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ABSTRACT

In this paper we develop a novel regularization method for deep neural networks
by penalizing the trace of Hessian. This regularizer is motivated by a recent guar-
antee bound of the generalization error. Hutchinson method is a classical unbiased
estimator for the trace of a matrix, but it is very time-consuming on deep learn-
ing models. Hence a dropout scheme is proposed to efficiently implements the
Hutchinson method. Then we discuss a connection to linear stability of a nonlin-
ear dynamical system. Experiments demonstrate that our method outperforms ex-
isting regularizers such as Jacobian, confidence penalty, and label smoothing. Our
regularization method is also orthogonal to data augmentation methods, achieving
the best performance when our method is combined with data augmentation.

1 INTRODUCTION

Deep neural networks (DNNs) are developing rapidly and are widely used in many fields such as
image classification, machine translation, language modeling and speech recognition. As more and
more models are proposed in the literature, deep neural networks have shown remarkable improve-
ments in performance. However, among various learning problems, over-fitting on training data is
a great problem that affects the test accruacy. So a certain regularization method is often needed in
the training process.

In linear models, Ridge Regression (Hoerl & Kennard, 1970) and Lasso (Tibshirani, 1996) are usu-
ally used to avoid over-fitting. They are also called L2 and L1 regularization. L2 regularization
has the effect of shrinkage while L1 regularization can be conductive to both shrinkage and spar-
sity. From the Bayesian perspective, L2 and L1 regularization can be interpreted with normal prior
distribution and laplace prior distribution respectively.

Apart from L2 and L1 regularization, there are many other forms of regularizers in DNNs. The
most widely used one is Weight-Decay (Krogh & Hertz, 1992). Loshchilov & Hutter (2019) also
showed that L2 regularization and Weight-Decay are not identical. Dropout (Srivastava et al., 2014)
is another method to avoid over-fitting by reducing co-adapting between units in neural networks.
Dropout has inspired a large body of work studying its effects (Wager et al. (2013); Helmbold
& Long (2015); Wei et al. (2020)). After dropout, various regularization schemes can be applied
additionally.

In this paper, we propose a new regularization by penalizing the trace of second derivative of loss
function. We refer to our regularization method as Stochastic Estimators of Hessian Trace (SEHT).
On one hand, our hessian regularization is valuable to guarantee good generalization. On the other
hand, from the perspective of dynamical system, it influences the stability of the system, in which
parameters move in the parameter space on the basis of training data. In our experiments, Hessian
regularization shows competing test performance and low time consumption with our stochastic
algorithm.

2 RELATED WORK

There are many regularization methods in previous work. Label Smoothing (Szegedy et al., 2016)
estimates the marginalized effect of label-dropout and reduces over-fitting by preventing a network
from assigning full probability to each training example. Confidence Penalty (Pereyra et al., 2017)
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prevents peaked distributions, leading to better generalization. A network appears to be overconfi-
dent when it places all probability on a single class in the training set, which is often a symptom
of over-fitting. DropBlock (Ghiasi et al., 2018) is a structured form of dropout, it drops contiguous
regions from a feature map of a layer instead of dropping out independent random units.

Data augmentation methods are also used in practice to improve model’s accuracy and robustness
when training neural networks. Cutout (DeVries & Taylor, 2017) is a data augmentation method
where parts of the input examples are zeroed out, in order to encourage the network to focus more
on less prominent features, then generalize to situations like occlusion. Mixup (Zhang et al., 2017)
extends the training distribution by incorporating the prior knowledge that linear interpolations of
feature vectors should lead to linear interpolations of the associated targets.

Sokolić et al. (2017) first proposed Jacobian regularization, a method focusing on the norm of Ja-
cobian matrix with respect to input data. It was proved that generalization error can be bounded
by the norm of Jacobian matrix. Besides that, Jacobian matrix shows improved stability of the
model predictions against input perturbations according to Taylor expansion. Hoffman et al. (2019)
showed that Jacobian regularization enlarges the size of decision cells and is practically effective in
improving the generalization error and robustness of the models. To simplify calculation, stochastic
algorithm of Jacobian regularization was also proposed.

Motivated by Jacobian regularization, we consider the generalization error and stability of the model
respect to Hessian matrix. Then we combine Linear Stability Analysis and propose Hessian regu-
larization with corresponding stochastic algorithms. We compare our Hessian regularization with
other methods and demonstrate promising performance in experiments. The main idea to estimate
the trace of Hessian matrix is Hutchinson Method(Avron & Toledo, 2011) and the algorithm was
also discussed by Yao et al. (2020a). We make an improvement by designing a new probability
distribution to dropout parameters which decrease time consumption obviously without losing gen-
eralization.

Hessian information is powerful tool used on analyzing the property of neural networks. Yao et al.
(2020b) designed AdaHessian, a second order stochastic optimization algorithm. Yu et al. (2021)
used Hessian trace to measure sensitivity, developing a Hessian Aware Pruning method to find in-
sensitive parameters in a neural network model and a Neural Implant technique to alleviate accuracy
degradation. However, their methods are static in essence, we focus on dynamical motion of param-
eters in parameter space. Sankar et al. (2021) also proposed a Hessian regularization. They forcused
on the layerwise loss landscape via the eigenspectrum of the Hessian at each layer. We start from
different perspectives, generalization error and dynamical system of parameters. Our experiments
also shows better results than Sankar et al. (2021)’s method.

3 HESSIAN REGULARIZATION

Here we introduce a Hessian regularization method based on generalization error and corresponding
stochastic algorithms in details. Then we discuss linear stability analysis to explain why Hessian
regularization can prevent neural networks from over-fitting.

3.1 TRACE OF HESSIAN MATRIX

In this study, we consider a multi-class classification problem. Input x is a N-dimensional vector,
where x ∈ X ⊆ RN , with X is the input space. Y = {1, 2, ...,M} is the label space, which
means that we have M classes. Each input x has a label y ∈ Y . Sample space is defined as
S = X × Y . An element of S is denoted by s = (x,y). We assume that samples s from S are
drawn according to a probability distribution P . A training set of n samples drawn from P is denoted
by Sn = {si}ni=1 = {(xi,yi)}ni=1.

Our goal is to find a classification function f , which takes x ∈ RN as input and outputs z = f(x).
z is a M-dimensional score vector, where each element zi is the score x belonging to category
i ∈ Y . The highest score indicates the most probable label. So the estimated label is given as
ŷ = g(x)= arg maxi zi = arg maxi∈Y f(x)i.
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A loss function is used to measure the discrepancy between the true label y and the estimated label
g(x). In this paper, we use the cross-entropy loss,

`(f(x), y) = − log
exp(f(x)y)∑
y′ exp(f(x)y′)

. (1)

The empirical loss of the classifier f(x) associated with the training set is defined as

`emp(f) = Ê[`(f(x),y)] =
1

n

∑
si∈Sn

`(f(xi),yi), (2)

and the expected loss of the classifier f(x) is defined as

`exp(f) = E[`(f(x),y)] = Es∼P [`(f(x),y)], (3)

then the difference between `emp(f) and `exp(f) is called generalization error:

GE(f) = ||`exp(f)− `emp(f)||. (4)

Wei et al. (2020) showed generalization bound of linear models with cross-entropy loss of M classes.
Let W is the weight matrix, µ(W ) = Ê[‖J‖2] and v(W ) = Ê[tr(H)]. For linear models, the

Jacobian matrix J is a vector defined as
∂`

∂z
and the Hessian matrix H is defined as { ∂2`

∂zi∂zj
}M×M .

With probability 1 − δ over the training examples, for all weight matrices W satisfying the norm
bound ||W T ||2,1 ≤ A, the following bound holds:

E[¯̀]− 1.01Ê[¯̀] .
(Aµ(W ))

2
3 (θB)

1
3

n
1
3

+
A
√
Bv(W )θ√
n

+
BA2θ

n(log2( BA2θ
v(W )n ) + 1)

+ ζ. (5)

Here with some fixed bound B > 0,
¯̀= min{`, B},

‖W ‖2,1 =
∑
j

√∑
i

(W 2
ij),

θ = log3(nM) max
i
‖xi‖22 ,

ζ =
B(log(1/δ) + log log n)

n
.

(6)

So one can guarantee good generalization when the trace of Hessian matrix and norm of Jacobian
matrix are small. On one hand, when learning with gradient descent, we want to find a local or global
minimum of loss function. Naturally, at minimum the gradient is zero and the norm of Jacobian
matrix is small near minimum. So gradient descent helps us to ensure the norm of Jacobian Matrix
to be small.

On the other hand, the trace of Hessian Matrix is hard to be constrained by gradient descent. From
this aspect, we proposed Hessian regularization for linear models as:

1

n
tr(H`,z). (7)

It’s the trace of second derivative of loss ` with respect to output of linear model z, which is also
the end nodes of a linear model. A DNN is consist of many layers, with each layer being viewed
as a linear model (except the nonlinear activation functions). Thus. we generalize the Hessian
regularization to every node in a DNN and define it as

1

n
tr(H`,ω). (8)

It’s the trace of second derivative of loss ` with respect to parameters ω.

Here we define a new loss with our Hessian regularization as

Loss = `emp(f) + λ · 1

n
tr(H`,ω), (9)

where λ controls the strength of our Hessian regularization.
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3.2 HUTCHINSON METHOD

In a typical DNN, there are more than millions of parameters. So the calculation of Hessian matrix
is difficult. Hutchinson Method (Avron & Toledo, 2011) is an unbiased estimator for the trace of a
matrix. Let A be an n × n symmetric matrix with tr(A) 6= 0. Let σ be a random vector whose
entries are i.i.d Rademacher random variables (Pr(σi = ±1) = 1

2 ), then σTAσ is an unbiased
estimator of tr(A), based on the following equation:

tr(A) = tr(AI) = tr(AE[σσT ]) = E[tr(AσσT )] = E[σTAσ]. (10)

In this paper, we consider the trace of Hessian matrix H , which is the second derivative matrix.
Since the Rademacher random vector is irrelevant to network parameters, we expand the expression
of Hutchinson estimator as follow:

σTHσ = σT
d dldω
dω

σ = σT (
d dldω
dω
· σ +

dl

dω
· dσ
dω

) = σT (
d( dldω · σ)

dω
). (11)

Based on Equation 11 and dσ
dω = 0, we only have to calculate the gradient g = dl

dω and the derivative
of dl

dω ·σ, instead of the whole Hessian matrix. The whole calculation process only include two inner
products and two derivations. We refer to the Hutchinson stochastic estimator of Hessian trace as
SEHT-H.

Algorithm 1: SEHT-H
Input: n-dimensional gradient g
Output: Estimation of tr(H)

1 trace = 0 ;
2 for i = 1 to maxIter do
3 σ ∼ Rademacher(n) ; /* n-dim vector with each element sampled

from Rademacher distribution. */
4 v = g · σ ; /* inner product */
5 h = dv

dω ; /* derivative of v */
6 t = σT · h ; /* inner product */
7 trace += t ;
8 end
9 return trace

maxIter

Even though it’s a stochastic algorithm, it cost much time because of a great number of parameters.
So we propose another efficient algorithm below based on the basic idea of Hutchinson Method.

3.3 DROPOUT METHOD

This stochastic algorithm is inspired by Dropout (Srivastava et al., 2014). Every node in the neu-
ral network has a probability p to be igonred in the training process to reduce co-adaptations. In
our Hessian regularization, we want to lower the trace tr(H) =

∑
i

∂2`
∂ωi∂ωi

, the sum of diagonal
elements of Hessian matrix. Based on the idea of Dropout, we can ignore some parameters in con-
straining the tr(H), since reducing the partial sum of diagonal elements can have a large chance
to reduce the total sum. The partial sum of diagonal element is denoted as t̃r(H). Considering
the layer structures of neural networks, the process of randomized parameter selection can be di-
vided into two steps: randomly select layers in neural network with probability p1 and randomly
select parameters in the selected layers with probability p2. In other words, when carrying out Hes-
sian regularization, we ignore other layers with probability 1 − p1, and ignore other parameters in
selected layers with probability 1− p2. In our experiment, we simply set p1 = p2.

In addition, Hutchinson method shows a technique, which avoids to calculate the whole Hessian
matrix. Here we define a new probability distribution Q(p) (if x ∼ Q(p), then Pr(x = ±1) = p
and Pr(x = 0) = 1 − 2p). Then, let σ be a random vector whose entries are i.i.d Q random
variables,

E[σσT |fix the position of 0 in σ] = Ĩ . (12)
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Here Ĩ = diag(0, 1), a diagonal matrix with diagonal elements equal to 0 or 1.

Similar to Equation 10, if we fix the position of 0 in σ, we have unbiased estimator of the partial
sum of diagonal elements:

t̃r(A) = tr(AĨ) = tr(AE[σσT ]) = E[tr(AσσT )] = E[σTAσ]. (13)
We can expand the expression same as Equation 11 and transform the calculation process into two
inner product and two derivation. We name this method as SEHT-D.

Algorithm 2: SEHT-D
Input: probability p, parameter ω in selected layers, and corresponding n-dim gradient g
Output: estimation of t̃r(H)

1 trace = 0 ;
2 for i = 1 to maxIter do
3 σ ∼ Q(p) ; /* n-dim vector with each element sampled from Q(p)

distribution */
4 v = g · σ ; /* inner product */
5 h = dv

dω ; /* derivative of v */
6 t = σT · h ; /* inner product */
7 trace += t ;
8 end
9 return trace

maxIter

In our experiments, we mainly test the performance of this method. Compared with other regu-
larization methods, our Hessian regularization shows improved test performance with fast training
speed.

3.4 LINEAR STABILITY ANALYSIS

Training process can be regarded as a motion in the parameter space, from the initial parameter to a
local or global minimum. Current parameters is a point in the parameter space and gradient descent
is the move of the parameter point each time. Then we can see gradient descent from another
perspective. Original gradient descent is defined as a series of discrete updates:

ωt+1 = ωt − ηgt. (14)
Here ωt is the parameters in step t, η is learning rate and gt is gradient.

If we consider learning rate as discrete time interval to move ω in parameter space, ∆t = η, then
∆ω

∆t
= −g(ω, x). (15)

We assume time interval or learning rate is small enough, approximately we get a contiunous form:
dω

dt
= −g(ω, x). (16)

Thereafter, with an initial condition, we have the complete trajectory of parameter point based on
ordinary differential equation (ODE) theory. The process of gradient descent is transformed to a
Nonlinear Dynamical System. So we introduce Linear Stability Analysis of Nonlinear Dynamical
Systems below.

Nonlinear Dynamical System (Thomas Witelski & Mark Bowen, 2015) is defined as a differential
function dx

dt = f(x, t) with an initial condition x(0) = x0. x(t) = (x1(t), x2(t), . . . , xn(t)) ∈ Rn
is the vector of state variables, describes n properties of interest in the system, evolving for times
t ≥ 0 and starting from a given initial state x(0) = x0. The rate functions for the rates of change
of each xi, dxi

dt = fi, have similarly been collected in a vector f = (f1, f2, . . . , fn), where each
fi can potentially depend on all of the state variables. Since fi doesn’t have to be a linear function,
the system is called Nonlinear Dynamical System. A classic example of a dynamical system from
mechanics is the system for motion of a particle. A system is called non-autonomous if the rate
function have an explicit dependence on time. In this paper, we only focus on autonomous systems,

dx

dt
= f(x), x(0) = x0. (17)
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The equilibrium points x∗ are defined by positions where rate functions vanish, f(x∗) = 0. If any
solution starting near an equilibrium point leaves the neighbourhood of x∗ as t → ∞, then x∗ is
called asymptotically unstable, while if all solutions starting within the neighbourhood approach x∗
as t→∞ then the equilibrium is called asymptotically stable. Lyapunov (1992) gave more rigorous
definition and discussion, known as Lyapunov Stability Theory. The idea of Lyapunov Stability
can be extended to infinite-dimensional manifolds, where it is known as Structural Stability (Pugh
& Peixoto, 2008), which concerns the behavior of different but ”nearby” solutions to differential
equations.

For a basic Nonlinear Dynamical System, to ensure equilibrium point x∗ is stable, we need to
construct Jacobian matrix J = ∂f

∂x . Given the equilibrium point x∗, J(x∗) is a constant matrix.
Using the conclusion from Linear State Space Model, if all eigenvalues of J(x∗) have real parts
less than zero, then x∗ is stable. If at least one of the eigenvalues has a real part greater than zero,
then x∗ is unstable.

Back to gradient descent, it can be regarded as a Nonlinear Dynamical System, according to Equa-
tion 16. The local or global minimum, which is the goal of gradient descent, is the equilibrium
point in such system, since that minimum point satisfies the condition dω

dt = 0. The Jacobian ma-
trix in this dynamical system is the negative of the Hessian matrix in our Hessian regularization,
J(ω∗) = −∂g

∂ω =
−∂ ∂`

∂ω

∂ω = −H`. And the trace and the eigenvalues of J(ω∗) are also negative of
the trace and the eigenvalues of H`.

It’s easy to see that in our Hessian regularization, we lower the trace of Hessian Matrix H`, thus
increasing the trace of the Jacobian matrix J(ω∗). However, in real matrix, complex eigenvalues are
always conjugate and the trace are always real number. When we increase the trace, we increase the
real parts of eigenvalues of J(ω∗) to some extent. In other word, the goal is to preclude the stability
of equilibrium point by our Hessian regularization.

Why we want instability in this dynamical system of gradient descent? The stability of local or
global minimum shows the stability toward training data. The whole dynamical system of gradient
descent is a motion based on training set since the motion of parameters is decided by Equation 17.
Equation 17 is consist of two parts: one is the initial condition, which is randomized in a DNN, while
the other part is the differential function Equation 16, which is directly determined by training data.
In other words, with different training data, the parameters have different trajectory in parameter
space. It only use information about training data and the equilibrium point depends on training
data. Therefore, the stability is relevant to training set and reducing the stability to some extent can
avoid over-fitting to training data.

4 EXPERIMENTS

We evaluate our Hessian regularization with other regularization methods on a variety of datasets.
We also combine data augmentation methods with our Hessian regularization to test its efficacy.

4.1 IMAGE CLASSIFICATION

4.1.1 CIFAR-10

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000 test images.

For our experiment, we use ResNet-18 (He et al., 2016) as the backbone neural network. For all
models, we use Weight Decay of 5× 10−4. We set learning rate 0.01, batch size 32, momentum 0.9
and all models were trained 200 epochs with Cosine Annealing (Loshchilov & Hutter, 2016). For
Jacobian regularization, we set number of projections nproj = 1 and weight values λJR = 0.01. For
DropBlock, block size = 7 and keep prob = 0.9. For Confidence Penalty and Label Smoothing,
we set weight value 0.1, which is found to work best on CIFAR-10 by Pereyra et al. (2017) in their
experiments. For our Hessian regularization SEHT-D, we also set weight value 0.1, testing with
probability value 0.01 and 0.05. In addition, we always add output layer in the selected layer, which
corresponds to Equation 7. Cutout size of 16 × 16 pixels is used in our experiment, based on the

6



Under review as a conference paper at ICLR 2022

validation results mentioned by DeVries & Taylor (2017). For mixup, α = 0.1. Averages and 95%
confidence intervals are estimated over 5 distinct runs.

We also observe the computational cost of the training with SEHT-D (maxIter=1, prob=0.01) to
be only 1.2 times that of the baseline. Although increasing the probability to select parameters
can improve test accuracy, the time consumption will increase a lot. In our experiment, SEHT-D
(maxIter=1, prob=0.05) costs 1.5 times of the baseline.

In our experiments, we find that Jacobian regularization and Dropblock have worse performance
than the baseline with Weight-Decay. Confidence Penalty has slight improvement and Label
Smoothing has obvious improvement. However, our SEHT-D shows better results, compared with
all other regularization methods which are tested. In addition, our SEHT is suitable for combination
with other methods. When we combin SEHT-D with mixup, we get the best test accuracy in our
experiment, 1.45 more than baseline.

In Sankar et al. (2021)’s experiment, they got test accuracy 88.13 on CIFAR-10 with ResNet-18,
which is much worse than our result: 94.35 with SEHT-D (maxIter=1, prob=0.01) and 94.37 with
SEHT-D (maxIter=1, prob=0.05). Moreover, their improvement based on their methods is only 0.02
for full-network method and 0.10 for middle-network method. Our Hessian regularization method
improves the model 0.35 on test accuracy with SEHT-D (maxIter=1, prob=0.01) and improves 0.37
on test accuracy with SEHT-D (maxIter=1, prob=0.05), which is over 3 times of their improvement.

Table 1: ResNet-18 on CIFAR-10
Model Test Accuracy

Baseline with Weight-Decay 94.00± 0.47
Jacobian 89.23± 1.02
DropBlock 89.23± 0.44
Sanker’s Method for Full Network 88.05± 0.22
Sanker’s Method for Middle Network 88.13± 0.12
Confidence Penalty 94.01± 0.40
Label Smoothing 94.26± 0.26
SEHT-D (maxIter=1, prob=0.01) 94.35± 0.18
SEHT-D (maxIter=1, prob=0.05) 94.37± 0.27
SEHT-D (maxIter=1, prob=0.01) + Label Smoothing 94.38± 0.24
cutout 94.02± 0.22
mixup 95.39± 0.13
SEHT-D (maxIter=1, prob=0.01) + mixup 95.45± 0.06

4.1.2 CIFAR-100

CIFAR-100 dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each.
There are 500 training images and 100 testing images per class.

We use Wide Residual Networks (WRN) (Zagoruyko & Komodakis, 2016) as the backbone neural
network. We use WRN-28-10 specifically, with depth 28 and fixed widening factor of 10. For all
models, we use Weight Decay of 5 × 10−4. We set batch size 32, momentum 0.9 and all models
were trained 200 epochs. The learning rate is initially set to 0.1 and is scheduled to decrease by a
factor of 5 after each of the 60th, 120th, and 160th epochs. We test Dropout with a drop probability
of p = 0.3, determined by Zagoruyko & Komodakis (2016)’s cross-validation. For Confidence
Penalty, Label Smoothing and our Hessian regularization, we set weight value 0.1. Cutout size of 8
× 8 pixels is used according to DeVries & Taylor (2017)’s validation results. For mixup, we still set
α = 0.1. Averages and 95% confidence intervals of top-1 accuracy and top-5 accuracy are estimated
over 5 distinct runs.

In this experiments, Confidence Penalty has better top-5 accuracy, worse top-1 accuracy and Label
Smoothing has better top-1 accuracy, worse top-5 accuracy, compared with baseline method. How-
ever, our SEHT-D method shows better results on both top-1 accuracy and top-5 accuracy, improving
1.13 and 0.65 respectively. Our Hessian regularization method also perform better when combined
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with other method on this dataset. When testing together with Dropout, our SEHT-D has best accu-
racy, compared with Label Smoothing and Confidence Penalty. Our SEHT-D also improves cutout
for 0.39 on top-1 accuracy, 0.26 on top-5 accuracy, and improves mixup 0.21 on top-1 accuracy,
0.09 on top-5 accuracy.

Table 2: WRN-28-10 on CIFAR-100
Model Top-1 Accuracy Top-5 Accuracy

Baseline with Weight-Decay 73.79± 2.68 92.01± 1.32
Confidence Penalty 73.46± 1.21 92.16± 0.58
Label Smoothing 74.15± 0.92 90.40± 0.73
SEHT-D(maxIter=1, prob=0.01) 74.92± 0.77 92.66± 0.54
Confidence Penalty + Dropout 74.80± 0.91 93.09± 0.51
Label Smoothing + Dropout 72.89± 1.57 90.43± 0.97
SEHT-D(maxIter=1, prob=0.01) + Dropout 77.75± 0.37 94.38± 0.09
cutout 76.70± 0.79 93.72± 0.40
SEHT-D(maxIter=1, prob=0.01) + cutout 77.09± 0.37 93.98± 0.21
mixup 78.38± 0.31 94.37± 0.31
SEHT-D(maxIter=1, prob=0.01) + mixup 78.59± 0.46 94.46± 0.30

Our experiments on Image Classification shows that our Hessian regularization method outperforms
other regularization methods and can be efficiently combined with data augmentation methods.

4.2 LANGUAGE MODELING

4.2.1 WIKI-TEXT2

The Wiki-Text language modeling dataset is a collection of over 100 million tokens extracted from
the set of verified Good and Featured articles on Wikipedia.

We use a 2-layer LSTM (Hochreiter & Schmidhuber, 1997). The size of word embeddings is 512
and the number of hidden units per layer is 512. We run every algorithm for 40 epochs, with batch
size 20, gradient clipping 0.25, and Dropout ratio 0.5. We perform a grid search over Dropout
ratios {0, 0.1, 0.2, 0.3, 0.4, 0.5} and find 0.5 to work best. We tune the initial learning rate from
{0.001, 0.01, 0.1, 0.5, 1, 10, 20, 40} and decrease the learning rate by factor of 4 when the valida-
tion error saturates. We find initial learning rate 20 works best. Parameters are initialized from a
uniform distribution [−0.1, 0.1]. For label smoothing, we perform a grid search over weight values
{0.001, 0.005, 0.01, 0.05, 0.1} and find 0.01 to work best. For the confidence penalty, we perform
a grid search over weight values {0.001, 0.005, 0.01, 0.05, 0.1} and find 0.01 to work best. For our
Hessian regularization, we perform a grid search over weight values {0.001, 0.005, 0.01, 0.05, 0.1},
probability values {0.01, 0.05}. Weight 0.01 and probability 0.05 work best. Averages and 95%
confidence intervals are estimated over 5 distinct runs.

In this experiments with LSTM, our SEHT-D has the best test perplexity and Label Smoothing
shows best validation perplexity. SEHT-D improves the model 2.61 on test perplexity. Confidence
Penalty performs only sightly better than the baseline method.

Table 3: LSTM on Wiki-Text2
Model Validation Perplexity Test Perplexity

Baseline with Dropout 101.82± 0.32 95.65± 0.19
Confidence Penalty 101.39± 0.32 95.57± 0.11
Label Smoothing 99.58± 0.11 95.03± 0.58
SEHT-D 100.69± 0.53 94.86± 0.50
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We also tested with a 2-layer GRU (Cho et al., 2014). The size of word embeddings is 512 and
the number of hidden units per layer is 512. We run every algorithm for 40 epochs, with batch
size 20, gradient clipping 0.25 and Dropout ratio 0.3. We perform a grid search over Dropout
ratios {0, 0.1, 0.2, 0.3, 0.4, 0.5} and find 0.3 to work best. We tune the initial learning rate from
{0.001, 0.01, 0.1, 0.5, 1, 10, 20, 40} and decrease the learning rate by factor of 4 when the vali-
dation error saturates. We find initial learning rate 20 works best, same as LSTM. Parameters
are initialized from a uniform distribution [−0.1, 0.1]. For label smoothing, we perform a grid
search over weight values {0.001, 0.005, 0.01, 0.05, 0.1} and find 0.05 to work best. For the confi-
dence penalty, we perform a grid search over weight values {0.001, 0.005, 0.01, 0.05, 0.1} and find
0.005 to work best. For our Hessian regularization, we perform a grid search over weight values
{0.001, 0.005, 0.01, 0.05, 0.1}. Weight 0.001 works best. We set probability values 0.01. Averages
and 95% confidence intervals are estimated over 5 distinct runs.

Our Hessian regularization method has both the best validation perplexity and the best test per-
plexity, improving 2.83 and 2.61 respectively compared with baseline method. Confidence Penalty
surpasses Label Smoothing with GRU model, compared with LSTM. Label Smoothing also show
better results than baseline.

Table 4: GRU on Wiki-Text2
Model Validation Perplexity Test Perplexity

Baseline with Dropout 119.04± 4.67 111.64± 3.67
Confidence Penalty 116.40± 0.17 109.27± 0.05
Label Smoothing 117.47± 0.48 110.46± 0.87
SEHT-D 116.21± 0.60 109.03± 0.30

Our experiments on Language Modelling demonstrate that all these three regularization methods
can improve models, while our SEHT-D is the best.

5 CONCLUSION

We propose a new regularization method named as Stochastic Estimators of Hessian Trace (SEHT).
Our method is motivated by a guarantee bound that a lower trace of the Hessian can result in a
lower generalization error. We also explained our method with dynamical system theory. Our ex-
periment shows that SEHT-D yields promising test performance with fast training speed. SEHT-D
also achieves better results when combined with data augmentation methods.

6 REPRODUCIBILITY STATEMENT

Our codes are available at here .
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