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Abstract

Thompson sampling (TS) is a simple, effective stochastic policy in Bayesian
decision making. It samples the posterior belief about the reward profile and
optimizes the sample to obtain a candidate decision. In continuous optimization, the
posterior of the objective function is often a Gaussian process (GP), whose sample
paths have numerous local optima, making their global optimization challenging.
In this work, we introduce an efficient global optimization strategy for GP-TS
that carefully selects starting points for gradient-based multi-start optimizers. It
identifies all local optima of the prior sample via univariate global rootfinding, and
optimizes the posterior sample using a differentiable, decoupled representation. We
demonstrate remarkable improvement in the global optimization of GP posterior
samples, especially in high dimensions. This leads to dramatic improvements in the
overall performance of Bayesian optimization using GP-TS acquisition functions,
surprisingly outperforming alternatives like GP-UCB and EI.

1 Introduction

Bayesian optimization (BO) is a highly successful approach to the global optimization of expensive-
to-evaluate black-box functions [1]. Effectively, there are two nested iterations in BO: the outer-loop
seeks to optimize the objective function f(x); and the inner-loop seeks to optimize the acquisition
function α(x) at each stage. The premise of BO is that the inner-loop optimization can be solved
accurately and efficiently, so that the outer-loop proceeds informatively with a negligible added cost.
In fact, the convergence guarantees of many BO strategies assume exact global optimization of the
acquisition function [2–4]. However, this is more challenging than commonly assumed [5].

Gaussian process Thompson sampling (GP-TS) [6] uses posterior samples directly as acquisition
functions. It has strong theoretical guarantees [4], scales to high dimensions [7], and can be easily
parallelized [8, 9, 6]. It is also used in computing information-theoretic acquisition functions such as
predictive entropy search [10] and max-value entropy search [11]. But posterior sample functions are
notoriously difficult to optimize due to their complexity.

We present an efficient strategy that globally optimizes GP-TS acquisition functions by judiciously
selecting starting points for gradient-based multi-start optimizers. It exploits the separability of
multivariate GP priors and the decomposition of GP posterior samples per “Matheron’s rule” [12].
The former allows for the identification of all local minima of a GP prior sample using a robust
rootfinding algorithm; the latter links the prior sample and the data to a posterior sample, relates their
critical points, and facilitates the selection of starting points.

2 Spectral Representation of Gaussian Processes

Gaussian Processes. Given a training dataset D = {(X,y)} = {(xi, yi)}Ni=1, where xi is an input
location and yi is the corresponding observation. Define an observation model y(x) = f(x) + ϵ,
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where f(x) is an unknown objective function and ϵ iid∼ N (0, σ2
n ) is independent and identically

distributed (iid) zero-mean Gaussian noise.

A GP assumes that any finite subset of function values has a joint Gaussian distribution [13]. This
assumption is encoded in the GP prior f(x) ∼ GP (m(x), κ(x,x′)), where m(x) is the mean
function and κ(x,x′) a positive definite covariance function. Conditioning the GP prior on the data
provides a posterior that is also a GP. Assuming m(x) = 0, the GP posterior can be written as
f(x⋆)|D ∼ GP (m̂(x⋆), κ̂(x⋆,x

′
⋆)). Here the posterior mean m̂(x⋆) = k⊺(x⋆,X)C−1y and the

posterior covariance κ̂(x⋆,x
′
⋆) = κ(x⋆,x

′
⋆)− k⊺(x⋆,X)C−1k(x′

⋆,X), where C = K+ σ2
n I with

Kij = κ(xi,xj) (i, j ∈ {1 . . . , N}), and k(x⋆,X) =
[
κ(x⋆,x

1), . . . , κ(x⋆,x
N )

]⊺
.

Spectral Representation of Gaussian Processes. Per Mercer’s theorem on probability spaces [13],
any positive definite covariance function that is essentially bounded with respect to some probability
measure µ on the domain X has a spectral representation κ(x,x′) =

∑∞
k=0 λkϕk(x)ϕk(x

′), where
(λk, ϕk(x)) is a pair of eigenvalue and eigenfunction of the kernel integral operator. A sample function
from the GP prior can thus be written as f(x) =

∑∞
i=0 wk

√
λkϕk(x), where wk

iid∼ N (0, 1).

Decoupled Representation of GP Posteriors. Given a GP prior sample f(x), we can determine
a posterior sample f̃(x) using a decoupled representation that updates the prior sample according
to Matheron’s rule [12]. For observations contaminated by iid Gaussian noise, we have f̃(x⋆) =

f(x⋆) + k⊺(x⋆,X)C−1 (y − f − ϵ), where f =
[
f(x1), . . . , f(xN )

]⊺
and ϵ

iid∼ NN (0, σ2
n IN ).

3 Global Optimization to Thompson Sampling Acquisition Functions

Assumptions. We use a GP prior with a separable covariance function. We require that the univariate
components of this covariance function either have known spectral representations per Mercer’s
theorem, or have known spectral densities per Bochner’s theorem with an effective discretization
(see e.g., [14, 7]), and that the corresponding samples are continuously differentiable. The squared
exponential (SE) covariance function meets these requirements and is of our focus in the following.
We further assume that the objective function is defined on a hypercube X =

∏d
i=1[xi, xi].

Spectrum of SE Covariance Function. Consider the univariate SE covariance function κ(x, x′; l) =
exp

(
− 1

2 (x− x′)2/l2
)
, where l is the characteristic length scale. Per Mercer’s theorem, it has a

spectral representation κ(x, x′) =
∑∞

k=0 λkϕk(x)ϕk(x
′). For a Gaussian measure µ = N (0, σ2)

over the real line, let a = (2σ2)−1, b = (2l)−1, c =
√
a2 + 4ab, and A = 1

2a + b + 1
2c.

For k ∈ N, the kth eigenvalue is λk =
√
a/A (b/A)

k and a corresponding eigenfunction is

ϕk(x) = (πc/a)
1/4

ψk(
√
cx) exp

(
1
2ax

2
)
, where ψk(x) =

(
π1/22kk!

)−1/2
Hk(x) exp

(
− 1

2x
2
)

and Hk(x) = (−1)k exp(x2) dk

dxk exp(−x2) is the kth Hermite polynomial (see e.g., [15] Sec. 4).

Prior Sample Functions. The separability of the covariance function and the known spectral rep-
resentations of the component covariance functions allow us to accurately approximate the prior
sample as f(x) ≈

∏d
i=0

∑Ni−1
k=1 wi,k

√
λi,kϕ(xi). Here Ni is selected for each variate such that

λi,Ni−1/λi,1 ≤ ηi, where ηi is sufficiently small, e.g., ηi = 10−16.

Properties of Posterior Sample Functions. With the decoupled representation of GP posteriors, each
posterior sample has the form of f̃(x) = f(x) + b(x). Here, the prior sample f(x) =

∏d
i=1 fi(xi)

is fast-varying and separable, enabling the use of efficient univariate root-finding algorithms [16]
to identify all its critical points. The data adjustment b(x) =

∑N
j=1 vjκ(x,x

j), where vj ∈ R, is
a weighted sum of canonical basis functions. While not separable, it is smoother, has much fewer
critical points than the prior sample, and has limited effect away from data points.

Critical Points of Multivariate Separable Functions. The critical points of the multivariate separable
prior sample f(x) =

∏d
i=1 fi(xi) are exactly the critical points of its univariate components fi(xi),

arbitrarily combined, except for when f(x) = 0. As a result, we can find all the relevant critical
points of the prior sample function f(x) by solving a global rootfinding problem for the derivative
of each of its univariate components: f ′i(xi) = 0, i ∈ {1, · · · , d}. We also add the upper and lower
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Figure 1: Illustration of exploration and exploitation sets for global optimization of GP-TS acquisition
functions. (a) When the global minimum of the GP-TS acquisition function lies outside the interpola-
tion region, it is typically identified by starting the gradient-based optimizer at a local minimum of
the prior sample. (b) When the global minimum is within the interpolation region, it can be found by
starting the gradient-based optimizer at either a data point or a local minimum of the prior sample.

bounds of each variable xi to the set of critical points of fi, as they can define the extrema of f(x) on
the bounded domain. Let {ζi,j}rij=1 represent the set of critical points of fi(xi).

Local Minima of Multivariate Separable Functions. Given the univariate critical points, identifying
a local minimum of a multivariate separable prior sample f(x) is straightforward. Let x = (ζi,s(i))

d
i=1

be an arbitrary combination of the univariate critical points, where s = (s(i))di=1 is a multi-index.
If x is an interior point, it is a local minimum if ∇2f(x) ≻ 0, which has the form ∇2f(x) =
diag{

∏
i ̸=j fj(xj)f

′′
i (xi)}di=1. If x is a boundary point, the criterion is slightly modified. Without

enumerating all combinations, best subsets of the local minima Smin can be efficiently identified
as follows: (1) filter the critical points for local extrema, exploiting the structures of ∇2f(x) and
∇f(x); (2) select the local extrema with the largest |f |, using a max heap data structure; and (3) local
minima have negative f values.

Global Optimization to Thompson Sampling. To globally optimize a GP-TS acquisition function
in each BO iteration, we use two sets of starting points for a gradient-based multi-start optimizer,
namely exploitation Sp and exploration Se. Here Sp contains the data points, while Se is either Smin,
or a subset of Smin when the number of its members is too large, e.g., > 1000. Figure 1 illustrates
the exploration and exploitation sets for global optimization of two GP-TS acquisition functions.

Our optimization strategy is motivated by a few observations. When the prior sample f is added to
the smoother landscape of the data adjustment b, each local minimum of f will be located nearby a
local minimum of the posterior sample f̃ . Searching from data points can discover good local minima
of f̃ in the vicinity of the data set, which can pickup some local minima not readily discovered by the
local minima of f . This is especially true if f is relatively flat near a data point. Starting from both
Se and Sp can thus give sufficient coverage of the best local minima of f̃ , leading to efficient global
optimization of GP-TS acquisition functions.

4 Experiments

Inner-Loop Optimization. We minimize the 2d Schwefel and 10d Levy functions [17] to assess
the quality of the inner-loop solutions recommended by our proposed method. We start with 10d
data points, normalize the input data to [−1, 1]d, and standardize the output data. We set σ = 1 and
σn = 10−6. For comparison, we optimize the same GP-TS acquisition functions using a gradient-
based multi-start optimizer with random starting points (i.e., random multi-start) and a genetic
algorithm. The number of starting points for the random multi-start and the population size of the
genetic algorithm are equal to the number of starting points of our method. The same stopping criteria
are used for the three algorithms.

3



    

    
 

 

 

 
 

(a) 2d Schwefel 

2d Schwefel 10d Levy  

10d Levy  

(b) 

(a) 

(b) 

Figure 2: Optimization results for (a) 2d Schwefel and (b) 10d Levy functions. Top-left: Cumulative
distances between new candidate solutions x⋆

k to the true global minimums xt
k of the GP-TS acquisi-

tion functions f̃(x) for 2d Schwefel function. Bottom-left: Cumulative optimized values f̃⋆k for 10d
Levy function. Middle: Cumulative run time tk required for optimizing f̃(x). Right: Histories of
medians and interquartile ranges of solutions from 20 runs of our method, TS-RF, EI, and LCB.

Figure 2 compares the inner-loop solutions and CPU times for inner-loop optimization by our method,
random multi-start, and genetic algorithm. For both problems, our method outperforms the random
multi-start and genetic algorithm in terms of the inner-loop solution quality and the run time required
for optimizing GP-TS acquisition functions. This verifies the importance of judicious selection of
starting points for optimizing GP-TS acquisition functions in both low and high dimensions.

Outer-Loop Optimization. We compare the outer-loop solutions by our method with those by other
BO methods, including TS with random Fourier features (TS-RF) [18, 10], expected improvement (EI)
[19], and lower confidence bound (LCB)—the version of GP-UCB [2] for minimization. The inner-
loop optimization for TS-RF, EI, and LCB is performed via a gradient-based multi-start optimizer
with random starting points. The number of starting points and the termination criteria for this
optimizer are the same as those for our method. In each BO iteration, we record the log simple regret
log(ymin − f⋆), where ymin is the best observation up to that iteration and f⋆ is the true minimum of
the objective function.

Figure 2 shows the medians and interquartile ranges of solutions from 20 runs of each BO method for
the test functions. On the 2d Schwefel function, our method can achieve better objective function
values than all other considered methods. It also provides a competitive result in optimizing the 10d
Levy function. Across the two examples, EI and LCB tend to perform well in the initial iterations,
while our method shows fast improvement in later iterations, highlighting the exploratory nature
and delayed reward of the GP-TS policy. Considering robustness to the objective function, GP-TS
(perhaps surprisingly) outperforms EI and LCB, when optimized using our method.

5 Summary

We propose a method to optimize GP-TS acquisition functions globally. The method relies on
local minima of prior samples obtained from a univariate rootfinding algorithm, the data points,
and a gradient-based multi-start optimizer with carefully selected starting points. Its effectiveness
is supported by the prevalent use of separable covariance functions in BO, where the univariate
covariance components is expressed in terms of their spectral representations. The optimization
results show that the proposed method offers higher-quality solutions to optimizing GP-TS acquisition
functions in both low- and high-dimensional settings, compared to a random multi-start and a genetic
algorithm. It also shows dramatic improvements in outer-loop optimization.
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