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ABSTRACT

Existing watermarking algorithms are vulnerable to paraphrase attacks because
of their token-level design. To address this issue, we propose SEMSTAMP, a
robust sentence-level semantic watermarking algorithm based on locality-sensitive
hashing (LSH), which partitions the semantic space of sentences. The algorithm
encodes and LSH-hashes a candidate sentence generated by an LLM, and conducts
sentence-level rejection sampling until the sampled sentence falls in watermarked
partitions in the semantic embedding space. A margin-based constraint is used
to enhance its robustness. To show the advantages of our algorithm, we propose
a “bigram” paraphrase attack using the paraphrase that has the fewest bigram
overlaps with the original sentence. This attack is shown to be effective against
the existing token-level watermarking method. Experimental results show that our
novel semantic watermark algorithm is not only more robust than the previous
state-of-the-art method on both common and bigram paraphrase attacks, but also is
better at preserving the quality of generation.

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023) generate realistic text and follow
instructions given a user-specified prompt. However, such capabilities also increase risks of misus-
ing LLMs such as generating misinformation, impersonating, copyright infringements, and more
(Weidinger et al., 2021; Pagnoni et al., 2022; Crothers et al., 2023; Ippolito et al., 2022). Therefore,
methods for detecting machine-generated text (Jawahar et al., 2020; Ippolito et al., 2020; Mitchell
et al., 2023, i.a.) as well as regulating its proliferation (House, 2023) is a crucial step towards reducing
harms. This work focuses on algorithms for watermarked generation—an approach which facilitates
the detection of machine-generated text by adding algorithmically detectable signatures during LLM
generation which are imperceptible to humans (Atallah et al., 2001).

In a recent and impactful work, Kirchenbauer et al. (2023a) propose a watermark algorithm that
pseudo-randomly partitions the vocabulary into a “green list” and a “red list” based on the hash of the
last generated token, and injects the watermark by biasing the LLM to generate more green list tokens.
Although this watermarking algorithm is efficient, follow-up work has shown that corrupting the
generated text, especially paraphrasing, could weaken its robustness (Krishna et al., 2023; Sadasivan
et al., 2023; Kirchenbauer et al., 2023b).

In this work, we propose SEMSTAMP, a semantic watermark algorithm that is robust to sentence-level
paraphrase attacks (§2.2). Depicted in Figure 1, our core intuition is that while paraphrasing alters
the surface-form tokens, the sentence-level semantics are not changed. Thus, instead of partitioning
the vocabulary, our watermark operates on the semantic space of sentence embeddings, partitioned by
locality-sensitive hashing (LSH; Indyk & Motwani, 1998; Charikar, 2002). As a key component, we
use a paraphrase-robust sentence encoder trained with contrastive learning (CL; Wieting et al., 2022).

To test the robustness of watermarking algorithms, we further develop a novel attack method that
minimizes bigram overlap during paraphrasing, namely the bigram paraphrase attack (§2.3). Experi-
mental results (§3) demonstrate that our proposed semantic watermarking remains effective while
token-level watermarks suffer significantly from the bigram attack.

We summarize our main contributions as follows. First, we propose a sentence-level semantic
watermark for LLMs and show that it is robust to paraphrasers and more quality-preserving than
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Figure 1: An overview of the proposed SEMSTAMP algorithm. The watermark is injected by mapping
candidate sentences into embeddings through a robust sentence encoder, dividing the semantic space
through locality-sensitive hashing, and rejection sampling from the LM to generate sentences with
valid region embeddings.

a token-level watermark algorithm. Second, we develop a novel attack method for watermark
algorithms, the bigram paraphrase attack, which can effectively weaken token-level watermarking but
only poses a minor degradation to our semantic watermark. Third, we fine-tune a paraphrase-robust
sentence encoder with a contrastive learning objective and develop a rejection margin constraint to
enhance the paraphrastic robustness of our semantic watermark algorithm.1

2 APPROACH

2.1 PRELIMINARIES

Text Generation from Autoregressive LMs An autoregressive LM, denoted by PLM, models
the conditional distribution of the next token over the vocabulary V . Given a token history w1:t =
w1, . . . , wt where each token wi ∈ V , the next token is generated by sampling wt+1 ∼ PLM(·|w1:t).
A text sequence is generated by repeatedly sampling from the conditional distribution in a left-to-right
fashion. We also introduce a sentence-level notation: s(t+1) ∼ PLM(·|s(1) . . . s(t)) refers to the
sampling of the next sentence given sentence history s(1) . . . s(t).

Token-Level Watermarking and its Susceptibility to Paraphrase Attacks Kirchenbauer et al.
(2023a) proposes a watermark that is injected at the token level. At each time step of the generation,
the vocabulary V is pseudorandomly partitioned into a “green list” and a “red list”. The random seed
for partition is computed by a hash of the previously generated token. A globally fixed bias parameter
δ > 0 is added to the logit of each green list token so that the LM is induced to generate more green
list tokens. The watermark is detected by conducting one proportion z-test (detailed in §B) on the
number of green list tokens in the generated text.

Because of the token-level nature of the watermark algorithm, perturbing a token wt in a generated
sequence w1:T through paraphrasing would change the green list for token wt+1. As a result, a
green token wt+1 could be considered red after the green list has changed, which undermines the
detectability of the watermark (Krishna et al., 2023). Moreover, because the watermark changes
logits directly, it can degrade the quality of generated text (Fu et al., 2023).

Locality-Sensitive Hashing We will use LSH (Indyk & Motwani, 1998) to partition the semantic
embedding space. It hashes similar inputs into similar signatures, thereby reducing the dimensionality
and providing a similarity measure for a high-dimensional input space Rh. Given an LSH dimension
d, we adopt the cosine-preserving method from Charikar (2002) which produces a d-bit binary
signature through random hyperplane projections, and each hyperplane is represented by a random
normal vector n(i) drawn from the h-dimensional Gaussian distribution.2 The LSH signature for an
embedding vector v ∈ Rh is then determined by the sign of the dot product between the candidate
vector and the normal vectors:

LSHi(v) = 1
(
n(i) · v > 0

)
, (1)

where 1(·) is the indicator function, LSHi : Rh 7→ {0, 1} gives the i-th digit signature, and LSH(v) =
[LSH1(v)|| . . . ||LSHd(v)] is the concatenation of all d digits.

1Our code, model, and data will be released in the public version of this manuscript.
2Normal vector n(i) ∈ Rh represents the hyperplane that is orthogonal to n(i) and passes through the origin.
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Algorithm 1 SEMSTAMP

Input: language model PLM, prompt s(0), number of sentences to generate T .
Params: sentence embedding model Membd with embedding dimension h, maxout number Nmax,
margin m > 0, valid region ratio γ ∈ (0, 1), LSH dimension d, a large prime number p.
Output: generated sequence s(1) . . . s(T ).

procedure SEMSTAMP
init LSH(·), randomly initialize d LSH hyperplanes, represented by the normal vectors

n(1) . . . n(d) ∈ Rh, to create 2d semantic subspaces.
for t = 1, 2, . . . , T do

1. Compute the LSH signature of the previously generated sentence, SIG(s(t−1)), and use
[SIG(s(t−1))]10 · p as the seed to randomly divide the space of signatures {0, 1}d into a
“valid region set” G(t) of size γ · 2d and a “blocked region set” R(t) of size (1− γ) · 2d.

2. repeat Sample a new sentence from LM, s(t) ∼ PLM(·|s(1) . . . s(t−1))

until the signature of the new sentence is in the “valid region set”, SIG(s(t)) ∈ G(t)

and the margin requirement MARGIN(s(t),m) is satisfied.
or has repeated Nmax times

3. Attach the selected sentence s(t) to context.
end for
return s(1) . . . s(T )

end procedure

function SIG(s) ▷ Sentence s
v ←Membd(s) ▷ Apply the embedding model to get sentence embedding v
c← LSH(v) ▷ Discretize the embedding via LSH to produce signature c
return c

end function

function MARGIN(s,m) ▷ Sentence s, margin m
v ←Membd(s) ▷ Apply the embedding model to get sentence embedding v
x← mini=1,...,d{| cos(v, n(i))|} ▷ Compute the minimum absolute cosine similarity

between v and all LSH normal vectors n(i).
return True If x ≥ m Else False

end function

2.2 SEMSTAMP: A SEMANTIC WATERMARK WITH PARAPHRASTIC ROBUSTNESS

We begin with a high-level overview of the SEMSTAMP algorithm. Our approach is motivated by the
intuition that paraphrasing alters the surface-form tokens but preserves sentence-level semantics. We
apply the watermark at the sentence-level semantic space (instead of the token-level vocabulary) to
preserve the watermark under token changes. A core component of SEMSTAMP is a robust sentence
encoder, denoted Membd in Algorithm 1. We fine-tune an off-the-shelf encoder with a contrastive
learning objective (Wieting et al., 2022) for paraphrastic robustness.

At the initialization stage of SEMSTAMP, we partition the space of sentence embeddings Rh of
Membd, a representation of the sentence-level semantic space, with the LSH method introduced
in §2.1. Concretely, we initialize the LSH : Rh 7→ {0, 1}d function by sampling normal vectors
n(1) . . . n(d) to represent d LSH hyperplanes, and treat the space of LSH signatures {0, 1}d as a
natural partitioning of Rh into 2d regions.

At each generation step, given a sentence history s(0) . . . s(t−1), we first produce the LSH signature of
the previously generated sentence SIG(s(t−1)). Next, we pseudorandomly divide the LSH partitions
into a set of “valid” regions G(t) and a set of “blocked” regions R(t), where the masking is seeded by
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SIG(s(t−1)).3 To produce the watermarked next sentence, we sample with rejection a new sentence
s(t) from the LM until its embedding lies in the “valid” region within the semantic space.

Because a proper paraphrase should retain the meaning of the original sentence, we hypothesize
that the LSH signature for a candidate sentence should rarely change after paraphrasing (Figure 4
provides empirical results). Therefore, the valid region partition for the next sentence would not
change, ensuring the watermark is still detectable after the paraphrase attack. Below we explain each
core component of SEMSTAMP in detail.

Paraphrase-Robust Sentence Encoder A prerequisite for SEMSTAMP is a semantic embed-
ding model to encode candidate sentences into sentence embeddings. We base our encoder on
Sentence-BERT (SBERT; Reimers & Gurevych, 2019), a fine-tuned siamese network that produces
sentence embeddings whose cosine similarity approximates the semantic textual similarity on the
STS benchmark (Cer et al., 2017).

To enhance the encoder’s robustness to paraphrase, we further fine-tune the SBERT model using
contrastive learning following Wieting et al. (2022). For each sentence si in a corpus, we first produce
its paraphrase ti using an off-the-shelf paraphrasing model, Pegasus (Zhang et al., 2020).4 Next, we
sample a random sentence t′i from the corpus that is not a paraphrase of si to serve as the negative
example. The objective promotes the original sentence to be more similar to the paraphrase than the
negative example by a margin of δ > 0:

min
θ

∑
i

max
{
δ − fθ(si, ti) + fθ(si, t

′
i), 0

}
, (2)

where fθ is the cosine similarity between the embedded sentences, fθ(s, t) = cos
(
Mθ(s),Mθ(t)

)
,

and Mθ is the encoder model with parameter θ.

Semantic Space Partitioning through LSH In the initialization stage of watermarked text genera-
tion, normal vectors n(1) . . . n(d) are randomly drawn from the h-dimensional Gaussian distribution
in the semantic space of Rh to represent d LSH hyperplanes. The hyperplanes are fixed during
generation and detection to serve as the basis for partitioning. As introduced in §2.1, this induces a
d-bit binary signature LSH(v) for a vector v ∈ Rh. Consequently, we use each of the 2d signatures
c ∈ {0, 1}d to represent a region in the semantic space consisting of points with signature c.

During the generation of a new sentence s(t), we apply a watermarking “mask” on the semantic space
by pseudorandomly partitioning the space of signatures {0, 1}d into a valid region set G(t) of size
γ · 2d and a blocked region set R(t) of size (1 − γ) · 2d, where γ ∈ (0, 1) determines the ratio of
valid regions. The masking is seeded by the LSH signature of the last sentence s(t−1) and thus varies
for each sentence-step. Specifically, we convert the binary signature SIG(s(t−1)) to decimal and
use [SIG(s(t−1))]10 · p (where p is a large prime number) to seed the randomization. The condition
for rejection sampling is that the LSH signature of the new sentence must fall into one of the valid
regions, i.e., LSH(Membd(s

(t)) ∈ G(t).

Margin-Based Constraint for Enhanced Robustness For robustness, the SEMSTAMP algorithm
would need the LSH signature of the paraphrased sentence to be unchanged from the signature of
the original sentence, i.e., for each LSH digit i, the sign of the dot product between the embedded
sentence and the normal vector n(i) should not change before and after paraphrasing:

1
(
n(i) · vorig > 0

)
= 1

(
n(i) · vpara > 0

)
,∀i ∈ {1, . . . , d}, (3)

where vorig = Membd(s
(t)) and vpara = Membd(G(s(t))) are the embeddings for the original and

paraphrased sentences, respectively, and G is the paraphraser.

Empirically, we found the robustness from contrastive learning (Eq. 2) is not strong enough to
preserve consistent LSH signature under paraphrasing. Therefore, we add an additional rejection
sampling requirement that the sampled sentence s(t) must have the absolute value of cosine similarity
with each normal vector n(i) larger than a margin m > 0:

3Kirchenbauer et al. (2023a) use “green/red” for vocabulary split. Instead, we adopt “valid/blocked” as the
terminology for semantic region partition to be more accessible.

4https://huggingface.co/tuner007/pegasus paraphrase
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min
i=1,...,d

| cos(n(i), vorig)| > m. (4)
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Figure 2: An illustration for margin-
based rejection. Sentence embed-
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aries are rejected (highlighted in
red).

Visually, this is akin to rejecting sentences whose embeddings
lie near the boundaries of an LSH hyperplane. We provide an
illustration in Figure 2. In our experiments (§3), we show that
this margin-based rejection requirement can effectively increase
the LSH signature robustness under paraphrasing.

2.3 THE BIGRAM PARAPHRASE ATTACK

Because existing token-level watermark algorithms hash the
last generated token to determine the green/red list split for the
vocabulary (Kirchenbauer et al., 2023a), the change of token at
position t would affect the watermark of position t+ 1. Due to
this design choice, we hypothesize that token-level watermarks
might be especially sensitive to bigram (two adjacent tokens)
perturbation.

Motivated by this issue, we propose and explore the bigram
paraphrase attack, a simple yet effective variant of the basic
sentence-level paraphrase attack. Specifically, given a neural
paraphrase model G, the standard method for paraphrasing is
using beam search to decode a top-ranking sequence s′ given the original sentence s. To conduct the
bigram attack, instead, we first decode a large number of top-raking sequences s′1 . . . s

′
k from beam

search, obtaining k paraphrase candidates. Next, we select the candidate that has the smallest bigram
overlap with the original sentence. Moreover, to preserve the paraphrasing quality, we constrain the
paraphrase attack with BERTScore (Zhang et al., 2019) between paraphrases and original sentences:

s′ = argmin
x∈{s′1,...,s′k}

B(x, s),

subject to S(s′1, s)− S(x, s) ≤ ∆ · S(s′1, s),
(5)

where s denotes the original sentence, B(x, s) is a simple counting of overlapped bigrams between se-
quences x and s, S(x, s) denotes the BERTScore between sequence x and s, and ∆ is the BERTScore
threshold ratio. See Figure 5 for an example in action.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets and Metrics We use OPT-1.3B as our autoregressive LM to generate texts and semanti-
cally watermark generations with a finetuned Sentence-BERT model. The RealNews subset of the c4
dataset (Raffel et al., 2020) is used for both Sentence-BERT finetuning and evaluation of watermark
algorithms. We analyze the detection results and generation quality on 500 samples per parameter
combination. 200 samples are used for development.

To evaluate the effectiveness of watermarked detection, we utilize binary classification metrics
AUROC (area under the receiver operating characteristic curve) and the true positive rate when the
false positive rate is 5% (TP@FP=5%), i.e., the percentage of machine-generated text (the “positive”
class in the classification setting) that is correctly detected when 5% of human texts (the “negative”
class) are misclassified as machine-generated texts. A piece of text is classified as machine-generated
when its z-score exceeds a threshold chosen based on a given false positive rate, which we explain
in detail in §B. Note that differing from the baseline algorithm in Kirchenbauer et al. (2023a), our
algorithm treat sentences as the unit during z-score computation.

To evaluate generation quality, we measure the perplexity (PPL) with OPT-2.7B (Zhang et al., 2022).
Diversity is measured with trigram text entropy (Zhang et al., 2018) (Ent-3), i.e., the entropy of
the trigram frequency distribution of the generated text. We also use the seq-rep-3 (Rep-3) metric
from Welleck et al. (2020), which measures the proportion of repeated trigrams in generated text.
We measure the quality of paraphrases using BERTScore (Zhang et al., 2019) between original
generations and their paraphrases.
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Paraphraser Algorithm AUROC ↑ TP@FP=5% ↑ BERTScore (para.)

Baseline 0.998 0.992 –No Paraphrase
SSTAMP 0.998 0.998 –

Baseline 0.971 0.935 0.710Pegasus
SSTAMP 0.981 0.985 0.691

Baseline 0.944 0.842 0.678Pegasus-bigram
SSTAMP 0.974 0.980 0.663

Baseline 0.915 0.787 0.565Parrot
SSTAMP 0.926 0.817 0.537

Baseline 0.875 0.658 0.554Parrot-bigram
SSTAMP 0.928 0.834 0.551

Baseline 0.932 0.787 0.609GPT3
SSTAMP 0.934 0.822 0.629

Baseline 0.898 0.647 0.573GPT3-bigram
SSTAMP 0.915 0.929 0.592

Table 1: Detection results under different paraphraser settings. Baseline refers to the watermarking
algorithm in Kirchenbauer et al. (2023a), and SSTAMP refers to the proposed SEMSTAMP algorithm.
The proposed SEMSTAMP algorithm, referred in the table as SSTAMP, is more robust than the
baseline on a number of paraphrasers and both the regular and bigram paraphrase attacks.

Training and Generation For contrastive learning of Sentence-BERT, we paraphrase 8k paragraphs
of the C4-RealNews dataset (Raffel et al., 2020) using the Pegasus paraphraser (Zhang et al., 2020)
through beam search with 25 beams. We then fine-tune a Sentence-BERT model 5 with an embedding
dimension h = 768 on this subset for 3 epochs with a learning rate of 4× 10−5, using contrastive
learning objective (Eq. 2). We set the contrastive learning margin δ = 0.8 which is tuned from the
dev set.

During generation, we use OPT-1.3B (Zhang et al., 2022) as our base model and conduct sampling at
a temperature of 0.7 following Kirchenbauer et al. (2023a) with a repetition penalty of 1.03. We set
32 as prompt length and generate to various lengths, with 200 tokens being our default length.

In the paraphrase attack phase, we paraphrase SEMSTAMP generations and baseline watermark
generations and compare their post-hoc detection rates. We sample at a LSH dimension d = 2 and a
valid region ratio γ = 0.25. We also set our rejection margin m = 0.02. See §3.3 for the impact on
hyperparameter choices.

Paraphrase Attack For paraphrase attack experiments, we paraphrase watermarked generations
sentence by sentence using the Pegasus paraphraser (Zhang et al., 2020), the Parrot paraphraser in
Sadasivan et al. (2023), and GPT-3.5-Turbo (OpenAI, 2022). We use beam search with 25 beams for
both Pegasus and Parrot. For GPT-3.5-Turbo, we provide the sentences before the current sentence
as the context and prompt the model to paraphrase via the OpenAI API. 6 We provide a detailed
description of prompts in §D.

To implement the bigram paraphrase attack, we prompt the GPT-3.5-Turbo to return 10 paraphrases
of the same sentence. For the Pegasus and Parrot paraphrasers, we select the candidate sentence with
the least bigram overlap among the 25 beams from beam-search, subject to a BERTScore constraint
of dropping no more than 10% of the score from the first beam. For GPT-3.5-Turbo, the paraphrase
sample with the highest BERTScore is treated as the first beam.

3.2 RESULTS

We first generate texts with different watermark algorithms, and then paraphrase the generations to
attack on their watermarks. Table 1 shows detection results under different paraphrasers and the
bigram attack at generation length 200. It is shown that SEMSTAMP is more robust to paraphrase

5sentence-transformers/all-mpnet-base-v1
6https://platform.openai.com/playground/
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Figure 3: Detection results (AUROC) under different generation lengths. SEMSTAMP is more robust
than the baseline (Kirchenbauer et al., 2023a) across length 100-400 tokens.

attacks than the baseline watermark across the Pegasus, Parrot, and GPT-3.5-Turbo paraphrasers,
as measured by AUROC and TP@FP=5%. Although we only fine-tune the Sentence-BERT model
on data from the Pegasus paraphraser, SEMSTAMP algorithm generalizes its robustness to different
paraphrasers.

The bigram paraphrase attack is quite effective against the token-level baseline algorithm, whereas
SEMSTAMP is relatively unaffected. For instance, Pegasus bigram attack lowers the baseline AUROC
by 5.3%, whereas SEMSTAMP only decreases by 2.4%. Furthermore, the BERTScore for bigram
paraphrase does not change drastically compared to the regular paraphrases, showing that the bigram
paraphrase attack still preserves paraphrase quality due to the BERTScore constraints we add.

PPL↓ Ent-3↑ Rep-3↓
No watermark 6.995 12.43 .14

Baseline 8.455 12.33 .19
SSTAMP 6.862 12.04 .20

Table 2: Quality evaluation results. SEM-
STAMP preserves the quality of generated
text.

Table 2 compares quality metrics of non-watermarked
generations with the baseline watermark and SEM-
STAMP generations. While SEMSTAMP generation
perplexity is on par with the vanilla model, the base-
line watermark notably degrades the quality due to
the probability shift in selecting valid tokens. On
the other hand, since SEMSTAMP is sentence-level,
it does not disrupt token selections and preserves
the generation quality. Figure 5 further shows ex-
amples of SEMSTAMP generations and the bigram
paraphrase attack. Compared to the non-watermarked
(vanilla) text, the sentences are equally coherent and contextually sensible.

The two watermark algorithms also maintain the same level of text diversity and n-gram uniqueness
compared to the vanilla generation, as measured by trigram entropy and n-gram frequency tests.

Figure 3 highlights that SEMSTAMP is robust to both regular and bigram paraphrase attacks across
different generation lengths as measured by the number of tokens. SEMSTAMPhas consistently higher
AUROC than the baseline (Kirchenbauer et al., 2023a), especially leading by greater margins facing
the bigram paraphrase attacks.

Applying the masking of semantic space partitions and the rejection margin, SEMSTAMP makes a
trade-off between watermark detection accuracy and generation speed. For our current hyperparameter
setting, 14.6 sentences are needed on average to sample one valid sentence. As we explain in §4, this
limitation can be mitigated if we conduct next-sentence sampling in parallel.

3.3 ANALYSIS

Figure 4 shows that increasing margin size m will increase the consistency of LSH signatures (LSH
consistency), i.e., the ratio of sentences that remain in the same valid region after being paraphrased.
A higher rejection margin will ensure the sampled generations are further away from the region
boundary, thus less likely to shift to a different region after paraphrasing. However, a larger margin
will result in a slower generation speed, and we find m = 0.02 works well empirically.

We also compare the LSH consistency between off-the-shelf Sentence-BERT and its fine-tuned
version by contrastive learning in Figure 4. It is shown that fine-tuning the encoder on Pegasus
paraphrased data improves the LSH consistency across different margins.

4 LIMITATIONS AND DISCUSSION
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Prompt: Marketers are employed in the public sector as well as the private sector.
Vanilla Generation: In the public sector, their job is to make sure that the government fulfills its goals. In
the private sector, their job is to make sure that their company makes money. One of the primary tasks of
marketers in the public sector is to keep customers updated on government services and programs.
SEMSTAMP: If you’re a marketer, I’m sure you’ve heard of the term ”branding.” It’s an important practice
to understand how a brand is created and maintained. It’s not the same thing as a marketing campaign, but it
is a good starting point.

Pegasus Paraphrase: I’m sure you’ve heard of the term ”branding.” Understanding how a brand
is created and maintained is an important practice. It isn’t the same as a marketing campaign, but it is a good
starting point.
Pegasus Bigram Paraphrase: I’m pretty sure you’ve heard of branding. Understanding how a brand is
created is important. It’s not a marketing campaign, but it’s a good start.

Figure 5: Generation Examples. Vanilla refers to the original model without adding any watermark.
Paraphrase examples are based on SEMSTAMP generations. Additional examples are presented in
Figure 6 in the Appendix.

Robustness to Stronger Attacks Since SEMSTAMP operates on the sentence level, it is not robust
against attacks on the inter-sentence level. For example, a recently proposed paraphraser Dipper
(Krishna et al., 2023) includes sentence reordering. Our algorithm is also less effective when the
machine text is embedded in a relatively large portion of human text. We leave the exploration of
stronger attacks to future work.
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Figure 4: Effects of rejection margin and
contrastive fine-tuning.

Semantic Constraint from LSH While the LSH parti-
tioning divides the full semantic space into sub-regions,
enforcing the “valid region” requirement during generation
may potentially reduce the generation flexibility. Interest-
ingly, we use a small LSH dimension (d = 2) and we do
not observe a visible quality degradation. A potential ex-
planation is that with a smaller LSH dimension, the valid
partition also becomes larger, which does not impose a
strong semantic constraint and provides enough diversity
for generations, as we found in our experiments (§3.2).

Speed Due to the nature of rejection sampling, text gen-
eration with SEMSTAMP is slower than non-watermarked
generation by a factor of 14.6 with LSH dimension d = 2
and margin m = 0.02 (§3.2), and by a factor of 4.28 when
d = 2 and m = 0 (Table 3). However, since candidate
sentences for rejection sampling have the same LM context, it is possible to conduct batch sampling
of candidate next sentences, which speeds up watermarked generation while increasing the memory
overhead. We see the additional computation cost for SEMSTAMP as a cost for robustness: adding
the watermark on the semantic space trades-off speed for better detection accuracy under paraphrase
attacks. Further, a potential mitigation is through sampling candidate sentences with multiple devices
at the same time.

Reverse Engineering Since our sentence encoder and LSH hyperplanes are not public, it is not
straightforward for a curious attacker to reverse engineer the configurations and we leave it for future
work to explore. The difficulty of reverse engineering can also be increased by using a larger LSH
dimension, while the watermark could be less robust to paraphrase attack.

Bigram Paraphrase Attack Control We control the “intensity” degree of bigram paraphrase attack
by constraining the paraphrase candidate selection with a BERTScore constraint. Removing the
constraint will more forcefully lower AUROC at the expense of paraphrase quality.

5 RELATED WORK

Machine-generated text detection, aiming at distinguishing language model-generated texts from
human-written ones, can be approached by both post-hoc and proactive methods. Our focus, water-
marked generation, belongs to the second category.
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Post-Hoc Detection of Machine-Generated Text In post-hoc methods, applying binary classifica-
tion models is the most straightforward approach (Zellers et al., 2019; Jawahar et al., 2020; Liu et al.,
2022; Mireshghallah et al., 2023). These methods are applicable to black-box generators but need
sufficient corpus to fine-tune in advance.

Another type of post-hoc detection is based on probability-related statistics, including token likelihood
(Gehrmann et al., 2019), rank (Solaiman et al., 2019), entropy (Ippolito et al., 2020), and likelihood
gap at perturbation (Mitchell et al., 2023; Su et al., 2023). These methods have better interpretation
but are reliable only with white-box access to generators. Very recently, Sadasivan et al. (2023)
question the theoretical reliability of detection while Chakraborty et al. (2023) support detection is
achievable.

Watermarked Generation Watermarked generation is an emerging trend of proactive machine-
generated text detection, which adds signatures via controlled generation to enable stable detection.
As a seminal work, Kirchenbauer et al. (2023a) proposes a watermarking algorithm by adding token-
level bias (reviewed in §2). Yoo et al. (2023) further embed multi-bit information into watermark and
enhance robustness against corruption by preventing altering keywords and high syntactic dependency
components. However, they watermark via word replacement after initial generation, which is further
improved into one-stage watermarked generation by Wang et al. (2023). These works focus on
word-level attacks and do not consider paraphrasing.

Very recently, Christ et al. (2023) propose a watermarking scheme that is computationally unde-
tectable without the secret key in theory. Fu et al. (2023) consider semantic word similarity during
watermarked generation. Liu et al. (2023a) propose a private watermark using separate neural
networks respectively for generation and detection. Kuditipudi et al. (2023) preserve the original
distribution of LM during watermarking. These existing works mainly focus on editing, cropping,
corruption, and copy-paste attacks.

More related to our focus on paraphrase attack, Krishna et al. (2023) propose a retrieval-based method
that requires saving all previously-generated sequences, and Kirchenbauer et al. (2023b) empirically
show that the robustness of the baseline algorithm is decent under relatively long generation length.
Contemporary to our work, Zhao et al. (2023) improve robustness via a cryptographic-free watermark
without hashing previous tokens, which is more robust to editing and paraphrasing attacks. To the
best of our knowledge, our work is the first to propose a sentence-level semantic watermark algorithm
that is directly targeted against paraphrase attacks.

Locality-Sensitive Hashing in NLP The application of locality-sensitive hashing (Indyk & Mot-
wani, 1998; Charikar, 2002) in NLP dates back to Ravichandran et al. (2005), where LSH is used
for high-speed noun clustering. Van Durme & Lall (2010) show that the LSH method of Charikar
(2002) can enable fast approximated online computation of cosine similarity. Guu et al. (2018) use
LSH to efficiently compute lexically similar sentences in a prototype-then-edit sentence generation
model. Closely related to our work, Weir et al. (2020) generate semantically diverse sentences by
conditioning a sequence-to-sequence model on the LSH signature of sentence embeddings.

To save space, we defer discussion on watermarking on copyright as well as contrastive learning in
NLP to §A.

6 CONCLUSION

We introduce SEMSTAMP, a novel sentence-level semantic watermark for LLMs. The watermark
is injected by mapping candidate sentences into embeddings with a paraphrase-robust encoder,
partitioning the semantic space through LSH, and rejection sampling to generation sentences with
valid region embeddings. Empirical results show that SEMSTAMP is not only robust to paraphrase
attacks but also more quality-preserving than a token-level baseline watermark algorithm. Our
proposed bigram paraphrase attack effectively weakens the token-level watermark while only causing
minor performance deterioration to SEMSTAMP. We hope SEMSTAMP can serve as an effective tool
for regulating the proliferation of machine-generated texts.
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SUPPLEMENTAL MATERIALS

A ADDITIONAL RELATED WORKS

Watermarked Natural Language Data for Copyright Watermarked generation can be further
applied for data copyright protection. Gu et al. (2022) embed backdoor trigger words as black-box
watermarks into LLMs. Liu et al. (2023b) propose a novel watermark via backdoor-based membership
inference, where backdoor watermarked texts poison unauthorized training models. Yao et al. (2023)
focus on protecting the copyright of prompts through inserting the secret key into the prompt
optimization stage.These works mainly apply watermark techniques for data copyright protections ,
whereas our work focuses on exploring the robustness of watermark against paraphrasing.

Contrastive Learning in NLP Contrastive learning (Hadsell et al., 2006) aims at improving the
distinguishability of representation by pulling over positive pairs and pushing off negative pairs.
In the NLP domain, contrastive learning can be applied to sentence embedding (Logeswaran &
Lee, 2018), and further used in downstream tasks like natural language inference (Li et al., 2022),
understanding (Fang et al., 2020), reasoning (Klein & Nabi, 2020), classification (Choi et al., 2022)
etc. Logeswaran & Lee (2018) apply unsupervised contrastive learning between current sentence
candidates and context sentences to effectively learn sentence representation. Gao et al. (2021) further
apply supervised contrastive learning in sentence embedding by using annotated pairs from natural
language inference. Kim et al. (2021) propose a self-guided contrastive learning between embeddings
from a fixed model and a fine-tuned model.

B WATERMARK DETECTION

Kirchenbauer et al. (2023a) proposes to use a one-proportion z-test to detect watermarks, assuming
the following null hypothesis:

H0 : The text is not generated (or written) knowing a watermarking green list rule.

The null hypothesis is rejected when the z-score computed based on the number of green tokens in a
piece of text T exceeds a given threshold M :

zbaseline =
NG − γNT√
γ(1− γ)NT

, (6)

where NG denotes the number of green tokens, NT refers to the total number of tokens contained
in the given piece of text T , and γ is a chosen ratio of green tokens. During detection time, the
number of green tokens in each piece of text will be counted. According to Eq. 6, a higher ratio
of detected green tokens means a higher z-score, determining with more confidence that the text is
machine-generated.

We adapt this one proportion z-test to SEMSTAMP, modifying the null hypothesis and using sentence
as our basic unit:

H0 : The text is not generated (or written) knowing a rule of
valid and blocked partitions in the semantic space

zSEMSTAMP =
SV − γST√
γ(1− γ)ST

, (7)

where SV refers to the number of valid sentences, γ is the ratio of valid sentences out of the total
number of sentences ST in a piece of text T .

During detection time, we first break a piece of texts into individual sentences and detect the number of
valid sentences SV to calculate zSEMSTAMP. We detect a machine-generated text when zSEMSTAMP > Mr,
where Mr is located according to a given false positive rate r: We define machine-generated as the
positive class in classical classification setting and non-machine-generated as the negative class. We
iterate through a range of possible m ∈ [0, 4.0] until there is a Mr = m such that r percentage of
human (negative-class) texts is misclassified as machine-generated. For example, we let r = 0.05 for
the TP@FP=5% metric in Table 1.
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Prompt: The Airline Vikings were playing for the state football championship in 1972 against Neville on a
bad night for football in Monroe.
Vanilla Generation: They started the game by kicking a field goal from the OB́rien Field goal post and
then went on to score another touchdown. After the game, the Vikingsćoach, Bill Toutant, said the team
played ”like Vikings.” One long-time fan of the Vikings told me this story before he died, so this is my story.
Baseline Watermark: The Viking offense looked like an NFL outfit and the game was over by halftime, led
by a 42-7 victory for the Vikings. The next season, the Airline Vikings traveled to Lexington High School
and finished the regular season with a 5-4 record. The Vikings had to win the state championship to make the
playoffs, but they lost their first game in the state semifinals, finishing with a 5-4 record.

SEMSTAMP: Neville went ahead 14-0 in the second quarter and had a 28-0 halftime lead. Despite the odds,
Airline cut the deficit to 28-14 late in the third quarter. But Neville’s defense held on and won the game 28-14.

Pegasus Paraphrase: In the second quarter, they went ahead 14-0 and had a 28-0 lead. Airline
cut the deficit to 28-14 late in the third quarter. The defense held on and won the game.
Pegasus Bigram Paraphrase: In the second quarter, Neville jumped out to a 14-0 lead. The deficit was cut
to 28 in the third quarter. The game was won by the defense of Neville.’

Figure 6: Additional Generation Examples. Vanilla refers to the original model without adding any
watermark. Baseline Watermark refers to Kirchenbauer et al. (2023a). Paraphrase examples are based
on SEMSTAMP generations.

LSH Dim (d) Average Number of Sentences Sampled ↓ LSH Consistency ↑
2 4.28 .778
4 4.19 .628
8 3.81 .435
16 3.78 .246

Table 3: Effects of Increasing LSH Dimensions at margin m = 0.0. The sampling rate is the average
number of sentences sampled to produce one valid (watermarked) sentence.

C EFFECT OF LSH DIMENSION d

In Table 3, we discover that fewer LSH dimensions will make a sentence more likely to stay in the
same region after being paraphrased. We define LSH Consistency as the ratio of paraphrased sentences
that have the same LSH signature as the original sentence over the total number of paraphrased
sentences. A higher consistency ratio indicates better robustness.

Geometrically, when the LSH dimension is lower, there are fewer partitioned semantic regions, each
having a larger space. A paraphrase will have a similar representation with its source sentence in the
semantic space, which will be more likely to remain in the same semantic region if each region is
larger.

On the other hand, lowering the number of LSH dimensions will also slightly increase the average
number of sentences sampled to produce one valid sentence (Average Number of Sentences Sampled).
We ultimately decide on a minor sacrifice in speed for the gain of accuracy and choose d = 2, the
smallest possible dimension under γ = 0.25. We chose γ = 0.25 following Kirchenbauer et al.
(2023a), where the authors show that larger green-list ratios will lower the z-score.

D ADDITIONAL DETAILS

Cosine Similarity In §2.2, we slightly abuse the notation and use cos(x,y) to denote the cosine
similarity between two vectors x and y. That is,

cos(x,y) =
x · y
|x||y|

. (8)

Sentence Delimitation During generation time, a full candidate next sentence is considered gener-
ated if the language model has generated a new delimiter punctuation, i.e., a comma, period, question
mark, or exclamation mark.
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C4-RealNews Preprocessing We separate the data points, which are paragraphs, into sentences
using nltk.sent tokenize. Additionally, we add a period mark to every sentence that does not
end in a comma, period, question mark, or exclamation mark.

Prompt for GPT-3.5-Turbo Paraphrase To use GPT-3.5-Turbo as a paraphraser, we provide the
following prompt:

Previous context: {context} \n
Current sentence to paraphrase: {sent}

We define sent to be the target sentence to be paraphrased, and context as the list of sentences
before the target sentence.

For the bigram paraphrase attack, we provide the following prompt:

Previous context: {context} \n Paraphrase in {num-beams} different
ways and return a numbered list : {sent}

where num-beams specifies the number of candidate sentences. A higher num-beams will
strengthen the bigram paraphrase attack but also at the cost of more computational resources.
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