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Abstract

Topological Data Analysis (TDA) is a branch of applied mathematics that stud-
ies the shape of high dimensional datasets using ideas from algebraic topology. The
Mapper algorithm is a widely used tool in Topological Data Analysis, used for uncov-
ering hidden structures in complex data. However, existing implementations often
rely on naive and inefficient methods for constructing the open covers that Mapper
is based on, leading to performance issues, especially with large, high-dimensional
datasets. In this study, we introduce a novel, more scalable method for construct-
ing open covers for Mapper, leveraging techniques from computational geometry.
Our approach significantly enhances efficiency, improving Mapper’s performance for
large high-dimensional data. We will present theoretical insights into our method
and demonstrate its effectiveness through experimental evaluations on well-known
datasets, showcasing substantial improvements in running time compared to existing
approaches. We implemented our method in a new Python library called library-
omitted-for-anonymity, which is freely available at link-omitted-for-anonymity,
providing a powerful tool for TDA practitioners and researchers.

1 Introduction

In recent years, Topological Data Analysis (TDA) has gained significant traction in the field of
data science due to its ability to extract valuable insights from complex datasets. TDA uses
topological methods that are resilient to noise and dimensionality, making it a robust mathematical
framework for data analysis. A well-knonw technique in TDA is the Mapper algorithm. Mapper
provides a visual representation of data in the form of a graph, called Mapper graph, enabling
easy exploration and interpretation. Unlike conventional algorithms, such as clustering algorithms
or Principal Component Analysis (PCA), Mapper excels at visualizing data by preserving their
connected components, making it very effective for shape analysis and pattern discovery. The
effectiveness of Mapper was initially demonstrated in the analysis of medical data, as showcased
in the pioneering work by Singh et al. Singh et al. (2007). Since then, Mapper has proven to be
a versatile and powerful tool for data exploration, capable of uncovering hidden patterns even in
high-dimensional datasets.

Data exploration is an interactive process that requires constant fine-tuning and adjustments to
obtain relevant information. Therefore, the running time performance of software for Mapper is
essential for its widespread adoption. The original description of Mapper (Singh et al., 2007)
includes what has now become a standard approach, involving the construction of an open cover
made of overlapping hyperrectangles, also known as standard cubical cover. Currently, researchers
and developers have access to several established open-source libraries for Mapper. However, these
libraries work well with low dimensional lenses, but their approach is often inefficient in higher
dimensions. More specifically:
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1. The standard cubical cover is often assembled from open covers obtained in lower dimen-
sional projections. This implies that the number of steps grows exponentially with the
dimension, and this is computationally unfeasible;

2. Points in dimension k can fall in the intersection of up to 2k hypercubes, resulting in
complex Mapper graphs that are hard to explore, and often have more nodes than points
in the dataset.

These crucial points has been consistently overlooked and neglected, reinforcing the misconception
that Mapper is inefficient with high-dimensional data. Motivated by these limitations, recent ad-
vancements in the field have led to the development of a wide family of Mapper-type algorithms,
each proposing a distinct adaptation of the original concept. For instance, Ball Mapper (Dłotko,
2019) and Mapper on Ball Mapper (Dłotko et al., 2023) construct the open cover by creating an
ϵ-net (Gonzalez, 1985), adopting open balls centered in the points of the dataset instead of evenly-
spaced hyperrectangles. Additionally, specialized variations like NeuMapper (Geniesse et al., 2022),
designed specifically for neuroscience data, adopt a more complex approach. This method, partially
inspired by Ball Mapper, employs an intrinsic metric derived from reciprocal kNN. These adapta-
tions all shift towards changing the way open covers are built, improving the performance, but also
introducing some randomness and implicit choices due to the ϵ-net construction (Gonzalez, 1985).
While this is often acceptable, there are cases where using a cubical cover with uniform overlap is
beneficial, especially given its foundational role in many Mapper-related results. For instance, one
key advantage of the standard cubical cover is being able to estimate optimal parameters (Carrière
et al., 2018), minimizing the need for time-consuming manual fine-tuning.

In this work, we introduce a novel and more efficient approach to computing Mapper-type al-
gorithms, leveraging concepts from computational geometry, aimed at solving the problems of
currently available implementations (points 1 and 2). Our method uses a greedy adaptation of
ϵ-net (Gonzalez, 1985; Dłotko, 2019), called proximity-net, to construct a subcover of the stan-
dard cubical cover, preserving the evenly overlapping open sets of the standard cubical cover, as
defined in the original Mapper implementation. Moreover, we show how we can improve the over-
all efficiency of Mapper by adopting specialized data structures for spatial search like metric trees
(Clarkson, 2006; Brin, 1995; Yianilos, 1993; Uhlmann, 1991). We also provide a theoretical analysis
on the complexity of building cubical covers, obtaining an upper bound that explicitly incorporates
the doubling dimension of the dataset (Krauthgamer and Lee, 2004). We present theoretical in-
sights into our method, supported by experimental evaluations on well-known datasets, highlighting
significant improvements in running time compared to the standard approach. Additionally, we in-
troduce our open-source library, library-omitted-for-anonymity (Anonymous, 2024), available at
link-omitted-for-anonymity. To the best of our knowledge, it is the only library implementing
this approach. Finally, we compare our method with existing topological data analysis libraries,
including Kepler Mapper (Van Veen, 2019) and giotto-tda (Tauzin et al., 2021). Performance tests
demonstrate the advantages of our method in terms of scalability and efficiency, underscoring its
potential for large-scale applications.

2 Preliminaries

We start with preliminary definitions and notations necessary for understanding the rest of this
work. While some of these concepts are fundamental in topology and widely available in various
resources, we include them here for the sake of completeness.
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Remark 1. In this work, we analyze datasets X that are finite and discrete samples of unknown
topological spaces X̃. The topology of a finite, discrete space is trivial, as it only depends on its
cardinality. Hence, we are interested in the topology of X̃, not X. We use the sample X to infer
the shape of X̃.
Definition 1. Let X be a topological space. A pseudo-metric on X is a map d : X ×X → R such
that

• d(x, y) ≥ 0 for every x, y ∈ X, and d(x, x) = 0 for every x ∈ X;

• d is symmetric, i.e. d(x1, x2) = d(x2, x1) for every x1, x2 ∈ X;

• d satisfies the triangle inequality, i.e.: d(x1, x3) ≤ d(x1, x2)+d(x2, x3) for every x1, x2, x3 ∈
X.

We say that d is a metric when d(x, y) = 0 implies x = y. An open ball of center p ∈ X and radius
ϵ > 0 is defined as Bd(p, ϵ) = {x ∈ X|d(p, x) < ϵ}.
Definition 2. Let f : X → Y be a map. If d is a pseudo-metric on Y , the pullback of d under f
is the pseudo-metric f∗d, defined by setting for each u, v ∈ X

(f∗d)(u, v) = d(f(u), f(v)).

Definition 3. The L∞-distance on Rk is the metric denoted with d∞ defined by setting

d∞(x, y) = max
i=1,...,n

(|xi − yi|)

for every x, y ∈ Rk.

The notion of ϵ-net from Gonzalez (1985) is well-known in computational geometry (see also Clark-
son (2006)), and we report it here since we will use it in the rest of this work.:
Definition 4. Let (X, d) be a pseudo-metric space. An ϵ-net on X is a subset N ⊆ X such that:

• d(x, y) ≥ ϵ for every x, y ∈ X whenever x ̸= y

• For every x ∈ X there exists y ∈ N such that d(x, y) < ϵ

An ϵ-net corresponds directly to an open cover consisting of open balls. Given that the primary
objective of this work is to construct open balls, it is important to understand the methodology for
building an ϵ-net. This can be achieved by employing a greedy algorithm, as detailed in Gonzalez
(1985) (see Algorithm 1).
Definition 5. Let (X, d) be a pseudo-metric space. The doubling measure of X is the least λ > 0
such that every ball in X can be covered with λ balls of half diameter. The doubling dimension of
X is dim(X) = log2 λ.

The notions of ϵ-net and doubling dimension are bound together by Proposition 1 that gives
an estimation of the cardinality of any ϵ-net, and can be found in many resources, for example
Krauthgamer and Lee (2004); Clarkson (2006).
Proposition 1. Let (X, d) be a pseudo-metric space, and let N be an ϵ-net for X. Then for every
ball B(p,R) in X we have |N ∩B(p,R)| = O((R/ϵ)dim(X)).

As we will see later, after some adaptation, we will use the same ideas of Proposition 1 to prove
Theorem 2, where the open cover is one of the core steps of Mapper, and cannot be derived from
an ϵ-net.
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Algorithm 1 ϵ-net construction
Require: Let X be a topological space, and let d be a metric on X.
Ensure: An ϵ-net of X
N ← ∅
while d(X \N,N) > 0 do

Take p ∈ X \N maximizing d(p,N)
N ← N ∪ {p}

end while
return N

2.1 Mapper algorithm

In this subsection, we provide a concise overview of Mapper, based on its original formulation
(Singh et al., 2007). Mapper operates on a dataset X and its output is determined by the following
steps:

1. Let f be a lens, defined as any continuous map f : X → Y , where Y is a parameter space.
Common choices for the lens f include statistics of any order, projections, entropy, density,
eccentricity, and more.

2. Next, we proceed by constructing an open cover for f(X). In other words, we create a
collection {Uα}α of open sets such that their union covers the entire image f(X), i.e.,
f(X) = ⋃

α Uα. It is important to note that the sets in this open cover may intersect with
one another, and they inherit their topology from the space Y .

3. For each element Uα in the selected cover, we define Vα as the preimage of Uα under the
function f . It is clear that the collection {Vα}α forms an open cover of X. Next, we proceed
by applying a user-specified clustering algorithm, in order to partition each open set Vα into
a disjoint union of clusters, denoted as Vα = ⨿βCα,β. The resulting family {Cα,β}α,β is
referred to as a refined open cover for X.

4. We construct the Mapper graph as the undirected graph G = (V,E) defined by the following
rule: the set V contains a vertex vα,β for every local cluster Cα,β, while the set E contains
the edge e = (vα1,β1 , vα2,β2) only if their corresponding local clusters intersect, i.e., when
Cα1,β1 ∩ Cα2,β2 ̸= ∅.

The theoretical foundation of Mapper is rooted in the Nerve Theorem (Borsuk, 1948; Weil, 1952),
which requires that every intersection of finitely many open sets are either empty or simply con-
nected. For Mapper, this means that any intersection of clusters must be empty or simply connected.
However, Nerve Theorem does not always apply for open covers obtained from Mapper, since clus-
tering may produce clusters that don’t correspond to connected components, and may not preserve
simple-connectedness. Nevertheless, when the Nerve Theorem applies, then X and its Mapper
graph have the same number of connected components.

2.2 Standard Cubical Cover

In the original definition of Mapper (Singh et al., 2007), the authors use an open cover defined by
two parameters: the length w of the intervals and the overlap p ∈ (0, 1), which is the fraction of
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Figure 1: An example of a dataset X as an X-shaped 2D point cloud, with Mapper steps shown
from left to right. The lens is the projection on the Y -axis and its image is covered by three open
sets. Each open set is then pulled back and clustered. Clusters from the same open set share the
same color.

w that corresponds to the length δ of the intersection of any two adjacent intervals in the cover.
Some sources call such cover cubical cover, some others call it implicitely standard cover. In the
rest of this work we will refer to such cover as standard cubical cover, and to any of its subcovers
as cubical cover. In the remainder of this subsection we’ll denote with Y the space f(X) ⊆ Rk on
which the cover is constructed.

Figure 2: A visual representation of a standard cubical cover in dimension one with n = 4. The
value w = M−m

n(1−p) correspond to the length of every interval, while δ = pw corresponds to the length
of the overlap of any two adjacent intervals.

Definition 6. Let 0 < n ∈ N and p ∈ (0, 1). Let Y ⊆ Rk compact and let Yi be the projection of
Y on the i-axis. The standard cubical cover of Y with n intervals and p overlap is the collection of
open sets

CCn,p
Y =

{
R ∩ Y ̸= ∅

∣∣∣∣∣R ∈
k∏

i=1
CCYi

n,p

}

where CCYi
n,p is defined as

CCYi
n,p = {(aj , bj) ∩ Yi|j = 0, . . . , n− 1}

with

aj = m+ j(w − δ)− δ/2
bj = m+ (j + 1)(w − δ) + δ/2,

where m = min(Yi) and M = max(Yi), w = M−m
n(1−p) and δ = pw.

Remark 2. We report here some facts that easily follow from the definition in the case of a one-
dimensional standard cubical cover for some Y ⊆ [m,M ].
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• bi − ai = w for every i = 0, . . . , n− 1;

• a0 = m− δ/2 and bn−1 = M + δ/2;

• bi − ai+1 = δ for every i = 0, . . . , n− 1.

• [m, b0 − δ/2), . . . , [ai + δ/2, bi − δ/2), . . . [an−1 + δ/2,M ] is a partition of [m,M ].

In this work we use a notion of standard cubical cover that simplifies some computations, but
it’s worth to point out that this definition may slightly diverge in literature. For example, some
authors and software libraries, require that the standard cubical cover of [n,M ] satisfies a0 = m
and bn−1 = M . However, it’s also important to remark that our version of standard cubical cover
is compatible with the results from Carrière et al. (2018).

From Definition 6, we can readily devise an algorithm that initially computes the standard cubical
cover for each projection independently. Subsequently, we assemble these individual open covers
into an open cover for the topological space Y . We will refer to this approach as naive construction
of standard cubical cover (see Algorithm 2).

Algorithm 2 Naive construction
Require: Y finite point cloud, 0 < n ∈ N, p ∈ (0, 1).
Ensure: CCn,p

Y .
for i = 1, . . . , k do
CCYi

n,p ← {Ii,0, . . . , Ii,n−1} be the standard cubical cover on the projection of Y on the i-axis;
end for
CCn,p

Y ← {R = ∏k
i=1 Ii,ji |R ̸= ∅, 0 ≤ ji ≤ n− 1}.

return CCn,p
Y

Algorithm 2 presents a straightforward yet inefficient method for obtaining the standard cubi-
cal cover of a dataset Y . Indeed, this approach becomes computationally expensive for high-
dimensional datasets. This is also true in the case of Mapper, when we construct the standard
cubical cover on high dimensional lenses. Even when many products are empty, their number can
grow rapidly and introduce additional computational overhead to the entire Mapper process. To
illustrate this issue, which is well-known in literature, consider the following example: if Y ⊂ Rk

lies along the diagonal, an appropriate cover for Y could be achieved using a small number of
rectangles, proportional to the number of intervals n. However, Algorithm 2 would construct an
open cover for each projection initially and then iterate through all possible rectangles, resulting in
a total of nk steps. As we will demonstrate later in Section 3, the primary contribution of this work
is the resolution of this issue through the adoption of a more efficient algorithm. Instead of relying
on projections, this algorithm iterates over a significantly smaller number of open sets, comparable
to ndim(f(X)) ≪ nk.

2.3 Ball Cover

When Y is contained in Rk, we can use rectangles with centers in Rk to form an open cover, as
in the standard cubical cover. However, this approach is not applicable to arbitrary metric spaces,
where the concept of a rectangle may be undefined. In such cases, open balls centered at Y can be
used as an alternative.
Definition 7. Given a dataset Y and a metric d on Y , a ball cover of radius r > 0 on Y is any
open cover where every set is an open ball of radius r.
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Remark 3. It’s important to note that the notion of standard cubical cover is not a special case of
the notion of ball cover. This distinction is often misunderstood because balls in the L∞-distance
are cubical. However, in the case of a ball cover, the balls are centered at the points of Y , whereas
in a standard cubical cover, the centers are evenly spaced and are centered at points in Rk which
may not be contained in Y .

The concept of constructing a ball cover in the context of Mapper is not novel. It was introduced
as an alternative to the original Mapper, known as Ball Mapper. This method, referred to as ϵ-net,
employs a greedy algorithm to cover the dataset with balls until full coverage is achieved (Dłotko,
2019; Dłotko et al., 2023). It is important to note that the term ϵ-net is also used in computational
geometry to describe a different, albeit related, concept, as defined in Definition 4 from Gonzalez
(1985). Despite this potential for confusion, it is crucial to emphasize that the collection of centers
obtained from the ϵ-net in Dłotko (2019); Dłotko et al. (2023) is indeed a proper ϵ-net according
to Gonzalez (1985). Thus, depending on the context, distinguishing between the two notions is
relatively straightforward.
Remark 4. The number of nodes in the Ball Mapper graph corresponds to the cardinality of the
open cover constructed on Y . Therefore, estimating this cardinality can provide insights into the
Ball Mapper graph and on the complexity of Ball Mapper. While any open cover of Y has a
cardinality bounded by |Y |, this bound is not very informative when Y is large. However, more
useful bounds can be identified. Using ϵ-net, it’s possible to cover Y with a number of open balls
proportional to (1/ϵ)dim(Y ), where dim(Y ) is the doubling dimension of Y (see Proposition 1).

2.4 Vantage Point Trees

Given a query point q and a query radius ϵ, a range query is a function that returns the set of points
within distance ϵ from q, i.e. the points in the ball B(q, ϵ). There are many ways to perform range
queries efficiently, using different algorithms and data structures. A well-known example is the
kd-tree (Friedman et al., 1977), which partitions the space in a hierarchical tree-like structure that
allows to reduce the number of distance computations employing the triangle inequality. The use of
kd-trees in Mapper-type algorithms has been explored in Dłotko (2019), where the author notes that
their effectiveness for Ball Mapper may be limited, particularly in high-dimensional spaces where
Ball Mapper typically operates. However, we believe that the approach presented in Mapper on
Ball Mapper from Dłotko et al. (2023) could benefit from incorporating a specialized data structure
for range queries. In this case, the open cover is constructed on the space f(X), which is often
lower-dimensional than the original space X. Using a data structure optimized for range queries
could thus offer a significant performance boost. In our study, we aim to address diverse scenarios
by using any lens function f : X → Y with no restriction on the space Y . Importantly, Y need
not be strictly Euclidean or coordinate-based; it can encompass any domain where a meaningful
notion of distance is defined. For all these reasons we decided to chose vp-trees instead of kd-
trees (Yianilos, 1993; Brin, 1995). A vantage-point tree, or vp-tree, is a binary tree data structure
where each internal node organizes the points of the space according to their distance from a chosen
point, called vantage point. Each internal node stores a tuple (p, r) as a reference to the ball B(p, r)
where p is the chosen vantage point, and p’s descendants satisfy the vp-tree property: for every left
descendant y we have d(p, y) ≤ r, and for every right descendant z we have d(p, z) ≥ r.

The procedure used to build a vp-tree can be sketched in this way: given a dataset Y we first chose
a vantage point p from Y , then split Y into two equally-sized subsets: those points that are closer
to p, and those that are farther. Repeating the procedure on the two halves we obtain two trees L,
obtained from the first half, and R obtained from the second one. The result is then obtained as
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the binary tree rooted at p, with L as left child and R as right child. We will refer to this procedure
as the build_vptree function (see Algorithm 3 and Figure 3).

Algorithm 3 build_vptree(Y, d)
Require: Let Y = [y0, . . . , yn−1] be a dataset, and let d be a metric on Y .
Ensure: build_vptree(Y, d) returns a vp-tree on (Y, d).

if Y = ∅ then:
return ∅ ▷ the empty tree

else
p← choose in Y . ▷ chose randomly
Move p at the head of Y , such that y0 = p.
Let ρ = mediany∈Y d(p, Y ).
Reorder Y such that d(p, yi) ≤ ρ for i < n/2 and d(p, yi) ≥ ρ for i ≥ n/2.
L← build_vptree([y1, . . . , yn/2−1], d)
R← build_vptree([yn/2, . . . , yn−1], d)
return Tree{root = (p, ρ), left = L, right = R}

end if

Figure 3: Consider a dataset Y = {a, b, c, d, e, f, g} ⊆ R2. A vp-tree is built by recursively selecting
a vantage point and radius. The left image shows the regions centered around vantage points,
while the right shows the vp-tree structure. The invariant property of vp-trees is evident: left
descendants lie within the ball defined by the vantage point, and right descendants fall outside.

Remark 5. Building a balanced vp-tree on a dataset Y takes O(|Y | log |Y |) time in total.

After a vp-tree is built, we can perform range queries by descending from the root (see Algorithm
4). Say we want to perform a range query for a point q and radius ϵ. Let (p, r) be the tuple
stored at any internal node while visiting the vp-tree. Using the triangle inequality it’s possible
to skip some of p’s children when some conditions are met. In particular, we can do this in two
situation: when B(q, ϵ) ⊆ B(p, r) we need to visit only the left child (see Figure 4a), and when
B(q, ϵ) ∩B(p, r) = ∅ we need to visit only the right child (see Figure 4b).

Range queries can be significantly more efficient with vp-trees than with linear scans. A linear
scan requires going through all the points in Y , which takes |Y | steps in total. On the other hand,
with vp-trees, a range query usually takes less steps, since we can often skip one child from the
search due to the triangle inequality satisfied by the metric (see Figure 4a and Figure 4b). Giving
a general estimation of the average time complexity of range queries via vp-trees is particularly
challenging due to its dependency on the dataset (Brin, 1995), we can only state that it is bounded
between O(log |Y |) and O(|Y |). However, when the query radius is sufficiently small, we expect
to fall often in a cases where we can skip a branch from the range query. In such cases the time
complexity becomes closer to O(log |Y |).
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Algorithm 4 range_query(T, q, ϵ)
Require: Let Y be a dataset, and d a metric on Y . Let T = build_vptree(Y, d). Let q be a query

point, and let ϵ > 0 be a query radius.
Ensure: The open ball Bd(q, ϵ).

if T is empty or terminal then
return {y ∈ T.leaves | d(q, y) < ϵ}

else
(p, r)← T.root
S ← ∅
if r < d(p, q) + ϵ then

S ← S ∪ range_query(T.right, q, ϵ)
end if
if r > d(p, q)− ϵ then

S ← S ∪ range_query(T.left, q, ϵ)
end if
return S

end if

(a) When B(q, ϵ) ⊆ B(p, r) (equivalent to d(p, q) ≤
r− ϵ), we skip the right child, since right descendants
are outside the range query.

(b) When B(q, ϵ)∩B(p, r) = ∅ (equivalent to d(p, q) ≥
r + ϵ), we skip the left child, since left descendants
are outside the range query.

Figure 4: The two conditions when we need to visit only one child during range queries.

It is worth emphasizing that the construction of the ball cover can be improved by leveraging
vp-trees alone. Specifically, one can first construct a vp-tree T on the dataset. Then, in the ϵ-net
algorithm, the open balls are generated using range queries on T (see Algorithm 5).

3 Cubical Cover in Higher Dimensions

In this section, we outline the main contributions of this work. To begin, it is essential to introduce
some notation.
Definition 8. Let Y ⊆ Rk compact. Let mi = miny∈Y yi, and Mi = maxy∈Y yi, with mi < Mi for
i = 1 . . . k. We define σY : Rk → Rk by setting for every y = (yi)i=1,...,k ∈ Rk

σ(y) =
(
yi −mi

Mi −mi

)
i=1...,k

.
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Algorithm 5 Ball Cover via vp-trees
Require: Let (Y, d) be a metric space. Let r ≥ 0.
Ensure: A ball cover B of radius r.
T ← build_vptree(Y, d) ▷ Algorithm 3
N ← ∅
C ← ∅
while N ̸= Y do

Take p ∈ Y \N
B ← range_query(T, p, r) ▷ Algorithm 4
N ← N ∪B
C ← C ∪ {B}

end while
return C

Remark 6. In the settings of Definition 8, the map σY : Rk → Rk is a bijection that maps Y to
the hypercube [0, 1]k. The map σ−1 : Rk → Rk is given by setting for each y = (yi)i=1,...,k ∈ Rk

σ−1
Y (y) = (mi + yi(Mi −mi))i=1,...,k .

Definition 9. Let ρn : Rk →
(

1
2n + 1

nZ
)k

be the map defined by setting for every y = (yi)i=1,...,k ∈
Rk

ρn(y) =
(⌊nyi⌋+ 1/2

n

)
i=1,...,k

.

Following Definition 6, we define a helper function that maps each point in Y to its closest hypercube
in the standard cubical cover. Specifically, this means the function assigns the hypercube whose
center is the nearest neighbor to the point among all other hypercube centers.
Definition 10. Let 0 < n ∈ N and let p ∈ (0, 1). Consider the interval [m,M ] ⊆ R and let
w = M−m

n(1−p) and δ = pw. Let ai = m+ i(w− δ)− δ/2 and bi = m+ (i+ 1)(w− δ) + δ/2. We define
the cubical proximity function CP[m,M ](n, p) : [m,M ]→ P([m,M ]) by setting for every y ∈ [m,M ]

CP[m,M ](n, p)(y) = [m,M ] ∩ (ai, bi) ⇐⇒ ai + δ/2 ≤ y < bi − δ/2.

For any Y ⊆ Rk compact we can define for every y = (yi)i=1,...,k ∈ Y

CPY (n, p)(y) = Y ∩
k∏

i=1
CPYi(n, p)(yi).

where Yi is the projection of Y on the i-axis.
Remark 7. For every y ∈ [m,M ] there exists only one j such that y ∈ [aj + δ/2, bj − δ/2), which
can be easily computed as

j = n

⌊
y −m
M −m

⌋
.

We can extend this to higher dimension. In case of Y ⊆ Rk, for every y = (yi)i=1,...,k ∈ Y , for each
i there exists only one ji = n

⌊
yi−mi
Mi−mi

⌋
such that yi ∈ [aji + δi/2, bji − δi/2), and we have

CPY (n, p)(y) = Y ∩
k∏

i=1
(aji , bji).

10



Under review as submission to TMLR

This setting gives a well-defined notion for CPY (n, p), since the intervals [ai + δ/2, bi − δ/2) are
a partition of [m,M ] (see Remark 2). We can finally state one of the main contributions of our
methodology, in the form of the following result.
Theorem 1. Let Y ⊆ Rk compact. Let 0 < n ∈ N and let p ∈ (0, 1). Then for every y ∈ Y we
have

CPY (n, p)(y) = Bσ∗
Y d∞

(
(σ−1

Y ◦ ρn ◦ σY )(y), 1
2n− 2np

)
.

Proof. We have CPY (n, p)(y) = ∏k
i=1(aji , bji) where ji = n

⌊
yi−mi
Mi−mi

⌋
. Then

σY (CPY (n, p)(y)) =
k∏

i=1

(
aji −mi

Mi −mi
,
bji −mi

Mi −mi

)

=
k∏

i=1

(
ji + 1/2

n
− 1

2n− 2np,
ji + 1/2

n
+ 1

2n− 2np

)

= Bd∞

(
ji + 1/2

n
,

1
2n− 2np

)
= Bd∞

(
ρn(σY (y)), 1

2n− 2np

)
Therefore

CPY (n, p)(y) = σ−1
Y Bd∞

(
ρ(σY (y)), 1

2n− 2np

)
= Bσ∗

Y d∞

(
(σ−1

Y ◦ ρ ◦ σY )(y), 1
2n− 2np

)

Theorem 1 suggests how we can construct the hypercubes of the standard cubical cover as open
balls under a scaled L∞-distance. This insight leads to an immediate improvement in constructing
the standard cubical cover: first, a vp-tree T is built using the scaled L∞-distance. Then, after
identifying all the hypercubes and their centers (noting that some centers may not correspond to
points in the dataset), the points within each hypercube can be efficiently retrieved using range
queries on T centered at these points (see Algorithm 6).

Algorithm 6 Standard Cubical Cover via vp-trees
Require: Let Y ⊆ Rk, let 0 < n ∈ N and p ∈ (0, 0.5].
Ensure: The standard cubical cover CCn,p

Y .
T ← build_vptree(Y, σ∗

Y d∞) ▷ Algorithm 3
L← (σ−1

Y ◦ ρn ◦ σY )(Y )
C ←

{
range_query

(
T, l, 1

2n−2np

) ∣∣∣ l ∈ L}
▷ Theorem 1, Algorithm 4

return C

Remark 8. It is important to note that vp-trees were our first choice due to their flexibility, as
they can be used in any metric or pseudo-metric space. However, when Y is a Euclidean domain
contained within Rk, it may be beneficial to explore other data structures that offer efficient spa-
tial search. One such structure is R-trees, which are particularly well-suited for constructing the
hypercubes of cubical covers (Guttman, 1984).

11
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While this improvement is significant, it is still insufficient. Although it reduces the number of steps
compared to Algorithm 2, a single point in the dataset may still lie in the intersection of up to 2k

open hypercubes. This detail is often overlooked but has critical implications: the standard cubical
cover could, in principle, contain more open sets than there are points in the dataset. This issue
becomes particularly pronounced in higher dimensions, where such open covers tend to produce
Mapper graphs that are too complex to provide meaningful insights.

3.1 Estimating Cardinality

As a consequence of Theorem 1, we developed a more efficient method for constructing the elements
of CCn,p

Y using vp-trees. In this subsection, we provide an estimate of the cardinality of CCn,p
Y , which

also allows us to assess the overall complexity of its construction. Theorem 2 establishes an upper
bound on the cardinality of a minimal subcover of CCn,p

Y , while Corollary 1 extends this result to
derive an upper bound on the cardinality of CCn,p

Y .
Theorem 2. Let Y ⊆ Rk. Then, there exist a subcover C ⊆ CCn,p

Y with cardinality

|C| ≤
(

2n · 2− p
p

)dim(Y )
.

Proof. Initially we establish some notation that will make the proof easier. Let δ = σ∗
Y d∞ and let

ψn = σ−1
Y ◦ρn ◦σY . Under the metric δ, Y is contained in a k-dimensional hypercube of side 1, and

ψn acts as an approximation function that maps Y to a regular grid of side ϵn = 1
2n . Then, as a

consequence of Theorem 1, the collection CCn,p
Y consists of the balls BY

δ (ψn(y), rn) for each y ∈ Y ,
where the radius is rn = 1

2n−2np .

First, it’s easy to observe that δ(y, ψn(y)) ≤ ϵn for every y ∈ Y and every n. Therefore every ball
BY

δ (ψn(y), rn) is contained within the ball BY
δ (y, rn + ϵn), which has the same center y but a larger

radius to account for the approximation error introduced by ψn. Therefore, for any chosen m, this
gives us our first inclusion:

BY
δ (ψm(y), rm) ⊆ BY

δ (y, rm + ϵm).

By recursively applying the notion of doubling dimension, the ball BY
δ (y, rm +ϵm) can be iteratively

covered by λs balls of radius rm+ϵm
2s , where s is the depth of the iteration and λ is the doubling

measure of Y under the metric δ. Therefore, we have:

BY
δ (y, rm + ϵm) ⊆

λs⋃
j=1

BY
δ

(
yj ,

rm + ϵm
2s

)
,

where {yj}j are the centers of the covering balls and λ is the doubling measure of Y . If we now
consider any n ≥ m, using the same argument as in the first inclusion, we can write

BY
δ

(
yj ,

rm + ϵm
2s

)
⊆ BY

δ

(
ψn(yj), rm + ϵm

2s
+ ϵn

)
,

which holds for any choice of s. If we then chose s such that rm+ϵm
2s + ϵn ≤ rn we can further claim

that
BY

δ

(
ψn(yj), rm + ϵm

2s
+ ϵn

)
⊆ BY

δ (ψn(yj), rn) .

12
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The inequality rm+ϵm
2s + ϵn ≤ rn can be easily solved in s, and gives s ≥ log2

(
n
m ·

2−p
p

)
, which holds

when we set s =
⌈
log2

(
n
m ·

2−p
p

)⌉
. After this, we can finally set L = λs and give the following

estimate:

L = λs = 2dim(Y )·s ≤ 2dim(Y )·
[
1+log2

(
n
m

· 2−p
p

)]
=

(
2 · n

m
· 2− p

p

)dim(Y )
.

Summing up and chaining the inclusions together, we obtain the following

BY
δ (ψm(y), rm) ⊆

L⋃
j=1

BY
δ

(
yj ,

rm + ϵm
2s

)
⊆

L⋃
j=1

BY
δ (ψn(yj), rn) .

Finally, setting m = 1 and Ij = BY
δ (ψn(yj), rn), we have L ≤

(
2n · 2−p

p

)dim(Y )
and

Y ⊆ BY
δ (ψ1(y), r1) ⊆

L⋃
j=1

BY
δ (ψn(yj), rn) =

L⋃
j=1

Ij ,

which concludes the proof.

Corollary 1. Let Y ⊆ Rk, then

|CCn,p
Y | ≤ 3k ·

(
2n · 2− p

p

)dim(Y )
.

Proof. Theorem 2 states that is always possible to find a subcover S ⊆ CCn,p
Y where |S| ≤(

2n · 2−p
p

)dim(Y )
. Since S covers Y , every other interval I ∈ CCn,p

Y must intersect some interval
in S. Therefore we can write

CCn,p
Y =

⋃
I∈S
AI ,

where AI = {J ∈ CCn,p
Y | J ∩ I ̸= ∅}. It’s easy to see that for dimensionality reasons |AI | ≤ 3k,

therefore we can claim that

|CCn,p
Y | ≤ |S| · 3

k ≤ 3k ·
(

2n · 2− p
p

)dim(Y )
,

and this concludes the proof.

Theorem 2 asserts that a minimal subcover of CCn,p
Y has cardinality bounded by a value that depends

solely on n, p, and dim(Y ). This upper bound is intrinsic as it is independent from the dimension
of the feature space Rk. Conversely, the inequality in Corollary 1 is not intrinsic, as it also depends
on k, yet it justifies why proximity-net runs in far fewer steps than nk. Notably, this upper bound
is a very rough estimation and could potentially be improved, as the factor 3k is significantly higher
than what is typically observed. While a smaller factor might be achievable, it remains unclear
how such an improvement would be influenced by the specific dataset.

13
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3.2 Construction via Proximity-Net

In this work, we introduce a generalization of ϵ-net that we call proximity-net. This modified
algorithm is a greedy procedure that takes a single parameter, that we call proximity function (see
Definition 11), and covers the dataset with a collection of sets.
Definition 11. A proximity function on Y is a map b : Y → P(Y ) such that p ∈ b(p) for any
p ∈ Y .
Remark 9. The cubical proximity function CPY (n, p) from Definition 10 is a proximity function
according to Definition 11.

The difference with respect to ϵ-net is that the sets obtained from proximity-net are built by
applying the proximity function, and therefore are not required to be open balls (see Algorithm 7).
This choice brings improved flexibility and allows to build diverse types of open covers by applying
the same procedure to a properly chosen parameter. In this section we will see how we can obtain
both the ball cover and a cubical cover using proximity-net. More importantly, deriving a cubical
cover from proximity-net effectively addresses the flaw of Algorithm 2, as the number of open balls
is expected to be significantly fewer than nk (Corollary 1).

Algorithm 7 proximity-net
Require: Let Y be a dataset, and let b be a proximity function on Y .
Ensure: An open cover of Y
S ← Y , as a set ▷ S is the set that tracks the points of Y not covered yet
C ← ∅
while S ̸= ∅ do

Take a point p ∈ S ▷ Randomly or according to some heuristic
B ← b(p)
Add B to C
for q ∈ B do ▷ All the points in B are now covered

Remove q from S
end for

end while
return C

It’s worth to point out that the original ϵ-net can be obtained by supplying proximity-net with
the ball proximity function defined as in Definition 12, and further optimize it using vp-trees (see
Algorithm 8).
Definition 12. Let Y ⊆ Y ′ and let d be a pseudo-metric on Y ′. For each ϵ > 0 we define the
function BPY (d, ϵ) : Y ′ → P(Y ) by setting

BPY (d, ϵ) : y 7→ Y ∩Bd(y, ϵ).

for every y ∈ Y ′. Moreover, the restriction of BPY (d, ϵ) on Y is a proximity function that we call
ball proximity function.
Remark 10. Definition 12 allows to use the same notation BPY when we want to construct a ball
with a center that is not contained in Y , but in an eventually larger space Y ′. We will use this in
Theorem 1.

We can improve ϵ-net algorithm by first building a vp-tree T on the dataset to be covered. After that
we can call proximity-net (Algorithm 7) by supplying a function that for each point p performs

14
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a range query on T . This approach (Algorithm 8) is eventually faster than the original ϵ-net
approach.

Algorithm 8 ϵ-net via proximity-net and vp-trees
Require: Let Y be a dataset and d a pseudo-metric on Y . Let ϵ > 0 be a chosen radius.
Ensure: A ball cover on Y .
T ← build_vptree(Y, d) ▷ Algorithm 3
π ← p 7→ range_query(T, p, ϵ) ▷ Definition 12, Algorithm 4
C ← proximity-net(X,π) ▷ Algorithm 7
return C

Remark 11. The ability to work with pseudo-metrics, rather than just metrics, is an invaluable
feature of vp-trees that we can leverage in our implementation. In the setting of Mapper on Ball
Mapper, we have a lens f : X → Y and a metric d on Y . Mapper on Ball Mapper is obtained by
taking the pullback of the open sets of Ball Mapper under the lens f . This is equivalent to apply
Algorithm 8 to the input dataset Y = X under the pullback pseudo-metric f∗d. This brings a
practical benefit in terms of time and space, since the pullback cover is already obtained in this way,
without constructing it explicitely from a cover on f(X).

Under an appropriate choice of proximity function, we can construct a cubical cover using proximity-
net, while keeping the number of open sets limited, as in the case of ϵ-net (see Remark 4), eliminating
the performance degradation encountered in Algorithm 2.
Remark 12. As a result of Theorem 1, we can claim that

y 7→ Bσ∗
Y d∞

(
(σ−1

Y ◦ ρn ◦ σY )(y), 1
2n− 2np

)
is a proximity function.

By leveraging Theorem 1 we can finally summarize our methodology for computing this cover
efficiently (see Algorithm 9):

1. First we use Algorithm 3 to construct a vp-tree T on Y using the pseudo-metric σ∗
Y d∞.

The range query method on T (Algorithm 4) is then equivalent to computing the proximity
function BPY (σ∗

Y d∞, ϵ) for any choice of ϵ.

2. Once T has been constructed, we run proximity-net algorithm (Algorithm 7) by supplying
the proximity function BPY

(
σ∗

Y d∞,
1

2n−2np

)
(σ−1

Y ◦ρn◦σY ) which by definition is equivalent
to

y 7→ Bσ∗
Y d∞

(
(σ−1

Y ◦ ρn ◦ σY )(y), 1
2− 2p

)
,

and therefore can be efficiently computed as

y 7→ range_query
(
T, (σ−1

Y ◦ ρn ◦ σY )(y), 1
2n− 2np

)
using the vp-tree T constructed in the previous step. As stated by Theorem 1, this is
equivalent to computing CPY (n, p)(y).
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Algorithm 9 Cubical Cover via proximity-net and vp-trees
Require: Let Y ⊆ Rk, let 0 < n ∈ N and p ∈ (0, 0.5].
Ensure: A cubical cover C ⊆ CCn,p

Y .
T ← build_vptree(Y, σ∗

Y d∞) ▷ Algorithm 3
π = y 7→ range_query(T, (σ−1

Y ρnσY )(y), 1
2n−2np) ▷ Definition 10, Theorem 1, Algorithm 4

C ← proximity-net(π) ▷ Algorithm 7
return C

Since proximity-net is a greedy algorithm that selects a distinct element of CCn,p
Y at each step, esti-

mating the cardinality of CCn,p
Y also provides an upper bound on the total number of iterations of

proximity-net. Consequently, the algorithm produces an open cover of Y , where each open set cor-
responds to one of the hyperrectangles from the original standard cubical cover CCn,p

Y . This refined
open cover may contain fewer open sets than the original cubical cover, thanks to the application of
proximity-net. Despite its smaller size, the cover remains sufficient to encompass the entire dataset.
Moreover, the Mapper graph derived from this open cover retains its informativeness while being
potentially easier to visualize and analyze, particularly in higher dimensions (see Figure 5).

Figure 5: These plots show two Mapper graphs from the Digits dataset (1797 instances, 64 features)
(Alpaydin and Kaynak, 1998). Both use PCA with four principal components as the lens, a cubical
cover with five intervals and 50% overlap, and KMeans clustering with two clusters. The left plot
uses the standard cubical cover, while the right uses the cubical cover generated by proximity-net.
Node colors represent the average digit values. The right plot is more compact, easier to navigate,
and better reveals relationships in data.

3.3 Experimental Results

To evaluate the benefits of the approach outlined in Algorithm 8 and supported by Theorem 2 and
Corollary 1, we conducted a series of programmatic experiments. Initially, we developed a Python
library called library-omitted-for-anonymity (Anonymous, 2024) based on the approach presented
in this work. Subsequently, we compared it against other open-source libraries. The motivation
behind creating library-omitted-for-anonymity was to explore alternative methods for constructing
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open covers for Mapper and eventually implement a more efficient approach. While major open-
source implementations like Python Mapper (v0.1.17) (Müllner and Babu, 2013), GUDHI (v3.9.0)
(Carrière, 2021), Kepler Mapper (v2.0.1) (Van Veen, 2019), and giotto-tda (v0.6.0) (Tauzin et al.,
2021) can theoretically handle high-dimensional lenses, they all rely on Algorithm 2 which has
known limitations, as previously discussed. The root cause of this issue lies in their source code: a
common thread among these libraries is the use of the itertools.product function. This function,
described in Python’s official documentation available at https://docs.python.org/3/library/
itertools.html#itertools.product, is used to perform a nested loop on each one-dimensional
open cover, which corresponds to what Algorithm 2 does.

The results obtained from comparing library-omitted-for-anonymity (v0.7.3) (Anonymous, 2024)
with Kepler Mapper (v2.1.0) (Van Veen, 2019) and giotto-tda (v0.6.2) (Tauzin et al., 2021) are
reported as plots within this section and more extensively as tables in Appendix B fore repro-
ducibility. These results align with the expected behavior and demonstrate a clear superiority of
our approach in terms of scalability with respect to the lens dimension.

To evaluate the performance and scalability of our approach, we conducted a series of measurements
to compute the Mapper graph’s running time. During these benchmarks, we consistently kept
constant number of intervals and overlap, while systematically varying the lens dimension. We
compared the running time of three different libraries, namely Giotto-TDA (Tauzin et al., 2021),
Kepler Mapper (Van Veen, 2019), and library-omitted-for-anonymity (Anonymous, 2024). This
comparative analysis provides valuable insights into the behavior of these implementations when
dealing with high-dimensional data. Our experiments were conducted on Fedora 37 using Python
3.10, leveraging giotto-tda 0.6.2, Kepler Mapper 2.1.0, and library-omitted-for-anonymity 0.7.3. All
experiments have been run on a PC equipped with an i5-4590 CPU @ 3.30GHz with 4x4GB DDR3
1600Mhz, in dual channel configuration. To ensure the reliability of our benchmarks, we used well-
known datasets publicly available at the UCI Machine Learning Repository (Dua and Graff). For
each dataset we ran Mapper using overlap fraction p ranging in the set {0.125, 0.25, 0.5} and using
10 intervals on each feature. This choice is arbitrary, but was enough to get informative Mapper
graphs, especially with low-dimensional lenses, with every dataset we used. To minimize the effect
of clustering on the benchmarks, we chose a trivial clustering algorithm that for each input dataset
creates a single cluster. In all these benchmarks we excluded the running time used for plotting
the Mapper graph.

The first experiment involves creating a 1-dimensional dataset embedded in dimension k, referred
to as the Line dataset in plots and tables. This is a toy experiment where the dataset consists of
10000 points lying on the diagonal of the hypercube [0, 1]k, with a small random noise. As expected,
compared with kepler-mapper and giotto-tda, the running time of library-omitted-for-anonymity on
this dataset demonstrates the advantage of our approach especially in higher dimensions. Subse-
quently, we conducted additional experiments that more closely resemble the typical experiences
one might have when using libraries for Mapper. To simplify the process, we used Principal Com-
ponent Analysis (PCA) as the lens, with the number of components ranging from 1 to 5. As the
number of PCA components k increases, we expect the difference with the doubling dimension of
the image to increase too. Such limited range was enough to appreciate a remarkable performance
advantage of library-omitted-for-anonymity across all our experiments. In the following plots, we
present the running times with a linear scale on the main axes, complemented by a logarithmic scale
on the inset plots. This dual-scale approach provides a clearer and more insightful representation
of the data, allowing us to accurately capture both the overall trend and finer details of the running
times. By using a logarithmic scale in the inset plots, we can effectively highlight the behavior of
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the running times over a wide range of values, making it easier to discern subtle variations that
might be overlooked with a purely linear scale.

Figure 6: Line dataset: 10000 instances, variable number of features (k).

Figure 7: Digits dataset: 1797 instances, 64 features (Alpaydin and Kaynak, 1998). PCA with
variable number of principal components (k).
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Figure 8: MNIST dataset: 70000 instances, 784 features (LeCun and Cortes, 2010). PCA with
variable number of principal components (k).

Figure 9: Cifar-10 dataset: 60000 instances, 1024 features (Krizhevsky, 2009). PCA with variable
number of principal components (k).
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Figure 10: Fashion-MNIST dataset: 70000 instances, 784 features (Xiao et al., 2017). PCA with
variable number of principal components (k).
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A Appendix A: Library Overview

Throughout the development process of library-omitted-for-anonymity, one of the objectives was to
create an API that is easy to understand and use. For this reason we adopted an object-oriented
approach taking inspiration from the well-known scikit-learn APIs (Pedregosa et al., 2011), since
we expect some good level of familiarity with it from the intended user base of library-omitted-for-
anonymity. Additionally, we made efforts to keep the API of library-omitted-for-anonymity similar
to the APIs provided by giotto-tda and Kepler Mapper, allowing users to smoothly transition
between these libraries and leverage their existing knowledge. By considering these factors, we
aim to provide a user-friendly and seamless experience for users of library-omitted-for-anonymity,
making it easier for them to explore and use the library’s full potential.

We have implemented our own version of the vp-tree data structure and optimized it for our specific
use-case: our implementation allows each leaf of the vp-tree to contain multiple items by stopping
the construction when the splitting circle is small, either in terms of its cardinality or in terms of its
radius (smaller than a given threshold). This optimization is beneficial both for range queries and
for K-nearest neighbor (KNN) queries. When, during a search, the visited node becomes smaller
than the query, the search operation collapses into a faster brute force linear scan.

The implementation of library-omitted-for-anonymity relies on several dependencies, including
networkx (Hagberg et al., 2008), numpy (Harris et al., 2020), matplotlib (Hunter, 2007), and
plotly (Inc., 2015). Overall, the software dependencies in library-omitted-for-anonymity are cru-
cial for its functionality and enable users to generate Mapper graphs and visualize them effectively:

• networkx is used to generate and manipulate the Mapper graph, which is the primary result
of the algorithm.

• numpy is necessary for numeric computations, particularly for the CubicalCover function.

• matplotlib and plotly are used to create plots for the Mapper graph, providing visual-
ization options.

Additionally, there is a weaker dependency on sklearn (Pedregosa et al., 2011) which is used only
for testing, ensuring that the implementation aligns with widely-used machine learning standards.
The sklearn library is used to check that the custom-defined estimators in library-omitted-for-
anonymity are compatible with sklearn. An extensive amount of effort was devoted to ensure
a good level of automation during development, especially for testing, which is performed using
GitHub actions. At the time of writing code coverage is around 96%.

For more in depth information, examples, tutorials, and documentation, the interested reader can
visit https://library-omitted-for-anonymity.readthedocs.io/en/main/.
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Figure 11: For comparison, the top row displays the Mapper graphs generated using giotto-tda
and kepler-mapper, respectively. In these two cases the Mapper graphs contain more than 3000
nodes and are hard to read. The bottom row presents the results produced by library-omitted-for-
anonymity for the standard cubical cover and the cubical cover based on proximity-net, respectively.
All settings are consistent with those in Figure 5.

B Appendix B: Additional Tables

In the following tables all running time measurements are presented in seconds to provide a clear
understanding of the performance. We used the following abbreviations: GT for Giotto-TDA, KM
for Kepler Mapper and XX for library-omitted-for-anonymity. The symbol OOM means that an
Out Of Memory event was encountered and the running time could not be registered.
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Line
p = 0.125 p = 0.25 p = 0.5

k GT KM XX GT KM XX GT KM XX
1 0.73 0.08 4.83 0.75 0.09 4.61 0.81 0.14 4.69
2 0.88 0.21 7.2 0.97 0.27 8.48 1.51 0.66 5.36
3 1.31 1.46 11.73 1.61 1.76 10.31 4.63 4.27 5.51
4 4.12 22.14 22.44 5.21 22.78 13.3 24.44 40.0 5.44
5 45.43 319.23 33.91 47.39 318.04 16.3 173.17 433.16 5.61
6 OOM 4340.13 54.74 OOM 4461.53 19.06 OOM 5196.72 5.41
7 OOM 56692.15 87.32 OOM 56407.57 25.5 OOM 60917.2 6.13
8 OOM OOM 121.6 OOM OOM 27.64 OOM OOM 5.96
9 OOM OOM 188.21 OOM OOM 36.54 OOM OOM 5.9
10 OOM OOM 224.08 OOM OOM 39.2 OOM OOM 6.29

Table 1: Line dataset: 10000 instances, variable number of features

Digits
p = 0.125 p = 0.25 p = 0.5

k GT KM XX GT KM XX GT KM XX
1 0.43 0.05 2.79 0.44 0.06 2.66 0.48 0.08 2.64
2 0.72 0.23 4.89 0.81 0.29 5.82 1.25 0.6 6.11
3 5.45 1.65 8.35 6.71 2.43 10.66 15.08 8.49 10.41
4 57.64 13.15 17.02 82.75 18.99 23.83 273.35 92.33 21.55
5 446.6 152.57 45.25 749.74 187.13 57.55 4247.41 913.06 43.5

Table 2: Digits dataset: 1797 instances, 64 features (Alpaydin and Kaynak, 1998)

MNIST
p = 0.125 p = 0.25 p = 0.5

k GT KM XX GT KM XX GT KM XX
1 0.49 0.06 2.97 0.51 0.07 3.15 0.56 0.09 3.06
2 0.83 0.27 5.49 0.92 0.36 6.65 1.39 0.78 7.01
3 5.98 2.02 10.43 7.6 3.08 17.5 17.71 10.91 15.51
4 86.26 18.89 20.95 128.32 26.35 29.94 395.66 133.18 25.97
5 1213.06 224.99 52.41 2055.24 290.85 71.1 OOM 1590.47 51.12

Table 3: MNIST dataset: 70000 instances, 784 features (LeCun and Cortes, 2010)

Cifar-10
p = 0.125 p = 0.25 p = 0.5

k GT KM XX GT KM XX GT KM XX
1 0.02 0.0 0.11 0.03 0.0 0.07 0.01 0.0 0.07
2 0.07 0.01 0.15 0.07 0.01 0.17 0.09 0.02 0.16
3 1.51 0.11 0.33 1.81 0.12 0.35 3.38 0.28 0.29
4 7.99 0.66 0.57 13.15 0.83 0.61 59.46 3.16 0.52
5 18.43 5.67 0.9 34.86 6.15 0.9 366.43 28.13 0.77

Table 4: Cifar-10 dataset: 60000 instances, 1024 features (Krizhevsky, 2009)
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Fashion-MNIST
p = 0.125 p = 0.25 p = 0.5

k GT KM XX GT KM XX GT KM XX
1 0.49 0.06 3.4 0.51 0.06 3.48 0.54 0.09 2.94
2 0.84 0.29 6.25 0.94 0.37 6.89 1.42 0.81 6.85
3 4.79 1.84 10.22 6.3 2.74 14.52 15.17 9.52 13.69
4 58.74 17.07 17.86 86.02 23.2 25.11 294.7 111.08 25.27
5 380.09 206.06 37.1 676.18 231.01 44.56 OOM 1032.43 37.52

Table 5: Fashion-MNIST dataset: 70000 instances, 784 features (Xiao et al., 2017)
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