
Under review as a conference paper at ICLR 2021

Approximate Birkhoff-von-Neumann
decomposition: a differentiable approach

Anonymous authors
Paper under double-blind review

Abstract

The Birkhoff-von-Neumann (BvN) decomposition is a standard tool used
to draw permutation matrices from a doubly stochastic (DS) matrix. The
BvN decomposition represents such a DS matrix as a convex combination
of several permutation matrices. Currently, most algorithms to compute
the BvN decomposition employ either greedy strategies or custom-made
heuristics. In this paper, we present a novel differentiable cost function to
approximate the BvN decomposition. Our algorithm builds upon recent
advances in Riemannian optimization on Birkhoff polytopes. We offer an
empirical evaluation of this approach in the fairness of exposure in rankings,
where we show that the outcome of our method behaves similarly to greedy
algorithms. Our approach is an excellent addition to existing methods for
sampling from DS matrices, such as sampling from a Gumbel-Sinkhorn
distribution. However, our approach is better suited for applications where
the latency in prediction time is a constraint. Indeed, we can generally
precompute an approximated BvN decomposition offline. Then, we select a
permutation matrix at random with probability proportional to its coefficient.
Finally, we provide an implementation of our method.

1 Introduction & Related work

Sampling from a doubly stochastic (DS) matrix is a significant problem that recently
caught the attention of the machine learning community, with applications such as exposure
fairness in ranking algorithms (Kahng et al., 2018; Singh & Joachims, 2018), strategies to
reduce bribery (Keller et al., 2018; 2019), and learning latent representations (Mena et al.,
2018; Grover et al., 2018; Linderman et al., 2018). We consider the Birkhoff-von-Neumann
decomposition (BvND) (Birkhoff, 1946), which is deterministic and represents a DS matrix
as the convex combination of permutations matrices (or permutation sub-matrices). In
general, the BvND of a particular DS matrix is not unique. Sampling from a BvND boils
down to selecting a sub-permutation matrix with a probability proportional to its coefficient.
Current BvND algorithms rely on greedy heuristics (Dufossé & Uçar, 2016), mixed-integer
linear programming (Dufossé et al., 2018), or quantization (Liu et al., 2018). Hence, these
methods are not differentiable.
We rely on reparametrization techniques to use gradient-based algorithms (Grover et al.,
2018; Linderman et al., 2018). Recently, Mena et al. (2018) introduced a reparametrization
trick to draw samples from a Gumbel-Sinkhorn distribution. However, these methods can un-
derperform in applications where there is a constraint in the prediction, as reparametrization
methods require to solve a perturbed Sinkhorn matrix scaling problem.
In this work, we propose an alternative to Gumbel-matching-related approaches, which is
well-suited for applications where we do not need to sample permutations online. Thus,
our method is fast during prediction time by saving all components in memory. We call
our algorithm: differentiable approximate Birkhoff-von-Neumann decomposition, and it is a
continuous relaxation of the BvND. We rely on the recently proposed Riemannian gradient
descent on Birkhoff polytopes. The main parameter is the number of components of the
decomposition. We enforce an approximate orthogonality constraint on each component of
the BvND. To our knowledge, this is the first gradient-based approximation of the BvND.

1

Under review as a conference paper at ICLR 2021

2 Preliminaries

We first present some background on the BvND and comment on recent advances on
Riemannian optimization in Birkhoff polytopes.

Notations. We write column vectors using bold lower-case, e.g., x. xi denotes the i-th
component of x. We write matrices using bold capital letters, e.g., X. Xij denotes the
element in the i-row and j-column of X. [n] = {1, . . . , n}. Letters in calligraphic, e.g. P
denotes sets. ‖ · ‖F denotes the Frobenius norm of a matrix. Ip is the p× p identity matrix,
and 1n is a 1 vector of size n. We use the superscript of a matrix Xl to indicate an element
of a set. Thus, {Xi}ki=1 be short for the set {X1, . . . ,Xk}. However, we denote X(t) a matrix
X at iteration t. ∆n denotes the n− 1 probability simplex, and � is the Hadamard product.

2.1 Technical background.

Definition 1 (Doubly stochastic matrix (DS)) A DS matrix is a non-negative, square
matrix whose rows and columns sums to 1. The set of DS matrices is defined as:

DPn :=
{

X ∈ Rn×n+ : X1n = 1n, 1
T
nX = 1T

n

}
. (1)

Definition 2 (Birkhoff polytope) The multinomial manifold of DS matrices is equivalent
to the convex object called the Birkhoff Polytope (Birkhoff, 1946), an (n− 1)2 dimensional
convex submanifold of the ambient Rn×n with n! vertices.We use DPn to refer to the Birkhoff
Polytope.

Theorem 1 (Birkhoff-von Neumann Theorem) The convex hull of the set of all per-
mutation matrices is the set of doubly-stochastic matrices and there exists a potentially
non-unique θ such that any DS matrix can be expressed as a linear combination of k permu-
tation matrices (Birkhoff, 1946; Hurlbert, 2008)

X = θ1P1 + . . .+ θkPk, θi > 0, θT1k = 1. (2)

While finding the minimum k is shown to be NP-hard (Dufossé et al., 2018), by Marcus-Ree
theorem, we know that there exists one constructible decomposition where k < (n− 1)2 + 1.
Fig. 1 shows an illustration of the BvND.

= .4 + .31 + .29

Figure 1: Illustration of the Birkhoff-von-Neumann decomposition (BvND): One can represent
a doubly stochastic matrix as a convex combination of permutation matrices.

Definition 3 (Permutation Matrix) A permutation matrix is defined as a sparse, square
binary matrix, where each column and each row contains only a single true (1) value:

Pn :=
{

P ∈ {0, 1}n×n : P1n = 1n, 1
T
nP = 1T

n

}
. (3)

In particular, we have that the set of permutation matrices Pn is the intersection of the set
of DS matrices and the orthogonal group On :=

{
XTX = I : X ∈ Rn×n

}
, Pn = DPn ∩ On

(Goemans, 2015).

Riemannian gradient descent on DPn. The base Riemannian gradient methods use
the following update rule X(t+1) = RX(t)

(
−γ H

(
X(t))) (Absil et al., 2009), where H (X(t))

is the Riemannian gradient of the loss L : DPn → R at X(t), γ is the learning rate,

2

Under review as a conference paper at ICLR 2021

and RX(t) : TX(t)DPn → DPn is a retraction that maps the tangent space at X(t) to
the manifold. Douik & Hassibi (2019) defined H

(
X(t)) = ΠX(t)

[
∇X(t)L

(
X(t))�X(t)],

where ΠX(t) is the projection onto the tangent space of DS matrices at X(t). The total
complexity of an iteration of the Riemannian gradient descent method on the DS manifold
is (16/3)n3 + 7n2 + log(n)

√
n (Douik & Hassibi, 2019). See Appendix B for the closed-form

computation of ΠX(t) and RX(t) .

3 Approximate Birkhoff-von-Neumann decomposition

We propose a differentiable loss function to approximate the BvND of a DS matrix. This
approach is valuable when one can save the resulting decomposition in memory.

3.1 Formulation

Plis et al. (2011) showed that on DPn, all permutations are located on an hypersphere
S(n−1)2−1 of radius

√
n− 1, S(n−1)2−1 :=

{
x ∈ R(n−1)2 : ‖x‖ =

√
n− 1

}
, centered at the

center of mass Cn = 1
n1n1

T
n. Therefore, we can rely on the hypersphere-based relax-

ations (Plis et al., 2011; Zanfir & Sminchisescu, 2018) to learn the sub-permutation matrices.
However, we have two main reasons to avoid the hypersphere relaxations in our setting: i)
Birdal & Simsekli (2019) showed that the gap as a ratio between DPn and both S(n−1)2−1

and On grows to infinity as n grows. ii) While there exist polynomial-time projections of
the n!-element permutation space onto the continuous hypersphere representation and back,
these algorithms are prohibitive in iterative algorithms, as each operation displays a time
complexity of O(n4).
Another possible direction is to build a convex combination of sub-permutation matrices
that is an ε-close matrix of M ∈ DPn. A n× n matrix M′ is an ε-close matrix of M ∈ DPn
if
∣∣Mij −M′

ij

∣∣ ≤ ε, ∀(i, j) ∈ [n]2. Barman (2015) showed that it is possible to build an
ε-close representation using at most O(log(n)/ε2) matrices. Kulkarni et al. (2017) further
improve this result to using at most 1/ε matrices. Therefore, we can build a matrix M′

that satisfies ‖M −M′‖2F ≤ ε, where M′ =
∑k
l=1 ηl Xl and Xl ∈ Pn for l ∈ [k]. However,

it is not currently practical to operate directly on Pn as we have to solve a combinatorial
optimization problem. Additionally, Pn lacks a manifold structure. Thus, we relax the
domain of the absolute permutations by assuming that each Xl ∈ DPn for l ∈ [k] (Linderman
et al., 2018; Birdal & Simsekli, 2019; Lyzinski et al., 2015; Yan et al., 2016). We add an
orthogonal regularization to ensure that each matrix Xl is approximately orthogonal. We
can use Riemannian gradient descent-based methods on the manifold of DS matrices to
minimize the total loss, which has a time complexity of O(n3) per iteration.

3.2 Optimization problem

We want to solve the following optimization problem:

min
η∈∆k

1
2

∥∥∥∥∥M−
k∑
l=1

ηl Xl

∥∥∥∥∥
2

F

, s.t. Xl ∈ DPn ∩ On, for l ∈ [k], (4)

where k is O(1/ε) (by Theorem 9 in Kulkarni et al. (2017)) for an ε-close matrix approximation.
Now, we recast Eq. 4 in its Lagrangian form and include additional penalties to leverage the
Riemannian gradient descent on DPn.

Reconstruction loss. This loss measures the reconstruction error for a given set of
candidate DS matrices,

{
Xl
}k
l=1 and weight vector η ∈ ∆k, as follows:

Lrecons

(
η,
{

Xl
}k
l=1

)
= 1

2

∥∥∥∥∥M−
k∑
l=1

ηlXl

∥∥∥∥∥
2

F

. (5)

3

Under review as a conference paper at ICLR 2021

Orthogonal regularization. This loss encourages a DS matrix X to be approximately
orthogonal by pushing them towards the nearest orthogonal manifold (Brock et al., 2017).
We compute it as follows:

Lortho (X) =
∑

(i,j)∈[n]2

∣∣∣(XTX− I
)
ij

∣∣∣ . (6)

Eq. 6 corresponds to an entrywise matrix norm that promotes sparsity. Nevertheless, we can
also use other orthogonality promoting losses like in Zavlanos & Pappas (2008) or Bansal
et al. (2018), e.g., soft orthogonality regularization, Lortho(X) = ‖XTX− I‖2F . We note that
Łortho : DPn → R+ and it is zero iff X ∈ On. However, Eq. 6 is not convex in X and we are
guaranteed only to converge to saddle points.

Optimization objective. We compute the total loss by adding the reconstruction loss
and an orthogonal regularization for each Xl for l ∈ [k], as follows:

min
{Xl∈DPn}k

l=1
, η∈∆k

L
(
η,
{

Xl
}k
l=1 ; µ, ω

)
= Lrecons

(
η,
{

Xi
}k
l=1

)
+

k∑
l=1

µlLortho
(
Xl
)

+ ωΩ(η),

(7)
where Ω(·) is a regularization function, ω > 0 and µl > 0 for l ∈ [k] are regularization
hyper-parameters that control the trade-off between reconstruction and orthogonality. For
simplicity, we assume the same value of µl for all l ∈ [k]. Algorithm 1 displays a summary of
our proposed solution. This algorithm has a complexity per iteration of O(k n3). Thus, we
are interested in the k � n regime.

Diversity. The regularization function Ω(·) is necessary to avoid trivial solutions and
force using various reconstruction components. For some l ∈ [k], the model sets Xl to M
if we do not regularize η. However, biasing the contribution of each component

{
Xl
}k
l=1 is

problem-dependent. We set Ω(·) = ‖ ·‖22. We remark that this regularization does not impose
fining different sub-permutation matrices. However, repeated sub-permutation matrices are
not an issue for the BvND (see Fig. 3).

Orthogonalization cost annealing (optional). We can use a variable regularization
hyper-parameter µ(t) at training time to improve fining suitable solutions (Bowman et al.,
2015). At the start of training, we set µ(0) = 0, so that the model learns to represent with
various components. Then, as training progresses, we gradually increase this parameter,
forcing the model to impose the orthogonality constraint. This process boils down to
computing µ(t) = min

(
1, max

(
0, t−ti

to−ti

))
µ, were ti and to denote the initial and final

iteration of the annealing, respectively. However, we also need to tune to and ti.

Refinement. The primary use of the BvND is to sample (binary) permutations matrices
from a DS matrix. However, the solution of Eq. 7 yields approximately orthogonal matrices.
Thus, we still need to round/refine the solution to return a permutation matrix. We can
use two different approaches: deterministic rounding or rounding by stochastic sampling.
The deterministic rounding finds a feasible permutation of a given DS matrix via the
Hungarian algorithm (optimal transport problem) (Peyré et al., 2019; Birdal & Simsekli,
2019), where we set the (transport) cost for each l ∈ [k] to Kl = 1 −Xl. Thus, we solve
X̄l ← minX̄l∈Pn

1
n

∑n
i=1 Kl

i,X̄l
i

, where X̄l
i denotes the nonzero column of the ith row of the

matrix X̄l. However, the matching is not differentiable. In that case, we can also use the
Sinkhorn algorithm (Cuturi, 2013), which solves an entropic-regularized optimal transport
problem with cost Kl. We set a small entropic regularization (temperature) parameter. Our
experiment showed similar performance for the matching and Sinkhorn, which suggests that
our approximation can result in practical end-to-end applications.

4

Under review as a conference paper at ICLR 2021

Algorithm 1 Approximate BvND with a differentiable cost function
Require: DS matrix M, number k of sub-permutation matrices, learning rate γ, regulariza-

tion parameters µ and ω
Ensure:

(
η∗,
{

Xi∗}k
i=1

)
that minimizes Eq. 7

1: while not converge do
2: for i ∈ [k] do
3: Update using Riemannian gradient descent:

Xi(t+1) ← RXi(t)

[
−γΠXi(t)

[
∇Xi(t)L

(
softmax(η(t)),

{
Xi(t)

}k
i=1

; µ(t), ω

)
�Xi(t)

]]
4: end for
5: Update using gradient descent:

η(t+1) ← η(t) − γ∇η(t)L

(
softmax(η(t)),

{
Xi(t)

}k
i=1

; µ(t), ω

)
6: end while

4 APPLICATION: Fairness of Exposure in Rankings

One recent application of the BvND in machine learning is the reduction of presentation bias
in ranking systems Singh & Joachims (2018). The aim is to find a DS matrix representing
a probabilistic ranking system that satisfies a fairness constraint in expectation. Then, we
sample a ranking from this fair DS matrix for each user. Thus, sampling for each user with
Gumbel-Shinkhorn becomes prohibitive as it solves a Sinkhorn matrix scaling problem for
each sample. Therefore, we precompute the BvND and propose rankings at random for each
user. Here, | · | denotes the cardinality of a set.
Learning to rank algorithms tends to display top-ranked results more often given the user
feedback (usually clicks), which leads to ignoring other potentially relevant results. In brief,
the method finds a probabilistic re-ranking system which satisfies specific presentation bias
constraints We encode this probabilistic re-ranking in a DS matrix. We decompose this DS
matrix using the BvN algorithm. Then, one can select a sub-permutation matrix at random
using a probability proportional to the decomposition coefficient. Thus, this re-ranking
approach will satisfy group fairness constraints in expectation.
For simplicity, we assume a single query q and consider that we want to present a ranking of
a set of n documents/items D = {di}ni=1. We denote by U the set of all users u that lead to
identical q. We represent rel(d,q) the measure of relevances for a given query1. We assume
a full information setting. Thus relevances are known. We use the relevances to compute the
utility, e.g., discounted cumulative gain (DCG), or the Normalized DCG (NDCG, the DCG
normalized by the DCG of the optimal ranking) (Järvelin & Kekäläinen, 2002).

4.1 Static case

We can write a utility function U in terms of a probabilistic ranking M for a query q as

U(M|q) =
∑

di∈D

n∑
j=1

Mij u(di|q) v(j), (8)

where M ∈ DPn is the probabilistic ranking. Thus Mij represents the probability of replacing
document di (indexed at position i) at rank j. u(d|q) :=

∑
u∈U Pr[u|q] f(rel(d,q)), is the

expected utility of document d for query q, where f(·) maps the relevance of the document
for a user to its utility. v(j) is the examination propensity; it models how much attention an
item d at position j. We use a logarithmic discount in the position vj = v(j) = 1

log2(1+j)

1We can extend this definition to include user preferences, rel(d, q, u).

5

Under review as a conference paper at ICLR 2021

and f(rel(d,q)) = 2rel(d,q) − 1.Thus, the utility function Eq. 8 corresponds to the expected
DCG.
We include fairness constraint by solving: M∗ = arg maxM∈DPn

U (M|q) subject to M
is fair. Singh & Joachims (2018) define several fairness constraints that are linear in M,
and this problem boils down to solving a linear program. However, in prediction time,
one needs to sample from M. Thus, we use the BvN algorithm to decompose M into the
convex combination of k permutation matrices Pk. One chooses a permutation at random
with a probability proportional to the coefficient. The resulting model satisfies the fairness
constraint in expectation.
To set our fairness constraints, we need first to define the merit, impact, and exposure of an
item d. The merit of item is its expected average relevance. The exposure of item d is the
probability P (d) that the user will see d and thus can read that article, buy that product,
etc. We note that estimating the position bias is not part of our study. We assume full
knowledge of these position-based probabilities. We use the feedback C, e.g., clicks, as a
measure of impact. We extend these definitions to group G ⊆ D by aggregating over the
group. Then, we have for a protected group G

Merit(G) = 1
|G|
∑
d∈G

u(d|q), Imp(G) = 1
|G|
∑
d∈G

C(d), and Expo(G) = 1
|G|
∑
d∈G

P (d). (9)

Setting the constraints as functions of the probabilistic ranking M. ˆExpo(di|M) =∑n
j=1 Mij vj . Assuming the Position-Based Model (PBM) click model, the estimated

probability of a click is the exposure × conditional relevancy. Thus, the estimated probability
of click on a document di is C(d) = ˆExpo(d|M)u(d|q). Therefore, we can estimate the
average impact and exposure on the items in group G for the rankings defined by M as

ˆImp(G|M) = 1
|G|

∑
di∈G

u(d|q)

 n∑
j=1

Mij vj

 and ˆExpo(G|M) = 1
|G|

∑
di∈G

n∑
j=1

Mij vj .

(10)
Here, we only use disparate exposure and impact constraints as fairness constraints. The
disparity constraints D(Gi,Gj) is the difference of the fairness metric between protected
groups Gi and Gj , divided by their respective merit. We denote DE(Gi,Gj) and DI(Gi,Gj)
to be the Disparity Exposure Constraint and Disparity Impact Constraint, respectively. Let
D̂(Gi,Gj) be the difference in estimations.

4.2 Fairness in Dynamic Learning-to-Rank

Morik et al. (2020) present an extension of the fairness of exposure (see Section 4) to a
dynamic setting. They propose a fairness controller algorithm that ensures notions group
fairness amortized through time. This algorithm dynamically adapts both utility function
and fairness as more data becomes available.
Here, we assume that both the exposure and the impact vary through time, Impt(G),
and Expot(G). Then, we use the cumulative fairness constraint over τ time steps, e.g.,
1
τ

∑τ
t=1 Impt(G). We extend it to their estimations too.

The optimization problem is

M∗ = arg max
M∈DPn,ζij≥0

U(M|q)− λ
∑
ij

ζij

s.t. ∀Gi,Gj : D̂τ (Gi,Gj) +Dτ−1(Gi,Gj) ≤ ζij ,
(11)

where λ ≥ 0 controls the trade-off between ranking score and fairness.

6

Under review as a conference paper at ICLR 2021

5 Experiments

We explore our differentiable approximate BvND’s behavior on synthetic data and validate its
usefulness in the fairness of exposure in ranking problems. We aim to check its performance
compared to the greedy combinatorial construction.

Optimization. We build DS Random matrices naively to initialize each component Xl. For
l ∈ [k], we sample each element of matrix Ml

ij ,∀(i, j) ∈ [n]2 from a half-normal distribution,
i.e., the absolute value of an i.i.d. sample drawn from a Gaussian. Then, we project onto
DS using the Sinkhorn algorithm. We set the maximum number of iterations to 10 000, the
learning rate γ = 10−3, and relative tolerance of 104. After a greedy parameter tunning, we
use ω = 1 and µ = 10−2.

Technical aspects. We give a Pytorch (Paszke et al., 2019) implementation in Appendix A.
We use RiemannianADAM implemented in the geoopt library (Kochurov et al., 2020). We
run all the experiments on a single desktop machine with a 4-core Intel Core i7 2.4 GHz.

5.1 Synthetic data

n k
computation
time (min)

4 20 4.43± 1.28
6 30 8.68± 2.18
10 40 15.13± 5.49

Table 1: Computation time

Setup. We build a set of ten DS Random matrices
{DPn}10

n=1, where n ∈ [4, 6, 10]. To add sparsity, we mask
each matrix by thresholding at [0.1, 0.5, 0.9] divided n,
respectively. Then, we project the masking result using
the Sinkhorn algorithm. We explore the performance of
the differentiable BvND as a function of the number of
k components. We measure the computation time, the
reconstruction error, and the orthogonalization error.

5 10 15
Number of components

0.5

1.0

Re
co

ns
tru

ct
io

n
er

ro
r

Matrix size n=4

10 20
Number of components

0.5

1.0

Matrix size n=6

10 20 30
Number of components

0.5

1.0

1.5

2.0

Matrix size n=10

0.5 1.0
Orthogonalization error

100

101

102

Co
un

t

1 2
Orthogonalization error

100

101

2 4
Orthogonalization error

100

101

102

Figure 2: Performance of the approximate BvND
on synthetic data: for different matrix sizes. (top)
Reconstruction error as a function of the number
of components. (bottom) Histogram of the orthogo-
nalization error of each component.

Results. We observe in Fig. 2 the re-
construction error is monotonically de-
creasing. However, the approximate
orthogonalization constraint becomes
more challenging to satisfy when in-
creasing the DS input matrix’s dimen-
sionality. Table 1 shows the the compu-
tation time for each parameter.

5.2 Static Fairness of Exposure

Setup. We use the toy example pre-
sented in Singh & Joachims (2018).
These data represent a web-service that
connects employers (users) to potential
employees (items). The set contains
three males and three females. The
male applicants have relevance for the
employers of 0.80, 0.79, 0.78, respectively, while the female applicants have the relevance of
0.77, 0.76, 0.75, respectively. Here we follow the standard probabilistic definition of relevance,
where 0.77 means that 77% of all employers issuing the query find that applicant relevant.
The Probability Ranking Principle suggests ranking these applicants in the decreasing order
of relevance, i.e., the three males at the top positions, followed by the females. The task is
to re-rank them so that the system satisfies equal opportunity of exposure across groups.
Thus, we solve a linear program to maximize Eq 8 such that D̂E(GMale, GFemale) ≤ 10−6.

Results. Fig. 3 shows a toy example of the fairness of exposure. Fig. 3a presents the
original biased ranking, whereas Fig. 3b shows a fair probabilistic ranking, which has a
negligible loss in performance. Note that solving this problem does not imply that each

7

Under review as a conference paper at ICLR 2021

0 1 2 3 4 5

Position
0
1
2
3
4
5D

oc
um

en
t i

d

0.0

0.2

0.4

0.6

0.8

1.0

(a) DCG: 2.37
0 1 2 3 4 5

0
1
2
3
4
5

= .34

0 1 2 3 4 5

0
1
2
3
4
5

+ .32

0 1 2 3 4 5

0
1
2
3
4
5

+ .34

0 1 2 3 4 5

0
1
2
3
4
5

(b) DCG: 2.36

Figure 3: Static fairness exposure on toy data: a) Unfair ranking; b) Ranking satisfies
the disparate exposure constraint. We decompose a fair probabilistic ranking using the
approximate and differentiable BvND using three components.

sub-permutation matrix is unique. In practice, we often find a decomposition with repeated
sub-permutations.

5.3 Dynamic Fairness of Exposure

Setup. We rely on Morik et al. (2020) to simulate an environment based on articles in
the Ad Fontes Media Bias dataset, which generates a dynamic ranking on a set of news
articles belonging to two groups left-leaning and right-leaning news articles, Gleft and Gright,
respectively. See Appendix C for a full description of this simulation. We use dynamic
learning to rank settings to minimize amortized fairness disparities. We solve Eq. 11 using
linear programming. We evaluate the effectiveness of our differentiable approximate BvND
(Diff-BvN) algorithm compared to the standard implementation of the BvND (BvN). We
explore the difference between both models over various trade-offs between ranking score
and fairness λ. Then, we measure their performance for a fixed λ.

Baseline. We use as a baseline the greedy heuristic of BvN (Dufossé & Uçar, 2016; Dufossé
et al., 2018). For the Diff-BvN, we set the number of components to k = 10. We refine
the matrix using the Hungarian algorithm (Kuhn, 1955) to ensure returning a permutation
matrix. However, we also tried the stabilized Sinkhorn used in Cuturi et al. (2019) with the
same performance.

Results. Fig. 4 presents the performance of BvN and Diff-BvN over various values of the
fairness regularization parameter λ. Fig. 4a shows the NDCG of both methods, whereas
Fig. 4c shows their unfairness of impact. Regarding the NDCG, BvN and Diff-BvN display
the same performance across different values of λ. We observe the same pattern in the
unfairness of exposure and impact, Fig.4b and Fig.4c, respectively.
We set the fairness regularization parameter to λ = 10−2. We see in Fig. 5 that the
performance of the re-ranked system is the same for BvN and Diff-BvN. However, the similar
performance between these methods implies that only components 10 represent most of
the information, which might not hold in other scenarios. Nevertheless, fewer components
improve the performance in some applications (Porter et al., 2013; Liu et al., 2015).

6 Discussion and Conclusion

In this paper, we proposed a differentiable cost function to approximate the Birkhoff-von-
Neumann decomposition (Diff-BvN). Our algorithm approximates a DS matrix by a convex
combination of matrices on the Birkhoff polytope, where each matrix in the decomposition
is approximately orthogonal. We can minimize the final loss function using Riemannian
gradient descent. Our algorithm is easy to implement on standard auto-diff-based libraries.
Experiments on the fairness of exposure in ranking problems show that our algorithm yields
similar results to the Birkhoff-von-Neumann decomposition algorithm with a greedy heuristic.
Our algorithm provides an alternative to existing approaches to sample permutation matrices
from a DS matrix. In particular, it offers the option to balance the trade-off between memory
and time in prediction settings. Fewer assignments lead to improved performance in some

8

Under review as a conference paper at ICLR 2021

0 10 4 10 3 10 2 10 1 100 101 102

0.4

0.5

0.6

0.7

0.8

0.9

ND
CG

BvN
Diff-BvN

(a) Averaged cumulative
NDCG

0 10 4 10 3 10 2 10 1 100 101 102

0.02

0.03

0.04

0.05

0.06

Un
fa

irn
es

s o
f E

xp
os

ur
e BvN

Diff-BvN

(b) Group-difference of exposure
per true relevance

0 10 4 10 3 10 2 10 1 100 101 102

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Un
fa

irn
es

s o
f I

m
pa

ct

BvN
Diff-BvN

(c) Group-difference of clicks per
true relevance

Figure 4: Performance of the fairness controller as a function of the parameter λ: Both meth-
ods, BvN and Diff-BvN display almost the same behavior across values of the regularization
parameter. These values correspond to ten trials of the simulated news data of 3000 users.

10 100 1000
Users

0.6

0.7

0.8

ND
CG

BvN
Diff-BvN

(a) Average cumulative
NDCG

10 100 1000
Users

0.0

0.2

0.4

0.6
Un

fa
irn

es
s o

f E
xp

os
ur

e
BvN
Diff-BvN

(b) Group-difference of exposure
per true relevance

10 100 1000
Users

0.0

0.2

0.4

Un
fa

irn
es

s o
f I

m
pa

ct BvN
Diff-BvN

(c) Group-difference of clicks per
true relevance

Figure 5: Performance of the fairness controller (λ = 0.01) as a function of the number of
users: Both methods, BvN and Diff-BvN display the same convergence behavior on various
metrics computed on ten trials of the simulated news data (3000 users).

applications (Porter et al., 2013; Liu et al., 2015). Thus, our algorithm can display better
performance that greedy approaches as one sets the number of assignments a priory.

Potential improvements. In practice, our algorithm is sensitive to the orthogonal con-
straints. Therefore, we need to explore setting the parameters of the cost scheduler/annealing
for the orthogonal regularization parameter, e.g., how fast do we have to increase the orthog-
onal regularization parameter?. Additionally, we note that the current implementation of
our algorithm is still limited to small matrices. Thus, we need to explore different possible
directions to make it scalable, e.g., randomization or quadrature methods (Altschuler et al.,
2019).

9

Under review as a conference paper at ICLR 2021

References
Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on
matrix manifolds. Princeton University Press, 2009.

Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Niles-Weed. Massively
scalable sinkhorn distances via the nyström method. In NeurIIPS, pp. 4427–4437, 2019.

Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality
regularizations in training deep networks? In NeurIPS, pp. 4261–4271, 2018.

Siddharth Barman. Approximating nash equilibria and dense bipartite subgraphs via an
approximate version of caratheodory’s theorem. In STOC, pp. 361–369, 2015.

Tolga Birdal and Umut Simsekli. Probabilistic permutation synchronization using the
riemannian structure of the birkhoff polytope. In CVPR, pp. 11105–11116, 2019.

Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tacuman, Rev. Ser. A, 5:
147–151, 1946.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions
on Automatic Control, 58:2217–2229, 2013.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J Weston. Neural photo
editing with introspective adversarial networks. In ICLR, 2017.

Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. Click models for web search. Morgan
& Claypool, 2015.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In NeurIPS,
pp. 2292–2300, 2013.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting
using optimal transport. In NeurIPS, pp. 6861–6871, 2019.

Ahmed Douik and Babak Hassibi. Manifold optimization over the set of doubly stochastic
matrices: A second-order geometry. IEEE Transactions on Signal Processing, 67:5761–5774,
2019.

Fanny Dufossé and Bora Uçar. Notes on birkhoff–von neumann decomposition of doubly
stochastic matrices. Linear Algebra and its Applications, 497:108–115, 2016.

Fanny Dufossé, Kamer Kaya, Ioannis Panagiotas, and Bora Uçar. Further notes on birkhoff–
von neumann decomposition of doubly stochastic matrices. Linear Algebra and its Appli-
cations, 554:68–78, 2018.

Michel X Goemans. Smallest compact formulation for the permutahedron. Mathematical
Programming, 153:5–11, 2015.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of
sorting networks via continuous relaxations. In ICLR, 2018.

Glenn Hurlbert. A short proof of the birkhoff-von neumann theorem. preprint (unpublished),
2008.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM TOIS, 20:422–446, 2002.

Anson Kahng, Yasmine Kotturi, Chinmay Kulkarni, David Kurokawa, and Ariel D Procaccia.
Ranking wily people who rank each other. AAAI, pp. 1087–1094, 2018.

10

Under review as a conference paper at ICLR 2021

Orgad Keller, Avinatan Hassidim, and Noam Hazon. Approximating bribery in scoring rules.
In AAAI, pp. 1121–1129, 2018.

Orgad Keller, Avinatan Hassidim, and Noam Hazon. Approximating weighted and priced
bribery in scoring rules. JAIR, 66:1057–1098, 2019.

Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
pytorch, 2020.

Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2:83–97, 1955.

Janardhan Kulkarni, Euiwoong Lee, and Mohit Singh. Minimum birkhoff-von neumann
decomposition. In IPCO, pp. 343–354, 2017.

Scott Linderman, Gonzalo Mena, Hal Cooper, Liam Paninski, and John Cunningham.
Reparameterizing the birkhoff polytope for variational permutation inference. In AISTATS,
pp. 1618–1627, 2018.

He Liu, Matthew K Mukerjee, Conglong Li, Nicolas Feltman, George Papen, Stefan Savage,
Srinivasan Seshan, Geoffrey M Voelker, David G Andersen, Michael Kaminsky, et al.
Scheduling techniques for hybrid circuit/packet networks. In ACM CoNEXT, pp. 1–13,
2015.

Liang Liu, Jun Xu, and Lance Fortnow. Quantized bvnd: A better solution for optical and
hybrid switching in data center networks. In IEEE/ACM UCC, pp. 237–246, 2018.

Vince Lyzinski, Donniell E Fishkind, Marcelo Fiori, Joshua T Vogelstein, Carey E Priebe,
and Guillermo Sapiro. Graph matching: Relax at your own risk. IEEE TPAMI, 38:60–73,
2015.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent
permutations with gumbel-sinkhorn networks. In ICLR, 2018.

Marco Morik, Ashudeep Singh, Jessica Hong, and Thorsten Joachims. Controlling fairness
and bias in dynamic learning-to-rank. In ACM SIGIR, pp. 429–438, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In NeurIPS, pp. 8024–8035. 2019.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to
data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Sergey Plis, Stephen McCracken, Terran Lane, and Vince Calhoun. Directional statistics on
permutations. In AISTATS, pp. 600–608, 2011.

George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-Sun, Tajana
Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Integrating microsecond
circuit switching into the data center. ACM SIGCOMM, 43:447–458, 2013.

Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. In ACM SIGKDD,
pp. 2219–2228, 2018.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21:343–348, 1967.

Steven T Smith. Optimization techniques on riemannian manifolds. Fields Institute Com-
munications, 3, 1994.

Stefan Sommer, Tom Fletcher, and Xavier Pennec. Introduction to differential and riemannian
geometry. In Riemannian Geometric Statistics in Medical Image Analysis, pp. 3–37.
Elsevier, 2020.

11

Under review as a conference paper at ICLR 2021

Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang Yang.
A short survey of recent advances in graph matching. In ACM ICMR, pp. 167–174, 2016.

Andrei Zanfir and Cristian Sminchisescu. Deep learning of graph matching. In CVPR, pp.
2684–2693, 2018.

Michael M Zavlanos and George J Pappas. A dynamical systems approach to weighted graph
matching. Automatica, 44:2817–2824, 2008.

A Pytorch implementation

import torch
import geoopt
from torch import nn
from geoopt import ManifoldParameter
from geoopt . mani fo lds import Bi rkho f fPo lytope

c l a s s BirkhoffVonNeumannDecomposition (nn . Module) :
" " " Approximate d i f f e r e n t i a b l e Bi rkho f f−von−Neumann decompsit ion
o f a doubly−s t o c h a s t i c matrix .

Parameters
−−−−−−−−−−−−
n : int , s i z e o f the matrix .

n_components : i n t (op t i ona l) , the number o f c o e f f i c i e n t s in the
approximation .

At t r ibute s
−−−−−−−−−−−
manifo ld : B i rkho f fPo lytope
Matr ices : ManifoldParameter , Matrix on the B i rkho f f Polytope .

Used to compute compute RiemannianADAM.
weight : nn . Parameter , Tensor o f c o e f f i c i e n t s .

" " "
de f __init__(s e l f , n , n_components=2) :

super (BirkhoffVonNeumannDecomposition , s e l f) . __init__ ()
s e l f . n = n
s e l f . n_components = n_components
s e l f . manifold_ = Birkho f fPo lytope ()
s e l f . Matr ices = nn . ParameterDict (

{
s t r (ind) :
ManifoldParameter (

data=s e l f . manifold_ . random ((n , n)) ,
mani fo ld=s e l f . manifold_)

f o r ind in range (n_components)
})

s e l f . weight = nn . Parameter (data=torch . rand (1 , 1 , n_components))

de f forward (s e l f , input=None) :
w = torch . softmax (s e l f . weight , dim=−1)
Ms = torch . cat ([

s e l f . Matr ices [s t r (cho i c e)] . unsqueeze (2)
f o r cho i c e in range (s e l f . n_components)
] , dim=2)

return (Ms ∗ w) . sum(−1)

Listing 1: Approximate Birkhoff-von-Neumann decomposition (ApproxBvND)

12

Under review as a conference paper at ICLR 2021

import torch
import numpy as np

de f ortho_error (X) :
n_samples = len (X)
return (X.T @ X − torch . eye (n_samples)) . abs () . sum()

de f r e con s t ruc t i on_er ro r (A, A_approx) :
r e turn torch . norm(A − A_approx , p=’ f r o ’) . pow(2)

de f t r a i n (model ,
A: torch . Tensor ,
l r : f l o a t=1e−2,
max_iter : i n t =5000 ,
reg_weights : f l o a t =1. ,
reg_ortho : f l o a t =.01 ,
stop_thr : f l o a t=1e−4) :

" " " Train ing func t i on .

A : Tensor , i s the doubly−s t o c h a s t i c matrix to approximate .

l r : f l o a t (op t i ona l) , l e a rn i ng ra t e o f the RiemannianADAM.

max_iter : i n t (op t i ona l) , maximum number o f i t e r a t i o n s .

reg_weights : f l o a t (op t i ona l) , r e g u l a r i z a t i o n parameter f o r the
weigths .

reg_ortho : f l o a t (op t i ona l) , r e g u l a r i z a t i o n parameter f o r the
orthogona l c on s t r a i n t s .

stop_thr : f l o a t (op t i ona l) , s topping th re sho ld .

" " "
opt imize r = RiemannianAdam(l i s t (model . parameters ()) , l r=l r)
v l o s s = [stop_thr]
loop = 1 i f max_iter > 0 e l s e 0
i t = 0
whi l e loop :

i t += 1
opt imize r . zero_grad ()
with torch . enable_grad () :

o r th_los s = torch . z e r o s (1)
f o r param in model . parameters () :

i f i s i n s t a n c e (param ,
geoopt . t en so r . ManifoldParameter) :

o r th_los s += ortho_error (param)
e l s e :

weight_reg = model . weight . pow(2) . sum()

A_recons = model ()
r e c on s t ru c t i on_ l o s s = re con s t ruc t i on_er ro r (

A, A_recons)

l o s s = (
r e c on s t ru c t i on_ l o s s
+ reg_ortho ∗ orth_los s
+ reg_weights ∗ weight_reg

)
v l o s s . append (l o s s . item ())

13

Under review as a conference paper at ICLR 2021

r e l a t i v e_e r r o r = (
abs (v l o s s [−1] − v l o s s [−2]) / abs (v l o s s [−2])
i f v l o s s [−2] != 0 e l s e 0 .)

i f ((i t >= max_iter) or
(np . i snan (v l o s s [−1])) or
(r e l a t i v e_e r r o r < stop_thr)) :
loop = 0

l o s s . backward ()
opt imize r . s tep ()

re turn model

Listing 2: Training utils

B Riemannian Optimization

A Riemannian manifold is a smooth manifoldM of dimension d that can be locally approx-
imated by an Euclidean space Rd. At each point x ∈ M one can define a d-dimensional
vector space, the tangent space TxM. We characterize the structure of this manifold by
a Riemannian metric, which is a collection of scalar products ρ = {ρ(·, ·)x}x∈M, where
ρ(·, ·)x : TxM× TxM → R on the tangent space TxM varying smoothly with x. The
Riemannian manifold is a pair (M, ρ) (Sommer et al., 2020).
The tangent space linearizes the manifold at a point x ∈M, making it suitable for practical
applications as it leverages the implementation of algorithms in the Euclidean space. We use
the Riemannian exponential and logarithmic maps to project samples onto the manifold and
back to tangent space, respectively. The Riemannian exponential map, when well-defined,
Expx : TxM→M realizes a local diffeomorphism from a sufficiently small neighborhood 0
in TxM into a neighborhood of the point x ∈M.

Riemannian gradient descent. The base Riemannian gradient methods (Bonnabel,
2013; Smith, 1994) use the following update rule wt+1 = Expwt

(−γtH(wt)), where H(wt)
is the Riemannian gradient of the loss L : M → R at wt, and γt is the learning rate.
However, the exponential map is not easy to compute in many cases, as one needs to solve a
calculus of variations problem or know the Christoffel symbols (Bonnabel, 2013). Thus, it is
much easier and faster to use a first-order approximation of the exponential map, called a
retraction. A retraction Rw(v) : TwM→M maps the tangent space at w to the manifold
such that d(Rw(tv), Expw(tv)) = O(t2), this imposes a local rigidity condition that preserves
gradients. Therefore, one can rely on the retraction to compute the alternative update
wt+1 = Rwt

(−γtH(wt)) (Absil et al., 2009).
Douik & Hassibi (2019) introduced the following computation of the retraction mapping and
the projection onto the tangent space of DS matrices. The proofs can be found in (Douik &
Hassibi, 2019).

Theorem 2 The projection operator ΠX(Y) maps Y ∈ DPn onto the tangent space at
X ∈ DPn , TXDPn is written as

ΠX(Y) = Y−
(
α1T + 1βT)�X, (12)

where � is the Hadamard product, α =
(
I−XXT)+ (Y−XYT)1, β = YT1−XTα, and

(·)+ denotes the pseudo-inverse

Theorem 3 (Retraction) For a vector ζX ∈ TXDPn lying on the tangent space at X ∈
DPn, the first order retraction map RX is given by

RX(ζX) = Π (X� exp (ζX �X)) , (13)

where � is the Hadamard division, the operator Π denotes the projection onto DPn, efficiently
computed using the Sinkhorn algorithm (Sinkhorn & Knopp, 1967).

14

Under review as a conference paper at ICLR 2021

C Simulations

News data. Morik et al. (2020) contain the description of this dataset. Nevertheless, we
added it for completeness. In each trial, we sample a set of 30 news articles D. For each article
d, the dataset contains a polarity value ρd that we rescale to the interval between −1 and 1.
We simulate the user polarities. We draw the polarity for each user from a mixture of two nor-
mal distributions clipped to [−1, 1], ρut ∼ clip[−1,1] (pnegN (−.5, .2) + (1− pneg)N (.5, .2)),
where pneg is the probability of the user to be left-learning (mean −0.5). We use pneg = 0.5.
Besides, each user has an openness parameter out ∼ U(.05, .55), indicating the breadth of
interest outside their polarity.
We draw the true relevance from the Bernoulli distribution rt(d) ∼
Berrnoulli

[
p = exp

(
−(ρut−ρd)2

2(out)2

)]
. We use the Position-based click model (PBM (Chuklin

et al., 2015)) to model user behavior, where the marginal probability that a user ut examines
an article d depends only on its position. The remainder of the simulation follows the
dynamic ranking setup. At each time step t a user ut arrives at the system, the algorithm
presents an unpersonalized ranking and the user provides feedback ct according to pt and rt.
The algorithm only observes ct and not rt.

15

	Introduction & Related work
	Preliminaries
	Technical background.

	Approximate Birkhoff-von-Neumann decomposition
	Formulation
	Optimization problem

	APPLICATION: Fairness of Exposure in Rankings
	Static case
	Fairness in Dynamic Learning-to-Rank

	Experiments
	Synthetic data
	Static Fairness of Exposure
	Dynamic Fairness of Exposure

	Discussion and Conclusion
	Pytorch implementation
	Riemannian Optimization
	Simulations

