standard deviation. We choose six previous
state-of-the-art models as baseline models (Shervashidze et al., 2011; Niepert et al., 2016). We
strictly follow the same practices as previous works. In bioinformatics datasets such as PROTEINS
and D&D, we use original node features in the datasets. In social network datasets like REDDIT-
BINARY and IMDB-MULTI, we use node degrees as their initial features. The hyper-parameters
in TeleGCNs are slightly tuned on D&D dataset and are migrated to other datasets with slightly
different selections.

The experimental results on graph classification tasks are summarized in Table 1. Here, we report
the graph classification accuracies with standard deviations. It can be seen from the results that our
proposed TeleGCNs achieve significantly better performances than previous state-of-the-art models
on six out of seven datasets. To be specific, our TeleGCNs outperform previous models by margins
of 1.4%, 2.4%, 21.7%, 4.6%, 1.9%, and 5.6% on PROTEINS, COLLAB, D&D, IMDB-MULTI,

5

Under review as a conference paper at ICLR 2021

Table 1: Results on graph classification tasks using PROTEINS, COLLAB, D&D, IMDB-MULTI,
REDDIT-BINARY, REDDIT-MULTI-5K, and REDDIT-MULTI-12K datasets. We compare our
TeleGCNs with previous state-of-the-art models. We report the graph classification accuracies (%)
with standard deviations on these datasets.

PROTEINS COLLAB D&D IMDBM REDDITB REDDIT5 REDDIT12
#classes 2 3 2 3 2 5 11
#graphs 1113 5000 1178 1500 2000 4999 11929
#nodes 39.1 74.5 284.3 13 429.6 508.5 391.4
WL 75.0 ± 3.1 78.9 ± 1.9 78.3 ± 0.6 50.9 ± 3.8 81.0 ± 3.1 52.5 ± 2.1 44.4 ± 2.1
PSCN 75.9 ± 2.8 72.6 ± 2.2 76.3 ± 2.6 45.2 ± 2.8 86.3 ± 1.6 49.1 ± 0.7 41.3 ± 0.8
DIFFPOOL 76.3 75.5 80.6 - - - 47.1
DGCNN 75.5 ± 0.9 73.8 ± 0.5 79.4 ± 0.9 47.8 ± 0.9 - - 41.8 ± 0.6
SAGPool 71.9 - 76.5 - - - -
Top-k Pool 77.6 ± 2.6 77.5 ± 2.1 82.4 ± 2.9 51.8 ± 3.7 85.5 ± 1.3 48.2 ± 0.8 44.5 ± 0.6
GIN 76.2 ± 2.8 80.6 ± 1.9 82.0 ± 2.7 52.3 ± 2.8 92.4 ± 2.5 57.5 ± 1.5 -
TeleGCN 79.0 ± 4.3 83.0 ± 1.3 84.1 ± 2.9 56.9 ± 3.2 94.3 ± 0.7 56.6 ± 2.1 50.1 ± 1.3

REDDIT-BINARY, and REDDIT-MULTI-12K datasets. The results above show that our TeleGCNs
consistently yield state-of-the-art performances on graph classification tasks, which demonstrate the
effectiveness of our methods. By using teleport functions, TeleGCL can rapidly and effectively
increase the receptive fields without involving massive trainable parameters.

4.2 PERFORMANCE STUDY ON SMALL DATASETS

Table 2: Results on graph classification tasks us-
ing MUTAG, PTC, and IMDB-BINARY datasets.
We compare our TeleGCNs with previous state-
of-the-art models. We report the graph classifica-
tion accuracies with standard deviations.

MUTAG PTC IMDBB
#classes 2 2 2
#graphs 188 344 1000
#nodes 17.9 25.5 19.8
WL 90.4 ± 5.7 59.9 ± 4.3 73.8 ± 3.9
PSCN 92.6 ± 4.2 60.0 ± 4.8 71.0 ± 2.2
DGCNN 85.8 ± 1.7 58.6 ± 2.4 70.0 ± 0.9
Top-k Pool 87.2 ± 7.8 64.7 ± 6.8 75.4 ± 3.0
GIN 90.0 ± 8.8 64.6 ± 7.0 75.1 ± 5.1
TeleGCN 93.5 ± 6.8 73.8 ± 3.7 79.8 ± 2.5

The experimental studies in Section 4.1 on
relatively large datasets in terms of the num-
ber of graphs demonstrate the effectiveness
of our proposed methods. In this section,
we conduct experiments to study the perfor-
mances of our TeleGCNs on three relatively
small datasets; those are MUTAG (Wale et al.,
2008), PTC (Toivonen et al., 2003), and IMDB-
BINARY (Yanardag & Vishwanathan, 2015a).
MUTAG and PTC are bioinformatics datasets,
while IMDB-BINARY is a popular social net-
work dataset. We follow the same experimental
setups as previous works (Xu et al., 2018; Ying
et al., 2018; Gao & Ji, 2019). The experimental
setups for experiments are provided in the sup-
plementary material. The experimental results
are summarized in Table 2. Due to the lack of testing datasets, we follow the common practices
in previous works (Xu et al., 2018; Ying et al., 2018) and report the average accuracies by running
10-fold cross-validation on the training dataset. It can be seen from the results that our TeleGCNs
achieve promising results on these relatively small datasets. Our TeleGCNs outperform previous
models by margins of 0.9%, 9.1%, and 4.4% on MUTAG, PTC, and IMDB-BINARY datasets.
The good performances on small datasets demonstrate that our proposed TeleGCL can effectively
increase the receptive field without increasing the risk of over-fitting. To be specific, TeleGCL
achieves a larger receptive field by using teleport functions, which teleport relevant nodes without
using extra trainable parameters.

4.3 ABLATION STUDY OF TELEPORT FUNCTIONS

In this section, we conduct experiments to study the contributions of our proposed teleport func-
tions to the overall performances. In our TeleGCL, we use both structure-aware and feature-aware
teleport functions to enlarge the receptive fields without stacking many graph convolution layers.
The promising results in previous sections have demonstrated the effectiveness of our methods. To
investigate the individual contributions of each teleport function, we build multiple networks with

6

Under review as a conference paper at ICLR 2021

Table 3: Comparison of our TeleGCNs with the
networks using the same network architecture
with TeleGCL replaced by GCN (denoted as GC-
Net) and the networks only with structure-aware
teleport function (denoted as TeleGCN-ts) and
that with feature-aware teleport function (denoted
as TeleGCN-tf), respectively. We report the graph
classification accuracies with standard deviations
on three datasets.

IMDBM REDDITB REDDIT12
GCNet 55.9 ± 4.4 93.2 ± 1.5 49.1 ± 1.5
TeleGCN-ts 56.8 ± 3.6 94.1 ± 0.9 49.9 ± 1.4
TeleGCN-tf 56.4 ± 3.6 93.5 ± 1.4 49.9 ± 1.1
TeleGCN 56.9 ± 3.2 94.3 ± 0.7 50.1 ± 1.3

the same network architecture as TeleGCN.
To be specific, we build two networks that
only use the feature-aware and structure-aware
teleport functions. We denote these two net-
works as TeleGCN-ts and TeleGCN-tf , respec-
tively. Also, we replace our TeleGCLs with
GCNs in the network, which results in GCNet.
We evaluate these networks on IMDB-MULTI,
REDDIT-BINARY, and REDDIT-MULTI-12K
datasets. To ensure fair comparisons, we use
the same experimental setups for these net-
works. The experimental results are summa-
rized in Table 3. It can be seen from the results
that the best performances are achieved when
two teleport functions are used. The networks
with teleport functions significantly outperform GCNet by margins of 1.0%, 1.1%, and 1.0% on
IMDB-MULTI, REDDIT-BINARY, and REDDIT-MULTI-12K datasets. The results demonstrate
the promising contributions of teleport functions.

4.4 COMPARISON WITH GEOM-GCN ON NODE CLASSIFICATION TASKS

Table 4: Comparison results of our TeleGCNs
with GCN, GAT, and Geom-GCN on node clas-
sification tasks. We report the node classification
accuracies on Chameleon and Squirrel datasets.

Chameleon Squirrel
GCN 28.2 24.0
GAT 42.9 30.0
Geom-GCN 60.9 38.1
TeleGCN 62.0 39.1

In previous sections, we evaluate our methods
using graph classification tasks under inductive
settings. Here, we conduct experiments to eval-
uate our methods on node classification tasks.
We compare our TeleGCN with GCN, GAT,
and Geom-GCN on Chameleon and Squirrel
datasets (Rozemberczki et al., 2019). To ensure
fair comparisons, we use the same experimental
setups as Geom-GCN. The statistics of datasets
and results are summarized in Table 4. From
the results, we can see that our TeleGCN outperforms previous models by margins of 1.1% and 1.0%
on Chameleon and Squirrel datasets, respectively. This demonstrates the superior performances of
our TeleGCN over previous state-of-the-art models.

4.5 PERFORMANCE STUDIES OF THRESHOLDS IN TELEPORT FUNCTIONS

Figure 4: Comparison of TeleGCNs with teleport
functions of different thresholds on PTC, PRO-
TEINS, and REDDIT-BINARY datasets.

In our proposed TeleGCL, teleport functions
employ thresholds to determine if the relevance
of nodes is significant. Thus, the threshold is
a very important hyper-parameter in our pro-
posed methods. It controls the number of nodes
teleported in the feature aggregation process.
In this section, we conduct experiments to in-
vestigate how different threshold values affect
the performance of TeleGCN models. In our
TeleGCNs, all teleport functions share the same
threshold that is α/|V |. This can help to ac-
commodate input graphs with variable sizes. In
the experiments of previous sections, we set
the hyper-parameter α to 2. Here, we vary
the thresholds in TeleGCNs and evaluate the
resulting networks on D&D, PROTEINS, and
IMDB-MULTI datasets. We report the graph
classification accuracies (%) as illustrated in
Figure 4. As demonstrated in the figure, the model achieves the best performance when α = 2.
When the threshold is small, many nodes are teleported for feature aggregation, thereby leading to
an over-smoothing problem. As the threshold increases, fewer nodes are selected and the receptive
field is not effectively enlarged.

7

Under review as a conference paper at ICLR 2021

Figure 5: Visualization of teleported nodes. In these graphs, green nodes are center nodes. Yellow
nodes are teleported to center nodes by our structure-aware teleport function. From these graphs,
we can see that the teleported nodes (yellow) share similar structural patterns as center nodes.

4.6 PERFORMANCE STUDIES OF k

Table 5: Comparison of our TeleGCNs using dif-
ferent k values when constructing structural fea-
tures in structure-aware teleport functions. We re-
port the graph classification accuracies.
k D&D PROTEINS IMDBB
2 83.8 78.6 79.2
4 84.0 79.0 79.5
8 84.1 79.0 79.8
16 84.1 78.8 79.8

In our structure-aware teleport function, we
propose a novel method to construct structural
features for teleport function to compute sim-
ilarities of nodes from graph structural per-
spective. Essentially, each node uses the con-
nections with k neighborhoods to build a k-
dimensional feature vector. From this point, k
is an important hyper-parameter especially for
our TeleGCL. In this section, we conduct exper-
iments to study the impacts of different k values
on overall model performances. To this end, we vary the values of k in TeleGCLs and evaluate the
resulting models on three datasets; those are D&D, PROTEINS, and IMDB-BINARY. We report
graph classification performances on these datasets. The results are summarized in Table 5. We
can observe from the results that the networks achieve the best performances when k = 8. As the
increase of k, there is no significant improvement in network performances but the computational
cost for computing relevances will increase. Thus, we set k = 8 in our experiments as it is the best
practice for both efficiency and performance.

4.7 VISUALIZATION OF TELEPORTED NODES

In our proposed structure-aware teleport function, the nodes that share the same structural patterns
as the center node are teleported. In this part, we provide some visualization analysis of these
teleported nodes. Here, we select three graphs from the PROTEINS dataset and visualize them in
Figure 5. The green node in each graph is the center nodes and the orange nodes are teleported by the
structure-aware teleport function. We can observe from these graphs that the teleported nodes share
very similar graph topology information to their corresponding center nodes. The teleported nodes
in the first and third graphs are multiple hops away from the center nodes. The teleported nodes
enable the center nodes to aggregate information from a larger receptive field. This demonstrates
that our proposed structure-aware teleport function can select informative nodes for center nodes
beyond the local neighborhood.

5 CONCLUSION

In this work, we address two major limitations of graph convolutional networks that are usually
based on message-passing operations. To overcome the over-fitting and over-smoothing issues, we
propose the teleport graph convolution layer, which utilizes teleport functions to select relevant
nodes beyond the original graph structure. In particular, we propose two teleport functions; those
are structure-aware and feature-aware teleport functions. These two teleport functions can select rel-
evant nodes from structural and feature perspectives. Based on our TeleGCL, we construct teleport
graph convolutional networks on network embedding learning.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. Transactions on Pattern Analysis and Machine Intelligence, 2016.

Zhengdao Chen, Joan Bruna Estrach, and Lisha Li. Supervised community detection with line graph
neural networks. In 7th International Conference on Learning Representations, ICLR 2019, 2019.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

Hongyang Gao and Shuiwang Ji. Graph U-Nets. In International Conference on Machine Learning,
pp. 2083–2092, 2019.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional
networks. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1416–1424. ACM, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864. ACM, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. The International
Conference on Learning Representations, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations, 2017.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of The
36th International Conference on Machine Learning, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4602–4609,
2019.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International Conference on Machine Learning, pp. 2014–2023, 2016.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Weikai Ren and Ningde Jin. Sequential limited penetrable visibility-graph motifs. Nonlinear Dy-
namics, pp. 1–10, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. arXiv
preprint arXiv:1909.13021, 2019.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):2539–
2561, 2011.

9

Under review as a conference paper at ICLR 2021

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Hannu Toivonen, Ashwin Srinivasan, Ross D King, Stefan Kramer, and Christoph Helma. Statistical
evaluation of the predictive toxicology challenge 2000–2001. Bioinformatics, 19(10):1183–1193,
2003.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2017.

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification. Knowledge and Information Systems, 14(3):347–375, 2008.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based rec-
ommendation with graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 346–353, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1365–1374.
ACM, 2015a.

Pinar Yanardag and SVN Vishwanathan. A structural smoothing framework for robust graph com-
parison. In Advances in Neural Information Processing Systems, pp. 2134–2142, 2015b.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems, pp. 4800–4810, 2018.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In International
Conference on Machine Learning, pp. 7134–7143, 2019.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances in
Neural Information Processing Systems, pp. 5165–5175, 2018.

Kai Zhou, Tomasz P Michalak, Marcin Waniek, Talal Rahwan, and Yevgeniy Vorobeychik. Attack-
ing similarity-based link prediction in social networks. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 305–313. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2019.

10

Under review as a conference paper at ICLR 2021

A APPENDIX

In this section, we introduce the experimental setup for our experiments. In this work, we mainly
utilize graph classification tasks to demonstrate the effectiveness of our proposed methods. We con-
duct experiments on ten datasets; those are PROTEINS, COLLAB, D&D, IMDB-BINARY, IMDB-
MULTI, MUTAG, PTC, REDDIT-BINARY, REDDIT-MULTI5K, and REDDIT-MULTI12K. In our
proposed TeleGCNs, we use a GCN layer as the initial embedding layer. After that, three blocks as
described in Section 3.5 are stacked before the final multi-layer perceptron. In each block, we use a
TeleGCL and a gPool layer (Gao & Ji, 2019). The output features of the initial GCN and TeleGCLs
are reduced to three 1-dimensional feature vectors using global max, global averaging, and global
summation operations. These feature vectors are concatenated and fed into a two-layer perceptron.
The number of hidden neurons is 512. In each convolutional layer, we apply a dropout (Srivastava
et al., 2014) to the feature matrix. In the multi-layer perceptron, we also use dropout on input feature
vectors. The hyper-parameter tuning is performed on the D&D dataset with slight changes on other
datasets. The details of hyper-parameters are summarized in Table 6.

Table 6: Hyper-parameters for each dataset used in this work.
tel k tel thred layer dim net drop cls drop net act cls act

PROTEINS 8 2 64 0.3 0.3 ELU ELU
COLLAB 8 2 64 0.3 0.2 ELU ReLU
D&D 8 2 128 0.3 0.3 ELU ELU
IMDBB 8 2 48 0.3 0.2 LeakyReLU ELU
IMDBM 8 2 48 0.1 0.1 LeakyReLU ELU
MUTAG 8 2 64 0.0 0.1 ELU ELU
PTC 8 2 64 0.2 0.2 ELU ELU
REDDITB 8 2 64 0.1 0.01 ELU ELU
REDDIT5 8 2 64 0.0 0.01 ELU ELU
REDDIT12 8 2 64 0.0 0.01 ELU ELU

On each dataset, we run experiments for 200 epochs by using an Adam optimizer (Kingma & Ba,
2015). The learning rate is 0.001 with a weight decay of 0.0008 to reduce the risk of over-fitting.
The batch size is set to 64. We use a NVIDIA GeForce RTX 2080 Ti GPU to train our models.

11

	Introduction
	Background and Related Work
	Teleport Graph Convolutional Networks
	Limitations of Message-Passing Operations
	Teleport Graph Convolution Layer
	Structure-Aware Teleport Function
	Feature-Aware Teleport Function
	Teleport Graph Convolutional Networks

	Experiments
	Results on Graph Classification Tasks
	Performance Study on Small Datasets
	Ablation Study of Teleport Functions
	Comparison with Geom-GCN on Node Classification Tasks
	Performance Studies of Thresholds in Teleport Functions
	Performance Studies of k
	Visualization of Teleported Nodes

	Conclusion
	Appendix

