
Reducing Fine-Tuning Memory Overhead by
Approximate and Memory-Sharing Backpropagation

Yuchen Yang 1 Yingdong Shi 2 Cheems Wang 3 Xiantong Zhen 4 Yuxuan Shi 1 Jun Xu 1

Abstract
Fine-tuning pretrained large models to down-
stream tasks is an important problem, which how-
ever suffers from huge memory overhead due to
large-scale parameters. This work strives to re-
duce memory overhead in fine-tuning from per-
spectives of activation function and layer normal-
ization. To this end, we propose the Approximate
Backpropagation (Approx-BP) theory, which pro-
vides the theoretical feasibility of decoupling the
forward and backward passes. We apply our
Approx-BP theory to backpropagation training
and derive memory-efficient alternatives of GELU
and SiLU activation functions, which use deriva-
tive functions of ReLUs in the backward pass
while keeping their forward pass unchanged. In
addition, we introduce a Memory-Sharing Back-
propagation strategy, which enables the activa-
tion memory to be shared by two adjacent layers,
thereby removing activation memory usage redun-
dancy. Our method neither induces extra compu-
tation nor reduces training efficiency. We conduct
extensive experiments with pretrained vision and
language models, and the results demonstrate that
our proposal can reduce up to ∼30% of the peak
memory usage. Our code is released at github.

1. Introduction
Ever since the emergence of large models like GPTs (Rad-
ford et al., 2019), how to fine-tune them efficiently on down-
stream tasks has become an important problem (Hu et al.,
2022). However, the unaffordable activation memory over-

1School of Statistics and Data Science, Nankai University,
Tianjin, China 2School of Information Science and Technology,
ShanghaiTech University, Shanghai, China 3Department of Au-
tomation, Tsinghua University, Peking, China 4Central Research
Institute, United Imaging Healthcare, Co., Ltd.. Correspondence
to: Jun Xu <nankaimathxujun@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

200

220

240

260

280

300

Th
ro

ug
hp

ut
 (

im
ag

es
/s

) 288

229 226

290
Throughput

LoRA LoRA + CKPT LoRA + Mesa LoRA + Ours
0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y

U
sa

ge
 (

M
iB

) 3827

1252

2853 2717

Memory Usage

Figure 1. Throughput (images/s) and memory usage (MiB)
with LoRA (Hu et al., 2022) (rank = 4, batch size =
64) on fine-tuning pretrained ViT-B (Dosovitskiy et al.,
2021) with CIFAR10/100 (Krizhevsky et al., 2009) and
FGVC (Jia et al., 2022). “LoRA + CKPT”: LoRA with gradient-
checkpointing (Chen et al., 2016) on every block. “LoRA +
Mesa”: LoRA with 8-bit activation quantization on GELU and
LayerNorm (Pan et al., 2021). “LoRA + Ours”: LoRA with our
ReGELU2 and MS-LN. More details are provided in Section 6.

head largely limits their applications to memory-constrained
hardware like edge devices. For this, it is essential to inves-
tigate memory reduction strategies for parameter-efficient
fine-tuning (PEFT). A common strategy of PEFT (Houlsby
et al., 2019; Liu et al., 2021a; Hu et al., 2022; Jia et al.,
2022) is parameter freezing, which mainly reduces acti-
vation memory usage brought by linear projection layers.
However, the activation memory overhead from non-linear
modules in transformers still occupies a large part of the
total usage, e.g., ∼ 63% in ViT (Dosovitskiy et al., 2021)
and ∼ 74% in LLaMA (Touvron et al., 2023) (Figure 2).

There are three main non-linear modules in a typical trans-
former: self-attention, activation function, and layer normal-
ization. Previous efforts have been mainly devoted to reduc-
ing the memory complexity of vanilla self-attention (Child
et al., 2019; Kitaev et al., 2020; Beltagy et al., 2020; Dao
et al., 2022). Among them, FlashAttention (Dao et al., 2022)
is a highly optimized implementation with linear memory
complexity. Hereafter, transformers put a large part of acti-
vation memory usage in activation function and layer nor-
malization. Nevertheless, these two modules draw little
attention on activation memory reduction, though they are
widely used in transformers (Liu et al., 2019; Touvron et al.,
2022) and others (Tolstikhin et al., 2021; Yu et al., 2022).

1

https://github.com/yyyyychen/LowMemoryBP

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Non-linear activation functions like GELU (Hendrycks &
Gimpel, 2023) and SiLU (Hendrycks & Gimpel, 2023;
Elfwing et al., 2017; Ramachandran et al., 2017) need the
whole input tensor to compute the gradients in regular back-
propagation (BP), and suffer from huge activation memory
usage. To avoid performance degradation, one may prefer
to initialize the large model with the pretrained weights be-
fore fine-tuning it. To this end, it is safe to avoid changing
the forward pass of activation functions. A natural yet cru-
cial question arises: is it possible to reduce the activation
memory usage by only changing the backward pass?

This paper provides positive feedback to the above ques-
tion by developing an approximate backward pass as an
alternative to the exact BP process. To achieve this goal,
we propose safely decoupling the forward and backward
passes with a new Approximate BackPropagation (Approx-
BP) theory. Our Approx-BP theory reveals that if primitive
functions are close in functional space, then derivatives can
be substituted for each other in the training. Based on our
Approx-BP theory, the pretrained models using a highly
non-linear activation function could replace their non-linear
derivatives with a moderately linear derivative that requires
less activation memory. We apply this theory to GELU and
SiLU, and derive our ReGELU2 and ReSiLU2 in which the
activation memory usage is only 2 bits per element.

As for layer normalization (Ba et al., 2016), we observe
redundancy in the activation memory within it and the subse-
quent linear layers. To avoid this redundancy, we introduce
a Memory-Sharing BP (MS-BP) strategy and establish a suf-
ficient condition under which a layer can share its activation
memory with the following layer. By merging the affine
parameters of LayerNorm and RMSNorm (Zhang & Sen-
nrich, 2019) into the following linear layers with an adapted
derivative calculation manner, we propose memory-sharing
LayerNorm (MS-LN) and RMSNorm (MS-RMSNorm) to
satisfy the condition of our MS-BP strategy and share acti-
vation memory usage with the following linear layers.

Without any extra computation cost, our method will not
affect the training throughput of full fine-tuning or PEFT
methods like LoRA while further reducing their activation
memory usage (Figure 1). Experiments on ViT (Dosovit-
skiy et al., 2021) and LLaMA (Touvron et al., 2023) show
that our method can reduce their peak GPU memory usage
in fine-tuning by ∼30%, with comparable performance to
those by full fine-tuning, LoRA (Hu et al., 2022), LoRA-FA
(Zhang et al., 2023a), or QLoRA (Dettmers et al., 2023).

In summary, the contributions of this work are three-fold:

• We propose the Approximate Backpropagation (Appro-
x-BP) theory, which supports the feasibility of decou-
pling the forward and backward passes in backprop-
agation training. Under our Approx-BP, we derive
our ReGELU2 and ReSiLU2 as alternatives of GELU

and SiLU, respectively, to share their primitives while
possessing a 2-bit step function as the derivative.

• We provide a Memory-Sharing BP (MS-BP) strategy
and apply it to layer normalization. The resulting MS-
LN and MS-RMSNorm remove the redundant activa-
tion memory with the following linear layers.

• Our method has no extra computational cost and does
not affect the training throughput or the fine-tuning
networks’ inference accuracy.

2. Related Work
Here, we briefly introduce the related research on reducing
the activation memory usage in network training.

2.1. Activation Recomputation

The activation recomputation (Chen et al., 2016) (also called
gradient checkpointing) avoids saving the intermediate ac-
tivation in the forward pass of a network layer by recom-
puting it in the backward pass. It is widely used on self-
attention (Korthikanti et al., 2023) to reduce the activation
memory usage but at the cost of extra computation.

Later, FlashAttention (Dao et al., 2022) optimizes the com-
plexity of activation recomputation in self-attention, which
is implemented by an efficient CUDA kernel. Due to pre-
serving the training process while effectively reducing the
activation memory, gradient checkpointing is widely used in
fine-tuning large models with GPU constraints. However, it
suffers from a remarkable side affect of additional training
duration, e.g., ∼20% in LoRA fine-tuning (Figure 1) when
used at every block of the fine-tuning network.

Our method also changes the regular BP process, but avoids
recomputation to preserve the training efficiency.

2.2. Activation Quantization

Network training in mixed precision (Micikevicius et al.,
2017) is feasible to execute most of computations in half-
precision floats (16-bit) in forward and backward passes.
Besides reducing memory usage, this can also accelerate the
training speed since half-precision computation is supported
inherently in modern GPUs. 8-bit training is allowed in
CNNs with tolerant performance loss (Banner et al., 2018).

To avoid global quantization in both forward and backward
passes, activation compression training (ACT) (Chakrabarti
& Moseley, 2019) executes the forward pass in the origi-
nally high precision, then stores activation tensors by low
precision quantization, and finally dequantizes these ten-
sors back to the original precision in the backward pass.
Later, ActNN (Chen et al., 2021) stores activation tensors
in 2-bit precision for training CNNs, greatly reducing ac-
tivation memory usage by ∼12×. Mesa (Pan et al., 2021)

2

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

uses a customized 8-bit activation quantization strategy for
training transformers. AC-GC (Evans & Aamodt, 2021)
established a direct relationship between quantization er-
ror and training convergence by automatically selecting the
compression ratios. GACT (Liu et al., 2022) introduced an
adaptive compression strategy for general network architec-
tures, which utilizes the empirical variance of the gradients
to estimate the sensitivity of quantized activation tensors.
ALAM (Woo et al., 2023) quantizes the group mean estima-
tor and calculates the sensitivity by the empirical variance
of the gradients’ norm to allocate adaptive compression bits.
When applied to transformers, these ACT methods gener-
ally reduce more activation memory usage than gradient
checkpointing. However, frequent quantization and dequan-
tization in training adversely affect the training throughput
of transformers (Wang et al., 2023).

Our method avoids quantization and dequantization during
training, and thus keeps the training throughput.

2.3. Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) is widely used for
transformers due to little memory usage in storing the gra-
dients of trainable parameters or the optimizer states, e.g.,
AdamW (Loshchilov & Hutter, 2017). Adapter (Houlsby
et al., 2019) inserts a two-layer MLP with residual connec-
tion after each FFN block. Later, BitFit (Zaken et al., 2021)
only fine-tunes the bias and freezes other parameters in the
transformers. Prompt Tuning is also studied in (Lester et al.,
2021; Li & Liang, 2021; Liu et al., 2021a; Jia et al., 2022) to
prepend extra learnable prompt tokens in self-attention. Re-
cently, LoRA (Hu et al., 2022) and its variants (Zhang et al.,
2023b;b; Jie & Deng, 2023; Zhang et al., 2023a; Kopiczko
et al., 2023) are widely used for scalable fine-tuning power
with no extra inference overhead. These methods mainly
use low-rank matrices to fine-tune linear layers. By freezing
“LoRA-A” parameters, the variant LoRA-FA (Zhang et al.,
2023a) can eliminate most of the activation memory costs
from linear layers in fine-tuning.

Though using few trainable parameters, these PEFT meth-
ods still consume the same order of magnitude of activation
memory usage as those used in full fine-tuning. An ex-
ception LST (Sung et al., 2022) uses a ladder side model
to avoid backward passes through the pretrained modules.
However, it performs inferior to LoRA and brings extra
memory overhead and latency in the inference stage.

Unlike LoRAs, our work aims to reduce the activation mem-
ory usage from non-linear layers in transformers.

2.4. Activation Approximation

The work of AAL (Woo & Jeon, 2022) introduced auxiliary
activation to participate the backward pass instead of the

original input activation in linear layers. The auxiliary acti-
vation is typically the activation from the previous block or
the sign of the original activation. The work of (Jiang et al.,
2022) introduced an asymmetric sparsifying strategy to ob-
tain sparse activation features for back-propagation, while
keeping dense forward activation features. These two works
both showed the compatibility with Mesa (Pan et al., 2021)
in their papers. Since our method is functionally similar to
Mesa, they are also compatible with our method.

3. Preliminary
3.1. Fine-Tuning

Denote x ∈ Rp0 as the network input vector under the
data distribution D, i.e., x ∼ D. For an L-layer neural
network f(x,θ), the output feature vector of i-th hidden
layer hi is denoted as zi = hi(zi−1,θi) = hi

θ(z
i−1) ∈

Rpi , where z0 = x, θ = [θ1⊤, ...,θL⊤
]⊤ ∈ RM and θi

is the straightened vector of network parameters of the i-th
hidden layer hi. The network can be formulated as

zL = f(x,θ) = hL
θ ◦ hL−1

θ ◦ ... ◦ h1
θ(x), (1)

where “◦” denotes layer composition. For simplicity, we
define the set of all feature vectors by z = [z1⊤, ...,zL⊤

]⊤

and express the backward pass of network training as:

g ≜ g(ℓ(zL), z,θ) = ∇θℓ(z
L), (2)

where ℓ(zL) = ℓ(f(x,θ)) is the loss function, g is a com-
posite function of the derivatives of ℓ and h, i.e., dℓ and
{dhi}Li=1, respectively. Then the parameter update at t-th
iteration in regular BP can be expressed as:

θt+1 = θt − ηgt = θt − η∇θt
ℓ(zL

t). (3)

The main characteristic of fine-tuning is that the model
parameters are initialized as the pretrained weights, i.e.,
θ0 = θpretrained. Different from the “training from scratch”,
the initial model f(x,θ0) to be fine-tuned usually already
has potential capability on the downstream tasks.

3.2. Activation Memory Usage in Fine-Tuning

In general, all intermediate feature vectors {zi}Li=1 may
participate in calculating gradients in the backward pass (2).
However, according to the specific layers in the network,
we do not need to store all {zi}Li=1 into activation memory
in practice. For example, freezing partial parameters is a
widely used fine-tuning technique by PEFT methods. A
frozen linear layer can be expressed as:

zi = hi(zi−1) = Wfrozenz
i−1 + bfrozen, (4)

where the frozen weight and bias need no gradient, avoiding
storing the input feature zi−1 into activation memory.

3

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

As a representative PEFT method, LoRA (Hu et al., 2022)
is briefly analyzed here and we express its adapting layer as

zi = hi(zi−1) = Wfrozenz
i−1+BAzi−1+ bfrozen, (5)

where A ∈ Rr×pi−1 and B ∈ Rpi×r are trainable pa-
rameters. The stored features in activation memory are
zi−1 ∈ Rpi−1 and Azi−1 ∈ Rr. Since r ≪ pin, the ac-
tivation memory usage in a LoRA adapting layer is only
slightly larger than that storing zi−1 in the linear layer. Be-
sides, LoRA-FA (Zhang et al., 2023a) further freezes the
projection matrix A in the LoRA adapting layers (5), and
only stores the r-dimensional Azi−1 in activation memory.

Although freezing techniques can reduce the activation
memory usage in linear layers (including LoRA adapting
layers), the activation memory overhead in non-linear layers
is still expensive. Among these non-linear layers, activation
function and layer normalization bring a large part of activa-
tion memory usage. In Figure 2, we illustrate the memory
usage ratios of different modules in ViT (Dosovitskiy et al.,
2021) and LLaMA (Touvron et al., 2023). One can see that
in ViT both GELU and LayerNorm occupy 21.05% of the
total activation memory usage, while in LLaMA 12.39%
and 18.35% memory usage are from SiLU and RMSNorm,
respectively (please refer to Appendix B for more details).

4. Approximate Backpropagation
A large model like LLaMA exhibits strong representation
capability with its pretrained weights, which are usually
more crucial than the fine-tuning itself to its performance on
downstream tasks. Therefore, it is reasonable to fine-tune
the large model with its architecture the same as the original
design (see Appendix C for our empirical investigation).

To provide flexible fine-tuning scheme, in this section, we
show the possibility of substituting the backward pass while
remaining the forward pass of the pretrained model. In
Section 4.1, we present our Approximate Backpropagation
(Approx-BP) theory to demonstrate the theoretical feasi-
bility of decoupling the forward and backward passes. In
Section 4.2, under the guidance of our Approx-BP theory,
we derive ReGELU2 and ReSiLU2 as memory-efficient al-
ternatives of GELU and SiLU, respectively in transformers.

4.1. Approx-BP Theory

We introduce an approximate network f̃ that shares the
same parameters θ with f in Eqn. (1), i.e.,

f̃(x,θ) = h̃L
θ ◦ h̃L−1

θ ◦ ... ◦ h̃1
θ(x). (6)

The loss function of f̃ is similarly denoted as ℓ(z̃L) =

ℓ(f̃(x,θ)), and its backward pass is denoted as

g̃ ≜ g̃(ℓ(z̃L), z̃,θ) = ∇θℓ(z̃
L). (7)

2.63%

18.42%
21.05%

21.05%

36.84%

ViT

1.55%
10.84%

18.35%

24.77%

18.35% 26.15%

LLaMA

GELU/SiLU
LayerNorm/RMSNorm

Hadamard Product
FlashAttention

Linear

Figure 2. Composition of activation memory usage in ViT and
LLaMA. For LLaMA, we use LLaMA-13B as an example. Our
method is feasible to reduce the activation memory usage of
GELU/SiLU and LayerNorm/RMSNorm (the split parts).

Here, the definitions of z̃ and g̃ are the counterparts of z
and g in Section 3.1, respectively.

In order to approximate the backward pass of network train-
ing in Eqn. (2), we formulate our Approx-BP as

ĝ ≜ g̃(ℓ(zL), z,θ) ≈ g(ℓ(zL), z,θ). (8)

Then we replace the gradient update in regular BP (3) by

θt+1 = θt − ηĝt. (9)

By decoupling the forward and backward passes, our
Approx-BP is feasible to flexibly fine-tune large models.

By Triangle Inequality, we can derive an insightful property
about our Approx-BP as follows:

∥ĝ − g∥ ≤∥ĝ − g̃∥+ ∥g̃ − g∥
=∥g̃(ℓ(zL), z,θ)− g̃(ℓ(z̃L), z̃,θ)∥ +

∥∇θℓ(z̃
L)−∇θℓ(z

L)∥.
(10)

The inequality (10) indicates that approximate BP ĝ and the
regular BP g differs in the intermediate outputs of forward
pass ∥z − z̃∥, if functions g̃ and ℓ are in proper continuity.
This observation motivates us to design proper alternatives
to replace the derivatives of (non-linear) modules in a neu-
ral network, as long as their primitive functions are close
enough in the functional space. We describe the degree of
approximation in our Approx-BP by the following theorem.

Theorem 4.1. Under the definitions in Section 4.1, assume
that:
A1. g̃(ℓ(zL), z,θ) is uniformly Lipschitz continuous
w.r.t. ℓ(zL) and z.
A2. ℓ(zL) is Lipschitz continuous. hi(zi−1,θi) is uniformly
Lipschitz continuous w.r.t. zi−1 for i = 2, ..., L.
A3. ℓ(f(x,θ)) and ℓ(f̃(x,θ)) are twice differentiable
w.r.t. θ with uniformly bounded induced norm of their Hes-
sian matrices. Then, ∃ α > 0, ∀ x,θ, we have

4

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

∥ĝ − g∥2

≤ α
(L∑

i=1

sup
zi−1,θi

∥hi(zi−1,θi)− h̃i(zi−1,θi)∥2+√√√√ L∑
i=1

sup
zi−1,θi

∥hi(zi−1,θi)− h̃i(zi−1,θi)∥2
)
.

(11)

Although the networks containing ReLUs (Nair & Hinton,
2010) do not strictly satisfy the assumptions in Theorem 4.1,
the violations only happen in a zero measure set. In the
practical training, we can safely conceive a smoothing curve
at the neighborhood of zero point in ReLU. Next, we demon-
strate the convergence of our Approx-BP theory by another
theorem described as follows.

Theorem 4.2. Suppose data x follows the distribution D.
Denote T as the total iteration number. Assume that:
A1. ℓ(f(x,θ)) is continuously differentiable w.r.t. θ, and
∇θℓ(f(x,θ)) is β-Lipschitz continuous w.r.t. θ.
A2. ℓ(f(x,θ)) is bounded below by a constant ℓ∗.
A3. ∃ σ > 0, for ∀θ, ED∥ĝ − g∥22 < σ2.
Then, for all η < 1

2β , if we run Approx-BP training defined
in (9), we have

min
t∈{0,...,T−1}

ED∥∇θℓ(f(x,θt))∥22

≤4(EDℓ(f(x,θ0))− ℓ∗)

ηT
+ 6σ2.

(12)

From Theorem 4.1 and Theorem 4.2, we conclude that the
learning capability of the network f(x,θ) with our Approx-
BP theory mainly correlates to the functional closeness be-
tween the original layers h and the approximate layers h̃.

The theoretical analysis reveals that our Approx-BP theory
can work as a feasible framework to decouple the forward
and backward passes, with guaranteed training convergence.
In contrast, the regular BP in network training links the two
opposite passes in a balanced scale of memory overhead.
Instead, our Approx-BP can potentially break the scale bal-
ance, and is feasible to reduce the activation memory.

4.2. Approx-BP on Activation Functions

Transformers (Radford et al., 2019; Dosovitskiy et al., 2021;
Touvron et al., 2022; 2023) usually use GELU or SiLU
(Hendrycks & Gimpel, 2023) as the non-linear activation
function in MLP blocks. GELU and SiLU (Hendrycks
& Gimpel, 2023) usually boost the network performance
against ReLU (Nair & Hinton, 2010) in various vision and
language tasks. However, GELU and SiLU need to store the
whole 16-bit input tensor for backward pass, while ReLU
only needs to store the 1-bit signs of the input tensor ele-
ments. Therefore, for consideration of memory efficiency,
we propose to combine multiple ReLUs to approximate the

4 3 2 1 0 1 2 3 4
Input

1

0

1

2

3

4

Ou
tp

ut

primitive
derivative

Figure 3. Plot of our ReGELU2. The primitive function is still
GELU, while the derivative function is a 4-segment step function
that need 2 bits of activation memory for derivative calculation.

regular BP process of GELU and SiLU. Denote h as the
activation function of GELU or SiLU, we have

h(x) = GELU(x) =
x

2
(1 + erf(

x√
2
))

or h(x) = SiLU(x) =
x

1 + e−x
.

We define a combination of multiple ReLUs as

h̃a,c(x) =

2k−2∑
i=1

aiReLU(x− ci) +

(1−
2k−2∑
i=1

ai)ReLU(x− c2k−1),

s.t.
2k−2∑
i=1

aici + (1−
2k−2∑
i=1

ai)c2k−1 = 0,

(13)

where the i-th element ai (or ci) of a (or c) indicates the
weight (or bias) of the i-th ReLU in our combined ReLUs.
Here we use 2k − 1 ReLUs in h̃a,c and k is the required bit
number of activation memory for derivative calculation.

Proposition 4.3. The combination function h̃a,c of multiple
ReLUs in Eqn. (13) has the following two properties:

1. It has the same limiting behavior with the the activation
function h(x), i.e., limx→∞ h(x)− h̃a,c(x) = 0.

2. Its derivative is a 2k-segment step function that need k
bits of activation memory for derivative calculation.

Here, we set k = 2 to reduce the activation memory usage
in activation functions. According to our Approx-BP theory,
we should set the parameters in (13), so that h̃a,c(x) could
be close to h(x) in the function space. To implicitly fulfill
the constraint in (13) and put uniform importance to the

5

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

define domain, we solve the following feasible problem:

min
a,c

∫ ∞

−∞
(h(x)− h̃a,c(x))

2dx. (14)

We use the simulated annealing algorithm (Kirkpatrick et al.,
1983) (more details in Appendix E) to find a quasi-optimal
weight a∗ and bias c∗. That is, for GELU we have

a∗
gelu = [−0.04922, 1.098]⊤,

c∗gelu = [−3.186,−0.001179, 3.191]⊤.

And for SiLU we have
a∗
silu = [−0.04060, 1.081]⊤,

c∗silu = [−6.305,−0.0008685, 6.326]⊤.

We denote the combination of GELU and dh̃a∗
gelu,c

∗
gelu

(or

SiLU and dh̃a∗
silu,c

∗
silu

) by ReGELU2 (or ReSiLU2). Since
ReGELU2 (or ReSiLU2) keeps the same primitive function
as GELU (or SiLU), the initialization of the fine-tuning
model is the exact pretrained model with GELU (or SiLU)
activation function. The main advantage of ReGELU2
and ReSiLU2 over GELU and SiLU, respectively, is that
ReGELU2 and ReSiLU2 only need to store 2-bit activation
for backward pass. Our ReGELU2 and ReSiLU2 do not
degrade the training efficiency, since they do not need extra
computation for data range estimation (Pan et al., 2021). In
addition, while setting a larger k in (13) is also feasible for
solving (14) using SGD, this will result in more memory and
computational overhead. Since ReGELU2 and ReSiLU2
achieve comparable performance to GELU and SiLU in
Section 6, we recommend k = 2 to be a universal choice.

5. Memory-Sharing Backpropagation
An insight on regular BP (2) is that there exists redundancy
when we store all {zi}Li=1 into activation memory. To show
this, we give a more detailed analysis on backward pass at
the i-th layer zi = hi(zi−1,θi). In general, the purpose of
backward pass at this layer is to calculate the gradient of
the feature input ∂ℓ

∂zi−1 and the gradient of the parameter
input ∂ℓ

∂θi from the gradient of the feature output ∂ℓ
∂zi . These

calculations can be expressed in a general form as
∂ℓ

∂θi
=

∂hi(zi−1,θi)

∂θi

∂ℓ

∂zi
,

∂ℓ

∂zi−1
=

∂hi(zi−1,θi)

∂zi−1

∂ℓ

∂zi
,

(15)

where ∂hi(zi−1,θi)
∂θi and ∂hi(zi−1,θi)

∂zi−1 are the Jacobian matri-
ces of hi w.r.t. θi and zi−1, respectively. The reason for
storing zi−1 into activation memory is that ∂hi(zi−1,θi)

∂θi and
∂hi(zi−1,θi)

∂zi−1 involve the term zi−1. However, this involve-
ment is not always necessary. In this section, we discuss
about the situation in which the Jacobian matrices do not
involve the term zi−1, and show how to use this property
to achieve memory-sharing backpropagation (MS-BP) for
avoiding the activation memory redundancy.

Algorithm 1 Memory-Sharing Layer Normalization

Denote ℓ as the loss function.
Input: zi−1 ∈ Rpi−1

Forward Pass:
σ =

√
p−1
i−1z

i−1⊤H⊤Hzi−1 + ε

zi = σ−1Hzi−1

Save zi, σ for backward pass
Return Output: zi

Backward Pass:
Receive gradient : ∂ℓ

∂zi

∂ℓ
∂zi−1 = σ−1H⊤(I− p−1

i−1z
izi⊤) ∂ℓ

∂zi

Return Gradient: ∂ℓ
∂zi−1

5.1. Sufficient Condition of MS-BP

We begin with a proposition about when the layer hi−1 can
share the activation memory with the following layer hi.

Proposition 5.1. If the layer hi satisfies the following condi-
tions, we can reduce the activation memory in hi by sharing
its activation memory with hi+1:

1. hi does not involve parameters θi, i.e., zi = hi(zi−1).

2. The Jacobian matrix ∂hi(zi−1)
∂zi−1 can be reformulated as

J(zi,ϕi), where ϕi ∈ Rqi is an auxiliary variable
with dimension qi ≪ pi−1.

3. The backward pass at hi+1 involves zi.

Under the conditions in Proposition 5.1, the calculation of
∂ℓ
∂θi is not required any more, and the calculation of ∂ℓ

∂zi−1

no longer needs zi−1. Therefore, the intermediate feature
zi−1 can be removed from the activation memory, and both
hi and hi+1 utilize zi for gradient calculation. Then the
activation memory usage in hi and hi+1 can be reduced
from {zi−1, zi} to {ϕi, zi}. The first two conditions in
Proposition 5.1 are loose enough to cover simple element-
wise activation functions and normalization layers. But the
third condition is not often met in fine-tuning networks when
hi+1 is a frozen linear layer. Unfortunately, the widely used
SiLU does not satisfy the second condition (please refer to
Appendix F for details). Thus, we mainly consider how to
apply MS-BP to the layer normalization in Section 5.2.

5.2. Memory-Sharing Normalization

In this section, we describe the detailed technique for ap-
plying our MS-BP to LayerNorm (Ba et al., 2016) and its
variant RMSNorm (Zhang & Sennrich, 2019).

The forward pass at the LayerNorm or RMSNorm and the
following linear layer can be expressed as:

6

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

σ =

√
p−1
i−1z

i−1⊤H⊤Hzi−1 + ε,

z̃i−1 = σ−1Hzi−1,

zi = diag(α)z̃i−1 + β,

zi+1 = Wzi + b,

(16)

where H is a general matrix. For LayerNorm we have
H = I − p−1

i−111
⊤, while for RMSNorm we have H =

I, β = 0. Here, I is the identity matrix and 1 is a vector of
all ones. ε is a small positive scalar of 10−6 or 10−8. α and
β are the affine weight and bias, respectively, in LayerNorm.

To satisfy the conditions in Proposition 5.1, we merge the
affine parameters α and β into the linear layer in (16) as

W̃ = Wdiag(α), b̃ = Wβ + b. (17)

Then the forward pass is simplified as:

σ =

√
p−1
i−1z

i−1⊤H⊤Hzi−1 + ε,

zi = σ−1Hzi−1,

zi+1 = W̃zi + b̃.

(18)

Now, we check the conditions in Proposition 5.1. The first
condition is met since there is no parameter in layer nor-
malization after merging affine parameters. The third con-
dition is met at least in full tuning and LoRA, where the
query and value projections are always adapted. To show
the second condition is also met, we demonstrate how to re-
formulate the Jacobian matrix of the layer normalization in
Algorithm 1. By this way, the total activation memory usage
of a memory-sharing layer normalization and the follow-
ing linear layer becomes the memory size of one vector in
Rpi−1 and one scalar in R. We denote the memory-sharing
LayerNorm as MS-LN and the memory-sharing RMSNorm
as MS-RMSNorm (please refer to Appendix G for details).

6. Experiments
In this section, we conduct experiments by deploying our
ReGELU2, ReSiLU2, MS-LN, and MS-RMSNorm into the
representative ViT (Dosovitskiy et al., 2021) for vision tasks,
as well as LLaMA (Touvron et al., 2023) and RoBERTa
(Liu et al., 2019) for natural language understanding tasks.
Specifically, we deploy our ReGELU2 (or ReSiLU2) into
ViT, RoBERTa (or LLaMA) to replace the GELU (or SiLU)
function. MS-LN (or MS-RMSNorm) is also used to replace
LayerNorm (or RMSNorm) with merged weights of pre-
trained ViT, RoBERTa (or LLaMA). Our method needs no
extra operation in practical implementation. We implement
compatible CUDA kernels for our ReGELU2, ReSiLU2,
MS-LN, and MS-RMSNorm. FlashAttention (Dao et al.,
2022) is used in the ViT and LLaMA experiments. More
experiments are put in Appendix J.

0.00

0.05

0.10

0.15

0.20

Tr
ai

n
Lo

ss

Adapt Q, V Adapt All Linear

0 25 50 75 100
Epoch

0.00

0.05

0.10

0.15

0.20

Tr
ai

n
Lo

ss

0 25 50 75 100
Epoch

LoRA
LoRA + ReGELU2

LoRA + MS-LN
LoRA + ReGELU2 + MS-LN

Figure 4. Convergence of ReGELU2 and MS-LN when using
LoRA (rank = 4) on ViT-base (Dosovitskiy et al., 2021).
The training loss is the average over the training loss on CI-
FAR10/100 (Krizhevsky et al., 2009) and FGVC (Jia et al., 2022).

6.1. Fine-Tuning ViT on Image Classification

Benchmark. Here, we employ the transformer models ViT-
base and ViT-large pretrained on ImageNet-22k (Deng et al.,
2009; Dosovitskiy et al., 2021) as the backbones, which are
fine-tuned on the CIFAR10/100 (Krizhevsky et al., 2009)
and FGVC (Jia et al., 2022) datasets. GELU and LayerNorm
are the default modules in ViT-base and ViT-large.

Fine-tuning. We implement our method with LoRA (Hu
et al., 2022), LoRA-FA (Zhang et al., 2023a), and full fine-
tuning (Full-Tuning). For LoRA, we adapt the weights of
query and value projection or all linear layers. Since the
linear layers in LoRA-FA only store Ax instead of x in
backward pass, our MS-LN can not reduce the activation
memory usage to the following linear layers. Therefore,
we only use ReGELU2 for LoRA-FA in our experiments.
Please refer to Appendix H for more implementation details.

Comparison methods. We compare our method with Mesa
(Pan et al., 2021), a activation quantization method provid-
ing 8-bit GELU and LN. We do not evaluate ActNN (Chen
et al., 2021) since it is designed for CNNs and not usable to
GELU and LN in ViTs. We also do not evaluate GACT (Liu
et al., 2022) due to training collapse in our experiments.

Results. In Figure 4, we plot the average loss curves of fine-
tuning ViT-base with LoRAs on CIFAR10/100 (Krizhevsky
et al., 2009) and FGVC (Jia et al., 2022). We observe that the
convergence tendency of our ReGELU2 is almost identical
to that of GELU, while the training loss of ViT-base with our
MS-LN decreases more rapidly than that without it. This
indicates that ReGELU2 preserves the learning capability
of GELU while MS-LN accelerates the convergence speed.

7

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Table 1. Average results on CIFAR10/100 and FGVC by fine-tuning ViT-base. The best results are highlighted in bold.

Adapt Q, V Adapt All Linear
Method Activation Norm Top-1(%) Mem.(MiB) Thr.(images/s) Top-1(%) Mem.(MiB) Thr.(images/s)

LoRA
r = 4

GELU LN 90.3 3827 288 90.7 5128 207
Mesa-GELU LN 90.3 3453(-10%) 245(-15%) 90.8 4721(-8%) 186(-10%)
ReGELU2 LN 90.3 3087(-19%) 289(+0%) 90.8 4380(-15%) 207(+0%)

GELU Mesa-LN 90.2 3249(-15%) 257(-11%) 90.8 4530(-12%) 189(-9%)
GELU MS-LN 90.7 3441(-10%) 288(+0%) 91.2 4316(-16%) 207(+0%)

Mesa-GELU Mesa-LN 90.4 2853(-25%) 226(-22%) 90.8 4209(-18%) 173(-17%)
ReGELU2 MS-LN 90.5 2717(-29%) 290(+1%) 91.2 3601(-30%) 208(+0%)

LoRA-FA
r = 4

GELU LN 90.0 3386 304 90.2 3430 249
Mesa-GELU LN 89.9 3012(-11%) 261(-14%) 90.2 3021(-12%) 218(-12%)
Mesa-GELU Mesa-LN 89.9 2411(-29%) 236(-22%) 90.1 2457(-28%) 200(-20%)
ReGELU2 LN 89.8 2597(-23%) 306(+1%) 90.2 2717(-21%) 251(+0%)

Table 2. Average results on CIFAR10/100 and FGVC by fine-tuning ViT-base and ViT-large. The best results are highlighted in bold.

ViT-base ViT-large
Method Activation Norm Top-1(%) Mem.(GiB) Thr.(images/s) Top-1(%) Mem.(GiB) Thr.(images/s)

Full Tuning

GELU LN 89.23 5.6 235 90.99 15.7 175
ReGELU2 LN 89.31 4.9(-13%) 232(-1%) 91.15 13.7(-13%) 176(1%)
GELU MS-LN 88.69 4.9(-14%) 238(+1%) 90.62 13.5(-14%) 182(4%)
ReGELU2 MS-LN 88.75 4.1(-27%) 241(+2%) 90.96 11.5(-27%) 183(4%)

Table 3. Main results on fine-tuning LLaMA-7B and LLaMA-13B using QLoRA on Alpaca. “*” indicates that the values are reported
in QLoRA paper. The best results are highlighted in bold. 1GiB = 1024MiB = 10243Bytes.

LLaMA-7B LLaMA-13B
Method Activation Norm Accuracy(%) Mem.(GiB) Thr.(samples/s) Accuracy(%) Mem.(GiB) Thr.(samples/s)

No Tuning SiLU RMSNorm 35.65(35.1*) 45.26(46.9*)

QLoRA
r = 64

All Linear

SiLU RMSNorm 40.75(39.0*) 20.6 7.9 46.68(47.5*) 31.4 5.8
ReSiLU2 RMSNorm 39.86 19.0(-8%) 7.9(+0%) 46.59 29.0(-8%) 5.7(-2%)
SiLU MS-RMSNorm 40.13 18.0(-12%) 8.2(+3%) 46.34 27.5(-12%) 5.8(+0%)
ReSiLU2 MS-RMSNorm 40.35 14.6(-29%) 8.6(+9%) 46.54 22.3(-29%) 6.5(+13%)

Table 4. Main results on fine-tuning RoBERTa-base using LoRA on GLUE. The best results are highlighted in bold.

Tasks Mean
Method Activation Norm CoLA SST-2 MRPC STS-B RTE Accuracy(%) Mem.(MiB) Thr.(samples/s)

LoRA
r = 64
Q, K

GELU LN 61.08 93.81 86.52 89.18 71.48 80.41 6517 202
ReGELU2 LN 58.03 93.46 87.75 89.73 69.31 79.66 5438(-17%) 202(-0%)
GELU MS-LN 57.52 94.04 86.52 89.18 75.45 80.54 6253(-4%) 196(-3%)
ReGELU2 MS-LN 61.60 94.27 87.99 89.71 75.09 81.73 5173(-21%) 198(-2%)

In Table 1 and Table 2, we compare the results of in-
ference accuracy, activation memory usage, and training
throughput, on fine-tuning ViT-base by LoRA, LoRA-FA,
and Full-Tuning, respectively. We observe that the LoRA
with our method (ReGELU2 + MS-LN) reduces the peak
GPU memory usage by ∼1.1 GiB and ∼1.5 GiB when
adapting query/value projection and all linear layers, respec-

tively, both occupying ∼30% of peak GPU memory usage
by vanilla LoRA. Similarly, our method reduces ∼27% of
the peak GPU memory usage in Full-Tuning. In LoRA-FA
fine-tuning, our ReGELU2 reduces the peak GPU memory
usage by ∼20%. Besides, our method (ReGELU2 + MS-
LN) does not degrade the training throughput and inference
accuracy, while Mesa degrades training throughput clearly.

8

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Since its activation memory behavior is independent of the
fine-tuning methods, our ReGELU2 achieves consistent ac-
tivation memory reduction in all cases of our experiments.
Due to frozen FFN modules in LoRA, the memory usage
reduction by our MS-LN on adapting query and value pro-
jections is less than those on adapting all linear layers in
LoRA and full tuning. Here, the third condition of Proposi-
tion 5.1 is not satisfied for the LN in the FFN modules.

6.2. Fine-Tuning LLaMA on Language Understanding

Benchmark. We fine-tune LLaMA-7B and LLaMA-13B
(Touvron et al., 2023) using Alpaca (Taori et al., 2023)
and evaluate the fine-tuned models on 5-shot MMLU
(Hendrycks et al., 2020). LLaMA uses SwiGLU (Shazeer,
2020) (containing SiLU in its implementation) for activa-
tion and RMSNorm for layer normalization. The training
uses model parallel provided in the Transformers package
(Wolf et al., 2020) with 2×H800 GPUs. The reported peak
memory usage is the max value of those from the 2 GPUs.

Fine-tuning. We deploy our method into QLoRA (Dettmers
et al., 2023) to fine-tune LLaMA-7B and LLaMA-13B.
QLoRA uses NF4 data type to store the pretrained weights
and uses Bfloat16 to store the parameters in LoRA. In
QLoRA, all projection weights in linear layers are adapted
by LoRA. When applying our MS-RMSNorm to merge the
affine parameters, we transpose the weight matrix of the
pretrained parameters, to avoid changing the conditional dis-
tribution of the block-wise quantization in QLoRA. Please
refer to Appendix H for more implementation details.

Results on fine-tuning LLaMA-7B and LLaMA-13B are
summarized in Table 3. We observe that fine-tuning LLa-
MAs by our method achieves comparable MMLU accuracy
to the baseline. Our method substantially reduces the peak
memory usage on fine-tuning LLaMAs by QLoRA, i.e.,
∼6.0 GiB on fine-tuning LLaMA-7B and ∼9.1 GiB on fine-
tuning LLaMA-13B, representing a significant amount of
GPU memory savings. The reduction amounts both occupy
∼30% of the baseline’s peak GPU memory usage. What’s
more, our method yields an ∼10% improvement of training
throughput on fine-tuning LLaMA-7B and LLaMA-13B
with QLoRA. Fine-tuning LLaMA-7B and LLaMA-13B
with our method suffer from slight accuracy drops of 0.40%
and 0.14%, respectively. This indicates that our method can
be potentially applied to larger transformers.

Note that fine-tuning LLaMAs with both ReSiLU2 and MS-
RMSNorm achieves larger memory usage reduction than
the sum of reductions by using them separately. This is
possibly attributed to the implementation details of QLoRA.

6.3. Fine-Tuning RoBERTa on Language Understanding

Benchmark. We fine-tune the pretrained RoBERTa-base
(Liu et al., 2019) on five taskes of GLUE (Wang et al., 2018),
i.e., CoLA, SST-2, MRPC, STS-B and RTE. RoBERTa-
base uses GELU and LayerNorm. The training uses model
parallel provided in the Transformers package (Wolf et al.,
2020) with 2×RTX4090 GPUs. The reported usage of peak
memory overhead is the sum of those from the 2 GPUs.

Fine-tuning. We implement our method with LoRA to fine-
tune the pretrained RoBERTa-base. The data type in this
experiment is FP32. Please refer to Appendix H for more
implementation details.

Results on fine-tuning RoBERTa-base are summarized in
Table 4. Fine-tuning RoBERTa-base with our method
achieves comparable accuracy and training throughput to the
baseline. Our method reduces the amount of GPU memory
usage by ∼21%. Here, MS-LN gets less reduction of GPU
memory usage than ReGELU2, which may be attributed to
two reasons. First, we use FP32 in this experiment, so that
LayerNorm occupies less proportion of activation memory
usage than that in AMP training. Secondly, since LoRA
only adapts projection weights in the queries and keys in
the attention modules, the third condition of Proposition 5.1
is not satisfied for the LN in the FFN modules.

7. Conclusion
To reduce the activation memory overhead in backprop-
agation (BP), in this paper, we introduced an Approxi-
mate Backpropagation (Approx-BP) theory and a Memory-
sharing Backpropagation (MS-BP) strategy. Our Approx-
BP theory revealed the feasibility of decoupling the primi-
tive and derivative functions of network layers for training.
We derived the ReGELU2 and ReSiLU2 as alternatives of
the GELU and SiLU, respectively, used in transformers.
We applied our MS-BP strategy into layer normalization
(LN), and proposed MS-LN (or MS-RMSNorm) to remove
the activation memory redundancy between LN and the
following linear layers in regular BP. Experimental results
demonstrated that our method reduces up to ∼30% of the
peak GPU memory usage on fine-tuning transformers, with
comparable accuracy and no drop on training throughput.

We believe that our method can be applied to not only fine-
tuning stage but also pretraining stage. Even though pre-
training exceeds our research scope, we have explored how
our method can benefit the pretraining from two aspects. In
Appendix J.2, we show that our method can increase the
length of training sequence substantially. In Appendix J.2,
our method can reduce the communication times in the
distributed training by allowing a large batch size, thereby
increasing the training throughput significantly.

9

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Acknowledgements
This work is supported in part by National Natural Science
Foundation of China (No. 12226007 and 62176068), the
Fundamental Research Funds for the Central Universities,
and CAAI-Huawei MindSpore Open Fund.

Impact Statement
This paper presents a work whose goal is to advance the
field of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here. However, our work has the
potential contribution to positively lowering the fine-tuning
barrier of large models and promoting their popularity in
both research community and industrial applications.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scalable
methods for 8-bit training of neural networks. Advances
in neural information processing systems, 31, 2018.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The
long-document transformer, 2020.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM review,
60(2):223–311, 2018.

Chakrabarti, A. and Moseley, B. Backprop with approxi-
mate activations for memory-efficient network training.
Advances in Neural Information Processing Systems, 32,
2019.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Mahoney,
M., and Gonzalez, J. Actnn: Reducing training memory
footprint via 2-bit activation compressed training. In
International Conference on Machine Learning, pp. 1803–
1813. PMLR, 2021.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost, 2016.

Child, R., Gray, S., Radford, A., and Sutskever, I. Generat-
ing long sequences with sparse transformers, 2019.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness, 2022.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and FeiFei, L.
Imagenet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.
2009.5206848.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. Qlora: Efficient finetuning of quantized llms. arXiv
preprint arXiv:2305.14314, 2023.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. ICLR, 2021.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted
linear units for neural network function approximation in
reinforcement learning, 2017.

Evans, R. D. and Aamodt, T. Ac-gc: Lossy activation
compression with guaranteed convergence. In Advances
in Neural Information Processing Systems, 2021.

Everingham, M., Eslami, S. M., Gool, L., Williams, C. K.,
Winn, J., and Zisserman, A. The pascal visual object
classes challenge: A retrospective. Int. J. Comput. Vision,
111(1):98–136, jan 2015. ISSN 0920-5691. doi: 10.
1007/s11263-014-0733-5. URL https://doi.org/
10.1007/s11263-014-0733-5.

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi,
A., Foster, C., Golding, L., Hsu, J., Le Noac’h, A., Li,
H., McDonell, K., Muennighoff, N., Ociepa, C., Phang,
J., Reynolds, L., Schoelkopf, H., Skowron, A., Sutawika,
L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
A. A framework for few-shot language model evaluation,
12 2023. URL https://zenodo.org/records/
10256836.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus), 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika,
M., Song, D., and Steinhardt, J. Measuring mas-
sive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., AllenZhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022.

10

https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Jia, M., Tang, L., Chen, B.-C., Cardie, C., Belongie, S.,
Hariharan, B., and Lim, S.-N. Visual prompt tuning. In
European Conference on Computer Vision (ECCV), 2022.

Jiang, Z., Chen, X., Huang, X., Du, X., Zhou, D., and Wang,
Z. Back razor: Memory-efficient transfer learning by
self-sparsified backpropagation. In Advances in Neural
Information Processing Systems. Curran Associates, Inc.,
2022.

Jie, S. and Deng, Z.-H. Fact: Factor-tuning for lightweight
adaptation on vision transformer, 2023.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. Opti-
mization by simulated annealing. science, 220(4598):
671–680, 1983.

Kitaev, N., Łukasz Kaiser, and Levskaya, A. Reformer: The
efficient transformer, 2020.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. Vera:
Vector-based random matrix adaptation, 2023.

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L., Ander-
sch, M., Shoeybi, M., and Catanzaro, B. Reducing activa-
tion recomputation in large transformer models. Proceed-
ings of Machine Learning and Systems, 5, 2023.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Lester, B., AlRfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. arXiv preprint
arXiv:2104.08691, 2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P.
Focal loss for dense object detection. In Proceedings of
the IEEE international conference on computer vision,
pp. 2980–2988, 2017.

Liu, X., Ji, K., Fu, Y., Tam, W. L., Du, Z., Yang, Z., and
Tang, J. P-tuning v2: Prompt tuning can be comparable
to fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602, 2021a.

Liu, X., Zheng, L., Wang, D., Cen, Y., Chen, W., Han, X.,
Chen, J., Liu, Z., Tang, J., Gonzalez, J., et al. Gact:
Activation compressed training for generic network ar-
chitectures. In International Conference on Machine
Learning, pp. 14139–14152. PMLR, 2022.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach,
2019.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2021b.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., et al. Mixed precision training. arXiv
preprint arXiv:1710.03740, 2017.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on International Conference on
Machine Learning, ICML’10, pp. 807–814, Madison, WI,
USA, 2010. Omnipress. ISBN 9781605589077.

Pan, Z., Chen, P., He, H., Liu, J., Cai, J., and Zhuang, B.
Mesa: A memory-saving training framework for trans-
formers. arXiv preprint arXiv:2111.11124, 2021.

Piessens, R., de Doncker-Kapenga, E., and Ueberhuber, C.
Quadpack. a subroutine package for automatic integration.
Springer Series in Computational Mathematics, 1983.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
memory optimizations toward training trillion parame-
ter models. In Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, SC ’20. IEEE Press, 2020. ISBN
9781728199986.

Rajbhandari, S., Ruwase, O., Rasley, J., Smith, S., and
He, Y. Zero-infinity: breaking the gpu memory wall
for extreme scale deep learning. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’21,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450384421. doi: 10.1145/
3458817.3476205. URL https://doi.org/10.
1145/3458817.3476205.

Rajpurkar, P., Jia, R., and Liang, P. Know what you
don’t know: Unanswerable questions for SQuAD. In
Gurevych, I. and Miyao, Y. (eds.), Proceedings of the
56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pp. 784–789,
Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P18-2124. URL
https://aclanthology.org/P18-2124.

11

https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://aclanthology.org/P18-2124

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for
activation functions, 2017.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-
speed: System optimizations enable training deep learn-
ing models with over 100 billion parameters. In Pro-
ceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD
’20, pp. 3505–3506, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450379984.
doi: 10.1145/3394486.3406703. URL https://doi.
org/10.1145/3394486.3406703.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Sung, Y.-L., Cho, J., and Bansal, M. Lst: Ladder side-tuning
for parameter and memory efficient transfer learning. Ad-
vances in Neural Information Processing Systems, 35:
12991–13005, 2022.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford
alpaca: An instruction-following llama model, 2023.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Steiner, A., Keysers, D.,
Uszkoreit, J., Lucic, M., and Dosovitskiy, A. Mlp-
mixer: An all-mlp architecture for vision. arXiv preprint
arXiv:2105.01601, 2021.

Touvron, H., Cord, M., and Jégou, H. Deit iii: Revenge of
the vit. In European Conference on Computer Vision, pp.
516–533. Springer, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wang, G., Liu, Z., Jiang, Z., Liu, N., Zou, N., and Hu,
X. Division: memory efficient training via dual activa-
tion precision. In International Conference on Machine
Learning, pp. 36036–36057. PMLR, 2023.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on em-
pirical methods in natural language processing: system
demonstrations, pp. 38–45, 2020.

Woo, S. and Jeon, D. Learning with auxiliary activation for
memory-efficient training. In The Eleventh International
Conference on Learning Representations, 2022.

Woo, S., Lee, S., and Jeon, D. Alam: Averaged low-
precision activation for memory-efficient training of trans-
former models. In The Twelfth International Conference
on Learning Representations, 2023.

Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y., Wang, X., Feng,
J., and Yan, S. Metaformer is actually what you need
for vision. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 10819–
10829, 2022.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. arXiv preprint
arXiv:2106.10199, 2021.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:
Memory-efficient low-rank adaptation for large language
models fine-tuning, 2023a.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y.,
Chen, W., and Zhao, T. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh Interna-
tional Conference on Learning Representations, 2023b.

12

https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

A. Qualitative Comparison of Related Works
In Table 5, we provide qualitative comparison of different methods on three aspects, i.e., applicable to non-linear layers
(“Non-Linear”), keep training throughput (“Keep Throughput”), and applicable beyond LoRAs (“Beyond LoRA”). Our
method can reduce the activation memory usage in non-linear layers, which can not be achieved by parameter freezing
techniques (Hu et al., 2022; Jia et al., 2022) or LoRA-FA (Zhang et al., 2023a). One key advantage of our method over
gradient checkpointing (Chen et al., 2016) and ACT methods (Pan et al., 2021; Liu et al., 2022) is that our method does not
degrade the training efficiency.

Table 5. Comparison of different methods on activation memory reduction. “Freeze”: freezing some parameters in fine-tuning.
“CKPT”: Gradient Checkpointing (Chen et al., 2016). “ACT”: Activation Compression Training (Pan et al., 2021; Liu et al., 2022).

Method Non-Linear Keep Throughput Beyond LoRA

Freeze ✗ ✓ ✓

CKPT (Chen et al., 2016) ✓ ✗ ✓

ACT (Pan et al., 2021; Liu et al., 2022) ✓ ✗ ✓

LoRA-FA (Zhang et al., 2023a) ✗ ✓ ✗

Our Method ✓ ✓ ✓

B. Analyses on activation memory allocation in each block of ViT and LLaMA
We present detailed analysis of the activation memory allocation for each operator within the transformer blocks of
ViT (Dosovitskiy et al., 2021) and LLaMA (Touvron et al., 2023). For ViT, refer to Figure 5; for LLaMA, refer to Figure 6.

C. Possibility of Substituting the Forward Pass of Activation Funcition
We also investigate the possibility of changing the whole activation function including forward pass. Nevertheless, empirical
results show that changing forward pass of activation function severely degrades the fine-tuning performance. We attribute
this phenomenon to the criticality of model initialization. Specifically, replacing SiLU by h̃a∗

silu,c
∗
silu

(x) in (13), the
no-tuning MMLU accuracy of LLaMA-7B degrades from 35.62% to 23.44% and the no-tuning MMLU accuracy of
LLaMA-13B degrades from 45.26% to 23.51%. Hence, we retain the forward pass in activation function.

D. Proof of theorems
Proof of Theorem 4.1. According to the definitions in Section 4.1, we have the following decomposition:

∥ĝ − g∥2 = ∥ĝ − g̃ + g̃ − g∥2 ≤ ∥ĝ − g̃∥2 + ∥g̃ − g∥2

= ∥g̃(ℓ(zL), z,θ)− g̃(ℓ(z̃L), z̃,θ)∥2 + ∥ ∂

∂θ
ℓ(f̃(x,θ))− ∂

∂θ
ℓ(f(x,θ))∥2.

(19)

By A1, ∃a1 > 0, ∀θ, we have

∥g̃(ℓ(zL), z,θ)− g̃(ℓ(z̃L), z̃,θ)∥2 ≤ a1(∥ℓ(zL)− ℓ(z̃L)∥2 + ∥z − z̃∥2). (20)

By A2, ∃ a2 > 0, such that
∥ℓ(zL)− ℓ(z̃L)∥2 ≤ a2∥zL − z̃L∥2. (21)

Combining the above inequalities, we have

∥g̃(ℓ(zL), z,θ)− g̃(ℓ(z̃L), z̃,θ)∥2 ≤a1a2∥zL − z̃L∥2 + a1∥z − z̃∥2

≤(1 + a1a2)∥zL − z̃L∥2 + a1

L−1∑
i=1

∥zi − z̃i∥2.
(22)

By A3, ∃M1 > 0, ∃M2 > 0, ∀x, ∀θ ∈ RM , ∀q ∈ RM , we have

∥ ∂2

∂θ∂θ
ℓ(f(x,θ))q∥2 ≤ M1∥q∥2 and ∥ ∂2

∂θ∂θ
ℓ(f̃(x,θ))q∥2 ≤ M1∥q∥2. (23)

13

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

ViT Block

Save for Backward

Our Method

Save for Backward

if parameters
trainable

if parameters
frozen

if parameters
trainable

෩𝑿𝒊𝒏𝟏 = 𝐋𝐍(𝑿𝒊𝒏𝟏)
𝑿𝒊𝒏𝟏, 𝝁𝒊𝒏𝟏,

(𝝈𝒊𝒏𝟏
𝟐 + 𝜺)−

𝟏
𝟐

+2
𝑿𝒊𝒏𝟏, 𝝁𝒊𝒏𝟏,

(𝝈𝒊𝒏𝟏
𝟐 + 𝜺)−

𝟏
𝟐

+2 𝑿𝒍𝒏𝟏 = MS-LN(𝑿𝒊𝒏𝟏)

𝑿𝒍𝒏𝟏,

(𝝈𝒊𝒏𝟏
𝟐 + 𝜺)−

𝟏
𝟐

+1
𝑿𝒍𝒏𝟏 = ෩𝑿𝒊𝒏𝟏𝐝𝐢𝐚𝐠 𝜶𝟏 + 𝜷𝟏

for 𝒚 = 𝒒, 𝒌, 𝒗
𝒚 = 𝑿𝒍𝒏𝟏𝑾𝒚

⊤ + 𝒃𝒚
𝑿𝒍𝒏𝟏 +1 \ +0

for 𝒚 = 𝒒, 𝒌, 𝒗

𝒚 = 𝑿𝒍𝒏𝟏෪𝑾𝒚
⊤ + ෩𝒃𝒚

for 𝒚 = 𝒒, 𝒌, 𝒗
𝒚𝐌𝐇 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒚,
𝒃, 𝒏, 𝒄 → 𝒃,𝒉, 𝒏, 𝒄/𝒉)

\ +0 \ +0

for 𝒚 = 𝒒, 𝒌, 𝒗
𝒚𝐌𝐇 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒚,
𝒃, 𝒏, 𝒄 → 𝒃,𝒉, 𝒏, 𝒄/𝒉)

\ +0

𝒐𝐌𝐇
= 𝐟𝐥𝐚𝐬𝐡𝐚𝐭𝐭𝐧(𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇)

𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇,
𝒐𝐌𝐇,𝒎, 𝒍

+4
𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇,
𝒐𝐌𝐇,𝒎, 𝒍

+4
𝒐𝐌𝐇
= 𝐟𝐥𝐚𝐬𝐡𝐚𝐭𝐭𝐧(𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇)

𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇,
𝒐𝐌𝐇,𝒎, 𝒍

+4

𝑿𝒂𝒕𝒕𝒏 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒐𝐌𝐇,
𝒃, 𝒉, 𝒏, 𝒄/𝒉 → 𝒃, 𝒏, 𝒄)

\ +0 \ +0
𝑿𝒂𝒕𝒕𝒏 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒐𝐌𝐇,
𝒃, 𝒉, 𝒏, 𝒄/𝒉 → 𝒃, 𝒏, 𝒄)

\ +0

𝑿𝒑𝒓𝒐𝒋 = 𝑿𝒂𝒕𝒕𝒏𝑾𝒑𝒓𝒐𝒋
⊤ + 𝒃𝒑𝒓𝒐𝒋 𝑿𝒂𝒕𝒕𝒏 +1 \ +0 𝑿𝒑𝒓𝒐𝒋 = 𝑿𝒂𝒕𝒕𝒏𝑾𝒑𝒓𝒐𝒋

⊤ + 𝒃𝒑𝒓𝒐𝒋 𝑿𝒂𝒕𝒕𝒏 +1

𝑿𝒊𝒏𝟐 = 𝑿𝒊𝒏𝟏 + 𝑿𝒑𝒓𝒐𝒋 \ +0 \ +0 𝑿𝒊𝒏𝟐 = 𝑿𝒊𝒏𝟏 + 𝑿𝒑𝒓𝒐𝒋 \ +0

෩𝑿𝒊𝒏𝟐 = 𝐋𝐍(𝑿𝒊𝒏𝟐)
𝑿𝒊𝒏𝟐, 𝝁𝒊𝒏𝟐,

(𝝈𝒊𝒏𝟐
𝟐 + 𝜺)−

𝟏
𝟐

+2
𝑿𝒊𝒏𝟐, 𝝁𝒊𝒏𝟐,

(𝝈𝒊𝒏𝟐
𝟐 + 𝜺)−

𝟏
𝟐

+2 𝑿𝒍𝒏𝟐 = MS-LN(𝑿𝒊𝒏𝟐)
𝑿𝒍𝒏𝟐,

(𝝈𝒊𝒏𝟐
𝟐 + 𝜺)−

𝟏
𝟐

+1𝑿𝒍𝒏𝟐 = ෩𝑿𝒊𝒏𝟐𝐝𝐢𝐚𝐠 𝜶𝟐 + 𝜷𝟐

𝑿𝒇𝒄𝟏 = 𝑿𝒍𝒏𝟐𝑾𝒇𝒄𝟏
⊤ + 𝒃𝒇𝒄𝟏 𝑿𝒍𝒏𝟐 +1 \ +0 𝑿𝒇𝒄𝟏 = 𝑿𝒍𝒏𝟐෪𝑾𝒇𝒄𝟏

⊤ + ෩𝒃𝒇𝒄𝟏

𝑿𝒈𝒆𝒍𝒖 = 𝐆𝐄𝐋𝐔(𝑿𝒇𝒄𝟏) 𝑿𝒇𝒄𝟏 +4 𝑿𝒇𝒄𝟏 +4 𝑿𝒈𝒆𝒍𝒖 = 𝐑𝐞𝐆𝐄𝐋𝐔𝟐(𝑿𝒇𝒄𝟏) 𝒔𝒈𝒏𝒔 +0.5

𝑿𝒇𝒄𝟐 = 𝑿𝒈𝒆𝒍𝒖𝑾𝒇𝒄𝟐
⊤ + 𝒃𝒇𝒄𝟐 𝑿𝒈𝒆𝒍𝒖 +4 \ +0 𝑿𝒇𝒄𝟐 = 𝑿𝒈𝒆𝒍𝒖𝑾𝒇𝒄𝟐

⊤ + 𝒃𝒇𝒄𝟐 𝑿𝒈𝒆𝒍𝒖 +4

𝑿𝒐𝒖𝒕 = 𝑿𝒊𝒏𝟐 + 𝑿𝒇𝒄𝟐 \ +0 \ +0 𝑿𝒐𝒖𝒕 = 𝑿𝒊𝒏𝟐 + 𝑿𝒇𝒄𝟐 \ +0

Activation Memory 19 12 11.5

MS-BP

Approx-BP

MS-BP

Figure 5. Composition of the activation memory in each block of ViT (Dosovitskiy et al., 2021). We assume Layer Normalization uses
fp32, other operators use fp16 data type and each operator in the table is implemented as a single CUDA kernel. The unit of memory is
the memory size of a tensor (16 bits type) with the shape [b, n, c].

By Taylor expansion with Lagrange remainder, ∀t ∈ (0,∞) and ∀q ∈ RM , we have

ℓ(f̃(x,θ + tq))− ℓ(f(x,θ + tq)) =ℓ(f̃(x,θ))− ℓ(f(x,θ)) + tq⊤(
∂

∂θ
ℓ(f̃(x,θ))− ∂

∂θ
ℓ(f(x,θ)))

+
t2

2
q⊤(

∂2

∂θ∂θ
ℓ(f̃(x,θ + ξ1q))−

∂2

∂θ∂θ
ℓ(f(x,θ + ξ1q))))q, (24a)

ℓ(f̃(x,θ − tq))− ℓ(f(x,θ − tq)) =ℓ(f̃(x,θ))− ℓ(f(x,θ))− tq⊤(
∂

∂θ
ℓ(f̃(x,θ))− ∂

∂θ
ℓ(f(x,θ)))

+
t2

2
q⊤(

∂2

∂θ∂θ
ℓ(f̃(x,θ − ξ2q))−

∂2

∂θ∂θ
ℓ(f(x,θ − ξ2q))))q, (24b)

14

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

LLaMA Block

Save for Backward

Our Method

Save for Backward

if parameters
trainable

if parameters
frozen

if parameters
trainable

෩𝑿𝒊𝒏𝟏 = 𝐑𝐌𝐒𝐍𝐨𝐫𝐦(𝑿𝒊𝒏𝟏)
𝑿𝒊𝒏𝟏,

(𝝈𝒊𝒏𝟏
𝟐 + 𝜺)−

𝟏
𝟐

+2
𝑿𝒊𝒏𝟏,

(𝝈𝒊𝒏𝟏
𝟐 + 𝜺)−

𝟏
𝟐

+2 𝑿𝒍𝒏𝟏 = MS-RMSNorm(𝑿𝒊𝒏𝟏)

𝑿𝒍𝒏𝟏,

(𝝈𝒊𝒏𝟏
𝟐 + 𝜺)−

𝟏
𝟐

+1
𝑿𝒍𝒏𝟏 = ෩𝑿𝒊𝒏𝟏𝐝𝐢𝐚𝐠 𝜶𝟏

for 𝒚 = 𝒒, 𝒌, 𝒗
𝒚 = 𝑿𝒍𝒏𝟏𝑾𝒚

⊤ 𝑿𝒍𝒏𝟏 +1 \ +0
for 𝒚 = 𝒒, 𝒌, 𝒗

𝒚 = 𝑿𝒍𝒏𝟏෪𝑾𝒚
⊤

for 𝒚 = 𝒒, 𝒌, 𝒗
𝒚𝐌𝐇 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒚,
𝒃, 𝒏, 𝒄 → 𝒃,𝒉, 𝒏, 𝒄/𝒉)

\ +0 \ +0

for 𝒚 = 𝒒, 𝒌, 𝒗
𝒚𝐌𝐇 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒚,
𝒃, 𝒏, 𝒄 → 𝒃,𝒉, 𝒏, 𝒄/𝒉)

\ +0

𝒐𝐌𝐇
= 𝐟𝐥𝐚𝐬𝐡𝐚𝐭𝐭𝐧(𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇)

𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇,
𝒐𝐌𝐇,𝒎, 𝒍

+4
𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇,
𝒐𝐌𝐇,𝒎, 𝒍

+4
𝒐𝐌𝐇
= 𝐟𝐥𝐚𝐬𝐡𝐚𝐭𝐭𝐧(𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇)

𝒒𝐌𝐇, 𝒌𝐌𝐇, 𝒗𝐌𝐇,
𝒐𝐌𝐇,𝒎, 𝒍

+4

𝑿𝒂𝒕𝒕𝒏 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒐𝐌𝐇,
𝒃, 𝒉, 𝒏, 𝒄/𝒉 → 𝒃, 𝒏, 𝒄)

\ +0 \ +0
𝑿𝒂𝒕𝒕𝒏 = 𝐫𝐞𝐬𝐡𝐚𝐩𝐞(𝒐𝐌𝐇,
𝒃, 𝒉, 𝒏, 𝒄/𝒉 → 𝒃, 𝒏, 𝒄)

\ +0

𝑿𝒑𝒓𝒐𝒋 = 𝑿𝒂𝒕𝒕𝒏𝑾𝒑𝒓𝒐𝒋
⊤ 𝑿𝒂𝒕𝒕𝒏 +1 \ +0 𝑿𝒑𝒓𝒐𝒋 = 𝑿𝒂𝒕𝒕𝒏𝑾𝒑𝒓𝒐𝒋

⊤ 𝑿𝒂𝒕𝒕𝒏 +1

𝑿𝒊𝒏𝟐 = 𝑿𝒊𝒏𝟏 + 𝑿𝒑𝒓𝒐𝒋 \ +0 \ +0 𝑿𝒊𝒏𝟐 = 𝑿𝒊𝒏𝟏 + 𝑿𝒑𝒓𝒐𝒋 \ +0

෩𝑿𝒊𝒏𝟐 = 𝐑𝐌𝐒𝐍𝐨𝐫𝐦(𝑿𝒊𝒏𝟐)
𝑿𝒊𝒏𝟐,

(𝝈𝒊𝒏𝟐
𝟐 + 𝜺)−

𝟏
𝟐

+2
𝑿𝒊𝒏𝟐,

(𝝈𝒊𝒏𝟐
𝟐 + 𝜺)−

𝟏
𝟐

+2 𝑿𝒍𝒏𝟐 = MS-RMSNorm(𝑿𝒊𝒏𝟐)

𝑿𝒍𝒏𝟐,

(𝝈𝒊𝒏𝟐
𝟐 + 𝜺)−

𝟏
𝟐

+1

𝑿𝒍𝒏𝟐 = ෩𝑿𝒊𝒏𝟐𝐝𝐢𝐚𝐠 𝜶𝟐

𝑿𝒇𝒄𝟏 = 𝑿𝒍𝒏𝟐𝑾𝒇𝒄𝟏
⊤

𝑿𝒍𝒏𝟐 +1

\ +0 𝑿𝒇𝒄𝟏 = 𝑿𝒍𝒏𝟐෪𝑾𝒇𝒄𝟏
⊤

𝑿𝒇𝒄𝟐 = 𝑿𝒍𝒏𝟐𝑾𝒇𝒄𝟐
⊤ \ +0 𝑿𝒇𝒄𝟐 = 𝑿𝒍𝒏𝟐෪𝑾𝒇𝒄𝟐

⊤

𝑿𝒔𝒊𝒍𝒖 = 𝐒𝐢𝐋𝐔(𝑿𝒇𝒄𝟐) 𝑿𝒇𝒄𝟐 +2.7 𝑿𝒇𝒄𝟐 +2.7 𝑿𝒔𝒊𝒍𝒖 = 𝐑𝐞𝐒𝐢𝐋𝐔𝟐(𝑿𝒇𝒄𝟐) 𝒔𝒈𝒏𝒔 +0.3375

𝑿𝒈𝒂𝒕𝒆 = 𝑿𝒔𝒊𝒍𝒖 ∗ 𝑿𝒇𝒄𝟏 𝑿𝒔𝒊𝒍𝒖, 𝑿𝒇𝒄𝟏 +5.4 𝑿𝒔𝒊𝒍𝒖, 𝑿𝒇𝒄𝟏 +5.4 𝑿𝒈𝒂𝒕𝒆 = 𝑿𝒔𝒊𝒍𝒖 ∗ 𝑿𝒇𝒄𝟏 𝑿𝒔𝒊𝒍𝒖, 𝑿𝒇𝒄𝟏 +5.4

𝑿𝒇𝒄𝟑 = 𝑿𝒈𝒂𝒕𝒆𝑾𝒇𝒄𝟑
⊤ 𝑿𝒈𝒂𝒕𝒆 +2.7 \ +0 𝑿𝒇𝒄𝟑 = 𝑿𝒈𝒂𝒕𝒆𝑾𝒇𝒄𝟑

⊤ \ +2.7

𝑿𝒐𝒖𝒕 = 𝑿𝒊𝒏𝟐 + 𝑿𝒇𝒄𝟑 \ +0 \ +0 𝑿𝒐𝒖𝒕 = 𝑿𝒊𝒏𝟐 + 𝑿𝒇𝒄𝟑 \ +0

Activation Memory 21.8 16.1 15.4375

MS-BP

Approx-BP

MS-BP

Figure 6. Composition of activation memory in each block of LLaMA (Touvron et al., 2023). Here, RMSNorm uses fp32, other
operators use bf16 data type, and each operator is implemented as a single CUDA kernel. In practice, RMSNorm is often implemented by
multiple sub-operators, which may bring additional memory usage. The unit of memory in this figure is the memory size of a tensor (16
bits type) with the shape [b, n, c]. The expanding factor in LLaMA depends on the model size, we use LLaMA-13B as an example.

where ξ1, ξ2 ∈ (0, t). ∂2

∂θ∂θ ℓ(f̃(x,θ)) and ∂2

∂θ∂θ ℓ(f(x,θ)) are the Hessian matrices of f̃(x,θ) and f(x,θ), respectively.

15

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

From (24a) and (24b), we derive

q⊤(
∂

∂θ
ℓ(f̃(x,θ))− ∂

∂θ
ℓ(f(x,θ)))

=
1

2t
(ℓ(f̃(x,θ + tq))− ℓ(f(x,θ + tq))− ℓ(f̃(x,θ − tq)) + ℓ(f(x,θ − tq)))

+
t

4
q⊤(

∂2

∂θ∂θ
ℓ(f̃(x,θ − ξ2q))−

∂2

∂θ∂θ
ℓ(f(x,θ − ξ2q))−

∂2

∂θ∂θ
ℓ(f̃(x,θ + ξ1q)) +

∂2

∂θ∂θ
ℓ(f(x,θ + ξ1q)))q

≤1

t
sup
θ

|ℓ(f̃(x,θ))− ℓ(f(x,θ))|+ t

2
(M1 +M2)q

⊤q.

(25)
Since (25) is valid for all q ∈ RM and t ∈ (0,∞), by setting

q =
∂

∂θ
ℓ(f̃(x,θ))− ∂

∂θ
ℓ(f(x,θ)),

t =

√√√√ 2 supθ |ℓ(f̃(x,θ))− ℓ(f(x,θ))|
(M1 +M2)∥ ∂

∂θ ℓ(f̃(x,θ))−
∂
∂θ ℓ(f(x,θ))∥

2
2

,

(26)

we have

∥ ∂

∂θ
ℓ(f̃(x,θ))− ∂

∂θ
ℓ(f(x,θ))∥2 ≤

√
2(M1 +M2)

√
sup
θ

|ℓ(f̃(x,θ))− ℓ(f(x,θ))|

=
√
2(M1 +M2)a2

√
sup
θ

∥z̃L − zL∥2.
(27)

By A2, for i = 2, ..., L, ∃bi > 0, ∀θi, we have

∥hi(zi−1,θi)− hi(z̃i−1,θi)∥2 ≤ bi∥zi−1 − z̃i−1∥2. (28)

Therefore, we attain

∥z̃i − zi∥2
=∥h̃i

θ ◦ h̃i−1
θ ◦ ... ◦ h̃1

θ(x)− hi
θ ◦ hi−1

θ ◦ ... ◦ h1
θ(x)∥2

≤∥h̃i
θ ◦ h̃i−1

θ ◦ ... ◦ h̃1
θ(x)− hi

θ ◦ h̃i−1
θ ◦ ... ◦ h̃1

θ(x)∥2 + ∥hi
θ ◦ h̃i−1

θ ◦ ... ◦ h̃1
θ(x)− hi

θ ◦ hi−1
θ ◦ ... ◦ h1

θ(x)∥2
≤ sup

zi−1

∥h̃i(zi−1,θi)− hi(zi−1,θi)∥2 + bi∥h̃i−1
θ ◦ h̃i−2

θ ◦ ... ◦ h̃1
θ(x)− hi−1

θ ◦ hi−2
θ ◦ ... ◦ h1

θ(x)∥2

≤ sup
zi−1

∥h̃i(zi−1,θi)− hi(zi−1,θi)∥2 + bi sup
zi−2

∥h̃i−1(zi−2,θi−1)− hi−1(zi−2,θi−1)∥2

+...+ bibi−1...b2 sup
z0

∥h̃1(z0,θ1)− h1(z0,θ1)∥2.

(29)

From (22) and (29), we derive that ∃α1 > 0, such that

∥g̃(ℓ(zL), z,θ)− g̃(ℓ(z̃L), z̃,θ)∥2 ≤ α1

L∑
i=1

sup
zi−1

∥h̃i(zi−1,θi)− hi(zi−1,θi)∥2

≤ α1

L∑
i=1

sup
zi−1,θi

∥h̃i(zi−1,θi)− hi(zi−1,θi)∥2.

(30)

From (27) and (29), we derive that ∃α2 > 0, such that

∥ ∂

∂θ
ℓ(f̃(x,θ))− ∂

∂θ
ℓ(f(x,θ))∥2 ≤ α2

√√√√ L∑
i=1

sup
zi−1,θi

∥h̃i(zi−1,θi)− hi(zi−1,θi)∥2. (31)

16

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

By (19) and setting α = max{α1, α2}, we attain

∥ĝ − g∥2 ≤ α

(
L∑

i=1

sup
zi−1,θi

∥hi(zi−1,θi)− h̃i(zi−1,θi)∥2 +

√√√√ L∑
i=1

sup
zi−1,θi

∥hi(zi−1,θi)− h̃i(zi−1,θi)∥2

)
. (32)

Proof of Theorem 4.2. In Approx-BP training, an update step of parameters is denoted by

θt+1 = θt − ηĝt. (33)

By Assumption 4.1 in (Bottou et al., 2018), we have

ℓ(f(xt,θt+1)) ≤ℓ(f(xt,θt)) + g⊤
t (θt+1 − θt) +

β

2
∥θt+1 − θt∥22

=ℓ(f(xt,θt))− ηg⊤
t ĝt +

η2β

2
∥ĝt∥22.

(34)

Then, using assumption η < 1
2β , we have

ℓ(f(xt,θt+1))− ℓ(f(xt,θt)) ≤− ηg⊤
t (gt − gt + ĝt) +

η2β

2
∥gt − gt + ĝt∥22

≤− η∥gt∥22 + η∥gt − ĝt∥∥gt∥+ η2β∥gt∥22 + η2β∥gt − ĝt∥22
≤− η

2
(∥gt∥ − ∥gt − ĝt∥)2 + η∥gt − ĝt∥22

≤− η

4
∥gt∥22 +

3η

2
∥gt − ĝt∥22.

(35)

Now we obtain that

∥gt∥22 ≤ 4

η
(ℓ(f(xt,θt))− ℓ(f(xt,θt+1))) + 6∥gt − ĝt∥22. (36)

Taking expectation of (36) for xt ∼ D, we have

ED∥∇θℓ(f(x,θt))∥22 ≤ 4

η
[EDℓ(f(x,θt))− EDℓ(f(x,θt+1))] + 6σ2. (37)

Taking average of (37) over t = 0, ..., T − 1, we have

1

T

T−1∑
t=0

ED∥∇θℓ(f(x,θt))∥22 ≤ 4

ηT
[EDℓ(f(x,θ0))− EDℓ(f(x,θT))] + 6σ2 ≤ 4

ηT
[EDℓ(f(x,θ0))− ℓ∗] + 6σ2. (38)

Therefore, we conclude that

min
t∈{0,...,T−1}

ED∥∇θℓ(f(x,θt))∥22 ≤ 4[EDℓ(f(x,θ0))− ℓ∗]

ηT
+ 6σ2. (39)

E. Derivation of Our ReGELU2 and ReSiLU2
E.1. Proposed ReGELU2

We denote GELU as h, and
h(x) =

x

2
(1 + erf(

x√
2
)). (40)

17

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Then we define the approximate activation function h̃a,c of GELU h as follows:

h̃a,c(x) = a1max{x− c1, 0}+ a2max{x− c2, 0}+ (1− a1 − a2)max{x− c3, 0}. (41)

The optimization objective is

min
a,c

∫ ∞

−∞
(h(x)− h̃a,c(x))

2dx. (42)

We first perform a tail estimation for the integral in the objective. Note that h̃a,c(x) ≡ 0 for x < min{c}, i.e., the minimal
value in the vector c, and h̃a,c(x) ≡ x for x > max{c}, i.e., the maximum value in the vector c. So the left tail of the
integral can be estimated as follows, for a certain A < 0:∫ A

−∞
(h(x)− h̃a,c(x))

2dx =

∫ A

−∞
(
x

2
(1 + erf(

x√
2
)))2dx

<

∫ A

−∞
−x

2
(1 + erf(

x√
2
))dx =

∫ A√
2

−∞
−x(1 + erf(x))dx

<

∫ A√
2

−∞
−x(1−

√
1− e−x2)dx <

∫ A√
2

−∞
−xe−x2

dx =
1

2
e−

A2

2 .

(43)

The right tail of the integral can be estimated as follows, for a certain B > 0:∫ +∞

B

(h(x)− h̃a,c(x))
2dx =

∫ +∞

B

(
x

2
(1− erf(

x√
2
)))2dx

<

∫ +∞

B

x

2
(1− erf(

x√
2
))dx =

∫ +∞

B√
2

x(1− erf(x))dx

<

∫ +∞

B√
2

x(1−
√
1− e−x2)dx <

∫ +∞

B√
2

xe−x2

dx =
1

2
e−

B2

2 .

(44)

The condition of scaling inequalities above can be summarized as |x|
2 (1− erf(|x|√

2
)) < 1 for |x| > max{|A|, |B|}. When

setting B = −A =
√
−2ln(ε), we have the following bounds:∫ A

−∞
(h(x)− h̃a,c(x))

2dx+

∫ +∞

B

(h(x)− h̃a,c(x))
2dx < ε. (45)

We set ε = 10−8 to satisfy the condition of scaling inequalities and bound the two-side tails of integral in a negligible value.

Now we only need to solve the following optimization objective:

min
a,c

∫ B

A

(h(x)− h̃a,c(x))
2dx. (46)

This time, the integral in the objective is a definite integral over a bounded interval, which can be calculated by many
numerical computing methods (Piessens et al., 1983; Virtanen et al., 2020). Although the above optimization objective is not
convex, it is not difficult to find a good solution, since there are only five scalar variables. We have tried simulated annealing
algorithm (Kirkpatrick et al., 1983) and stochastic gradient descent algorithm (Robbins & Monro, 1951), and both can find
good solutions that are close to each other, as long as searching multiple times with different initialization. The following
solution is obtained by simulated annealing algorithm (Kirkpatrick et al., 1983), which is adopted in our code:

a∗ = [−0.04922261145617846, 1.0979632065417297]⊤,

c∗ = [−3.1858810036855245,−0.001178821281161997, 3.190832613414926]⊤.

We plot our ReGELU2 in Figure 7. In principle, there should be an additional operation during or after the optimization to
compel the solutions to fulfill the constraint in (13). However, we found the constraint is already satisfied due to the inherent
property of the L2 metrics.

18

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

8 6 4 2 0 2 4 6 8
Input

1
0
1
2
3
4
5
6
7
8

Ou
tp

ut

GELU
Approximator

8 6 4 2 0 2 4 6 8
Input

1
0
1
2
3
4
5
6
7
8

Ou
tp

ut

dGELU
dApproximator

Figure 7. Plot curve of our ReGELU2. The primitive function is the same as GELU. The derivative function is the same as the
dApproximator (derivative of the approximate activation function h̃a∗,c∗ of GELU h), a 4-segment step function that needs 2 bits to store
the derivative information of each element.

E.2. Proposed ReSiLU2

The derivation of our ReSiLU2 is similar to that for our ReGELU2. We also denote SiLU as h,

h(x) =
x

1 + e−x
. (47)

And our optimization objective is the same as ReGELU2,

min
a,c

∫ ∞

−∞
(h(x)− h̃a,c(x))

2dx. (48)

Again, we perform a tail estimation for the integral in the objective. Since h̃a,c(x) ≡ 0 for x < min{c}, i.e., the minimal
value in the vector c, and h̃a,c(x) ≡ x for x > max{c}, i.e., the maximum value in the vector c, the left tail of the integral
can be estimated as follows, for a certain A < 0:∫ A

−∞
(h(x)− h̃a,c(x))

2dx =

∫ A

−∞
(

x

1 + e−x
)2dx

<

∫ A

−∞

−x

1 + e−x
dx <

∫ A

−∞
−xexdx = (1−A)eA < e

A
2 .

(49)

The right tail of the integral can be estimated as follows, for a certain B < 0:∫ +∞

B

(h(x)− h̃a,c(x))
2dx =

∫ +∞

B

(
x

1 + ex
)2dx

<

∫ +∞

B

x

1 + ex
dx <

∫ +∞

B

xe−xdx = (1 +B)e−B < e−
B
2 .

(50)

The condition of scaling inequalities above can be summarized as |x|
1+e|x| < 1 for |x| > max{|A|, |B|} and 1−A < e−

A
2

and 1 +B < e
B
2 . When setting B = −A = −2ln(ε2), we have the following bounds:∫ A

−∞
(h(x)− h̃a,c(x))

2dx+

∫ +∞

B

(h(x)− h̃a,c(x))
2dx < ε. (51)

We set ε = 10−8 to satisfy the condition of scaling inequalities and bound the two-side tails of integral in a negligible value.

Now we only need to consider the following optimization objective:

min
a,c

∫ B

A

(h(x)− h̃a,c(x))
2dx. (52)

19

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

This time, the integral in the objective is a definite integral over a bounded interval, which can also be calculated be many
numerical methods (Piessens et al., 1983; Virtanen et al., 2020). Similarly, although the above optimization objective is not
convex, it is not difficult to find a good solution, since there are only five scalar variables. We have tried simulated annealing
algorithm (Kirkpatrick et al., 1983) and stochastic gradient descent algorithm (Robbins & Monro, 1951), and both can find
good solutions that are close to each other, as long as searching multiple times with different initialization. The following
solution is obtained by simulated annealing algorithm (Kirkpatrick et al., 1983), which is adopted in our code:

a∗ = [−0.04060357190528599, 1.080925428529668]⊤,

c∗ = [−6.3050461001646445,−0.0008684942046214787, 6.325815242089708]⊤.

We plot our ReSiLU2 in Figure 8. In principle, there should be an additional operation during or after the optimization to
compel the solutions to fulfill the constraint in (13). However, we found the constraint is already satisfied due to the inherent
property of the L2 metrics.

8 6 4 2 0 2 4 6 8
Input

1
0
1
2
3
4
5
6
7
8

Ou
tp

ut

SiLU
Approximator

8 6 4 2 0 2 4 6 8
Input

1
0
1
2
3
4
5
6
7
8

Ou
tp

ut

dSiLU
dApproximator

Figure 8. Plot curve of our ReSiLU2. The primitive function is the same as SiLU. The derivative function is the same as the dApproximator
(derivative of the approximate activation function h̃a∗,c∗ of SiLU h), a 4-segment step function that needs 2 bits to store the derivative
information of each element.

F. Memory-Sharing Activation Function
Suppose hi is a layer of element-wise activation function. The forward pass at hi can be expressed as:

zi = hi(zi−1). (53)

The backward pass at hi can be expressed as:

∂ℓ

∂zi−1
=

∂hi(zi−1)

∂zi−1

∂ℓ

∂zi
. (54)

The first condition of Proposition 5.1 is immediately satisfied. The third condition of Proposition 5.1 depends on the model
architecture and the fine-tuning methods. Here, we mainly consider the second condition of Proposition 5.1. Since hi is
element-wise, we denote the scalar activation function in hi as h. Now, the second condition of Proposition 5.1 can be
rephrased as dh(x) = J(h(x)), where J is a certain function. Some simple activation functions, such as ReLU and Sigmoid,
satisfy this condition apparently:

dReLU(x) = sgn(ReLU(x)),

dσ(x) = σ(x)(1− σ(x)),
(55)

where “sgn” is the sign function and σ(x) is the Sigmoid function.

However, it is challenging to answer whether a complicated activation function like SiLU satisfies this condition. Here, we

20

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

conclude that SiLU does not satisfy such condition. To show this, we first give the analytic form of h(x) and dh(x):

h(x) = xσ(x),

dh(x) = σ(x) + xσ(x)− xσ(x)2

=
h(x)− h(x)2

x
+ h(x).

(56)

If dh(x) = J(h(x)) for some function J , then dh(x) is decided only by h(x). Since h(x) is not injective, there exits
x1 ̸= x2 such that h(x1) = h(x2) /∈ {0, 1}, which derive dh(x1)− dh(x2) = J(h(x1))− J(h(x2)) = 0. However, from
(56), we also derive dh(x1)− dh(x2) = (h(x1)− h(x1)

2)(1
x1

− 1
x2
) ̸= 0, resulting in a contradiction.

G. Memory-Sharing LayerNorm and RMSNorm
G.1. Proposed Memory-Sharing LayerNorm (MS-LN)

The forward pass at LayerNorm and its following linear layer is as follows:

Suppose zi−1 ∈ Rpi−1 ,H = I− p−1
i−111

⊤,

σ =

√
p−1
i−1z

i−1⊤Hzi−1 + ε,

z̃i−1 = σ−1Hzi−1,

zi = diag(α)z̃i−1 + β,

zi+1 = Wzi + b.

(57)

We can merge the affine parameters in LayerNorm and the parameters in the following linear layer as follows:

W̃ = Wdiag(α),

b̃ = Wβ + b.
(58)

Then the forward pass at a merged LayerNorm and the following linear layer becomes:

Suppose x ∈ Rpi−1 ,H = I− p−1
i−111

⊤,

σ =

√
p−1
i−1z

i−1⊤Hzi−1 + ε,

zi = σ−1Hzi−1,

zi+1 = W̃zi + b̃.

(59)

The program of our MS-LN is shown in Algorithm 2.

Algorithm 2 Memory-Sharing LayerNorm (MS-LN)

Suppose H = I− p−1
i−111

⊤, ℓ is the loss function.
Input: zi−1 ∈ Rpi−1

Forward:
σ =

√
p−1
i−1z

i−1⊤Hzi−1 + ε

zi = σ−1Hzi−1

Save for backward: zi, σ
Return Output: zi

Backward:
Receive gradient: ∂ℓ

∂zi

∂ℓ
∂zi−1 = σ−1(H − p−1

i−1z
izi⊤) ∂ℓ

∂zi

Return Gradient: ∂ℓ
∂zi−1

Algorithm 3 Memory-Sharing RMSNorm (MS-RMSNorm)

Suppose ℓ is the loss function.
Input: zi−1 ∈ Rpi−1

Forward:
σ =

√
p−1
i−1z

i−1⊤zi−1 + ε

zi = σ−1zi−1

Save for backward: zi, σ
Return Output: zi

Backward:
Receive gradient: ∂ℓ

∂zi

∂ℓ
∂zi−1 = σ−1(I− p−1

i−1z
izi⊤) ∂ℓ

∂zi

Return Gradient: ∂ℓ
∂zi−1

21

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

G.2. Proposed Memory-Sharing RMSNorm (MS-RMSNorm)

The forward pass at RMSNorm and its following linear layer is as follows:

Suppose zi−1 ∈ Rpi−1 ,

σ =

√
p−1
i−1z

i−1⊤zi−1 + ε,

z̃i−1 = σ−1zi−1,

zi = diag(α)z̃i−1,

zi+1 = Wzi + b.

(60)

We can merge the affine parameters in RMSNorm and the parameters in the following linear layer as follows:

W̃ = Wdiag(α). (61)

Then the forward pass at a merged RMSNorm and the following linear layer becomes as follows:

Suppose zi−1 ∈ Rpi−1 ,

σ =

√
p−1
i−1z

i−1⊤zi−1 + ε,

zi = σ−1zi−1,

zi+1 = W̃zi + b.

(62)

The program of our MS-RMSNorm is shown in Algorithm 3.

H. Implementation Details of Fine-Tuning ViT, LLaMA and RoBERTa in Our Experiments
For experiments on fine-tuning ViT-base and ViT-large with LoRA and LoRA-FA, we use slight data augmentations in our
experiments, which are Resize (to 224×224 px), RandomCrop, RandomHorizontalFlip, Normalize for the train set and
Resize (to 224×224 px), CenterCrop, Normalize for the test set. We use AdamW (Loshchilov & Hutter, 2017) with the
weight decay 0.1 in all our experiments on ViTs. The batch size is set as 64. All ViT models are fine-tuned with WarmUp in
the first 10 epochs, where the initial learning rate starts from 1e-6, and Cosine learning rate scheduler in the remaining 90
epochs. The base learning rate is 1.25e-3 in LoRA and 1.25e-5 in Full Tuning. ViT-base experiments are conducted with
1×2080Ti GPU and ViT-large experiments are conducted with 1×L40 GPU. We use automatic mixed precision (AMP) in
Pytorch as the default setting.

For experiments on fine-tuning LLaMA-7B and LLaMA-13B with QLoRA, the batch size is set as 4 and the number of
gradient accumulation steps is set as 4. The total training iterations are 10000 steps. For LLaMA-7B, we use paged AdamW
with no weight decay, tune constant learning rate in {10−4, 2× 10−4}, and report the best 5-shot MMLU accuracy among
them. For LLaMA-13B, we tune learning rate in {10−4, 2× 10−4}, while setting weight decay as 0 for {SiLU, RMSNorm}
and {ReSiLU2, RMSNorm} configurations. We set learning rate as 1e-4, while tuning weight decay in {0.1, 0.2} for {SiLU,
MS-RMSNorm} and {ReSiLU2, MS-RMSNorm} configurations. Gradient checkpointing (Chen et al., 2016) is not used in
our experiments.

For experiments on fine-tuning RoBERTa-base with LoRA, the batch size is set as 32. We use AdamW with the weight
decay 0.01. All RoBERTa-base models are fine-tuned from the pretrained model independently for 30 epochs. We use
Linear learning rate scheduler with WarmUp ratio 0.1. The base learning rate for each task is chosen as the best one among
{0.00005, 0.0001, 0.0005, 0.001, 0.005} in fine-tuning the baseline.

I. Choice of Optimization Objective for Approximate Activation Function h̃a,c(x)

In Section 4.2, we derive the optimization objective (14) from our Approx-BP theory. Meanwhile, we believe that there
exist other feasible choices of optimization objective. A heuristic choice can be,

min
a,c

∫ ∞

−∞
(dh(x)− dh̃a,c(x))

2dx. (63)

22

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Applying the similar technique introduced in Appendix E to the above optimization problem (63), we obtain another
alternative of GELU. We call this alternative as ReGELU2-d, which means ReGELU2-d directly approximates the derivatives
of GELU. The according solution of (63) for {a, c} is:

a∗ = [0.32465931184406527, 0.34812875668739607]⊤,

c∗ = [−0.4535743722857079,−0.0010587205574873046, 0.4487575313884231]⊤.

In our experiments (Table 6), the fine-tuning ViT-base using LoRA with the new alternative ReGELU-d is also stable, but
the results by ReGELU2-d are consistently inferior to those by our ReGELU2. Therefore, we still employ ReGELU2 and
ReSiLU2 in our main paper.

Table 6. Results of fine-tuning ViT-base using LoRA with different activation functions on the CIFAR10 (C10), CIFAR100 (C100),
and FGVC benchmarks. We report the Top-1 accuracy (%) results on each dataset and the mean Top-1 accuracy (%) results on all seven
datasets. The best results are highlighted in bold.

Method Activation Norm C10 C100 CUB NAB Flower Dogs Cars Mean

LoRA
r = 4
Q, V

GELU LN 98.8 92.0 86.7 83.2 99.3 90.7 81.5 90.3
ReGELU2-d LN 98.7 92.0 86.8 82.9 99.3 90.8 81.1 90.2
ReGELU2 LN 98.8 92.0 86.9 83.0 99.3 91.0 81.4 90.3

LoRA
r = 4

All Linear

GELU LN 98.9 93.0 87.3 83.0 99.2 90.7 82.9 90.7
ReGELU2-d LN 98.9 92.7 87.2 82.6 99.2 91.0 82.6 90.6
ReGELU2 LN 98.9 92.8 87.3 83.0 99.2 91.1 83.2 90.8

J. More Experiments Results
In this section, some experimental results are supplementary to the main text, while others provide more diverse evaluations
of our method.

J.1. Experiments on ViT

The results in Table 7 are supplementary to those in Table 1. Here, we report the results of replacing the activation function
of the pretrained ViT-base with ReLU as a reference. The training throughput of GELU, ReLU, and ReGELU2 is similar,
while the training performance of ReLU is significantly inferior to other activation functions in the comparison. When all
linear layers are adapted by LoRA, the reduction of GPU memory usage during fine-tuning is similar between ReLU and
ReGELU2. When only the query and value projections are adapted, ReLU can not reduce the GPU memory usage, whereas
ReGELU2 can reduce the GPU memory usage by ∼19%. That indicates that ReLU is probably implemented in Pytorch in a
manner as we described in Appendix F.

J.2. Experiments on LLaMA

As a supplementary material to Table 3, we report the BoolQ, PIQA, HS, WG, ARC-e, ARC-c, and OBQA metrics on
fine-tuned LLaMA-7B in Table 8. We observe that the released checkpoint by the authors of QLoRA does not achieve much
better results than the pretrained (without fine-tuning) LLaMA checkpoint. Thus, we speculate that these metrics in Table 8
are not suitable to serve as the evaluation metrics for fine-tuning LLaMA-7b on Alpaca dataset. However, our method still
gets comparable performance on these metrics to the baseline.

We also have evaluated the max affordable training sequence length of LLaMA-7B with QLoRA on single RTX4090, which
is summarized as Table 9. Our method can increase the max affordable training sequence length by ∼ 46%.

J.3. Experiments on SwinTransformer

We fine-tune the pretrained SwinTransformer-Tiny (Swin-T) and SwinTransformer-Small (Swin-S) (Liu et al., 2021b) with
the detection head RetinaNet (Lin et al., 2017) on the PASCAL VOC object detection benchmark (Everingham et al., 2015).
This experiment is conducted by data parallel training using 4×RTX2080Ti. The reported peak memory usage is the max
value of those from the 4 GPUs. We use the training sets from VOC2007 and VOC2012 as the training set and the test set

23

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Table 7. Results of fine-tuning ViT-base using LoRA or LoRA-FA with different activation function and layer normalization on the
CIFAR10 (C10), CIFAR100 (C100), and FGVC benchmarks. We report the Top-1 accuracy (%) results on each dataset and the mean
Top-1 accuracy (%) results on all seven datasets. The best results are highlighted in bold.

Dataset Mean
Method Activation Norm C10 C100 CUB NAB Flower Dogs Cars Top-1(%) Mem.(MiB) Thr.(images/s)

LoRA
r = 4
Q, V

GELU LN 98.8 92.0 86.7 83.2 99.3 90.7 81.5 90.3 3827 288
ReLU LN 98.4 90.4 85.5 81.8 97.4 88.4 80.7 89.0 3828(+0%) 290(+1%)
Mesa-GELU LN 98.8 92.0 86.6 83.1 99.3 90.8 81.1 90.3 3453(-10%) 245(-15%)
ReGELU2 LN 98.8 92.0 86.9 83.0 99.3 91.0 81.4 90.3 3087(-19%) 289(+0%)

GELU Mesa-LN 98.8 91.8 86.8 82.9 99.2 90.8 81.3 90.2 3249(-15%) 257(-11%)
GELU MS-LN 98.8 92.3 88.1 82.7 99.2 90.9 83.1 90.7 3441(-10%) 288(+0%)

Mesa-GELU Mesa-LN 98.8 92.1 86.7 83.0 99.3 90.9 82.1 90.4 2853(-25%) 226(-22%)
ReGELU2 MS-LN 98.8 92.3 88.0 82.6 99.2 90.8 82.1 90.5 2717(-29%) 290(+1%)

LoRA
r = 4

All Linear

GELU LN 98.9 93.0 87.3 83.0 99.2 90.7 82.9 90.7 5128 207
ReLU LN 98.8 92.0 86.0 81.8 97.0 89.0 82.1 89.5 4300(-16%) 208(+0%)
Mesa-GELU LN 98.9 92.9 87.3 82.8 99.0 91.2 83.3 90.8 4721(-8%) 186(-10%)
ReGELU2 LN 98.9 92.8 87.3 83.0 99.2 91.1 83.2 90.8 4380(-15%) 207(+0%)

GELU Mesa-LN 99.0 92.8 87.4 83.0 99.3 90.8 83.2 90.8 4530(-12%) 189(-9%)
GELU MS-LN 99.1 93.0 88.5 82.9 99.2 90.8 85.0 91.2 4316(-16%) 207(+0%)

Mesa-GELU Mesa-LN 98.9 92.9 87.2 82.9 99.3 91.1 83.2 90.8 4209(-18%) 173(-17%)
ReGELU2 MS-LN 99.0 93.1 88.0 83.1 99.4 90.9 84.8 91.2 3601(-30%) 208(+0%)

LoRA-FA
r = 4
Q, V

GELU LN 98.4 91.7 88.5 82.8 99.1 91.8 77.6 90.0 3386 304
Mesa-GELU LN 98.4 91.9 88.1 82.8 99.1 91.6 77.6 89.9 3012(-11%) 261(-14%)
Mesa-GELU Mesa-LN 98.3 91.4 88.2 83.0 99.1 91.7 77.5 89.9 2411(-29%) 236(-22%)
ReGELU2 LN 98.4 91.7 88.1 82.6 99.1 91.9 77.2 89.8 2597(-23%) 306(+1%)

LoRA-FA
r = 4

All Linear

GELU LN 98.6 91.5 88.1 83.1 99.2 91.8 79.3 90.2 3430 249
Mesa-GELU LN 98.6 91.8 88.0 82.9 99.2 91.9 79.0 90.2 3021(-12%) 218(-12%)
Mesa-GELU Mesa-LN 98.7 91.6 87.8 82.7 99.3 91.8 79.2 90.1 2457(-28%) 200(-20%)
ReGELU2 LN 98.6 91.7 88.0 82.9 99.1 91.8 79.4 90.2 2717(-21%) 251(+0%)

Table 8. Supplementary results on fine-tuning LLaMA-7B using QLoRA on Alpaca. The metrics are evaluated by ”lm-evaluation-
harness” package (Gao et al., 2023). The best results are highlighted in bold.

Method Checkpoint BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA

QLoRA
r = 64

All Linear

pretrained 74.43 78.45 32.91 75.00 70.09 71.25 44.54 44.80
officially released 72.02 78.73 32.65 76.05 69.61 68.90 46.42 43.20
fine-tuned by us 74.50 78.02 33.06 75.93 67.48 68.94 46.33 45.00
with ReSiLU2 and MS-RMSNorm 73.76 79.54 33.21 75.82 68.43 69.53 47.18 45.60

Table 9. Max affordable sequence length on fine-tuning LLaMA-7B using QLoRA. Batch size is set as 1. The best results are
highlighted in bold.

Method Activation Norm Max Length of Tokens

QLoRA
r = 64

All Linear

SiLU RMSNorm 1354
ReSiLU2 RMSNorm 1504(+11%)
SiLU MS-RMSNorm 1654(+22%)
ReSiLU2 MS-RMSNorm 1979(+46%)

from VOC2007 as the test set. The number of training epochs is set as 12. The data type in this experiment is fp32. The
results are summarized in Table 10. One can see that our method reduces ∼ 18% of the total memory consumption on
fine-tuning Swin-T and Swin-S.

24

Reducing Fine-Tuning Memory Overhead by Approximate and Memory-Sharing Backpropagation

Table 10. Results of fine-tuning SwinTransformer-tiny (Swin-T) and SwinTransformer-small (Swin-S) with the detection head
RetinaNet on the PASCAL VOC object detection benchmark. The best results are highlighted in bold.

Head Backbone Batch Size Activation Norm Mem.(MiB) Min/Epoch mAP AP50

RetinaNet
Swin-T 4 GELU LN 7026 29.7 79.37 79.40

ReGELU2 MS-LN 5756(-18%) 29.2(-2%) 79.20 79.20

Swin-S 2 GELU LN 5810 52.2 80.78 80.80
ReGELU2 MS-LN 4773(-18%) 50.5(-3%) 80.45 80.40

J.4. Experiments on BERT

We fine-tune pretrained Bert-base (Devlin et al., 2018) on Squad-v2 (Rajpurkar et al., 2018) benchmark using data parallel
training by 4×RTX3060. The number of training epochs is 2. The data type in this experiment is fp32. The results are
summarized in Table 11. Our method enables to increase the batch size by 20%.

It is worth noting that increasing batch size usually enables less communication times, and thus larger throughput, in the
distributed training. To demonstrate that, we fine-tune pretrained Bert-large on Squad-v2 under the ZeRO training framework
(Rasley et al., 2020; Rajbhandari et al., 2020; 2021) using 4×RTX3060. As shown in Table 12, our method can increase the
throughput by ∼ 26%.

Table 11. Results of fine-tuning Bert-base on Squad-v2 using 4×RTX3060 GPUs. We set the batch size to the max affordable size. The
batch size in the table is the batch size per GPU. The best results are highlighted in bold.

Model Activation Norm Batch Size Thr.(samples/s) EM F1

Bert-base GELU LN 30 76 70.94 74.14
ReGELU2 MS-LN 36 78(+3%) 71.36 74.63

Table 12. Results of fine-tuning Bert-large on Squad-v2 using 4×RTX3060 GPUs. We set the batch size to the max affordable size. The
batch size in the table is the batch size per GPU. The best results are highlighted in bold.

Model ZeRO Activation Norm Batch Size Thr.(samples/s) Hour/Epoch EM F1

Bert-large Stage 3 + CPU offload GELU LN 10 9.57 3.83 77.29 80.65
ReGELU2 MS-LN 14 12.03(+26%) 3.05(-20%) 77.19 80.59

25

