
TwT: Thinking without Tokens by Habitual Reasoning Distillation
with Multi-Teachers’ Guidance

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) have made
significant strides in problem-solving by incor-
porating reasoning processes. However, this
enhanced reasoning capability results in an in-
creased number of output tokens during infer-
ence, leading to higher computational costs. To
address this challenge, we propose TwT (Think-
ing without Tokens), a method that reduces
inference-time costs through habitual reason-
ing distillation with multi-teachers’ guidance,
while maintaining high performance. Our ap-
proach introduces a Habitual Reasoning Dis-
tillation method, which internalizes explicit
reasoning into the model’s habitual behavior
through a Teacher-Guided compression strat-
egy inspired by human cognition. Additionally,
we propose Dual-Criteria Rejection Sampling
(DCRS), a technique that generates a high-
quality and diverse distillation dataset using
multiple teacher models, making our method
suitable for unsupervised scenarios. Experi-
mental results demonstrate that TwT effectively
reduces inference costs while preserving su-
perior performance, achieving up to a 13.6%
improvement in accuracy with fewer output to-
kens compared to other distillation methods,
offering a highly practical solution for efficient
LLM deployment.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable improvements in problem-
solving by incorporating reasoning process (Brown
et al., 2020; Wei et al., 2022; Chowdhery et al.,
2023; Yao et al., 2024). It enhances the reason-
ing capability of LLMs by breaking down complex
tasks into intermediate steps, leading to better per-
formance. However, reasoning capability comes
at a significant cost: the reasoning process sub-
stantially increases the number of output tokens
during inference, resulting in higher inference-time
computational costs (Snell et al., 2024; Wu et al.,

Cost

Output
Tokens

Problem

1. Reduce per Token Cost. 2. Reduce Token Numbers.

Strategy

Distillation

Please think
step by step…

LLM

LLM SLM

Internalize Reasoning

Inference-time Cost = $ per Token × # Reasoning Tokens

Reasoning
+ Answer

Only
Answer

Reasoning
+ Answer

Figure 1: Overview of the Proposed Method. The
upper part of the figure illustrates the background prob-
lem: while generating more reasoning steps improves
the performance of LLMs, it also leads to significantly
higher computational costs. To mitigate this, we pro-
pose targeted strategies, shown in the lower part of the
figure. Our approach reduces the cost per token by dis-
tilling knowledge from large models into smaller ones
and minimizes the total number of tokens by gradually
shrinking intermediate reasoning paths.

2024). In practical deployments, computational
resources and budgets are often constrained, mak-
ing the reduction of inference-time computational
costs a pressing issue that requires effective solu-
tions (Zheng et al., 2022; Chung et al., 2024).

Recent research has primarily explored two key
approaches to addressing this issue: reducing the
cost per token and reducing the number of reason-
ing tokens as illustrated in Figure 1 (Wang et al.,
2024a; Hsieh et al., 2023; Wang, 2024). A com-
mon strategy for reducing the cost per token is to
replace large models with smaller, more efficient
ones. However, directly using smaller models of-

ten results in a significant drop in performance,
particularly on complex reasoning tasks. To miti-
gate this problem, knowledge distillation (Hinton,
2015; Park et al., 2019) has emerged as an effec-
tive solution, enabling student models to mimic the
performance of larger teacher models (Tang et al.,
2019; Hsieh et al., 2023). However, traditional
knowledge distillation typically relies on expensive
human-labeled data, limiting its practical applica-
bility. Additionally, most distillation methods em-
ploy only a single teacher model, restricting the di-
versity of knowledge that could be leveraged from
multiple teacher models. To overcome these limi-
tations, we propose Dual-Criteria Rejection Sam-
pling (DCRS), a method that first utilizes a multi-
teacher strategy to generate pseudo-labels and then
applies a two-stage selection process-Quality Se-
lection and Diversity Selection-to construct a high-
quality and diverse distillation dataset. This ap-
proach not only enhances the efficiency of knowl-
edge transfer but also enables our model to adapt
effectively to unsupervised settings.

For the other issue, the number of reasoning to-
kens can be reduced by shrinking intermediate rea-
soning paths (Wang et al., 2024a; Deng et al., 2024).
While this effectively lowers token usage, it often
comes at the cost of degraded model performance.
Therefore, it is essential to develop a method that
balances computational efficiency and model ac-
curacy. Consider a real-world learning scenario
where a teacher possesses a deep and comprehen-
sive understanding of a concept, while a student
may struggle to grasp the material fully. To bridge
this gap, the teacher distills knowledge, extracting
only the most essential and concise information
to help the student learn more effectively. Over
time, the student internalizes this reasoning pro-
cess, enabling them to generate answers instantly
upon encountering a question, without requiring
explicit intermediate reasoning steps.

Inspired by this human cognitive process, we
propose Habitual Reasoning Distillation (HaRD), a
method that internalizes explicit reasoning into the
model’s habitual behavior through a multi-stage
distillation process, thereby reducing the need for
explicit reasoning during inference. HaRD follows
a three-stage distillation strategy: (a) Full Reason-
ing Distillation, where the student learns reason-
ing patterns from complete reasoning paths gener-
ated by teacher models; (b) Reasoning-Compressed
Distillation, where the reasoning process is pro-
gressively compressed, with teachers refining their

outputs based on the student’s responses to create
reasoning paths aligned with the student’s capabili-
ties; and (c) Reasoning-Free Distillation, where the
student is trained without explicit reasoning steps,
relying only on final labels, allowing it to generate
high-quality answers directly. This process shifts
the computational burden from inference to train-
ing, enabling both high performance and low infer-
ence cost.

In this work, we propose TwT (Thinking with-
out Tokens), a method that achieves an optimal bal-
ance between inference-time computational cost
and performance. TwT follows a two-step process.
First, DCRS utilizes multi-teacher LLMs to gen-
erate pseudo-labels, enabling the model to adapt
to unsupervised settings. Then, HaRD applies a
multi-stage distillation approach to progressively
internalize explicit reasoning abilities into the stu-
dent model as inherent capabilities. Our key contri-
butions are summarized as follows:

• Novel Distillation Framework: We propose
TwT, a novel framework that aims to reduce
inference-time computational cost through
habitual reasoning distillation with multi-
teachers’ guidance while preserving high per-
formance.

• Unsupervised Sampling Strategy: We
propose Dual-Criteria Rejection Sampling
(DCRS), a method that selects high-quality
and diverse distillation data generated by
multi-teacher LLMs, enabling adaptation to
unsupervised settings.

• Efficient Reasoning Distillation: We design
a Habitual Reasoning Distillation (HaRD)
method that refines reasoning patterns through
a teacher-guided compression strategy, ensur-
ing better alignment with the student model’s
capabilities and ultimately integrates explicit
reasoning into the model’s inherent behavior.

• Comprehensive Empirical Validation: Ex-
perimental results demonstrate that our ap-
proach outperforms existing distillation tech-
niques, achieving up to a 13.6% improvement
in performance while generating fewer tokens.

2 Related Work

2.1 Knowledge Distillation for LLMs
Knowledge distillation (KD) (Hinton, 2015; Beyer
et al., 2022; West et al., 2021) transfers capabili-

Unlabeled
Dataset

Prompt

LLM T1

LLM T2

LLM T3

Labelling

1.Dual-Criteria Rejection Sampling

Score threshold:
≥0.95

Quality Selection Diversity Selection
CAL Similarity

High Quality Data High-quality and Diverse Data<Thinking>
…
<Score>…
<Answer>…

SFT

Inference

2.Reasoning-compressed
Distillation

SFT

Teacher-guided
Compression

Compressed
Dataset

Full Reasoning
Dataset

Non-Reasoning
Dataset

SFT

3.Reasoning-free
Distillation

2.Habitual Reasoning Distillation

1.Full Reasoning
Distillation

Student’s
Output

Figure 2: Method Framework. Our proposed TwT (Thinking without Tokens) framework consists of two stages:
Dual-Criteria Rejection Sampling (DCRS) and Habitual Reasoning Distillation (HaRD). In the first stage, DCRS
selects a high-quality and diverse reasoning distillation dataset generated by multiple teacher LLMs (e.g., T1,
T2, T3). In the second stage, HaRD progressively internalizes reasoning ability into the student model through a
three-stage distillation process.

ties from large LLMs to smaller ones using hard
or soft labels from a teacher model. However, by
relying solely on final outputs, standard KD pro-
vides limited information. Reasoning distillation
(Hsieh et al., 2023) addresses this by training stu-
dents to understand both the final answer and the
underlying reasoning. Recent work (Chen et al.,
2023; Liu et al., 2023) explores generating multiple
rationales per query to enhance robustness. How-
ever, using a single teacher can introduce bias and
limit diversity. Multi-teacher strategies (Tian et al.,
2024; Zhang et al., 2024) address this by aggregat-
ing diverse reasoning paths, enriching distillation
data, and improving generalization. These meth-
ods rely on labeled datasets to select high-quality
distilled data, which can be difficult to obtain. Our
work introduces a multi-teacher approach to in-
corporate diverse reasoning data and proposes a
Dual-Criteria Rejection Sampling strategy to ob-
tain a high-quality and diverse distillation dataset
from unlabeled data.

2.2 Reasoning and Inference-time Scaling

Recent work enhances output diversity by improv-
ing reasoning via structural methods (e.g., code
parsing, problem decomposition (Gao et al., 2023;
Zhou et al., 2022)) and by generating multiple rea-
soning paths through techniques like majority vot-
ing and reinforcement learning (Wei et al., 2022;
Yao et al., 2023; Cao, 2024; Wang et al., 2022; Fu
et al., 2022; Huang et al., 2023; Trung et al., 2024;

Wang et al., 2024b). However, these supervised
approaches rely on a single model and labeled data,
limiting inherent diversity. Additionally, studies
such as (Snell et al., 2024; Wu et al., 2024) show
that adaptive inference-time strategies can signif-
icantly reduce compute costs, but model perfor-
mance will be reduced. To address these issues, we
propose a multi-teacher strategy, an unsupervised
approach for generating diverse, high-quality sam-
ples with habitual reasoning distillation for efficient
inference with explicit reasoning.

3 Method

In this section, we provide a detailed explanation of
the implementation of our TwT as illustrated in Fig.
2. First, we propose a Dual-Criteria Rejection Sam-
pling (DCRS) strategy to obtain high-quality and
diverse distillation samples (Section 3.1). Then, we
design a Habitual Reasoning Distillation (HaRD)
strategy that progressively internalizes the reason-
ing ability at each distillation stage, allowing the
reasoning capabilities of the teacher models to be
gradually internalized into the student model (Sec-
tion 3.2).

3.1 Dual-Criteria Rejection Sampling
To provide the student model with high-quality
and diverse reasoning paths, we propose a novel
paradigm termed Dual-Criteria Rejection Sampling
(DCRS), which extends traditional rejection sam-
pling (Gilks and Wild, 1992) by integrating two key

Prompt
Please xxx and
think step-by-
step,…
After that, Please
assign a confidence
score between[0,1].
Output format：
<Thinking>…
<Answer>…
<Score>…

Query ID
1,…,N

ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.95; “MODEL”:T1
…
ID-N:
<Thinking>:…,<Answer>:…,
<Score>:0.80; “MODEL”:T1

ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.98; “MODEL”:T2
…
ID-N:
<Thinking>:…,<Answer>:…,
<Score>:0.95; “MODEL”:T2

ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.95; “MODEL”:T1
ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.98; “MODEL”:T2
ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.96; “MODEL”:T3
…
ID-N

ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.96; “MODEL”:T3
…
ID-N:
<Thinking>:…,<Answer>:…,
<Score>:0.90; “MODEL”:T3

Quality Selection Diversity Selection

High Quality Data

ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.95; “MODEL”:T1
ID-1:
<Thinking>:…,<Answer>:…,
<Score>:0.98; “MODEL”:T2
…
ID-N

High-quality and
Diverse Dataset

CAL Similarity{(1-T1,1-T2),
(1-T1,1-T3),(1-T2,1-T3)}

Min Similarity: (1-T1, 1-T2)

Similarity

V.S.

Diversity
Sim=0.97 Sim=0.64

High Diversity Data

LLM T1

LLM T2

LLM T3

Unlabeled
Dataset

Score threshold:
≥0.95

Figure 3: Dual-Criteria Rejection Sampling Architecture. Our proposed DCRS method comprises two stages:
Quality Selection and Diversity Selection. The first stage filters samples using confidence scores, while the second
stage enhances diversity by selecting samples based on similarity. This approach ensures a high-quality and diverse
distillation dataset, enabling our method to effectively adapt to unsupervised scenarios.

selection metrics: confidence scores and similarity
measures. Leveraging a multi-teacher strategy, we
first prompt teacher LLMs to generate an initial
pool of pseudo-labels. DCRS performs sample se-
lection in two sequential steps: quality selection
and diversity selection.

3.1.1 Quality Selection
As shown in Figure 3, we take use of CoT prompt-
ing (Wei et al., 2022) to generate and extract reason-
ing patterns from multi-teacher LLMs. Given an
unlabeled dataset D = {xi}Ni=1, where each xi is a
query, we first design a prompt template p to clar-
ify the task solution method. The prompt instructs
the LLM to produce the output Oi in the form of
a triplet (ri, yi, ci), where yi is the predicted label
for task xi, ri is the rationale provided by the LLM,
and ci is the confidence score for the reasoning
and predicted label, represented as a decimal in the
range [0, 1]. To ensure that the confidence score
is more reliable, we compute it using a weighted
combination of multiple performance factors:

ci =

n∑
j=1

wj ·mj (1)

where wj denotes the weight assigned to the j-th
factor and mj represents the corresponding fac-
tor value. For example, in a code generation task,
we let the large model assign a weighted score
based on factors such as the reasoning process,
code readability, and robustness, yielding the final

confidence score. For k teacher models, we can
obtain a set of outputs Oi = {Oi1, Oi2, . . . , Oik}
for each query xi. Then, we set a confidence score
threshold s. For each output Oi, if its confidence
score ci ≥ s, the output sample is considered high-
quality and retained; otherwise, it is discarded. Sub-
sequently, diversity selection is performed on the re-
tained sample set H = {(xi, ri, yi, ci)}Pi=1, where
P is the total number of retained samples.

3.1.2 Diversity Selection
For the high-quality sample set H, if the outputs
Oi = {Oi1, Oi2, . . . , Oik} for the same query xi
come from three or more different teacher models
(i.e., k ≥ 3), we calculate the semantic similarity
between the rationales provided by these teacher
models. Specifically, we assume that rij denotes
the rationale generated by the j-th teacher for query
xi. Each rationale rij is then mapped into a fixed-
dimensional embedding E(rij) using a pre-trained
sentence embedding model. The cosine similarity
between any two rationales rip and riq is computed
as:

sim(rip, riq) =
E(rip) · E(riq)

∥E(rip)∥ ∥E(riq)∥
(2)

where rip and riq are rationales provided by two
distinct teacher models for the same question, with
1 ≤ p < q ≤ k. We calculate the cosine similarity
for all unique pairs (rip, riq). To maximize diver-
sity, we select the pair of rationales that yields the

lowest similarity score. In our implementation, we
directly select the pair of rationales that exhibits
the minimum cosine similarity. For a given query
xi, we define:

(p∗, q∗) = arg min
1≤p<q≤k

sim
(
rip, riq

)
(3)

where (p∗, q∗) are the indices corresponding to
the pair of rationales with the smallest similarity,
thereby ensuring that the final distillation dataset
G = {(xi, ri, yi)}Qi=1 is both high-quality and di-
verse, where P is the total number of final distilla-
tion samples.

3.2 Habitual Reasoning Distillation

In this section, we introduces a novel multi-stage
distillation strategy designed to balance inference-
time efficiency and model performance. The pro-
cess is structured into three sequential stages. In
Stage-1, the student model is trained on data
with full reasoning, enabling it to internalize the
teacher’s comprehensive problem-solving process.
In Stage-2, the student learns from compressed
reasoning, fostering more concise and efficient in-
ference. In Stage-3, distillation is performed using
answer-only data, encouraging the student to estab-
lish a direct query-to-answer mapping. Crucially,
Stage-2 incorporates a Teacher-Guided Compres-
sion mechanism that adaptively aligns the reason-
ing complexity with the student’s capacity.

Stage-1: Full Reasoning Distillation. In this
stage, the student model is trained to learn the com-
plete reasoning paths under the supervision of the
teacher models’ full reasoning. The goal is to help
the weak student model understand the logical steps
involved in the task and build a solid foundation
for further distillation.

The teachers’ reasoning ability can be trans-
ferred by fine-tuning the student model using the
full reasoning G derived from high-quality and di-
versity sample selection. More specifically, the
process of learning full reasoning paths through
fine-tuning is defined as follows:

L1 = EG [log Pf ([x; r; y])] (4)

where f indicates the student model, EG is the
expectation over the distillation dataset G, and
Pf ([x; r; ŷ]) is the probability assigned by the stu-
dent model f to the joint input [x; r; ŷ].

Stage-2: Reasoning-Compressed Distillation.
In this stage, we progressively simplify the rea-
soning paths of the teacher model, generating more
concise one by compressing the original reason-
ing paths. We observed that for the same problem,
the outputs of student models are often shorter and
feature more concise reasoning steps compared
to those of teacher models. Therefore, we adopt
a Teacher-Guided Compression approach that en-
sures the reasoning paths provided by the teacher
models are better aligned with the learning charac-
teristics of the student model, thereby enhancing
overall distillation performance.

Specifically, for a given query xi, the teacher
model generates the original reasoning ri, while
the student model produces the reasoning rs1i . We
design a prompt p′ to guide the teacher model in re-
fining its original reasoning ri based on the charac-
teristics of the student model’s output (e.g., output
length, complexity of understanding the problem).
This process can be represented as (p′, ri, r

s1
i)

→ rTi . Subsequently, we replace the original rea-
soning ri in the dataset G = {(xi, ri, yi)}Ni=1 with
the refined reasoning rTi , resulting in the second-
stage distillation dataset G′ = {(xi, rTi , yi)}Ni=1.
The second stage fine-tuning can be defined as:

L2 = EG′ [log Pf ([x; r
T ; y])] (5)

Stage-3: Reasoning-Free Distillation. Finally,
we completely remove the reasoning paths and only
retain the final answer as the supervision signal.
The student model is trained to directly output the
correct answer without relying on any reasoning
chain. The goal of this stage is to enable the stu-
dent model to form a “habitual” ability, allowing
it to efficiently complete tasks without the need
for complex reasoning. After removing r, the new
dataset G′′ = {(xi, yi)}Ni=1 only contains the orig-
inal query xi and the label yi predicted by the
teacher model. The third stage fine-tuning can be
defined as:

L3 = EG′′ [log Pf ([x; y])] (6)

In summary, Stage-1 uses full reasoning distilla-
tion, while Stage-2 employs compressed reasoning
distillation, enabling the student model to learn
complete reasoning chains and establish systematic
reasoning patterns. Stage-3 conducts end-to-end
training to strengthen the model’s understanding of
problem-answer relationships, with explicit reason-
ing now internalized. This progressive approach

Method MBPP CQA MetaMath

Pass@1 Token Accuracy Token Accuracy Token

GPT-4 77.68% 493 83.27% 312 86.31% 512
GPT-4o-mini 77.14% 451 81.76% 301 87.03% 529
Mistral-large 73.83% 365 80.15% 288 86.33% 463

Mistral-7B-v0.3

Vanilla Student 42.90% 209 60.19% 171 30.12% 255
Standard KD 52.67% 53 63.63% 5 38.19% 7

Distilling 53.39% 170 64.47% 129 42.20% 397
Tinyllm 54.45% 175 67.39% 225 41.67% 226

TwT 57.11% (↑ 4.88%) 48 76.16% (↑ 13.01%) 6 47.94% (↑ 13.60%) 7

Phi-3.5mini

Vanilla Student 54.71% 199 64.15% 150 73.36% 279
Standard KD 61.71% 98 64.48% 6 78.16% 10

Distilling 62.03% 202 65.74% 148 78.19% 370
Tinyllm 64.44% 192 70.30% 144 78.23% 240

TwT 67.93% (↑ 5.42%) 105 76.42% (↑ 8.70%) 10 83.58% (↑ 6.84%) 15

Table 1: Quantitative results for baseline models. The top three rows show the inference results of our teacher
models, while “Distilling” is an abbreviation for “Distilling Step-by-Step.” The best and the second best results are
highlighted in bold and underlined respectively. The improvements of TwT over the second best results are shown
in green with an upward arrow.

Method
MBPP CQA MetaMath

Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini

Pass@1 Token Pass@1 Token Accuracy Token Accuracy Token Accuracy Token Accuracy Token

TwT-stage1 54.83% 291 65.32% 310 73.31% 141 72.99% 138 46.48% 295 80.05% 313
TwT-stage2 56.48% 154 66.42% 184 74.89% 84 75.39% 73 47.02% 169 81.33% 196
TwT-stage3 57.11% 48 67.93% 105 76.16% 8 76.42% 10 47.94% 12 83.58% 15

Table 2: Quantitative results for three distillation stages. Accuracy and the number of output tokens were used to
evaluate the model performance. The best results were highlighted in bold.

enhances performance while reducing inference-
time computation. The detailed prompt and case
study are provided in Appendix A and B.

4 Experiment

4.1 Experiment Setup

Datasets. We evaluate our TwT on 3 benchmark
datasets for 3 different NLP tasks: MBPP (Austin
et al., 2021) for NL to python code generalization;
CommonsenseQA (CQA) (Talmor et al., 2018) for
commonsense question answering; MetaMathQA
(MetaMath) (Yu et al., 2023) for mathematical
reasoning, which is augmented from the training
sets of GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021).
Models. We utilize GPT-4, GPT-4o-mini and
Mistral-Large as our teacher models, which are
accessed through OpenAI’s API and MistralAI’s
API. For the student models, we use Mistral-7B-
v0.3 and Phi-3.5mini. For the pre-trained sentence
embedding model, we leverage all-mpnet-base-v2.
Baselines. For our baselines, we evaluate three
types of methods: teacher model’s performance,

vanilla student model’s performance, and knowl-
edge distillation based methods that containing
Standard-KD (Hinton, 2015), a general distillation
method that fine-tunes the student model using the
teacher model’s generated labels as ground-truth;
Distilling-Step-by-Step (Hsieh et al., 2023), which
leverages LLM-generated rationales as additional
supervision to train smaller models; TinyLLM
(Tian et al., 2024), a paradigm that distills diverse
reasoning paths from multiple teacher LLMs into a
student model.

Implementation Details. In our experimental
setup, we employed training with LoRA fine-
tuning, setting the LoRA rank to 8, a learning rate
of 1e-5, a batch size of 8, 4 training epochs, and a
context window of 4096 tokens. During inference,
we used a temperature of 0, max tokens set to 2048,
and a top-p value of 0.95. For the sampling process,
we selected a scoring threshold of s = 0.95. All ex-
periments were conducted on four NVIDIA A100
Tensor Core GPUs, enabling large-scale training
and efficient computation. The prompts for spe-
cific methods and a case study are provided in the
appendix.

Method
MBPP CQA MetaMath

Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini

Pass@1 Token Pass@1 Token Accuracy Token Accuracy Token Accuracy Token Accuracy Token

TwT-stage1 54.83% 291 65.32% 310 73.31% 141 72.99% 138 46.48% 295 80.05% 313
TwT-stage2 56.48% 154 66.42% 184 74.89% 84 75.39% 73 47.02% 169 81.33% 196
TwT-stage3 56.94% 133 67.18% 161 75.44% 55 75.85% 64 47.41% 144 81.99% 172
TwT-stage4 57.49% 42 68.21% 100 76.29% 8 76.88% 9 48.37% 12 83.61% 13

Table 3: Quantitative results for four distillation stages. Accuracy and the number of output tokens were used to
evaluate the model performance. The best results were highlighted in bold.

Method
MBPP CQA MetaMath

Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini

Pass@1 Token Pass@1 Token Accuracy Token Accuracy Token Accuracy Token Accuracy Token

TwT-stage1 54.56% 306 64.10% 297 72.91% 155 72.49% 141 45.09% 299 79.17% 320
TwT-stage2 55.31% 162 65.93% 188 75.22% 72 75.62% 74 46.29% 176 80.62% 187
TwT-stage3 56.64% 57 66.16% 113 75.98% 12 76.15% 15 46.93% 16 81.37% 18

Table 4: Quantitative results for three distillation stages via GPT-4, GPT-4o-mini and GPT-3.5-turbo. Accuracy
and the number of output tokens were used to evaluate the model performance. The best results were highlighted in
bold.

4.2 Baseline Comparison

Across three specific-tasks, TwT consistently out-
performs other distillation methods as shown in Ta-
ble 1. Compared with the best performing baseline,
TwT achieves an improvement of up to 13.60%
compared to the best-performing baseline, while re-
ducing the token number by 98.2% (token numbers
from 397 to 7 on MetaMath dataset), substantially
lowering the inference cost. Typically, reducing
inference tokens leads to a decline in performance;
however, TwT overcomes this trade off by maintain-
ing or even enhancing model performance while
dramatically reducing token usage, thus achieving
both high performance and low inference-time com-
putational cost simultaneously. In addition, TwT
effectively bridges the gap between the student and
teacher models, significantly narrowing the perfor-
mance disparity observed in vanilla student models.

4.3 Analysis on Distillation Stage

In the Habitual Reasoning Distillation phase, we
separately evaluated the student model’s perfor-
mance at each fine-tuning stage and tracked the
number of output tokens during inference, as shown
in Table 2. The results indicate that TwT steadily
improves with each stage, while the inference to-
ken numbers gradually decrease. By leveraging
our distillation strategy, the model successfully in-
ternalizes the reasoning process as part of its own
capabilities.

Samping Method MBPP CQA MetaMath

Log Probability-Based 74.83% 75.29% 72.19%
Hard Rejection Sampling-Based 72.29% 73.11% 70.26%

Confidence Score-Based 83.49% 84.90% 81.14%

Table 5: Quantitative results for sampling methods.
Accuracy was used to evaluate the model performance.
The best results were highlighted in bold.

Furthermore, we expanded our three-stage pro-
cedure by extending it to four stages, adding an
additional step after the second stage where the
teacher model further compresses the reasoning
process based on the student’s output. As shown in
Table 3, this extension yields a slight improvement
but does not significantly surpass the three-stage
method. This suggests that our original three-stage
process is already effective in achieving the desired
performance.

4.4 Analysis on the Robustness to Teacher
Model Quality

To evaluate the robustness of our method to the
quality of teacher models, we conduct the ex-
periment using teachers with varying capabilities.
Specifically, we compare TwT performance when
distilled from GPT-4, GPT-4o-mini, and GPT-3.5-
turbo. Notably, GPT-3.5-turbo underperforms com-
pared to Mistral-large on our benchmark datasets,
particularly on the MetaMath task. Compared Ta-
ble 2 and Table 4, it demonstrates that TwT remains

Compression Method MBPP CQA MetaMath

Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini Mistral-7B-v0.3 Phi-3.5mini

Fixed-Length Compression 55.89% 64.94% 73.29% 72.92% 43.18% 80.62%
Compressor 56.01% 65.10% 73.61% 73.69% 45.22% 80.95%

Teacher-guided Compression 56.48% 66.42% 74.89% 75.39% 47.02% 81.33%

Table 6: Quantitative Results for Compression Methods. Accuracy was used to evaluate the model performance.
The best results were highlighted in bold.

Methods MBPP CQA MetaMath

Accuracy Token Accuracy Token Accuracy Token

w/o Multi-Teacher Strategy (GPT-4) 55.38% 54 74.64% 7 46.82% 15
w/o DCRS 55.42% 48 74.79% 9 47.11% 14

w/o Compression Distillation Stage 54.49% 93 72.19% 21 46.38% 48
TwT 57.11% 48 76.16% 8 47.94% 12

Table 7: Ablation Study for Model Components. Accuracy and the number of output tokens were used to evaluate
the model performance. The best results were highlighted in bold.

effective even when guided by a weaker teacher.
Despite the reduced capability of GPT-3.5-turbo,
the resulting student models still follow our core
hypothesis and achieve competitive performance.
These findings suggest that TwT is robust to teacher
quality and does not rely on the strongest teacher
models to be effective.

4.5 Analysis on Sampling and Compression
Strategy

We evaluated the effectiveness of our DCRS
method’s confidence score selection for distilla-
tion data and our Teacher-Guided Compression
approach for enhancing student model’s perfor-
mance. For sampling, Table 5 shows that our Con-
fidence Score-Based method outperformed Log
Probability-Based and Hard Rejection Sampling ap-
proaches by nearly 10% in accuracy, demonstrating
superior quality selection for distillation. For com-
pression, Table 6 shows that Teacher-Guided Com-
pression better matched teacher outputs to student
capacity than Fixed-Length or Compressor-based
methods, improving both efficiency and perfor-
mance. Confidence score details are in Appendix
C.

4.6 Ablation Study
We further analyze the contribution of each compo-
nent to TwT’s performance through ablation stud-
ies. Specifically, w/o Multi-Teacher Strategy evalu-
ates the effect of using a single teacher model, w/o
DCRS evaluates performance without filtering the
distillation data, and w/o Compression Distillation
Stage analyzes the impact of directly removing the

reasoning step as shown in Table 7.
TwT’s multi-teacher strategy outperforms single-

teacher distillation by 1.4%, demonstrating the ben-
efit of diverse reasoning paths. Compared to us-
ing raw pseudo-labeled data directly, TwT’s DCRS
strategy shows a 1.5% improvement, highlighting
the value of quality data sampling. Additionally,
TwT’s multi-stage distillation achieves 3.5% higher
accuracy than uncompressed reasoning while re-
ducing output tokens, proving the effectiveness of
gradual reasoning internalization.

5 Conclusion and Future Work

We introduced TwT, a novel distillation framework
that internalizes reasoning abilities into a student
model under multi-teachers’ guidance. It incorpo-
rates a Dual-Criteria Rejection Sampling stage to
obtain a high-quality and diverse distillation dataset
and a Habitual Reasoning Distillation strategy to
gradually integrate reasoning capabilities into the
student model. TwT achieves high performance
with low inference cost without relying on labeled
data or an explicit reasoning process. In future
work, we will continue to explore whether further
subdividing the distillation stages can enhance our
framework

Limitations

Although our method has achieved excellent re-
sults, there are still some minor flaws here. One
limitation of our approach is that it currently only
works effectively on specific tasks and is not appli-
cable to datasets containing mixed tasks. Addition-

ally, the Dual-Criteria Rejection Sampling process
could consist of noise. The impact of this poten-
tial noise on performance is still undetermined. A
potential future direction is to investigate implicit
natural language reasoning by utilizing more ad-
vanced training strategies. While current tasks are
primarily focused on explicit reasoning, incorporat-
ing implicit reasoning mechanisms could improve
the model’s robustness and its ability to generalize
across different tasks.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Mar-
keeva, Rohan Anil, and Alexander Kolesnikov. 2022.
Knowledge distillation: A good teacher is patient
and consistent. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10925–10934.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Lang Cao. 2024. GraphReason: Enhancing reasoning
capabilities of large language models through a graph-
based verification approach. In Proceedings of the
2nd Workshop on Natural Language Reasoning and
Structured Explanations (@ACL 2024), pages 1–12,
Bangkok, Thailand. Association for Computational
Linguistics.

Hongzhan Chen, Siyue Wu, Xiaojun Quan, Rui Wang,
Ming Yan, and Ji Zhang. 2023. Mcc-kd: Multi-cot
consistent knowledge distillation. arXiv preprint
arXiv:2310.14747.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1–53.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro

Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Yuntian Deng, Yejin Choi, and Stuart Shieber. 2024.
From explicit cot to implicit cot: Learning to
internalize cot step by step. arXiv preprint
arXiv:2405.14838.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2022. Complexity-based prompting for
multi-step reasoning. In The Eleventh International
Conference on Learning Representations.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Walter R Gilks and Pascal Wild. 1992. Adaptive re-
jection sampling for gibbs sampling. Journal of the
Royal Statistical Society: Series C (Applied Statis-
tics), 41(2):337–348.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Geoffrey Hinton. 2015. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh,
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister.
2023. Distilling step-by-step! outperforming larger
language models with less training data and smaller
model sizes. arXiv preprint arXiv:2305.02301.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2023.
Large language models can self-improve. In The
2023 Conference on Empirical Methods in Natural
Language Processing.

Weize Liu, Guocong Li, Kai Zhang, Bang Du, Qiyuan
Chen, Xuming Hu, Hongxia Xu, Jintai Chen, and Jian
Wu. 2023. Mind’s mirror: Distilling self-evaluation
capability and comprehensive thinking from large
language models. arXiv preprint arXiv:2311.09214.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho.
2019. Relational knowledge distillation. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3967–3976.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

https://aclanthology.org/2024.nlrse-1.1/
https://aclanthology.org/2024.nlrse-1.1/
https://aclanthology.org/2024.nlrse-1.1/

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga
Vechtomova, and Jimmy Lin. 2019. Distilling task-
specific knowledge from bert into simple neural net-
works. arXiv preprint arXiv:1903.12136.

Yijun Tian, Yikun Han, Xiusi Chen, Wei Wang, and
Nitesh V Chawla. 2024. Beyond answers: Trans-
ferring reasoning capabilities to smaller llms using
multi-teacher knowledge distillation.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun,
Xiaoran Jin, and Hang Li. 2024. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7601–7614.

Junlin Wang, Siddhartha Jain, Dejiao Zhang, Baishakhi
Ray, Varun Kumar, and Ben Athiwaratkun. 2024a.
Reasoning in token economies: Budget-aware eval-
uation of llm reasoning strategies. arXiv preprint
arXiv:2406.06461.

Libo Wang. 2024. Reducing reasoning costs: The path
of optimization for chain of thought via sparse atten-
tion mechanism. arXiv preprint arXiv:2411.09111.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D
Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. 2021. Sym-
bolic knowledge distillation: from general language
models to commonsense models. arXiv preprint
arXiv:2110.07178.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Inference scaling laws:
An empirical analysis of compute-optimal inference
for problem-solving with language models. arXiv
preprint arXiv:2408.00724.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in neural
information processing systems, 36:11809–11822.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Yuzhe Zhang, Huan Liu, Yang Xiao, Mohammed
Amoon, Dalin Zhang, Di Wang, Shusen Yang, and
Chai Quek. 2024. Llm-enhanced multi-teacher
knowledge distillation for modality-incomplete emo-
tion recognition in daily healthcare. IEEE Journal of
Biomedical and Health Informatics, pages 1–11.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao
Zhuang, Zhifeng Chen, Yanping Huang, Yida Wang,
Yuanzhong Xu, Danyang Zhuo, Eric P Xing, et al.
2022. Alpa: Automating inter-and {Intra-Operator}
parallelism for distributed deep learning. In 16th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 559–578.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. 2022.
Least-to-most prompting enables complex reasoning
in large language models. In The Eleventh Interna-
tional Conference on Learning Representations.

https://doi.org/10.1109/JBHI.2024.3470338
https://doi.org/10.1109/JBHI.2024.3470338
https://doi.org/10.1109/JBHI.2024.3470338

A Prompt

The specific prompt for teachers to generate
pseudo-labels on the MBPP, CQA and MetaMath
dataset is shown in Figure 4.

B Case Study on MBPP Dataset

B.1 Query

A specific query example of the MBPP dataset is
shown in Figure 5.

B.2 Teacher’s Original Response (Dataset of
HaRD Stage-1)

After Dual-Criteria rejection sampling, one of the
selected teacher responses (with full reasoning pro-
cess) is shown in Figure 6.

B.3 Student’s Inference for Same Query

After performing SFT on the student model us-
ing the full reasoning dataset from the first stage,
an initial student model with reasoning ability is
obtained. Let this stage’s student model perform
inference on the distillation dataset, resulting in the
student’s response, as shown in Figure 7.

B.4 Teacher’s Refinement Prompt

After the student model performs inference, the
reasoning processes of both the student and teacher
models are extracted for the same query. The
teacher model modifies its original reasoning pro-
cess based on the student model’s response prefer-
ences. The prompt is shown in Figure 8.

B.5 Compressed Reasoning Data after
Refinement (Dataset of HaRD Stage-2)

By having the teacher model refine its original re-
sponse based on the student model’s answer to
the same question, the teacher’s response can bet-
ter align with the student’s learning characteristics.
This can be compared to the human learning pro-
cess: the teacher delivers the initial lesson, then,
after receiving feedback from the student, modi-
fies the lesson plan based on the feedback to im-
prove subsequent teaching. The teacher’s revised
response is shown in Figure 9. Since the refined
reasoning is intuitively much shorter than the orig-
inal reasoning, we refer to it as the “reasoning-
compressed dataset”, which is used for the second
stage of distillation in HaRD.

B.6 Reasoning-free Distillation Data
After the second stage of SFT, the student model
gradually internalizes the reasoning process into
its own capability. In the third stage, we aim to
enable the student model to learn query-answer
end-to-end, strengthening its memory of the answer.
Through this repetitive training, the student model
will eventually be able to provide accurate answers
without outputting reasoning. The format of the
distillation data in the third stage is: prompt + query
+ answer (python code), meaning that the reasoning
process is entirely removed. This dataset is used to
continue SFT on the student model from the second
stage, resulting in the final trained student model,
completing the entire HaRD training process.

C Details of Confidence Score Selection

Taking the MBPP dataset as an example, we prompt
the LLM to assign a confidence score to its own
output based on four weighted criteria: correct-
ness (50%), readability (20%), execution efficiency
(20%), and test coverage (10%). The final score
is returned in the format score: 0.85 as a clear
numeric value.

Inspired by recent work on LLM self-
consistency, which shows that LLMs can assess
the quality of their own outputs by assigning con-
fidence scores, we adopt a similar strategy to
evaluate the trustworthiness of generated samples.
Specifically, we introduce a confidence threshold:
samples with scores above this threshold are re-
tained as reliable, while those below are discarded.

To determine this threshold, we analyze the re-
lationship between confidence scores and output
quality. On datasets such as MBPP, CQA, and
MetaMath, we observe that when the confidence
score is around 0.95, the alignment between model
predictions and ground truth is the highest (e.g.,
the largest number of passed test cases on MBPP).
Based on this observation, we set the confidence
threshold to 0.95 in our experiments. The confi-
dence score distributions on different datasets are
shown in Figures 10–12.

MBPP

You are a helpful assistant. Your task is to implement a Python function based on the following guidelines. Please think
step by step to analyze the question carefully and give your clear thinking step to solve the problem. Ensure that it
passes all three provided test cases which use assert statements for validation.\n
Instructions:\n
1. Function Name: Use the exact function name provided in the test cases.\n
2. Input and Output: The function should accept the same number and types of input arguments and return the same
type of output as specified in the test cases.\n
3. Function Behavior: The function should pass all three provided test cases when executed.\n
4. Allowed Libraries: You may use any standard Python libraries.\n
5. Confidence Score: After completing the code, please assign a confidence score between 0.00 and 1.00 to your code
based on the following criteria:
(1) Correctness (50% weight):Whether the functionality is implemented correctly and all test cases are passed.\n
(2) Readability (20% weight): Whether the code structure is clear, variable and function names are meaningful.\n
(3) Execution Efficiency (20% weight): Whether the algorithm is efficient and there is unnecessary redundant
code.\n
(4) Test Coverage (10% weight): Whether possible edge cases and exceptions are considered.\n Please assign a score
for each category based on the weight, then calculate the weighted total score. The final score should be in the format
score: 0.85. Please provide a clear numerical value without any additional explanation.
6. Response Format: Your response must include three parts:
(1) Thinking: A detailed step-by-step explanation of your approach.
(2) Code: The Python code implementing the function, without additional explanations.
(3) Score: Your confidence score as specified. \n
Response Format Example:```Thinking: (Your detailed explanation here.)```\n ```python (Your Python code goes
here)```\n```score: 0.85（Do not give any explanation）```

CQA

You are a helpful assistant. Your task is to answer questions based on provided options. Each input consists of a
question and five answer choices.\n
Instructions:\n
1. Confidence Score: After giving the answer, please assign a confidence score between 0.00 and 1.00 to your answer
based on the following:
(1) Correctness (50%): The answer is factually correct.\n
(2) Logical Reasoning (25%): The explanation demonstrates clear and reasonable reasoning.\n
(3) Clarity (15%): The response is easy to follow. \n
(4) Completeness (10%): All necessary aspects of the question are addressed.
2. Response Format: Your response must include three parts:
(1) Thinking: A detailed step-by-step explanation of your approach.
(2) Answer: The answer choice without additional explanations.
(3) Score: Your confidence score as specified. \n
Response Format Example:```Thinking:[your thinking process] ```; ```The answer is: [answer choice]```; ```score: [an
exact number, for example:0.85]```

MetaMath

You are a helpful assistant. Your task is to answer a math question. Please think step by step to analyze the question
carefully and give your clear thinking step to solve the problem.\n
Instructions:\n
1. Confidence Score: After solving the problem, please assign a confidence score between 0.00 and 1.00 to your
answer based on the following:
(1) Correctness (50% weight): the answer is factually correct based on the information or reasoning provided.\n
(2) Logical Reasoning (25% weight): Whether the analysis exhibits a clear, reasonable thought process.\n
(3) Clarity (15% weight): The reasoning should be easy to follow, avoiding unnecessary complexity. \n
(4) Completeness (10% weight): The analysis should cover all necessary aspects of the question. Please assign a score
for each category based on the weight, then calculate the weighted total score. The final score should
be in the format score: 0.85.
2. Response Format: Your response must include three parts:
(1) Thinking: A detailed step-by-step explanation of your approach.
(2) Answer: The number for the problem, without additional explanations.
(3) Score: Your confidence score as specified. \n
Response Format Example:```Thinking:[your thinking process] ```; ```The answer is: [anexact number]```; ```score:
[an exact number, for example:0.85]```

Figure 4: Prompt for Teachers to Generate Pseudo-Labels on the MBPP Dataset.

Question:\nWrite a function to find the minimum cost path to reach (m, n) from (0, 0) for the
given cost matrix cost[][] and a position (m, n) in cost[][]. \n# Test Cases: \nassert min_cost([[1,
2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8\nassert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) ==
12\nassert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16\nGive me the answer based on the
instructions and test cases following the examples above.

Figure 5: An example query of the MBPP dataset, showing the input programming task and its corresponding test
case.


``` Thinking:\nTo solve the problem of finding the minimum cost path in a cost matrix from the top-
left corner (0, 0) to a given position (m, n), we can use dynamic programming. The idea is to create a
2D array `dp` where `dp[i][j]` will store the minimum cost to reach the cell (i, j) from (0, 0).\n\nHere
are the steps to implement the solution:\n\n1. Initialize a 2D list `dp` of the same dimensions as the
cost matrix, where each element is initially set to 0.\n2. Set the starting point `dp[0][0]` to `cost[0][0]`
since the cost to reach the starting point is just the cost of that cell.\n3. Fill in the first row and first
column of the `dp` array since they can only be reached from one direction (from the left for the first
row and from above for the first column).\n4. For each cell (i, j) in the matrix starting from (1, 1),
calculate the minimum cost to reach that cell by taking the minimum of the cost from the cell above
(i-1, j) and the cell to the left (i, j-1), and add the current cell's cost.\n5. The value at `dp[m][n]` will
give us the minimum cost to reach the cell (m, n).\n6. Finally, return `dp[m][n]`.\n\nThis approach
ensures that we efficiently compute the minimum cost path using previously computed results,
leading to an overall time complexity of O(m*n).\n\n```
``` python\ndef min_cost(cost, m, n):\n # Create a 2D array to store the minimum cost path\n dp =
[[0 for _ in range(n + 1)] for _ in range(m + 1)]\n \n # Initialize the starting point\n dp[0][0] =
cost[0][0]\n \n # Fill the first row\n for j in range(1, n + 1):\n dp[0][j] = dp[0][j - 1] +
cost[0][j]\n \n # Fill the first column\n for i in range(1, m + 1):\n dp[i][0] = dp[i - 1][0] +
cost[i][0]\n \n # Fill the rest of the dp array\n for i in range(1, m + 1):\n for j in range(1, n +
1):\n dp[i][j] = cost[i][j] + min(dp[i - 1][j], dp[i][j - 1])\n \n # The minimum cost to reach
(m,n)\n return dp[m][n]\n```
``` score: 0.95```

Figure 6: The original structured response generated by the teacher model based on the query. The italicized part
represents the full reasoning process, which will later be refined based on the student model’s response.

``` Thinking:The problem is a classic example of a dynamic programming problem. The idea is to
fill a 2D array with the minimum cost to reach each cell from the top-left corner. The base case is
the top-left cell, which has a cost of 0. For other cells, the cost is the minimum of the cost to reach
the cell above, the cost to reach the cell to the left, and the cost to reach the cell above and to the
left, plus the cost of the current cell. This is because the cost to reach a cell is the minimum of the
cost to reach the cell above, the cost to reach the cell to the left, and the cost to reach the cell above
and to the left, plus the cost of the current cell.\n\n ```

```python\ndef min_cost(cost, m, n):\n dp = [[0] * n for _ in range(m)]\n for i in range(m):\n
for j in range(n):\n if i == 0 and j == 0:\n dp[i][j] = 0\n elif i == 0:\n
dp[i][j] = dp[i][j - 1] + cost[i][j]\n elif j == 0:\n dp[i][j] = dp[i - 1][j] + cost[i][j]\n
else:\n dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + cost[i][j]\n return dp[m - 1][n - 1]\n```\n

``` score: 0.95 ```

Figure 7: The inference results of the student model after the first stage of SFT on the distill dataset.

Please compare your previous thinking process on this task with the student’s thinking process in
detail.\n
After identifying any differences in style, tone, structure, and length, modify your original output to
better align with the student’s preferences.\n
Ensure that your revised output maintains a similar length and depth of content as the student’s
version, while preserving all essential information.\n
The goal is to make your response more suited to the student’s learning ability, helping them better
understand and grasp the content.\n

Prompt for Teacher’s Refinement on MBPP dataset

Figure 8: Prompt for teacher’s refinement.


``` Thinking:\Thinking: The problem involves finding the minimum cost path in a cost matrix
using dynamic programming. We will create a 2D array dp where dp[i][j]represents the minimum
cost to reach cell (i, j) from (0, 0).\n Initialization: Start by initializing dp[0][0] with cost[0][0].\n
Fill the first row by accumulating costs from the left and the first column from above.\n For each
cell (i, j) from (1, 1), the value is calculated as cost[i][j] plus the minimum of the values from the
cell above (i-1, j) and the cell to the left (i, j-1).\n The final value at dp[m][n] gives the minimum
cost to reach the destination cell.```

``` python\ndef min_cost(cost, m, n):\n # Create a 2D array to store the minimum cost path\n dp =
[[0 for _ in range(n + 1)] for _ in range(m + 1)]\n \n # Initialize the starting point\n dp[0][0] =
cost[0][0]\n \n # Fill the first row\n for j in range(1, n + 1):\n dp[0][j] = dp[0][j - 1] +
cost[0][j]\n \n # Fill the first column\n for i in range(1, m + 1):\n dp[i][0] = dp[i - 1][0] +
cost[i][0]\n \n # Fill the rest of the dp array\n for i in range(1, m + 1):\n for j in range(1, n +
1):\n dp[i][j] = cost[i][j] + min(dp[i - 1][j], dp[i][j - 1])\n \n # The minimum cost to reach
(m,n)\n return dp[m][n]\n```

``` score: 0.95```

Figure 9: Dataset of reasoning-compressed distillation stage.

Figure 10: Confidence Score Distribution on MBPP dataset via GPT-4, GPT-4o-mini and Mistal-Large.



Figure 11: Confidence Score Distribution on CQA dataset via GPT-4, GPT-4o-mini and Mistal-Large.

Figure 12: Confidence Score Distribution on MetaMath dataset via GPT-4, GPT-4o-mini and Mistal-Large.


	Introduction
	Related Work
	Knowledge Distillation for LLMs
	Reasoning and Inference-time Scaling

	Method
	Dual-Criteria Rejection Sampling
	Quality Selection
	Diversity Selection

	Habitual Reasoning Distillation

	Experiment
	Experiment Setup
	Baseline Comparison
	Analysis on Distillation Stage
	Analysis on the Robustness to Teacher Model Quality
	Analysis on Sampling and Compression Strategy
	Ablation Study

	Conclusion and Future Work
	Prompt
	Case Study on MBPP Dataset
	Query
	Teacher’s Original Response (Dataset of HaRD Stage-1)
	Student's Inference for Same Query
	Teacher's Refinement Prompt
	Compressed Reasoning Data after Refinement (Dataset of HaRD Stage-2)
	Reasoning-free Distillation Data

	Details of Confidence Score Selection

