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Abstract

Recent progress in self-supervision has shown that pre-training large neural networks
on vast amounts of unsupervised data can lead to substantial increases in generalization
to downstream tasks. Such models, recently coined foundation models, have been
transformational to the field of natural language processing. Variants have also been
proposed for image data, but their applicability to remote sensing tasks is limited. To
stimulate the development of foundation models for Earth monitoring, we propose
a benchmark comprised of six classification and six segmentation tasks, which were
carefully curated and adapted to be both relevant to the field and well-suited for model
evaluation. We accompany this benchmark with a robust methodology for evaluating
models and reporting aggregated results to enable a reliable assessment of progress.
Finally, we report results for 20 baselines to gain information about the performance
of existing models. We believe that this benchmark will be a driver of progress across
a variety of Earth monitoring tasks.

1 Introduction

Earth monitoring with machine learning-based methods plays an increasing role in climate change
mitigation and adaptation as well as climate science [57]. Related applications include methane
source detection [61, 16], forest carbon quantification [44], extreme weather prediction [49], and crop
monitoring [34, 14]. Across many of these applications, pre-trained models (e.g., a ResNet trained on
ImageNet) have been used to increase generalisation performance. Improvement of the pre-trained models
has been shown to reduce the need for large labelled datasets in some contexts [11] and can improve
model generalisation outside of the training distribution [28]. Recent studies exploring the scaling of such
pre-trained models found that increasing the size of an unsupervised (or weakly supervised) dataset as well
as properly scaling the model led to an even greater increase in performance under various metrics [33, 55].

While the training of such large-scale models is usually reserved for industrial research groups with very
large computer clusters, the publication of pre-trained models creates vast opportunities for the entire
research and technology community (including communities of domain experts outside of machine
learning). These large pre-trained models were recently coined as foundation models [6] as they might
serve as foundations for sub-fields of machine learning. Specifically, the publication of large pre-trained
models like BERT [15] and GPT-3 [7] led to a paradigm shift in the field of natural language processing
(NLP). This inspired a similar shift in the field of computer vision with the release of models like CLIP
[55] and DINO [9]. While CLIP performs well on various types of vision tasks, it still under-performs
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on Earth monitoring tasks [55]. This is not surprising as it is trained mainly on RGB images taken from
a ground perspective at a single point in time.

While there are many similarities between Earth observation datasets and typical ML image datasets, there
are also many important differences to consider when designing effective ML models. Earth observation
images are taken from an overhead rather than ground perspective, usually from a fixed distance from
the Earth’s surface (defined by a satellite’s orbit). The satellite revisits provide a temporal axis that is
sometimes irregular (e.g., a few times per year) or regular (e.g., every five days) with cloud coverage
causing spurious occlusions. Images are acquired with sensors containing multiple spectral bands (e.g.,
thirteen for Sentinel-2), or even with different kinds of sensors, e.g., synthetic aperture radar (SAR), which
can penetrate cloud coverage. Moreover, the GPS coordinates and timestamp of each acquisition offer
the opportunity to combine data from multiple sources, e.g., weather data, semantic maps, and elevation.
This leads to a rich multi-modal signal with potentially missing information that can be inferred from other
elements of the signal. There are currently petabytes of accessible satellite datasets containing images of the
Earth under various modalities from the present day to as far back as the 1960s. Distilling this large amount
of information into pre-trained models of various sizes offers the opportunity to redistribute this information
and make it accessible to various labs for increasing the performances on a large range of downstream tasks.

The fundamental goal of these large pre-trained models is to improve generalization performance on
downstream tasks. Hence, to support the machine learning community in producing better pre-trained
models, it is crucial to provide a benchmark with a wide variety of downstream tasks, covering a range of
modalities and dataset shapes that are likely to be encountered in practice. At the moment, existing works on
pre-training models from earth observations e.g., [ 13, 46, 69], evaluate on different sets of downstream tasks,
making it impossible to directly compare performance. Moreover, the set of tasks is often narrow in terms
of diversity and the statistical methodologies do not adequately report the uncertainties in the evaluation.

The present work aims to fill this void by providing a wide range of tasks across various countries with vari-
ous modalities of sensors. Also, the transformed versions of the datasets are smaller than their original form,
and all results can be replicated on single GPUs. This increases accessibility to research labs with limited
resources and reduces overall energy consumption. Our proposed benchmark, GEO-Bench', is composed
of six image classification and six semantic segmentation tasks, which were curated by domain experts
to ensure their diversity and relevance toward sustainable development. We expect this contribution to:

» Stimulate and facilitate the development of foundation models for Earth monitoring

* Provide a systematic way of measuring the quality of models for better scientific progress

* Provide insights into which pre-trained models work best

* Potentially reduces negative impacts of foundation models through an open evaluation procedure.

In what follows, we start by discussing sources of data that can serve to train foundation models for
earth monitoring (Sec. 2). We then present the details of GEO-Bench (Sec. 3) and how it can be used
for the evaluation of foundation models (Sec. 4). Further, we review existing benchmark datasets for earth
monitoring and discuss why GEO-Bench is complementary (Sec. 5). Finally, we present an extensive
set of experiments, showing the performance of 20 state-of-the-art models on the benchmark to lay down
reference points and to gain valuable information on existing pre-trained models (Sec. 6).

2 Remote sensing data for self-supervision

The development of foundation models does not typically rely on a specific dataset for the pre-training
phase. The choice of data source is part of the design of the model, e.g., a very large corpus of text from
the internet [50] or pairs of text associated with images from the web [55]. As such, we do not provide
data for training foundation models with this benchmark. However, for completeness, we outline potential
sources of Earth observation data that could be used for pre-training foundation models.

Multispectral images with revisits ~ Satellite data sources such as Sentinel-2 [20, 23] and Landsat 8 [66]
provide images in multiple spectral bands with periodic revisits. This yields a four-dimensional array of
structured data (longitude, latitude, wavelength, time) which can be used to perform various forms of self-
supervision, e.g., predicting adjacent tiles [30] or contrasting the different seasons for the same region [46].

"https://zenodo.org/communities/geo-bench
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Figure 1: Foundation models encapsulate multimodal data streams through self-supervised training. The
trained models can then be fine-tuned for a variety of climate-related remote sensing tasks. Image sources:
quantification [44], detection [32], generation [43], counting [36], segmentation [75], and multi-class
classification [51].

Other sensors  Synthetic Aperture Radar (SAR) and terrain elevation are also frequently available and
can be matched to other sources of data through geolocalisation [54]. Such data are complementary to
optical spectral bands and may encourage the model to learn higher-level semantic representations.

Semantic data  Through georeferencing, text-based data such as Wikipedia articles can be linked to
satellite images [67]. It is also possible to join content from non-image data layers like OpenStreetMap
[39]. By predicting or contrasting information from these sources, the model may learn useful and
transferable semantic representations.

3 GEO-Bench

GEO-Bench is composed of 6 classification tasks and 6 segmentation tasks. Detailed characteristics are
presented in Table 1, examples are depicted in Figure 2 and 3, and the spatial coverage on the world map is
presented in Figure 8 (supplementary material). In what follows, we describe the procedure for collecting
and transforming the datasets.

3.1 Design Principles

GEO-Bench was established by modifying and gathering geospatial datasets, adhering to principles that
secure accessibility, usability, and effective model performance assessment across tasks.

Ease of Use A fundamental goal was to create an accessible, simple-to-use benchmark, and a compact
dataset assortment with code for loading the data in a consistent schema. A key aim was to harmonize
data to reduce the engineering work needed to tailor pre-trained architectures, while maintaining sensor
type and resolution diversity.

Sector Experts and Steering Committee  To align GEO-Bench with practical use-cases, we assembled
a team of six sector experts from fields such as forestry and climate science. A steering committee of
respected scientists guides high-level benchmark decisions, assuring relevance and impact.

Diversity of Modalities The objective is to evaluate model adaptability to varied geospatial sensors.
Thus, the benchmark encompasses multispectral, SAR, hyperspectral, elevation, and cloud probability
modalities, with spatial resolutions from 0.1 to 30 m/pixel.

Diversity of Tasks ~ We ventured beyond image classification, incorporating object detection and semantic
segmentation. To maintain ease of use, detection and counting tasks were transformed into semantic segmen-
tation. This led to two task sets: six image classification tasks, and six semantic segmentation tasks [25, 38].

Original Train, Validation, and Test Splits  Original dataset splits were preserved when available;
otherwise, we generated validation and test sets from the train set while ensuring no spatial overlap.

Permissive License = Most datasets needed to be adapted from their original form to satisfy the above
criteria and be included in the benchmark. Hence, we include only datasets with permissive licenses.



Classification

Name Image Size #Classes Train  Val  Test #Bands RGBres Sensors Cite License
m-bigearthnet 120 x 120 43 20000 1000 1000 12 10.0 Sentinel-2 ¢4 CDLA-P-1.0
m-so2sat 32x32 17 19992 986 986 18 10.0 Sentinel-2 76  CC-BY-4.0
+ Sentinel-1
m-brick-kiln 64 x 64 2 15063 999 999 13 10.0 Sentinel-2 371 CC-BY-SA 4.0
m-forestnet 332 x 332 12 6464 989 993 6 15.0 Landsat-8 29 CC-BY-4.0
m-eurosat 64 x 64 10 2000 1000 1000 13 10.0 Sentinel-2 271 MIT
m-pvdger 320 x 320 2 11814 999 999 3 0.1 RGB s MIT
Segmentation
Name Image Size #Classes Train Val  Test #Bands RGBres Sensors Cite License
m-pvéger-seg 320 x 320 2 3000 403 403 3 0.1 RGB 481 MIT
m-chesapeake-landcover 256 x 256 7 3000 1000 1000 4 1.0 RGBN sy  CDLA-P-1.0
m-cashew-plantation 256 x 256 7 1350 400 50 13 10.0 Sentinel-2 741  CC-BY-4.0
m-SA-crop-type 256 x 256 10 3000 1000 1000 13 10.0 Sentinel-2 ik CC-BY-4.0
m-nz-cattle 500 x 500 2 524 66 65 3 0.1 RGB . CC-BY4.0
m-NeonTree 400 x 400 2 270 94 93 5 0.1 RGB 711 CCO 1.0
+ Hyperspectral
+ Elevation

Table 1: GEO-Bench: Characteristics of datasets in the benchmark. Since datasets are modified, we
prepend their name with “m-" to distinguish them from the original dataset.
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Figure 2: Representative samples of the classification benchmark.
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Figure 3: Representative samples of the segmentation benchmark.

3.2 Dataset Transformations

To produce a benchmark that complies with the design choices of Section 3.1, we applied the following
transformations to each dataset. The procedure that was used to download and transform each dataset
is fully documented and open-sourced in the GEO-Bench GitHub repository”.

https://github. com/ServiceNow/geo-bench
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Subsampling Large Datasets To be more representative of typical downstream tasks, where data is
usually scarce, datasets larger than 20000 samples were randomly subsampled. Avoiding large downstream
tasks also comes with other benefits:

* In Appendix A, we show that larger downstream datasets can decrease the ability to discriminate
between two models that are similar in performance.

+ Downstream tasks with very large training sets will not usually benefit from pre-training’. Hence
they are less useful for our evaluation purpose.

* A smaller benchmark is faster to download, yields results quicker and requires less energy for
computation.

* We can increase the variety of experiments and the number of seeds to improve the knowledge
gained from experiments.

Removing Class Imbalance = We randomly subsampled large classes to have near-uniform class
sizes across datasets. This was done to prevent users of the benchmark from increasing their score by
using clever class imbalance techniques instead of making progress on better pre-trained models. While
good performance on highly imbalanced (long tail of classes) datasets would be a desired property of
a pre-trained model, we have not found a good dataset containing a large number of classes.

4 Using The Benchmark

Fine Tuning In the self-supervised learning literature, it is common to use the pre-trained model to
encode a fixed representation of each image in the dataset and learn to classify images based on this
representation [30]. While this works relatively well, this method highly depends on the pre-training
task as it may not learn to encode information that is important for the downstream task [65, 53]. In
practice, fine-tuning the pre-trained model often mitigates this issue and is known to frequently yield a
much higher generalization performance than a model trained from random weights [46, 11]. Since this
is more representative of practical usage, we encourage users of the benchmark to report the results of
fine-tuned models. On the other hand, we do not discourage users from also reporting results with fixed
backbones (pre-trained weights) as this can provide valuable information about the pre-trained model.
In all cases, we ask users to report their fine-tuning methodology with enough details for reproducibility.

Hyperparameter Tuning Deep learning algorithms often require the adjustment of hyperparameters,
especially when an architecture is fine-tuned on a small dataset. For this reason, we recommend adjusting
hyperparameters, but within a maximum budget of 16 trials per task*. Early stopping based on validation
metrics is also recommended.

Data Augmentation Data augmentation plays a crucial role in the training of deep learning models,
especially with small training datasets. Hence, we consider it to be part of the fine-tuning process. As a
guideline, we propose limiting the augmentations to 90° rotations and vertical and horizontal flips’. On the
other hand, we also encourage users to study what are the best data augmentations for remote sensing as this
could lead to useful findings for practitioners and the benchmark is well-suited for evaluating such findings.

Toolbox To facilitate the usage of the benchmark, we provide a collection of tools for various parts
of the experimental pipeline as part of the open-sourced codebase®. This includes tools for loading datasets
and visualising results. We also provide tools based on PyTorch-Lightning [24] to facilitate model training.

4.1 Reporting Results

For reliable and comparable results across different publications, we recommend that users follow this pro-
cedure to report results. The aim is to report results on individual tasks as well as aggregated across all tasks,
with reliable confidence intervals (inspired by [2]). Code is provided to generate figures based on raw results.

3From Bayes rule, we know that the influence of the prior (pre-trained model) decreases as the size of the training
data increases.

“While 16 is fairly small, we believe it’s enough to adjust sensitive hyperparameters such as learning rate. Also,
this favours models that are less sensitive to hyperparameter tuning.

>Random crop and resize are also common in vision, but in remote sensing, this reduces the spatial resolution,
which is often crucial for high performances.

®https://github.com/ServiceNow/geo-bench
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Random Seeds  As demonstrated in [2], 3-5 seeds are not enough to obtain reliable confidence intervals.
Since pre-training and hyperparameter search are usually the computational bottlenecks, we recommend
retraining the selected hyperparameter configuration for at least 10 different seeds.

Interquartile Mean IQM)  We recommend using IQM. This metric removes the outliers by trimming
the 25% highest values as well as the 25% lowest value and computing the average of the remaining values.
The resulting finite sample estimator is less biased than the median and has less variance than the mean,
often resulting in smaller confidence intervals [2].

Normalising Results  To aggregate performance metrics across multiple tasks, one must first normalise
their values. A common approach consists of applying a linear transformation based on reference points [4].
As such, we propose to use the lowest and highest metric values achieved by a set of strong baselines (see
Sec. 6) as official reference points. For each individual task, we scale the results such that the maximum
score is 1 and the lowest one is 0. Hence, if a future model were to achieve a score superior to 1, it would
imply that progress is being made on the benchmark. All reference points will be published alongside
the benchmark.

Bootstrapping To quantify uncertainty over observed IQMs, we use bootstrapping [21]. That is, we
sample n times, with replacement, the results from training with n different seeds, and we compute IQM.
Repeating this procedure 7 =1000 times provides a distribution over IQM results, from which confidence
intervals can be extracted.

Aggregated Results  After normalizing the results we simply compute IQM across all datasets and all
results of a given model. For confidence intervals, we use stratified bootstrap, where seeds are sampled
with replacement individually for each dataset, but IQM is computed across all datasets.

Displaying the results In Figure 4, we show how to compactly display results from a wide range of
baselines across the benchmark as well as aggregated results and statistical uncertainties. In Figure 5,
we display the results for a growing training set size (with fixed validation and test set). This compactly
reports the results of thousands of experiments.

Publishing the results We ask experimenters to publish the results of all seeds on all datasets for all
models as a CSV file along with the open-sourced code of their experiments. This will allow future authors
to incorporate existing results in their comparison figures.

5 Related Works

SustainBench  consists of 15 public datasets covering 7 sustainable development goals [73]. Seven
of these datasets are two-dimensional remote sensing. It includes a public leaderboard for tracking model
performance. A featured task is the Brick Kiln classification, selected for its georeferenced, high-quality
ground truth labels. SustainBench’s purpose is monitoring progress in specified tasks, thus comprising
a diverse set of datasets. It doesn’t aim for solution under a single framework or aggregate result tracking.

TorchGeo is a Python library designed to streamline the integration of remote sensing datasets into the
PyTorch deep learning ecosystem [62]. TorchGeo currently features data loaders for 52 publicly available
datasets of satellite, aerial, and drone imagery for classification, regression, change detection, semantic
segmentation, instance segmentation, and object detection tasks. Our benchmark directly interfaces with
TorchGeo and uses its data loaders for several datasets included in the benchmark.

EarthNets is a concurrently developed platform to evaluate deep learning methods on remote sensing
datasets [72]. In their methodology, they analyse the metadata of 400 publicly available remote sensing
datasets. Using meta-information such as the number of samples, the size of each sample, and the type
of annotations, they analyse the correlation between each dataset and identify a variety of clusters. Based
on this analysis, they recommend two classification, two segmentation, and two detection datasets for
benchmarking. In contrast, we provide a collection of 12 datasets and we propose a robust methodology
for aggregating results and reporting statistical uncertainties of the evaluation process.

AIiTLAS  recently proposed a benchmark of 22 classification datasets[17], 3 of which intersect with
our classification benchmark. They proposed a standardised version of train, valid, test splits for existing
datasets as well as a fine-tuning procedure. By leveraging the overlap of labels across datasets, they also



provide a more accurate test metric for real-world applications. Experiments are conducted using 10
different model families across the 22 datasets, using RGB images as input.

6 Experiments
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Figure 4: Classification Benchmark RGB Only: Normalised accuracies of various baselines (higher
is better). Violin plots are obtained from bootstrap samples of normalized IQM (Section 4.1). The left
plot reports the average across all tasks.
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Figure 5: Classification vs Train Size: Normalised accuracies of a subset of the baselines on Classification
benchmark with a growing size of the training set. The shaded region represents an 80% confidence
interval, obtained from bootstrap samples of normalized IQM (Section 4.1). The left plot reports the
average across all tasks.
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Figure 6: Effect of Multispectral with Figure 7: Effect of Multispectral with ViT-S.
ResNetS50. Only Sentinel-2 tasks are reported. Only Sentinel-2 tasks are reported. Normalised
Normalised accuracies (Sec 4.1). accuracies (Sec 4.1).

In this section, we provide a range of baselines for the classification and segmentation benchmarks. These
will serve as reference points for future evaluation’. We also seek to answer the following questions:

* Which new architecture performs best on remote sensing data (Section 6.2.2)?

» What is the effect of training set size on the performance of each model (Section 6.2.3)?

 Can we leverage multispectral channels to improve performance (Section 6.2.4)?

* Are smaller datasets better at discriminating the performance of different models (Section A.5)?

"We recall that all datasets have been modified from their original version. Hence, our results are not directly
comparable to other published results.



6.1 Protocol

For each model, we replaced the last layer with a randomly initialised layer of the appropriate shape for
the task at hand. We use different learning rates for the last layer (which starts from random weights)
and for the backbone (which starts from pre-trained weights). The best learning rates were selected using
the highest accuracy or Intersection over Union (IoU) on the validation set over 16 trials ®. After choosing
the hyperparameters, we repeated the training for 10 seeds. To minimize overfitting, we selected the best
time step using accuracy (or IoU) on the validation set and we reported the test metrics at the chosen time
step. We use AdamW [42] to train convolution architectures and SGD to train transformer architectures.

6.2 Classification
6.2.1 Baselines Naming Schema

Each baseline name starts with the corresponding architecture: ResNet18 and ResNet50: standard
ResNet architectures [26]; ConvNeXt-B: the base architecture of ConvNeXt [41]; ViT-T and ViT-S: ViT
architectures [19] of size tiny and small respectively; SwinV2-T: a SwinV2-tiny architecture [40];

Then, keywords provide details about the training procedure: SeCo: a ResNet50 model trained on Sentinel
2 data with temporal contrastive loss across seasons [46]; MoCo-S2 and DINO-S2: model trained with
self-supervision on Sentinel data [70] (RGB and Multispectral pre-trained weights); Rnd: weights are
randomly initialised; timm: pre-trained weights are obtained from the timm library, usually from training
on ImageNet; +R-Multi: we manually augment an RGB architecture by randomly initialising the weights
of the missing channels in the 1st layer; multi: the pre-trained model has multispectral channels.

6.2.2 Comparing Baselines on RGB only

In Figure 4, we report bootstrapped IQM of the normalized accuracy (Sec 4.1) for the six datasets of the
classification benchmark, as well as aggregated results’. In this first experiment, all models can only see
the RGB channels.

These results offer valuable information across 10 common baselines in the literature. We denote the
outstanding performance of ConvNext and SwinV2 compared to other models. It is by a large margin the
best models in aggregated results and almost systematically outperforms all models on all datasets. We can
also observe the large difference between Scratch ResNet18 and ResNet18 on all datasets. This highlights
the importance of using a pre-trained model. Also, perhaps disappointingly, the existing model pre-trained
on remote sensing data does not exhibit any improvement compared to their timm pre-trained weights,
i.e., ResNet18-MoCo-S2, ResNet50-MoCo-S2, and ResNet50-SeCo-S2 are all comparable to ResNet18
on the aggregated performance. On the other hand, in Section 6.2.4, we see that ResNet50-MoCo-S2-multi
can leverage multispectral data to slightly surpass ResNet50-timm.

Another insight that can be gained from these results is how useful a dataset is at discriminating baselines,
i.e., a dataset where most baselines perform equally would have limited utility in our benchmark. To this
end, we had to discard GeoLifeClef 2022 [12] as all models were performing equally badly'’. m-eurosat
also offers limited discriminativity as most models obtain very high accuracy (see Figure 9). To make
this dataset harder, we subsample down to 2000 training samples. We can now see that smaller models
tend to perform better on this dataset, but the discriminativity remains fairly low.

6.2.3 Accuracy vs training set size

As part of the benchmark, we also provide official subsets of the training sets with train ratios of (0.01,
0.02,0.05,0.1,0.2,0.5, 1) ',

8The range of selected learning rates is different for each model and is selected based on early experiments, see
appendix for details.

“We note that the variance of the results represents the uncertainty of the mean (IQM) which is significantly
smaller than the variance of the raw seeds presented in Figure 9 in Appendix.

1%We suspect this dataset to have high aleatoric uncertainties.

"Reporting results on all 7 subsets increases the number of experiments by 7x. However, in Figure 13 (see
Appendix), we show that the convergence time is proportional to the training set size. This means that training on
all seven subsets takes on average about 1.88 times longer than just training on the full training set.



Figure 5 depicts a different perspective on the models. First, we can observe the noise due to the
hyperparameter selection process that is not accounted for by repeating 10 seeds with fixed hyperparameters.
Also, we see that ConvNeXt often becomes better than SwinV?2 as the training set decreases. This coincides
with the common observations that transformer architectures tend to be more data-hungry, but also tend
to outperform convolution architectures in the high data regime [18]. We note also, that ConvNeXt-B-timm
only requires 2% of the training set to obtain aggregated performances comparable to that of ResNet18-Rnd.
This impressive factor of 50x on data efficiency highlights the importance of developing new architectures
and new pre-training methods. Finally, we can observe an increase in the discriminativity of the datasets
as the training set decreases, specifically for m-eurosat, when the task becomes more difficult, the strong
baselines stand out even more. The discriminativity of datasets is further studied in Section A.5.

6.2.4 Leveraging Multispectral Information

We now study the effect of leveraging multispectral information during the pre-training phase and during
the fine-tuning phase. We do so by fixing the backbone to either ResNet50 (Fig. 6) or ViT-S (Fig. 7) and
exploring various weight initialisation schema. Since we could only find pre-trained models for Sentinel-2,
we limit this experiment to the four datasets satisfying this criterion.

We found that using a model pre-trained on RGB-only (timm pre-trained) and augmenting the architecture
by randomly initialising the weights of the missing channels in the first layer (+RMulti) does not lead to
systematic improvement. Moreover, the fine-tuning time is largely extended since we have to wait until the
newly initialised weights on the first layer fully converge. On the other hand, the ResNet50 pre-trained on
Sentinel-2 using DINO or MoCo [70] leads to a modest performance increase on average. When looking
at ViT-S (Fig. 7), incorporating multi-spectral only leads to a systematic performance decrease.

6.3 Segmentation

We defer experiments on the Segmentation benchmark to Appendix A.3, where we provide experiments on
six baselines (ResNet18, ResNet50, ResNet101) x (U-Net, DeepLabV3) with pre-trained weights provided
by the timm library. While ResNet101-DeepLabV3 performs best in aggregate, it still underperforms
on some datasets.

6.4 Resource Usage

See Appendix A.6 for detailed resource usage of each algorithm evaluated in this section. We report the
number of parameters, memory usage, the time required for a forward pass, and the convergence time
for fine-tuning on downstream tasks. While memory footprint can increase by a factor of 4x for a model
like SwinV2 and ConvNeXt-B compared to ResNet50, their forward pass is only twice as slow.

7 Conclusion

We developed a new benchmark for evaluating pre-trained models on remote sensing downstream tasks.
This involves adapting a variety of remote sensing datasets to a more conventional machine learning
pipeline and providing code for fine-tuning and evaluating individual tasks. We expect that this benchmark
will stimulate the development of new foundation models that could lead to better generalization on a
variety of earth monitoring downstream tasks and could open up opportunities for new applications.

Limitations Our benchmark does not extensively evaluate all desired features of a pre-trained model
for earth monitoring. For example, it does not evaluate its ability to fine-tune temporal data nor perform
fusion with other types of data such as text or weather. The spatial coverage of the benchmark covers
most continents and improves coverage over individual datasets. However, the spatial coverage could
still be largely improved to include a much wider range of countries and biomes. Finally, as pre-trained
models become stronger, they will get closer to the theoretical limit of generalization performance, i.e.
approaching the aleatoric uncertainty of the dataset. Under such a regime, we expect a bigger overlap
between error bars when comparing 2 different models.
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