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Abstract

We study the problem of modeling a population of agents pursuing unknown goals
subject to unknown computational constraints. In standard models of bounded
rationality, sub-optimal decision-making is simulated by adding homoscedastic
noise to optimal decisions rather than actually simulating constrained inference. In
this work, we introduce a latent inference budget model (L-IBM) that models these
constraints explicitly, via a latent variable (inferred jointly with a model of agents’
goals) that controls the runtime of an iterative inference algorithm. L-IBMs make
it possible to learn agent models using data from diverse populations of suboptimal
actors. In three modeling tasks—inferring navigation goals from routes, inferring
communicative intents from human utterances, and predicting next moves in human
chess games—we show that L-IBMs match or outperform Boltzmann models of
decision-making under uncertainty. Moreover, the inferred inference budgets are
themselves meaningful, efficient to compute, and correlated with measures of
player skill, partner skill and task difficulty.

1 Introduction

Building effective models for multi-agent decision-making—whether cooperative or adversarial—
requires understanding other agents’ goals and plans. To help a friend navigate in a new environment,
we must first understand where they want to go; to beat an opponent at chess, we must be able to
predict their likely next moves. But decision-making, in humans and machines, is subject to computa-
tional constraints. Decision-makers often act suboptimally, relying on heuristics and approximations
to choose their actions. Techniques that do not account for this suboptimality carefully may invariably
attribute behavior to differing intentions rather than different inference procedures.

How should we interact with agents seeking to accomplish unknown goals subject to unknown
computational constraints? In this paper, we describe a simple approach for building models of agents
given traces of their behavior in a way that accounts for agent-specific suboptimality. In standard
models of bounded rationality [20], sub-optimal decision-making is simulated by adding noise to
optimal decisions rather than actually simulating constrained inference. This results in inference
methods that treat agents as uniformly suboptimal in a way that fails to account for sub-optimal
inference algorithms or for non-homogenous suboptimality. In this work, by contrast, we look to
explicitly model an agent’s “inference budget", via a latent variable that controls the runtime of
an iterative inference algorithm, inferred jointly with a model of an agent’s goals. This provides
the ability to perform accurate intent inference from a mixture of agents across a range of skill
levels. We show that a diverse set of multi-agent decision-making procedures—including graph-based
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planning algorithms, recursive-rational models of human language production, and Monte Carlo tree
search—admit efficient imputation of inference budgets in this framework.

In three diverse agent modeling tasks—inferring navigation goals from routes, inferring commu-
nicative intents from human utterances, and predicting subsequent moves in human–human chess
matches—we show that our approach matches or outperforms Boltzmann models of decision-making
under uncertainty. Moreover, inferred inference budgets are themselves meaningful, correlating with
measures of player skill, partner skill, and task difficulty. Our results show that sub-optimal human
decision-making can be efficiently modeled with computationally constrained versions of standard
search algorithms. In doing so, we obtain both accurate models of human behavior and informative
measures of inferential capacity.

2 Background and problem formulation

We study the problem of modeling one or more agents given given traces of their behavior. In
particular, we assume that we observe a collection of trajectories (state–action sequences) produced
by agents π∗ : s 7→ a acting in a Markov decision process to maximize some reward function R∗(τ).
Even when R∗(τ) is known to agents, inferring optimal actions is often intractable, so agents in the
real world will in general approximate optimal behavior subject to some (unknown) computational
constraints (which may differ from agent to agent). From this data, we seek to infer agent models π
defined in terms of (1) estimates R of reward function R∗ (known to agents but not modelers), and
(2) descriptions of the computational limitations that govern agents’ choice of actions. In other words,
we seek to model both what agents wish to do and what agents will actually do in any given state.
Fig. 1 shows an example: the three trajectories depicted there cannot be generated by the optimal
policy for any cost function, but can be explained by model that is only look ahead to a limited
number of positions in the maze.

(a) (b) (c)

R
=1

R = 2 R = 2

R = 1

Figure 1: Inferring rewards from boundedly-rational
trajectories. The agent will move to the blue star (a),
but prefers to move toward the orange star when both
are available (b). When locating the orange star requires
solving a harder search problem, however, the agent
seeks the blue star instead, indicating that its search
abilities are limited. Knowing this, we could perhaps
assist this agent by providing a targeted hint (move right)
at the beginning of its trajectory.

Throuhgout this paper, we will model agent ac-
tions as arising from an approximate inference
procedure π(a | s;R, β) that takes as input a
reward function and a computational budget
β; we may then model the agent by inferring
values of R and β given the actually executed
trajectories τi.

The ability to infer goals from suboptimal (and
even completely unsuccessful) plans is a key
human skill, present in children as young as 18
months [24]. Computational models of bounded
rationality thus have a long history in artificial
intelligence, cognitive science, and behavioral
economics. But what does this suboptimality
look like in practice, and how should we model
and infer the inference budget β simply from
observations of behavior?

One of the most widely used models of boundedly rational decision-making is the so-called Boltz-
mann model [20], in which agents take actions according to

π(a | s;R, β) ∝ exp{β ·R(s, a)} (1)

This equation has a number of appealing interpretations, e.g. as the solution to the maximum-entropy
policy search problem for an agent aiming to maximize rewards subject to an entropy constraint. It
has been used to model not just the selection of actions, but also trajectories, preferences, corrections,
and more—see [17] for a recent survey. More elaborate approaches in this family also predict β
conditioned on the current state or action history, making it possible to model state-dependent skill
[2].

However, Boltzmann models have a significant limitation: the probability of generating an action in
Eq. (1) depends only on the true value of that action, and not on the cost of acquiring a high-quality
value estimate in the first place. To see why this might be a problem, consider again the trajectories
depicted in Fig. 1(b–c), which differ only in the difficulty of the search problem, and not in the cost of
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the optimal trajectory at all. A model of boundedly rational decision-making with the form of Eq. (1)
cannot account for this difference.

There is a large body of other approaches on modeling human planning under resource constraints
in psychology, economics and in classical/symbolic AI [4, 27, 15, 14, 5, 11, 3, 30, inter alia].
However, these approaches make strong assumptions about how planning is performed, limiting their
applicability to real-world data. Here, we seek to develop a general framework that avoids strong
assumptions about either the functional form of the reward model or the algorithmic form of the
planning procedure. As a result, we can apply this single framework to real-world behavior in tasks
as diverse as language generation and chess gameplay.

3 Inferring Rewards and Inference Budgets from Behavior
As motivated in Section 2, our goal is to model agents acting to optimize an unknown value function
subject to an unknown computational constraint. In practice, we often want to model populations
comprising multiple agents or agent sub-populations (π∗

1 , π
∗
2 , . . . π

∗
N ) with a shared reward functions

R∗ (e.g. winning at chess) but differing computational constraints.

To do so, we assume we have access to a collection of trajectories {τ}i = {τ1i , τ2i , . . . τ
Mi
i }, with

each collection of trajectories {τ}i generated by a different agent or sub-population i. We model
these trajectories as drawn from the following generative process:

1. at each timestep, agent i draws a budget β from an agent-specific prior pbudget(β | ηi)
2. π∗

i chooses actions according to a budget-constrained inference procedure π∗
i (a | s;R∗, β)

Because budgets may vary between trajectories, learning a model of these agents ultimately learning
reward parameters θ and agent-specific budget-generating parameters ηi while marginalizing over
latent budgets themselves. We do so via maximum a posteriori inference, optimizing:

argmax
θ,η

∑
i

τ∈{τ}i

(s,a)∈τ

log π(a | s; θ, η) = argmax
θ,η

∑
i

τ∈{τ}i

(s,a)∈τ

log
∑
β

pbudget(β | ηi) · π(a | s;Rθ, β) (2)

If π(a | s;R∗, β) is an arbitrary inference algorithm, Eq. (2) might present a challenge: this inference
procedure must be run for all possible values of β, which will in general be intractable. Under what
circumstances can we optimize this equation efficiently? The key observation in this paper is that if π
is an anytime inference algorithm [6], we can evaluate n values of β as quickly as we can evaluate
one, making this optimization tractable.
Definition 1. An anytime algorithm π is one that runs for t timesteps and produces a sequence of
inference states (f1, f2, . . . ft), where every fi can be computed from fi−1 in O(1) time, and fi can
be used to select an action according to some π(a | s;R, fi).

As we will see shortly, many canonical inference algorithms used in single- and multi-agent decision-
making scenarios have this from. In these cases, rather than letting the budget parameter β determine
noise or suboptimality, we may use it to parameterize the runtime of the agent’s inference procedure
itself, writing:

log π(a | s; θ, ηi) = log
∑
β

pbudget(βruntime | ηi) · π(a | s;Rθ, fβruntime) (3)

where we have denoted the budget βruntime to indicate that it parameterizes the runtime of the anytime
inference algorithm. This can be computed, up to some maximum β, as efficiently as computing only
the final term in the sum. The remainder of this paper looks at instantiations of this basic modeling
framework in three different domains. In Section 4, we study the problem of inferring navigation
goals from maze domain using a truncated graph search algorithm. In Section 5, we study rational
speech acts (RSA) for inferring communicative intents from human utterances. Finally, in Section 6,
we model human action prediction in chess using Monte-Carlo tree search (MCTS).

4 Solving Mazes with Truncated Depth-First Search
We begin with a pedagogical example of latent inference budget model applied to a simple, single-
agent decision-making task: maze navigation. Agents are placed at a random position in a maze with
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(a) (b) (c) (d) (e) (f)

Figure 2: Examples of the maze task. (a) Example of the value function heuristic applied to each state in the
maze. Red indicates low value states and blue indicates high value states. (b)-(f) depicts the example trajectories
of agents with depth budgets of 1, 2, 5, 10 and 20.

five exits. Each exit is a state ei associated with a reward Ri. Agents attempt to navigate toward
the highest scoring exit by taking navigation actions (north, east, south, west). Here our goal
is to recover the rewards Ri that a single agent associates with each exit, along with agent budget
parameters η, given observations of the agent’s behavior.

4.1 Agent Model

We assume that agents select navigation actions using a heuristic with a known functional form, in
which the value of a state s is approximated as:

V (s) =

∑
i Rie

−∥s−ei∥1·Ri∑
i e

−∥s−ei∥1·Ri
(4)

where ∥s − s′∥1 measures the Manhattan distance between a pair of states (i.e. maze positions).
Intuitively, we model agents as “attending” to each exit in proportion to both their distance and
rewardingness. We assume that agents use this heuristic to perform truncated breadth-first search.
In a state s, agents first estimate the value of each action a by computing the value of the best state
reachable in βruntime actions, starting with a. Formally:

Qdepth(a | s) = max
τ :τ0=a,|τ |=βruntime

V (τβruntime) (5)

where τ0 and τβruntime respectively denote the first and last actions in the trajectory τ . Finally, agents
select actions in proportion to these Q-values [13]:

π(a | s;βruntime, R) ∝ eQ(a|s) (6)

With this agent parameterization, Eq. (2) can be computed efficiently:

Proposition 1. Truncated breadth-first Search (TBFS) is an anytime inference algorithm. (Represent
each inference state fβ as the set of frontier states and values reachable from each starting action. To
compute fβ+1, add the unexplored children of these states to the set.)

4.2 Data

In this pedagogical example, we treat the agent model in Section 4.1 as the true data-generating
process. We fix a set of parameters Ri and βruntime, generate a collection of synthetic trajectories
using Eq. (6), then attempt to recover these parameters using Eq. (2). (This allows us to validate
the feasibility of our approach under ideal conditions—later sections will apply it to real datasets of
human-generated actions). In particluar, we generate 5 agents with depth budgets of 1, 2, 5, 10, and
20 respectively. Example trajectories from each of these agents are depicted in Fig. 2.

4.3 Evaluation

We compare L-IBMs with a Boltzmann model in which agents select actions according to:

Qtemp(a | s) = βtemp · max
τ :τ0=a

R(τ) (7)

where R(τ) denotes the final reward obtained along the complete trajectory τ (i.e. upon reaching
some exit Ri). We also compare to simple baselines in which the agent performs truncated search up
to a constant (not inferred) depth. We evaluate these models in two ways:
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Figure 3: Inferred parameters ηi (distributions over β). (a) L-IBM
almost perfectly recovers these parameters, while (b) the Boltzmann
model shows no significant differences across inferred βtemp.

Approach Accuracy
Fixed βruntime = 0 5
Fixed βruntime = 20 16
Inferred βtemp 20
Inferred βruntime(L-IBM) 44

Table 1: Agent action prediction accuracies.
L-IBM significantly outperforms baselines.

Predicting actions. In held-out states, we evaluate models’ exact-match accuracy in predicting
an agent’s next action. Results are shown in Table 1. Models that assume a constant depth perform
worst. While Boltzmann models are better able to predict agents’ next actions than these fixed-budget
models, they are significantly outperformed by L-IBM.

Predicting rewards. We also evaluate whether inferred prior distributions over β recover the true
values used to generate the data. Results for L-IBM and the Boltzmann model are shown in Fig. 3b.
It can be seen that L-IBM almost perfectly recovers these parameters (suggesting that prediction
errors in Table 1 result entirely from errors in the inferred reward parameters Ri). Meanwhile, the
Boltzmann model shows no significant differences in inferred βtemp across depth budgets, emphasizing
the discrepancy between the two mdoels of suboptimality.

Together, these results show that L-IBM is computationally tractable and capable of making accurate
predictions and inferring meaningful parameters in simple search problems. In the remainder of this
paper, we apply it to modeling real human behavior in more complex decision-making tasks.

5 Pragmatic Language Understanding with Rational Speech Acts
The next task we consider focuses on pragmatic language understanding—inferring speakers’
communicative intents from their utterances. Humans readily produce and understand language in
ways that is incompatible with their literal meanings. In Table 2, for example, a color that would be
described on its own by most speakers purple is instead labeled blue in some contexts.

A large body of work in cognitive science models this kind of context-based language understanding
as the result of an iterative inference process [8, 9]: for example, in Row 2 of Table 2, a speaker
might choose to describe the highlighted color as blue by reasoning that a naïve listener might resolve
purple to the second color in the row. A more sophisticated listener, in turn, can predict this speaker
behavior, and successfully infer the intended meaning. But this kind of recursive reasoning about
other agents can be computationally demanding, and requires sophisticated internal models of other
language users. Experimental evidence suggests that is deployed selectively, and to different degrees
by different language users [10].

Context Utterance

1. xxxx xxxx xxxx purple

2. xxxx xxxx xxxx blue

3. xxxx xxxx xxxx blue

Table 2: Example of the reference
color (within the black box) and
the two distractor colors, along
with the utterance produced by a
speaker from the colors in context
task [25]. Notice how the context
affects the utterance, even as the
reference color remains fixed.

Our experiments focus on a reference game of exactly the kind
depicted in Table 2 [25]. Reference games are a staple of research
on pragmatic language use. They are played between a listener and
a speaker. Both the listener and speaker observe a set of candidate
referents (e.g. colors). The speaker is privately given one of the col-
ors as a target; they must then produce a natural language utterance
for the listener. Finally, the listener selects a color patch, and both
players win if they agreed on the target.

By fitting an L-IBM to utterances and choices in human reference
games, we may infer (1) whether we can infer whether humans are
engaged in pragmatic reasoning from behavior alone, (2) whether
there are differences between players in their ability to reason about
their interlocutors, and (3) whether these differences actually predict
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communicative success (i.e. whether players with greater inference
budgets are better at making themselves understood).

5.1 Agent Model

We build on the Rational Speech Acts (RSA) model of Frank & Goodman [8]. This model frames
communication as one in which Bayesian listeners and speakers reason recursively about each others’
beliefs in order to select utterances and actions. The starting point of RSA is a literal listener π0

L
that maps utterances u to actions according to their non-contextual meanings. (In Table 2, a literal
listener hearing the word purple might choose randomly between the first two colors in the second
row, as both would be reasonably described as purple out of context.) The literal listener may be
implemented by any model (e.g. a lookup table or a neural network; 1) with parameters θ. Next, given
a reference target t, a pragmatic speaker πS chooses an utterance in proportion to the probability
that it will cause a literal listener to take the right action:

π1
S(u | t) ∝ p(π0

L selects t upon hearing u) = π0
L(t | u) (8)

(RSA speakers are standardly parameterized with an additional Boltzmann rationality parameter,
which we will discuss momentarily.) Finally, pragmatic listeners observe speaker utterances u, and
reason about which reference targets were most likely to have produced those utterances:

π1
L(t | u) = p(π1

S intends to signal t | u) ∝ π1
S(u | t) p(t) (9)

Crucially, this process may be repeated, with speakers πi
S reasoning about ever-more-sophisticated

speakers πi−1
L , etc. But how many rounds of iteration actually explain human behavior? In the latent

inference budget model framework, we may model this by embedding RSA inside an L-IBM, with
the budget β parameterizing the number RSA iterations performed by each agent:

πS(u | t; θ, η) =
∑
β

βruntime(β | η)πS(u | t; θ, β) (10)

πS(u | t; θ, β) = πβ
S(u | t) (11)

(and analogously for πL.)
Proposition 2. Rational Speech Acts (RSA) is an anytime inference algorithm. (Each inference state
fβ is πβ

S or πβ
L. Each of these can be derived from the other in constant time via Eqs.8–9.)

5.2 Data

For this task, we use the data collected by [25]. Each game consists of roughly 50 rounds played
between a human speaker and a human listener. In each round, the speaker observes a target color
along with two distractors. The speaker produces an utterance and the listener has to click on one
of the colors. The dataset consists of 46,994 rounds across 948 games. We create a 80/10/10 split
across train, valid and test sets. Monroe et al. stratify the dataset into three difficulties (easy, medium
and difficult) based on perceptual similarity between colors and distractors. Because each game is
annotated with a unique identifier for both the speaker and the listener, we may further stratify the
dataset according to player skill: we compute the fraction of games won by each (speaker, listener)
pair, then group these pairs into six buckets according to their win rate percentile relative to other
players. This allows us to examine the relationship between inference budget and both task difficulty
and communicative success.

5.3 Models

Following [25], we implement the literal listener π0
L using a transformer model that receives all three

colors (represented as HSL vectors) and a natural language utterance as input, and predicts the index
of the target color as output. We embed this listener model within the speaker–listener recursion
defined by Eq. (9), then train it end-to-end (with budget parameters ηi) on the Colors in Context data
using Eq. (2).

The constant of proportionality in Eq. (8) involves a sum over all natural language strings, which
is cannot be computed efficiently. Here, also following [25], we perform a sampling-based approx-
imation: we train a literal speaker model to generate plausible utterances, then sum over a finite
number of such samples to obtain a distribution over strings. See McDowell & Goodman [21] for
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Table 3: Inferred distributions over β in RSA. X-axis indicates the difficulty level (Easy, Medium, Hard) or the
player skill level (between 1 and 6, 6 being the most skilled players). The inferred βtemp across difficulty in a)
and player skill in b) is not as meaningful as it is for βruntime in c) and d). c) When separating games by difficulty,
L-IBM infers that the non-literal speaker is employed only for the hardest condition. d) When separating games
by player skill, we infer that the weakest players can be modeled exclusively as literal speakers, while stronger
players can be modeled as a mix of literal and pragmatic speakers.

more details. The literal speaker is parameterized identically to the literal listener, but outputs strings
rather than color indices.

In experiments investigating the relationship between task difficulty and inference budget, we fit
one ηi per condition (easy, medium, hard). In experiments investigating the relationship between
communicative success and inference budget, we fit one ηi per skill level (between 1 and 6).

5.4 Evaluation

Standard implementations of RSA modifies Eq. (8) to include a Boltzmann parameter for speakers:

πi
S(u | t;β) ∝ exp{βtemp log π

i−1
L (t | u)} (12)

Like our βruntime, this parameter is intended to model possibly sub-optimal behavior on the part of
speakers and listeners. We compare an L-IBM to a model of this form. In particular, we fix the
number of RSA iterations to one, use the same data as above to estimate literal listener parameters
jointly with a prior distribution over βtemp:

π1
S(u | t; θ, η) =

∑
β

ptemp(β | η)π1
S(u | t;β) (13)

where π1
S is defined as in Eq. (12).

Table 4 shows different models’ ability to predict the target referent given human speaker utterances.
Consistent with the findings of [25], because even literal models have access to all three referents, all
model variants can achieve good task performance. When we look at inferred values for βruntime and
βtemp, however, we begin to see significant differences between models. When stratifying games by
difficulty, we infer that the non-literal speaker is employed only for the hardest conditions. When
stratifying games by player skill, we infer that the weakest players can be modeled exclusively as
literal speakers, while stronger players can be modeled as a mix of literal and pragmatic speakers.
To the best of our knowledge, this is the first example of an RSA-type model being used to infer
individual differences in pragmatic language use within a speaker population; we expect that these
tools may be of independent interest to the cognitive science community. Additional experiments,
predicting the object that the listener picked instead of the one the speaker is presented can be found
in Appendix C.

6 Playing Chess with Monte-Carlo Tree Search
Finally, we turn from cooperative to adversarial decision-making tasks. We focus on chess, a popular
two-player sequential game widely used as a benchmark for AI systems. Here, we are interested
in modeling human chess play—specifically, observing data from a population of sub-optimal
agents with a common reward function (winning the game) and attempting to infer those agents’
computational constraints. In human human play, there can be numerous sources of such constraints:
a player paired against a strong opponent will likely to plan for longer than against a weaker opponent;
some variants (like blitz chess) deliberately limit players’ time-per-move (and, we might expect, the
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Model Type Accuracy
βruntime = 0 (Literal listener) - 83.3
βruntime = 1 - 83.0
Inferred βtemp player skill 83.9
Inferred βruntime (L-IBM) player skill 84.0
Inferred βtemp difficulty 83.5
Inferred βruntime (L-IBM) difficulty 82.7

Table 4: Performance of different RSA models in pre-
dicting the speaker target. All models (including literal
models and fixed-depth RSA models) achieve similar
predictive performance—because even literal models
have access to all three referents, all model variants can
achieve good task performance.

Model Type Accuracy
IL - 42.06
MCTS - 43.64
L-IBM Active Elo 44.17
Inferred βpuct Active Elo 43.77
L-IBM Opponent Elo 44.17
Inferred βpuct Opponent Elo 43.84
L-IBM Time Control 44.15
Inferred βpuct Time Control 43.61

Figure 5: Accuracy of predicting an agent’s
next action in chess. Models with MCTS
outperform the depth-0 (imitation learning)
baseline. Learning sub-population-specific
β enhances performance, with L-IBM-based
learning of βruntime consistently outperform-
ing βpuct by a slight margin.

quality of their plans). Given a dataset of human games played under different time constraints and
player strengths, can we use L-IBM to model variability in players’ decisions across game states?

6.1 Agent Model

In this work, we model chess players as selecting actions using Monte Carlo tree search (MCTS).
Recent work [16] has shown that MCTS is a good model of strong human players. Here, following
[29, 28, 16, 12], we implement one of the most common modern forms of MCTS, which uses a value
function V predicting the expected total future reward and a policy prior π0 to guide exploration. At a
high level, MCTS operates by incrementally growing a game tree starting at the root node, repeatedly
picking some path to explore down the tree, performing a value function evaluation and then walking
back up the tree updating all the value estimates based on that result. At each node, MCTS treats
action selection as a multi-armed bandit problem. We use a standard exploration policy [19]: during
inference at each node of the search tree, we choose actions according to:

argmax
a

Qt(a | s) + βpuctπ
0(a | s)

√∑
b N(s, b)

N(s, a) + 1
(14)

where Qt(s, a) is the estimated expected future reward for i from playing action a in state s at
iteration t, the visit count N(s, a) is the number of times a has been explored from s, π0(a | s) is an
“anchor” policy, and βpuct is a tunable parameter trading off exploration versus exploitation. After
expanding βruntime nodes of this tree, an agent’s final action is sampled from a distribution:

π(a | s;βruntime) = βpuct

√
βruntime

N(s, a) + 1

π0(a|s)
γ −Qβruntime(a | s)

(15)

where γ is chosen such that π forms a proper probability distribution.

Proposition 3. Monte-Carlo tree search (MCTS) is an anytime inference algorithm. (Let each
inference state fβ be the tree of nodes and visitation counts after β evaluations. This tree is refined
by evaluating Eq. (15) once.)

With π(a | s;βruntime) as defined above, we may instantiate an L-IBM for MCTS:

πdepth(t|u; η, θ) =
∑
βruntime

pbudget(βruntime | ηi) · π(a; s, βruntime) (16)

6.2 Data
We use similar data to previous models of human chess play by McIlroy-Young et al. [22], Jacob
et al. [16], McIlroy-Young et al. [23]. Our experiments use two different datasets. First, a dataset
Dlarge containing roughly 6 million moves; second, a dataset Dsmall containing roughly 75,000 moves.
Dsmall includes metadata describing players’ Elo ratings (a measure of strength) and game formats
(the amount of time players had to select moves). See Appendix B for details.
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Figure 6: Inferred distributions over β in Chess using MCTS. X-axis indicates the player Elo rating, opponent
elo rating buckets and time control: Ultra Bullet (U), Bullet (B), Blitz (BZ), Rapid (R) and Classical (C). The top
row depicts the distributions for βpuct and the bottom row depicts the distributions for βruntime. When the player’s
or opponent’s strength increases, βruntime infers greater depths. This pattern also holds true as the time control
extends. βpuct displays a similar pattern, as the agents or opponents get stronger, or as the time control extends,
βpuct suggests lower values, placing greater reliance on the search Q-values.

6.3 Modeling details

We train the base initial policy π0 and a value model ṽ0 as two different output heads of a deep
neural network using imitation learning on the large dataset split Dlarge. Our architecture is a 4-block
residual network similar to those used in prior work [22, 16, 23]. Unlike previous sections, we do
not learn the value functions jointly with pbudget. Instead, we first learn a single value function from
Dlarge, then fit pbudget(βpuct | ηi) and pbudget(βruntime | ηi). We investigate three ways of stratifying
players into sub-populations: player Elo (a proxy for player skill), and opponent Elo and time control
(both proxies for task difficulty). As in Section 5, we estimate a separate ηi for each group within
each stratified dataset.

6.4 Evaluation

Unlike in the two domains studied above, there is already an established literature on modeling
sub-optimal behavior via MCTS outside the Boltzmann framework. The most successful current
approach models individual differences in play [16] by fitting βpuct. We thus compare to a baseline in
which ηi parameterizes a distribution over values of βpuct rather than tree expansions.
Accuracy (in terms of top-one predictions and negative log-likelihood) is reported in Fig. 5. As in past
work, we find that models that with explicit search outperform depth-0 (imitation-learning) baseline.
Learning sub-population specific β improves the performance even further, with L-IBM-based
learning of βruntime consistently outperforming βpuct by a small margin.

Inferred budget parameters are shown in Fig. 6. Here, we observe that as the player strength or the
opponent strength increases as measured by the Elo ratings, βruntime infers higher depths. We also
observe the same as the time control increases: βruntime infers higher depths as the duration of each
move of the game increases. βpuct shows a weaker, but similar trend: as the agents or opponents get
stronger, or as the time control increases, βpuct infers lower values of βpuct, indicating that players are
deviating from the prior and are relying more on the search Q-values.

7 Conclusion
We have described latent inference budget models, a family of approaches for modeling agents
acting to achieve unknown goals subject to unknown constraints on their inferential capabilities.
Instead of assuming either global optimality of decision-making or uniform suboptimality, our
approach explicitly infers the runtime that agents devote to approximate inference. This paradigm
is applicable to all anytime inference algorithms. In three domains—maze navigation, pragmatic
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language understanding, and playing chess—we demonstrated that it can outperform classical models
of bounded rationality while imputing meaningful measures of human skill and task difficulty.
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A Training hyperparameters

We will detail the training hyperparameter details in this section.

A.1 Maze

All models in Section 4 were trained using the Adam optimizer [18], where the learning rates were
sweeped across the following values [1.0, 0.5, 1e−1, 0.05, 1e−2, 5e−3, 1e−3, 5e−4, 1e−4, 5e−5]
for 50 epochs. The values presented in Table 1 were picked from the model with the best validation
accuracy across the learning rates.

A.2 Colors in context

The models trained in Section 5 are based on the transformer architecture and trained from scratch.
The speaker model was trained based on the T5 model [26] with the following hyperparameters
described in Table 5. The speaker was trained with a batch size of 64 using the Adam optimizer with
learning rate 1e− 4 for 25 epochs.

Parameter Value
Number of Layers 4
Number of Heads 4
Model Dimension 32
Key-Value Dimension 16
Feedforward Dimension 32

Table 5: Hyperparameter configuration of the
speaker model based on T5 [26].

Parameter Value
Hidden Size 64
Number of Hidden Layers 4
Number of Attention Heads 4
Intermediate Hidden Size 256

Table 6: Hyperparameter configuration of the
listener model based on BERT.

All the listener models were based on the BERT [7] model with the configuration described in
Table 6. The listener models were trained using Adam and the learning rates were sweeped across the
following values [1e− 3, 5e− 4, 1e− 4, 5e− 5] for upto 50 epochs. The values presented in Table 8
and Table 4 were picked from the model with the best validation accuracy across the learning rates.

A.3 Chess

The value and policy network used in Section 6 are based on an architecture that is a 4-block residual
network similar to those used in prior work [22, 16, 23]. The policy and value network was trained
using Adam with a learning rate of 0.001, a batch size of 4096 and for upto 30 epochs. The epoch
used in the rest of the section was picked based on the validation accuracy.

In the second set of fine-tuning experiments, for every set of conditioning type, a simple feedforward
network was trained using Adam with a batch size of 512. The models in ?? were picked by selecting
the learning rates between 1e− 3, 5e− 4, 1e− 4, 5e− 5 with the best validation accuracy.

B Chess Data

Dlarge consists of 5,974,872 moves in the training split, 60,968 in the validation split and 60,969
moves in the test set. These data points were randomly sampled from the January, 2019 database
release of a chess website (lichess). Dsmall consists of 50,000 moves in the training split, 12,041
moves in the validation split and 12,040 moves in the test split. These data points were randomly
sampled from the February, 2019 lichess database release but filtering such that only those players
with Elo ratings in the following buckets were considered: [800-1000], [1400-1600] and [2000-2200].

The dataset contains 5 different types of time control. In increasing duration, they are Ultra Bullet,
Bullet, Blitz, Rapid and Classical (see Table 7).

The time controls used in our work have estimated durations that are defined in Table 7:
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Time control Estimated Duration (seconds)
UltraBullet < 29
Bullet < 179
Blitz < 479
Rapid < 1499
Classical ≥ 1500

Table 7: Estimated game durations across different time controls.

C Additional Experiments: Colors in context

In this section, we include additional experiments for the pragmatics domain where we train the
models to predict the object that the listener picks. We present the results of a similar set of
experiments as in Section 5 in Table 8 and Fig. 8. We specifically note that the inference based
approaches outperform the baselines in this setting.

Model Type Accuracy
βruntime = 0 (Literal listener) - 80.4
βruntime = 1 - 81.8
Inferred βtemp player skill 82.3
Inferred βruntime (L-IBM) player skill 83.1
Inferred βtemp difficulty 82.7
Inferred βruntime (L-IBM) difficulty 82.1

Table 8: Performance of different RSA models in predicting the speaker target. The β based models outperform
the baseline models: literal models and fixed-depth RSA models.
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Figure 8: Inferred distributions over β in RSA, with the listener target. X-axis indicates the difficulty level
(Easy, Medium, Hard) or the player skill level (1 - 6, 6 being the most skilled players). The inferred βtemp across
difficulty in a) and player skill in b) is not as meaningful as it is for βruntime in d). When separating games by
player skill, we infer that the weakest players can be modelled with a smaller mix towards pragmatic speakers
compared to stronger players
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