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Abstract

We investigate cross-lingual transfer in large001
language models (LLMs) trained on two002
high-resource languages, English and Chinese.003
Four monolingual Chinese and four bilingual004
English–Chinese models are evaluated on two005
Chinese linguistic benchmarks. Monolingual006
models consistently outperform the bilingual007
ones on 12 out of 55 tasks, a result indicat-008
ing negative transfer from English to Chinese.009
Additionally, we carry out a feature attribu-010
tion analysis in a monolingual and a bilingual011
model, showing that the differences in their012
performance may be explained by more pre-013
dictable attribution patterns in the monolingual014
model. Our findings have implications for the015
ongoing effort of training bilingual LLMs.016

1 Introduction017

In multilingual NLP, cross-lingual transfer is tradi-018

tionally described in positive terms. For example,019

a model’s performance in low-resource languages020

can be improved by leveraging transfer from high-021

resource languages. At the same time, adding low-022

resource languages to the training data may cause023

a model to perform worse in high-resource lan-024

guages because of the negative cross-lingual trans-025

fer, a phenomenon known as the curse of multilin-026

guality (Conneau et al., 2020). Despite the abun-027

dance of studies that address this problem (Blevins028

et al., 2024; Wang et al., 2020; Pfeiffer et al., 2022,029

etc.), they primarily focus on multilingual LLMs030

trained on multiple languages with very unbalanced031

amounts of data per language.032

What happens, however, when a model is trained033

on exactly two high-resource languages? English034

and (Mandarin) Chinese are the two languages with035

the largest amounts of data available for training,036

and the recent years have seen a surge in the devel-037

opment of LLMs for both languages. While a few038

Chinese models are monolingual (e.g., Sun et al.,039

2021; Zhang et al., 2021; Zeng et al., 2021), most040

others are bilingual (i.e., trained on a mix of En- 041

glish and Chinese data: Bai et al., 2023; Yang et al., 042

2023; Young et al., 2024) or multilingual (see an 043

overview by Huang et al., 2025). While bilingual 044

and multilingual models show high performance on 045

some English benchmarks (e.g., Zeng et al., 2024), 046

it is unclear whether in Chinese linguistic tasks they 047

always outperform their monolingual counterparts. 048

In this paper, we study cross-lingual transfer 049

effects in bilingual Chinese–English LLMs. We 050

evaluate four monolingual Chinese models and 051

four bilingual Chinese–English models on two 052

commonly used Chinese linguistic benchmarks. 053

For some of the paradigms in these benchmarks, 054

monolingual models (including the relatively small 055

monolingual Chinese BERT) consistently outper- 056

form bilingual models, indicating negative trans- 057

fer from English to Chinese. We then present an 058

interpretability analysis using feature attribution 059

methods on two selected models, showing that the 060

bilingual model may be worse at understanding 061

the relations between words in the target sentences 062

than the monolingual one. We are making our code 063

publicly available in case of acceptance. 064

2 Method 065

2.1 Models 066

We consider a diverse set of pretrained transformer- 067

based LLMs. Whereas many multilingual LLMs 068

support both Chinese and English, we focus on 069

the cross-language transfer specifically from En- 070

glish to Chinese. To eliminate possible influences 071

from other languages, we work with bilingual (not 072

multilingual) models. Specifically, we select four 073

monolingual Chinese and four bilingual Chinese– 074

English models based on their performance on com- 075

mon benchmarks and their number of parameters, 076

to cover a variety of model sizes while staying 077

within the limits of our available computational 078

resources. The models and their number of parame- 079
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Model # param. Languages

ERNIE 10B Chinese
CPM 2.6B Chinese
PANGU 2.6B Chinese
BERT 0.11B Chinese
QWEN 14B Chinese–English
BAICHUAN 7B Chinese–English
YI 6B Chinese–English
CHATGLM 6B Chinese–English

Table 1: Monolingual and bilingual models we consider.

ters are listed in Table 1. Note that the monolingual080

models (except ERNIE) generally have fewer pa-081

rameters, giving the bilingual models a possible082

advantage thanks to their size. In all cases, we use083

HuggingFace implementations.084

The monolingual Chinese models include085

(1) Ernie-3.0 (Sun et al., 2021), which combines086

masked and autoregressive training objectives and087

is trained on 4TB of both textual data and struc-088

tured knowledge graphs, (2) CPM (Zhang et al.,089

2021) trained on 100GB Chinese text and tailored090

to Chinese NLP tasks, (3) Pangu-alpha-2.6B (Zeng091

et al., 2021), the smallest of the Pangu family of au-092

toregressive models, trained on 100GB of Chinese093

text, and (4) Chinese BERT (Devlin et al., 2019), a094

much smaller model considered for reference.095

The bilingual Chinese–English models include096

(1) Qwen (Bai et al., 2023), the base Qwen-family097

model trained on 3 trillion tokens, (2) Baichuan-098

7B (Baichuan, 2023), the smaller of the first-099

generation Baichuan models, trained on 1.2 tril-100

lion tokens, (3) Yi-6B (Young et al., 2024), a Yi-101

family model trained on a 3.1 trillion high-quality102

Chinese–English tokens, and (4) ChatGLM3-6B103

(Zeng et al., 2024), a GLM series model optimized104

for Chinese question answering and dialogue.105

2.2 Benchmarks106

We evaluate our models on two commonly used107

linguistic benchmarks of minimal pairs in Chinese:108

CLiMP (Xiang et al., 2021) and SLING (Song et al.,109

2022). CLiMP is the Chinese adaptation of the En-110

glish BLiMP benchmark (Warstadt et al., 2020). It111

has been criticized for its use of translations that do112

not naturally reflect Chinese linguistic phenomena.113

To address this limitation, the second benchmark,114

SLING, derives its minimal pairs from naturally115

occurring annotated Chinese sentences and applies116

syntactic and lexical transformations specifically117

designed for Chinese grammar, offering a more 118

ecologically valid evaluation framework. Together, 119

these benchmarks contain 18 Chinese linguistic 120

phenomena sub-divided into 55 paradigms with 121

more than 50k minimal pairs of sentences. 122

For most of the paradigms in the evaluation 123

benchmarks, each minimal pair consists of one 124

grammatical and one ungrammatical sentence. 125

For example, in the SLING Alternative Question 126

paradigm, the sentence with the吗 (ma) particle is 127

always ungrammatical, since this particle can only 128

be used in yes–no (but not alternative) questions: 129

(1) 她们
they

是
be
飞行员
pilot

还是
or

制片人
producer

[吗*]
[Q*]

?
?

130

‘Are they pilots or producers?’ 131

However, in eight SLING Anaphor paradigms 132

(baseline female/male, baseline cl female/male, 133

baseline cl man female/male, baseline cl men fe- 134

male/male), both sentences are grammatical. A 135

model’s score in these paradigms indicates its pref- 136

erence towards one or the other sentence (i.e., bias) 137

rather than accuracy, e.g., for baseline female: 138

(2) 女队员
female.team.member

攻击了
attacked

[她 /他]
[she / he]

。
.

139

‘The female team member attacked 140

her/him.’ 141

2.3 Evaluation 142

We use the standard method of evaluating the mod- 143

els on minimal pairs. In each pair, sentence per- 144

plexity (or pseudo-perplexity, for masked models) 145

values are computed, and the sentence with a lower 146

perplexity is taken to reflect the model’s prefer- 147

ence. This preference is then compared to the 148

ground-truth data, and the model’s accuracy for 149

each paradigm is computed. 150

For each paradigm, we then compare the accu- 151

racy values of the 4 monolingual models against 152

those of the 4 bilingual models. In case of positive 153

cross-lingual transfer, one could expect the bilin- 154

gual models to show higher accuracy values. How- 155

ever, if we observe that for some of the paradigms 156

the monolingual models (which are also gener- 157

ally smaller) consistently outperform the bilingual 158

ones, this can be seen as evidence of negative cross- 159

lingual transfer. 160

The evaluations and analyses were run on a sin- 161

gle Nvidia V100 GPU with 32GB memory, with 162

a total time of 30 hours. We provide the results 163

below, followed by a feature attribution analysis. 164
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Monolingual models Bilingual models
Paradigm ERNIE CPM PANGU BERT QWEN BAICHUAN YI CHATGLM

Coverb
—”— with 82.3 61.7 73.5 84.7 86.2 84.9 84.8 84.8
Verb complement
—”— res adj 59.7 25.9 59.3 87.6 92.1 95.2 91.1 90.9
—”— res verb 92.8 96.7 90.1 96.2 61.2 65.7 64.2 61.4

Alternative Question
haishi ma 94.6 85.8 10.0 93.1 9.8 26.6 6.5 64.0
Anaphor (Gender)
baseline female 92.9 89.8 95.9 86.7 32.1 66.2 70.3 67.1
Anaphor (Number)
baseline cl female 99.5 77.9 0.0 99.4 10.1 16.2 29.4 40.7
baseline cl male 99.9 75.1 0.0 99.6 26.0 42.9 47.6 45.3
baseline cl men female 99.5 88.8 0.0 99.4 5.9 9.7 25.3 34.8
baseline cl men male 100 87.6 0.0 100 17.9 38.0 38.9 43.2
baseline men female 99.3 51.8 0.0 98.0 6.7 9.4 28.7 41.4
cl men self female 98.3 96.2 0.0 100 87.5 95.4 84.0 77.9
cl self female 99.2 88.8 0.0 99.9 74.8 82.8 62.4 70.2
Definiteness Effect
every 96.2 92.5 87.7 94.6 88.0 69.2 58.7 84.9
Polarity Item
even wh 85.8 42.3 47.7 52.4 97.7 98.4 96.9 98.0
more or less 98.3 98.6 97.6 97.9 86.2 96.8 93.3 79.5
Relative Clause
rc resumptive pronoun 54.8 18.6 11.8 42.7 64.3 77.8 68.1 60.8

Table 2: The models’ performance (accuracy scores, in percentages) in selected CLiMP (top part) and SLING
(bottom part) paradigms. In each row (paradigm), four highest scores are highlighted in bold.

3 Results and analyses165

3.1 Model performance166

For the majority of paradigms in both benchmarks,167

we do not observe consistent differences between168

monolingual and bilingual models’ scores (see Ta-169

bles A1–A2 in the Appendix). This result is ex-170

pected, due to large variation in model architectures171

and the amounts of data they are trained on.172

At the same time, from Table 2 we see that173

3 out of 16 CLiMP paradigms and 4 out of 39174

SLING paradigms yield very consistent differences175

between bilingual and monolingual model scores,176

and for 9 more SLING paradigms the differences177

are consistent except the inexplicably low perfor-178

mance of the monolingual PANGU model. Adding179

up these numbers, we observe reliable differences180

in 16 out of the 55 paradigms (29%). To compute181

how likely this result may occur by chance, we use182

bootstrapping, randomly sampling two sets of four183

scores (in the range between 0.00 and 100.00) 55184

times to see whether we obtain the result like ours 185

or more extreme (i.e., for at least 7 cases all scores 186

in one set are greater than those in the other set, and 187

for at least 9 more cases three scores from one set 188

are greater than all scores in the other set). Having 189

repeated this process 100k times, we estimate the 190

probability of obtaining a result like ours (or more 191

extreme) to be 0.069%, a very low value. 192

Out of the 16 paradigms with consistent differ- 193

ences, bilingual models show higher scores in 4 194

paradigms, indicating either positive cross-lingual 195

transfer or the bilingual models’ advantage because 196

of their larger sizes. The monolingual models are 197

better in 12 paradigms, indicating negative transfer. 198

In other words, these results suggest that negative 199

cross-lingual transfer is common in bilingual lan- 200

guage models, and having English training data in 201

addition to Chinese is not always helpful. 202

We have shown that monolingual models (includ- 203

ing the much smaller BERT) score better than bilin- 204

gual models on some linguistic paradigms, and that 205
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this result is statistically unlikely. We now turn to206

analyzing the profiles of models’ feature attribution207

to answer the question: Can the different scores of208

monolingual vs. bilingual models be explained by209

the differences in how well they understand the key210

relations between words in target sentences?211

3.2 Feature attribution analysis212

We investigate how the important words from the213

left context affect the generation of the target word214

in the sentences from the two evaluation bench-215

marks above. Consider again example (1) from216

Section 2.2. After reading the last word 制片人217

(‘producer’), a human speaker should note the pres-218

ence of the word还是 (‘or’), which indicates an219

alternative question and calls for the end of sen-220

tence rather than the吗 (ma) particle. Analogously,221

in the context of LLMs, after decoding 制片人222

(‘producer’), to generate an appropriate token, the223

model should focus on the token还是 (‘or’). This224

keyword suggests that the end of sentence (in this225

case, a question mark) is a more appropriate token226

to generate than the吗 (ma) particle. Consequently,227

we expect a (monolingual) model with higher per-228

formance on the paradigm represented by this sen-229

tence to assign a higher importance value to the230

keyword (here: 还是, ‘or’) during the generation231

of a target token (here: question mark), compared232

to a (bilingual) model with lower performance.233

To test this hypothesis, we use the Inseq inter-234

pretability toolkit (Sarti et al., 2023), which is well235

suited to analyze feature attribution using gradient-236

based methods. Given the left context, we force237

a model to decode the next target token from the238

grammatical sentence (the question mark in the ex-239

ample above). We then use the integrated gradients240

method to compute the distribution of importance241

scores for all preceding tokens and extract the (nor-242

malized) score for the keyword (还是, ‘or’, in the243

example above). Finally, we compare the scores244

for a monolingual and a bilingual model.245

We focus on one monolingual (CPM) and one246

bilingual model (YI), thanks to their Inseq sup-247

port. Furthermore, we only consider two SLING248

paradigms (Anaphor gender: baseline female and249

Alternative question: haishi ma), as the rest were250

either incompatible with left-to-right processing251

(i.e., generating the correct target token requires252

right sentence context) or yielded tokenization pat-253

terns of the keyword and/or the target token that254

were different across the two models (CPM and YI),255

which would generate multiple scores per word and256

0.0
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Figure 1: Keyword importance scores of the monolin-
gual CPM and bilingual YI model in two paradigms.

possibly render the comparison unfair. For each 257

paradigm, we consider the first 100 grammatical 258

sentences. We extract the importance scores as 259

described above for both models, compare their 260

means and test whether there are statistically signif- 261

icant differences using the Wilcoxon signed-rank 262

test (Wilcoxon, 1992) while correcting for false 263

discovery rate (Benjamini and Hochberg, 1995). 264

From Figure 1, we see that in both paradigms the 265

monolingual model yields higher keyword impor- 266

tance scores than the bilingual one. Our statistical 267

tests confirm that the differences are significant, 268

with both p < .001. This suggests that, indeed, 269

the monolingual CPM model better captures the re- 270

lations between the keyword and the target token, 271

which can explain its higher performance on some 272

paradigms compared to the bilingual YI model. 273

4 Conclusion 274

We have evaluated four monolingual Chinese and 275

four bilingual Chinese–English models on two Chi- 276

nese linguistic benchmarks. Monolingual models, 277

despite their smaller sizes, consistently outperform 278

bilingual ones on a number of paradigms, a sta- 279

tistically unlikely result which suggests that bilin- 280

gual Chinese–English models suffer from negative 281

cross-lingual transfer. This extends the results on 282

negative transfer generally reported for multilin- 283

gual models (Chang et al., 2023) to a bilingual set- 284

ting where a model is trained on two high-resource 285

languages well-represented in models’ training 286

data. Our findings have implications for the on- 287

going effort of training bilingual LLMs on high- 288

resource languages (Faysse et al., 2024; Zhang 289

et al., 2024; Nikolich et al., 2024, etc.). Our fea- 290

ture attribution analysis suggests that the higher 291

scores of the monolingual models may have to do 292

with their better (compared to the bilingual models) 293

understanding of the key relations between words. 294
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5 Limitations295

This study only focuses on one language pair, En-296

glish and Chinese, and only one direction of cross-297

lingual transfer (English to Chinese). It is unclear298

whether the results would generalize to other lan-299

guage pairs or to transfer from Chinese to English.300

We only consider a total of eight LLMs, all with301

14B parameters or less, and the results may be302

different for larger models. The models we have303

compared differ on many dimensions, including ar-304

chitecture, size, objective, while ideally one would305

compare a monolingual and a bilingual model that306

only differ in their training data (one vs. two lan-307

guages), to focus on the impact of bilingual train-308

ing. The benchmarks we use, CLiMP and SLING,309

also come with limitations, namely they only eval-310

uate the models’ linguistic knowledge. Our inter-311

pretability analysis is further limited to only two312

paradigms, a constraint imposed by our method’s313

requirement of left-to-right processing and by dif-314

ferent tokenization schemes used in the models.315

As we only evaluate existing models, we do not316

anticipate any risks related to misuse or negative ap-317

plication of the results presented in our study. How-318

ever, our focus on the two languages with the high-319

est amount of training data available contributes to320

underexposure of lower-resource languages.321
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A Appendix A. Detailed evaluation scores508

Monolingual models Bilingual models
Paradigm ERNIE CPM PANGU BERT QWEN BAICHUAN YI CHATGLM

Anaphor agreement
—”— gender 85.6 79.9 92.6 86.2 64.0 86.5 62.5 77.4
Binding
—”— gender 54.2 51.3 61.2 50.8 50.0 58.6 51.2 81.0
ba construction
—”— 63.0 57.8 19.3 69.0 62.4 74.3 73.5 60.7
Coverb
—”— instrument 57.5 36.0 54.1 91.1 80.8 79.5 80.5 79.0
—”— with 82.3 61.7 73.5 84.7 86.2 84.9 84.8 84.8
NP head finality
—”— clause 67.1 86.5 65.6 53.1 80.3 76.8 80.6 80.2
Classifier
—”— 85.8 57.1 76.0 95.6 92.4 90.2 90.2 93.8
—”— adj 87.8 55.5 69.1 93.2 91.8 84.2 87.0 88.1
—”— clause 84.3 52.2 66.5 90.0 89.3 80.8 84.3 80.9
Filler gap
—”— dependency 87.3 62.3 91.9 62.4 71.1 65.2 70.3 64.9
Passive
—”— formal 60.9 47.0 61.6 67.1 53.8 50.3 49.2 60.2
Verb complement
—”— direction 96.2 81.4 80.1 93.0 85.0 91.8 86.1 84.0
—”— duration 92.8 83.6 82.6 90.2 89.7 92.8 94.2 86.9
—”— frequency 98.4 48.8 75.6 97.8 19.9 25.4 32.6 81.3
—”— res adj 59.7 25.9 59.3 87.6 92.1 95.2 91.1 90.9
—”— res verb 92.8 96.7 90.1 96.2 61.2 65.7 61.4 64.2

Table A1: The models’ performance (accuracy scores, in percentages) on CLiMP paradigms. Four highest scores in
each paradigm are highlighted in boldface.
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Monolingual models Bilingual models
Paradigm ERNIE CPM PANGU BERT QWEN BAICHUAN YI CHATGLM

Alternative Question
haishi ma 94.6 85.8 10.0 93.1 9.8 26.6 6.5 64.0
Anaphor (Gender)
baseline female 92.9 89.8 95.9 86.7 32.1 66.2 70.3 67.1
baseline male 30.4 53.8 100.0 46.1 48.9 34.7 47.7 64.5
pp female 59.1 95.2 98.6 87.0 77.3 96.3 69.6 78.3
pp male 38.8 46.3 99.9 76.0 79.8 21.0 73.8 74.2
self female 92.8 66.4 97.3 93.3 100.0 99.4 97.2 90.4
self male 70.7 86.7 100.0 88.4 0.1 75.0 21.0 47.4
Anaphor (Number)
baseline cl female 99.5 77.9 0.0 99.4 10.1 16.2 29.4 40.7
baseline cl male 99.9 75.1 0.0 99.6 26.0 42.9 47.6 45.3
baseline cl men female 99.5 88.8 0.0 99.4 5.9 9.7 25.3 34.8
baseline cl men male 100.0 87.6 0.0 100.0 17.9 38.0 38.9 43.2
baseline men female 99.3 51.8 0.0 98.0 6.7 9.4 28.7 41.4
baseline men male 99.7 49.5 0.1 99.7 20.2 40.4 41.1 52.8
cl men self female 98.3 96.2 0.0 100.0 87.5 95.4 84.0 77.9
cl men self male 99.6 97.1 0.0 100.0 100.0 99.7 98.8 93.3
cl self female 99.2 88.8 0.0 99.9 74.8 82.8 62.4 70.2
cl self male 99.5 85.8 0.1 99.9 100.0 96.3 97.5 92.2
manself female 96.1 67.4 0.0 98.8 89.2 83.4 80.5 61.3
manself male 98.3 61.1 0.0 99.3 100.0 98.7 98.7 94.3
Aspect
temporal guo 91.8 79.7 72.4 95.5 81.3 82.8 92.1 93.2
temporal le 59.7 78.8 73.9 65.2 63.2 64.8 70.5 74.6
zai guo 92.0 78.6 65.4 97.9 77.5 87.6 79.7 79.4
zai no le 64.8 0.8 16.1 85.2 53.8 50.0 57.0 59.4
Classifier-Noun
cl adj comp noun 69.7 55.6 53.4 70.7 66.4 66.1 64.4 63.0
cl adj comp noun v2 85.5 46.0 50.7 87.5 70.6 71.9 76.8 62.8
cl adj simple noun 93.1 58.9 77.1 96.5 92.8 92.9 93.0 79.8
cl comp noun 65.6 51.0 53.8 69.8 62.9 68.8 59.7 67.6
cl comp noun v2 85.1 45.2 55.5 86.7 70.2 70.0 78.2 76.8
cl simple noun 96.1 61.2 85.0 98.5 96.0 95.1 94.7 88.4
dem cl swap 99.5 52.5 85.7 99.8 88.7 92.1 92.7 88.7
Definiteness Effect
demonstrative 93.9 48.3 49.3 98.2 83.4 58.0 44.5 70.6
every 96.2 92.5 87.7 94.6 88.0 69.2 58.7 84.9
Polarity Item
any 85.2 95.9 93.6 65.8 82.9 92.1 77.2 95.4
even wh 85.8 42.3 47.7 52.4 97.7 98.4 96.9 98.0
more or less 98.3 98.6 97.6 97.9 86.2 96.8 93.3 79.5
Relative Clause
rc resumptive noun 15.2 82.1 16.7 25.6 37.9 25.8 31.4 24.7
rc resumptive pronoun 54.8 18.6 11.8 42.7 64.3 77.8 68.1 60.8
Wh-fronting
bare wh 100.0 96.6 99.7 100.0 100.0 100.0 100.0 100.0
mod wh 100.0 90.7 88.8 99.5 100.0 100.0 99.9 99.6

Table A2: The models’ performance (accuracy scores, in percentages) on SLING paradigms. Four highest scores in
each paradigm are highlighted in boldface.
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