
Position - The Rashomon Attack Surface (RAS): Navigating Predictive
Multiplicity to Route Around AI Safety

Anonymous submission

Abstract
Modern AI deployments seldom run a single decision
pathway; production stacks realize many near-equivalent
routes (model + decoding/routing/tools) that meet the
same quality bar yet differ on edge cases. Safety evalu-
ations and red-teaming, however, often assume one fixed
route, hiding risk and obscuring attack/defense levers. We
present a deployment-realistic attacker loop—Fingerprint
(few probes), Hop (small, user-plausible retries or decod-
ing/routing tweaks), and Selective jailbreak (target weaker
neighbors)—and a set-aware evaluation checklist: report set-
level risk, measure neighbor differences, and probe steer-
ability. We also propose two practical defenses, Consensus-
Gating and Counterfactual-Veto, that reason over counterfac-
tual neighbors with modest overhead. This reframing aligns
evaluation with how systems are actually used and helps ex-
plain selective, only-partially-transferable jailbreaks reported
in recent studies.

Introduction
Modern AI deployments rarely expose a single decision
pathway. In practice, production stacks realize many near-
equivalent routes—underlying model choice, decoding/rout-
ing policy, and tool paths—that meet the same product
quality bar yet diverge exactly where safety matters: at
edge cases, under retries, and along agent tool calls. Fig-
ure 1 grounds this lens: a brick-wall view where multiple
passing routes form the Rashomon set, and small, user-
plausible nudges (retries, temperature/top-p shifts, stop-
condition tweaks, or tool selection) steer between neighbors.
Evaluations that assume a single fixed boundary compress
this reality to a point and can systematically underestimate
residual risk in multi-route deployments.

Three mature literatures converge on this diagnosis. Mul-
tiplicity and underspecification: pipelines routinely admit
distinct predictors with similar utility but divergent off-
manifold behavior (D’Amour et al. 2022; Hsu and Calmon
2022; Hsu et al. 2024; Rudin et al. 2024; Ganesh 2024). De-
coding/orchestration effects: decoding choices such as tem-
perature and top-p materially reshape generation distribu-
tions and thus downstream decisions (Holtzman et al. 2020).
Empirical security: large jailbreak and agent studies report
selective success with limited transfer across seemingly sim-
ilar systems, and show that modest routing or tool perturba-
tions can flip outcomes (Yu et al. 2024; Deng et al. 2024; Jin

Figure 1: Rashomon Attack Surface. Deployments realize
many passing routes; small, user-plausible changes (retries,
decode/routing tweaks, tool shifts) can hop between neigh-
bors. Evaluation and defense should reason over the set, not
a single route.

et al. 2024; Jiang et al. 2024; Zhan et al. 2024). In parallel,
standards bodies increasingly frame adversarial ML as an
operational risk to be modeled at deployment time (Vassilev
et al. 2025). The implication is simple and consequential:
what ships to users is a set, not a point.

Why single-boundary evaluation fails in practice. Pro-
duction stacks rarely execute a pristine “reference” route.
Tiered products may enable different decoding profiles
across SKUs; internationalization toggles and A/B cohorts
alter stop rules and refusal rationales; tool-integrated agents
resolve tasks through retrieval and execution that depend
on transient content and tool availability. Even benign us-
age creates variation: a user who retries after a refusal can
be served a different neighbor route; a harmless tool error
can trigger fallback or re-planning. All of these are ordinary
product behaviors, not attacker privileges. In such settings,
testing a single boundary provides a lower bound on risk at
best, and a misleading false negative at worst.

From phenomenon to surface. The Rashomon effect
has largely been treated as an interpretability or model-
selection curiosity—evidence that “many good models ex-
ist” (D’Amour et al. 2022; Hsu and Calmon 2022; Hsu



et al. 2024; Rudin et al. 2024; Ganesh 2024). Our stance
is operational: multiplicity is a first-class attack surface.
Decoding and orchestration choices are not neutral knobs;
they are levers that alter the realized decision boundary in
ways documented by generation dynamics (Holtzman et al.
2020). Empirically, jailbreak success is selective and only
partially transferable across seemingly similar systems (Yu
et al. 2024; Deng et al. 2024; Jin et al. 2024; Jiang et al.
2024), and agent pipelines are sensitive to content-mediated
routing (Zhan et al. 2024). Put together, these threads ex-
plain why small, user-plausible actions can “route around” a
defense without any white-box access.

What changes if we adopt a set-aware view. First, the
unit of evaluation becomes the deployment set itself: risk
should be reported over the mixture of routes the product
actually realizes rather than a single canonical path. Sec-
ond, heterogeneity—differences between neighboring routes
that pass the same utility bar—becomes diagnostically use-
ful rather than incidental; it explains selective jailbreak suc-
cess and provides concrete targets for testing. Third, steer-
ability—the degree to which small, legitimate nudges shift
outcomes—moves from anecdote to a measurable quantity.
These three ideas motivate the signals we advocate through-
out the paper (set-level risk, neighbor gaps, and hop gains),
and they align with calls from the standards community to
model operational risk at deploy time (Vassilev et al. 2025).

Our position and prescriptions. Predictive multiplicity
is a first-class attack surface. Systems should be modeled,
evaluated, and defended as the set of routes realized in
deployment, not a single boundary. Concretely, we articu-
late a deployment-realistic attacker loop—Fingerprint (few
neutral probes to locate the active neighborhood) → Hop
(small, user-plausible decode/routing or agentic shifts) →
Selective jailbreak (target weaker neighbors)—and we pro-
pose set-aware reporting (report set-level residual risk, mea-
sure neighbor differences, probe steerability) together with
lightweight defenses (Consensus-Gating, Counterfactual-
Veto) that reason over counterfactual neighbors. These pre-
scriptions turn multiplicity from a hidden nuisance into ex-
plicit hooks for auditing and mitigation, aligning safety prac-
tice with how systems are actually used.

Evidence from Practice & Position Gap
Modern pipelines routinely admit many near-equivalent
models that achieve comparable utility while behaving dif-
ferently off the training manifold. D’Amour et al. (2022) for-
malize underspecification, showing that small training and
configuration choices can yield distinct predictors with simi-
lar accuracy but different generalization profiles. Within this
broader phenomenon, the Rashomon effect captures the exis-
tence and implications of many good models: Hsu and Cal-
mon (2022) introduce Rashomon capacity to quantify pre-
dictive multiplicity; Hsu et al. (2024) analyze multiplicity in
gradient boosting and propose mitigation levers; and Rudin
et al. (2024) argue multiplicity is a feature of practice, not
an anomaly. Empirical studies in vision likewise show ro-
bustness and reliability varying across seemingly equivalent

models (Ganesh 2024). Position gap: these works character-
ize multiplicity but do not treat it as a security vector nor
study procedures that exploit movement within a Rashomon
set.

For generative systems, decoding and orchestration poli-
cies materially reshape behavior. Holtzman et al. (2020)
demonstrate how temperature, top-p, and related choices al-
ter fluency, diversity, and failure modes. In deployed stacks
these policies are product- and route-specific, making oper-
ationally plausible nudges capable of shifting the effective
decision boundary at inference. Position gap: prior work es-
tablishes sensitivity to decoding, but not its use for security
steering across near-equivalents—our notion of “Rashomon
hopping.”

A complementary strand ties fragility to non-robust fea-
tures, explaining divergent failure pockets across models
with similar accuracy (Ilyas et al. 2019). Large jailbreak
studies report selective and only partially transferable suc-
cess across seemingly similar systems, and curate corpora
that reveal heterogeneous outcomes (Yu et al. 2024; Deng
et al. 2024; Jin et al. 2024; Jiang et al. 2024). Tool-integrated
agents add orchestration levers: Zhan et al. (2024) show that
benign-looking content can induce qualitatively different be-
haviors via indirect prompt injection. Position gap: these
results document heterogeneity and limited transfer, but do
not attribute or operationalize them via predictive multiplic-
ity among near-equivalents with matched utility, nor do they
propose a low-query fingerprint → hop → selective pipeline.

Finally, the standards landscape increasingly frames ad-
versarial ML as an operational risk to be modeled at de-
ployment time (Vassilev et al. 2025), yet prevailing tax-
onomies emphasize attacks on a single boundary. Position
gap: there is little guidance for multiplicity-aware risk when
many near-equivalent models or decode policies coexist, and
no prescriptions for defenses that reason over counterfactual
neighbors.
Synthesis. The literature establishes that (i) multiplicity and
underspecification are endemic (D’Amour et al. 2022; Hsu
and Calmon 2022; Hsu et al. 2024; Rudin et al. 2024;
Ganesh 2024); (ii) decoding and orchestration knobs are be-
haviorally potent (Holtzman et al. 2020); and (iii) jailbreak
success is selective and only partially transferable (Yu et al.
2024; Deng et al. 2024; Jin et al. 2024; Jiang et al. 2024;
Zhan et al. 2024). What is missing is a security-first uni-
fication: model multiplicity as an attack surface; formal-
ize low-query fingerprinting of a system’s position within a
Rashomon set; hop via realistic decode/routing nudges; and
design selective attacks and multiplicity-aware defenses that
operate across counterfactual neighbors. Our position fills
this gap.

Our Position in Practice: The RAS Model
System. We analyze a deployed AI service exposed via an
API (chat or task endpoint). In practice, it does not realize a
single fixed rule; answers are produced through many near-
equivalent routes created by training stochasticity, hyperpa-
rameter/data choices, distillation, and—critically for genera-
tive systems—decoding and fallback routing. Some of these
routes are static (e.g., SFT variants pinned for reliability),



while others are induced on the fly by decode policy, retries,
tool availability, or content-mediated routing. Prior work
documents this multiplicity and its consequences, and shows
that decoding policies materially reshape outputs (D’Amour
et al. 2022; Hsu and Calmon 2022; Hsu et al. 2024; Holtz-
man et al. 2020). We therefore treat the set of passing routes
in deployment as the unit of security analysis—what the user
actually experiences under normal product behavior.
Adversary. The adversary has black-box access with a fixed
query budget; chooses inputs; observes responses and stan-
dard metadata; and uses only user-plausible levers common
to products: retries, benign tool errors, temperature or top-
p tiers, or content that influences routing in agentic stacks.
Crucially, the attacker does not require hidden parameters
or privileged toggles—the levers are the same ones ordi-
nary users and product flows already exercise. This mir-
rors contemporary black-box jailbreaks and indirect prompt-
injection settings (Yu et al. 2024; Deng et al. 2024; Zhan
et al. 2024) and is intentionally conservative: if a behavior
can be invoked through normal usage patterns, we consider
it in-scope.
Security goals. The concrete objective is to induce a safety-
policy violation (“jailbreak”) or a harmful agent action
within budget, measured by attack success and, optionally,
by detector/refusal signals the product already logs. We con-
sider (i) single-shot content violations (evasion of refusal)
and (ii) agentic harms or exfiltration via tools. These goals
reflect how failures are reported in recent large-scale black-
box evaluations (Yu et al. 2024; Deng et al. 2024; Zhan et al.
2024) and align with how products operationalize “safety-
critical” surfaces.
Exploitation primitives. Our position centers on three
deployment-realistic steps, summarized in Fig. 2. Rashomon
fingerprinting: a few micro-probes elicit response signa-
tures (token choices, refusal rationales, formatting tics,
tool behavior) that locate the active neighborhood; mul-
tiplicity ensures distinct near-equivalents produce system-
atically different statistics, and non-robust feature reliance
explains why these differences can be consistent enough
to classify (D’Amour et al. 2022; Hsu and Calmon 2022;
Ilyas et al. 2019). Rashomon hopping: small, legitimate
nudges (temperature/top-p shifts within product bounds, al-
tered stop conditions, benign retries/fallbacks, or tool/rout-
ing changes) steer to a nearby route; decoding alters con-
tinuation distributions and agent orchestration changes be-
havior (Holtzman et al. 2020; Zhan et al. 2024). Selective
jailbreaks: once in a weaker neighborhood, prompts can
succeed on a subset of near-equivalents while failing else-
where—matching selective, only-partially-transferable suc-
cess observed at scale (Yu et al. 2024; Deng et al. 2024). The
loop requires no privileged insight: fingerprint uses neutral
stimuli, hop uses user-plausible actions, and selective target-
ing exploits heterogeneity that already exists across utility-
matched routes.
Operational readout. Adopting this model changes what
teams record and reason about at deploy time. Concretely,
(i) the effective route (model+decode/routing+tools) is an
auditable artifact—log which neighbor generated a response
and which user-visible events (retry, tool failure) trig-

Fingerprint
(few probes)

Hop
(small decode/routing tweak)

Selective
Jailbreak

Evaluation signals (set-aware)

MAR Transfer Gap Hop Gain

Figure 2: RAS exploit loop. Fingerprint → Hop → Selec-
tive. Set-aware reporting: MAR, Transfer Gap, Hop Gain.

gered a hop; (ii) heterogeneity becomes diagnostically use-
ful—differences between adjacent routes explain selective
jailbreak success and guide counterfactual checks; and (iii)
steerability is a first-class signal—small, legitimate nudges
that flip outcomes are product risks, even when single-
boundary tests appear clean. We defer metric definitions to
later sections, but the intent is pragmatic: teams should be
able to measure set-level residual risk, surface local gaps,
and quantify the gain from one plausible hop using the same
logs they already collect.
Assumptions and scope. We assume API-level black-box
access with a fixed budget; user-plausible controls that can
induce at least one hop with non-negligible probability; and
a non-degenerate deployment mix across routes. No white-
box access or privileged server parameters are assumed.
These constraints mirror realistic red-teaming and the condi-
tions used in recent assessments (Yu et al. 2024; Deng et al.
2024; Zhan et al. 2024). Out-of-scope are attacks requiring
internal weights/logits or administrative overrides; our focus
is the operational Rashomon set exposed to ordinary users
and adversaries alike.

What To Do Now: Evaluation and Defense
Evaluation. Report risk over the set you deploy (MAR),
not a point; measure neighbor differences (Transfer Gap) to
surface exploitable heterogeneity; and quantify steerability
(Hop Gain) from small, user-plausible changes. These fol-
low from multiplicity/underspecification, decoding/orches-
tration sensitivity, and selective success documented in prior
work (D’Amour et al. 2022; Hsu and Calmon 2022; Hsu
et al. 2024; Holtzman et al. 2020; Yu et al. 2024; Deng et al.
2024).

Defenses. Consensus-Gating: query a small set of coun-
terfactual neighbors and proceed only on agreement; reduces
selective failures across near-equivalents. Counterfactual-
Veto: simulate cheap neighbors (stochastic decodes or
lightweight adapters) and abstain/escalate when any would
refuse. Both convert transfer asymmetries into conservative
decisions at modest latency; neither requires privileged ac-
cess or heavyweight ensembles.

Implication. If deployments realize multiple passing
routes, fingerprinting plus small, plausible hops can raise
success under fixed budgets relative to single-boundary eval-
uations; conversely, consensus/veto checks reduce set-level
risk by leveraging the same asymmetries.

Limitations, Ethics, and Call to Action
This position assumes black-box access and user-plausible
hops; stronger white-box adversaries may obtain larger
gains. Lightweight neighbor simulation may under-



approximate real deployment diversity. We align with
adversarial-ML guidance (Vassilev et al. 2025), emphasize
mitigations, and avoid releasing actionable exploit con-
tent; no human subjects or PII are used. In closing: treat
multiplicity as the operational object. By default, report
MAR, ∆trans, and ∆hop; and deploy Consensus-Gating or
Counterfactual-Veto for safety-critical actions. Decoding
and routing are policy—make them auditable and defend
over the set you ship.
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